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Cheeger’s inequality with a boundary term

M. N. HuxLEYy

1. Introduction

Cheeger’s inequality refers to the eigenvalues of the Laplacian on an oriented
manifold M. For ease of exposition we consider two dimensional manifolds in this
note, with local coordinates x, y and length [ and measure p given by

di*= g(x, y)(dx>+dy?), du = g(x, y) dx dy,

where g(x, y) is an analytic function of x and y. We say f(x, y) is a Dirichlet
eigenfunction on M if

jj f2(x, y)g(x, y) dx dy converges, .
62 2
a—£+§§£= =Af(x, y)g(x, y)

(for some A) on the interior of M, and if f is not identically zero, but f(x, y)=0 on
oM, the boundary of M.

CHEEGER’S THEOREM. Let h be a constant such that
1(8S)= hu(S)

for all subsets S of M with finite measure and piecewise smooth boundary 3S. Then
if A is the eigenvalue of a Dirichlet eigenfunction,

2VA>h.

For a compact manifold without boundary the constant h is zero, but [2] the
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infimum defining h may now be taken over subsets S whose measure is at most
half that of M. In fact, the sets S considered are connected components of the
inverse image of [8, ) or of (—%, —&§] under f. We may replace h by the infimum
h(f) over such sets S; the constant h now furnishes a lower bound for h(f).

If M is multiply connected, it is difficult to estimate the bound h, or even h(f).
Cutting the manifold introduces extra boundaries. We prove an appropriate
extension of Cheeger’s theorem:

Let N be a two-dimensional oriented manifold with metric given by

di*>=g(x, y)(dx*+dy?),  dp=g(x y)dxdy,
and boundary N= CUD. Let f satisfy

2 2
f';{*ag;g: —Af(x, y)g(x, y)

on the interior of N, and the mixed boundary conditions
d
f=0o0n C, —f=OonD.
on

Let the manifold M be obtained by cutting N along E, a finite union of simple
curves; the boundary of M thus consists of C, D and two copies E; and E, of E,
with periodic boundary conditions identifying E, and E,. Then if f is non-
constant, we have

M

(A2 = h(f)) J'If2 du > — § f?di.

2. Proof

We follow Buser’s account [2] of Cheeger’s theorem. By periodicity

(Ll +L2)fgradf~ds=0,

where grad f and ds are with respect to the coordinates x, y. We have f=0on C
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and the normal derivative of f vanishes on D in both metrics. Hence

0= § fgradf-ds=deiv(fgradf)dxdy

M

JI lgrad f]* dx dy + ‘” j+_('_)_2__f_) dx dy

M

= _” lgrad f|*> dx dy — A jj f?g dx dy.

M M

It is convenient to suppose f normalised so that

Jj'fzgdxdy=1.

M

Next we have

” |grad f?| g2 dx dy =2 “ |fl lgrad f| g'/? dx dy

M M

= {4 IJ frgdxdy IJ |grad f]* dx dy}m =)\ 12

M M

by the normalisation. Since f is non-constant we have grad f zero but f nonzero at
the extrema of f, and so f?g and |grad f|* are not proportional. Thus the inequality
is strict.

Next we take curvilinear coordinates ¢, u on M, with t=f(x, y), u running
along the curves f(x, y) = constant. These coordinates are orthogonal, with area
element dt du = |grad f| dx dy. We deduce that

2012 > ”. 2|fllgrad fl g"* dx dy = JJ 2|t| g"* du dt.

M M

Next we let M(t) be the set of points with f(x, y)=t, M'(t) be the set of points
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with f(x, y)<t, and L(t) be the curve f(x, y) =1t of length

I(t)= L g'? du
)

in the metric on M. The boundary of M(t) consists of L(t) and that part of M
that lies in M(t), so that

L o' du+ J g'% ds = h(f)n(M(1),
()

M(t)NaM
where du and ds are Euclidean lengths. Hence

2A”2+ZIt j g"zdsdt+2J.|t| j g'? ds dt

t>0 M(@)NaM t<<0 M'(t)NaM

= h(f) j 2tjjgdxdydt+h(f) I 2 |¢| Jj gdx dy dt.

t>0 M(1) t<<0 M'(t)

Interchanging the order of integration, we have

IANV2 4 ' t2 g1/2 ds + j 2 gV ds

M(0)NoM M’(0)N3M

zh(f){ J‘F gt>dxdy+ II gt2dxdy},

M(0) M'(0)

so that
2)\”2+§ f2dl=h(f),
oM
where dl is the differential of distance in the metric.

3. Applications

Consider the upper half plane H as hyperbolic space of curvature —1, with
g(x, y)=1/y>. For sets S of finite measure the isoperimetric inequality [1] states

12(3S) = n*(S) + 4mwp(S).
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Let I' be a group acting discontinuously on H, for which the quotient space I'\H
has finite measure. If I' contains no rotations or transvections (limit rotations
about points at infinity, the ‘cusps’), then I'\H is a compact Riemann surface, and
every simply connected subset carries the hyperbolic metric. The compact case
has been studied extensively, cf. Elstrodt’s survey [4]. If I" does contain transvec-
tions, there is a continuous spectrum A >3 whose multiplicity is the number of
inequivalent cusps. The generalised eigenfunctions of the continuous spectrum are
given by the values of the Eisenstein series introduced by Maass [8] on the line Re
s =3, with A =s(1-5). The continuation of the Eisenstein series to Re s =3 is
difficult (except in special cases); see [5,9, 10, 11]. The Eisenstein series has a
pole at s =1 with constant residue f,, the trivial constant eigenfunction, and any
other poles in 3=<s =<1 on the real axis correspond to square-integrable eigenfunc-
tions, again by A =s(1-—s). All other eigenfunctions are ‘cusp forms’, zero at all
cusps of I'\H.

