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D(Zw)" and the Artin cokernel

ROBERT OLIVER

Let p be an odd prime. If & is a p-group and M < Q= is a maximal order
containing Zr, then we set

D(Z7w)=Ker [Ky(Z7) — Ky(IN)]

as usual. Since D(Z) is a p-group [2], the involution g +> g~ ! induces a natural
splitting

DZw)=D(Zw)" & DZw);

where D(Zw)" and D(Zw)~ are the +1 and —1 eigenspaces, respectively. The
involution can be extended to a linear action of F% on D(Z); and this induces
further eigenspace decompositions

(p—3)/2 ®-3)2

D@Zm)*= ) %D@Zw) and D@Zw) = ), *"'DZn).

i=0 i=0

The groups D(Z#)™ and **'D(Zn) have been studied extensively in [3] and
[14]; and the order of D(Zw)~ for abelian 7 is computed in [3]. In this paper,
attention is focused on °D(Z ). This is the part of D(Z)* which is independent
of number theoretic properties of p; and in fact, °D(Zw) = D(Zm)* whenever p is
regular.

For any finite group 1, we define the ‘“Artin cokernel” Ag(7r) to be the group

Agq(m) = Coker [Ind: Z {Rg(0):0 = m, o cyclic} - Rg(w)],

where Rq(7r) denotes the rational representation ring. The main result here is that
°D(Z7)= Aq(w) for any p-group = (p odd). Among other consequences, this
gives new insight into Martin Taylor’s result [13] that the image T(Zw) of the
Swan homomorphism has order equal to the Artin exponent of o : T(Zm) corres-
ponds under this isomorphism to multiples of the identity in Rgq(7r).

291



292 ROBERT OLIVER

We end by deriving a formula for |°D(Z#)|-in fact, a formula for the order of
Ag(m) for arbitrary finite #. Also, for the sake of completeness, the formula for
|D(Z7r)~| in [3] is generalized to cover arbitrary p-groups; thus giving a complete
calculation of |D(Zw)| when  is a p-group and p any