The modular group PSL(2, Z) and its congruence subgroups are of particular
interest [8, 9]. Recently Kuznietsov [6] and Deshouillers and Iwaniec [3] have
used the Kuznietsov Trace Formulae to study them. These formulae differ from
that of Selberg by taking the group elements not in conjugacy classes, but in
double cosets of the Borel subgroup of upper triangular matrices, and using the
Fourier theory for the transvection group at the cusp . Eigenfunctions with A <}
complicate asymptotic formulae as in the Selberg theory [4]. The Linnik-Selberg
conjecture on averages of Kloosterman sums [7] would imply A =3, and Kuzniet-
sov [6] has shown that an averaged form of the conjecture holds in the absence of
such exceptional eigenvalues. For congruence subgroups of the modular group the
Eisenstein series E(z, s) is a linear combination of Epstein zeta-functions in the
variable s, and E(z, s) is easily seen to be regular for Re s >1 except for the pole
at s=1; cf. [8]. Accordingly exceptional eigenfunctions, if any, must be cusp
forms.

Congruence subgroups of the modular group of level N are those subgroups
containing I'(N), the principal subgroup of level N, which consists of matrices
congruent mod N to the identity. The lengths of translations on I'(N) tend to
infinity with N, and for N=2 I'(N) contains no rotations. For N=3 I'(N) has
index

IN)=3N*]] (1—;15),

pIN

with I(N)/N distinct cusps, and genus

, (N=6)I(N)
——pN
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Other interesting subgroups consist of the matrices which become upper triangu-
lar (I'y(N)), lower triangular (I"°(N)) or diagonal (I'S(N)) when reduced mod N.
We note that I'y(N) and I'°(N) are conjugate in PSL (2, Z), and that I'§(N)
is conjugate in PSL(2,R) to I'((N® and to I'°(N?). The eigenfunctions
on conjugate groups differ only by a rigid motion in H.

For certain small values of N we can rule out exceptional eigenvalues by
purely combinatorial arguments.

THEOREM. Let the group I' act discontinuously on the upper half plane H,
and let '\H have finite area. Let f be a non-constant eigenfunction of the
Laplacian that vanishes at all the cusps. If either

(1) I'\H has genus zero, and f vanishes at all the fixed points of rotations with
at most three exceptions, or (2) I'\H has genus one, and f vanishes at all the fixed
points of rotations with at most one exception, then the corresponding eigenvalue
satisfies A > 3.

Proof. Since f is non-constant, it has at least two nodal domains. When I'\H
has genus zero, at least two of them are topological discs, and one of these
contains at most one fixed point in its interior. When I'\H has genus one, either
one nodal domain is a disc (which may contain a fixed point), or at least two nodal
domains are topological annuli, and one of these contains no fixed point in its
interior.

A disc on I'\H containing one fixed point, that of a rotation group of order n,
lifts to a disc on H that covers it n times. The cusps are also singularities of the
hyperbolic metric on I'\H, but they lie on nodal lines—this may be verified
directly from the Fourier series expansion of f—and so cannot lie inside a nodal
domain. Hence Cheeger’s theorem applies, and A >1.

An annulus on I'\H may lift to an annulus on H. In this case we may apply
Cheeger’s theorem at once. Otherwise we must make a cut, and lift to a disc D in
H for which two connected arcs E and 7E of the boundary are identified by some
v in I'. If 7 is a rotation of order n, then n copies of D fit together to form an
annulus in H, and A >} again by Cheeger’s theorem. If 7 has infinite order, we
unite n copies D, D, ..., 'D and the arcs 7E, ..., ™ 'E to form a simply
connected region whose boundary consists of E, v"E and two nodal lines of f. The
cut E can be taken away from the cusps, so that

I f?dl<e,
E
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Figure 1
and using the value h =1 appropriate to hyperbolic space, we have

A2 1)n ” f2du>-2 J 2 dl.

D E

Hence A =3, since n can be taken arbitrarily large. This inequality is in fact strict,
as we have shown

and the left hand side is strictly less than

2A 1/2jjf2 duw.

D

COROLLARY. We have A>% on I'(N)\H for N=1,...,5 (genus 0), and
N =6 (genus 1), there being no rotations in the group for N=2. We have A >3} on
I°(N)\H forN=1,...,12, 14, 15, 16, 18, 20, 24, 25, 27, 32, and 36. (The genus
is 0 forN=1,...,5,7,...,10,12,16, 18 and 25. There are two fixed points for
N=1,3,5,7 and 10, and one for N =2. The other values of N listed give genus 1
and no rotations.)

We remark that if I’ has neither cusps nor rotations, then I'\H has genus at
least two. The rotations all lie outside a subgroup of finite index in I" (index at
most six for congruence subgroups of the modular group), but the corresponding
surface has a larger genus. One might hope that any eigenfunction vanishing at all
cusps would have A =3; but using ideas of Buser we can construct a group I" for
which I'\H has one cusp, four fixed points of rotations and genus zero, A, is
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arbitrarily small, and the first non-constant eignefunction is skewsymmetric about
an axis through the cusp, and so is zero there.

Our Theorem can be generalised by allowing some of the singular points of
the metric at which f does not vanish to be cusps, not fixed points. This uses a
different argument to deal with a cusp in the interior of a nodal domain.

For the congruence subgroups the fact that A >3 for the modular group and

for I'°(2) is implicit in Maass [8], who was interested mainly in the value A =31. It

was proved explicitly by Roelcke [9]. For the modular group Roelcke showed
A>37?/2, better than the bound A >25/4 obtained from estimating h(f) in
Cheeger’s theorem. We shall discuss numerical estimates and particular examples
more fully elsewhere.
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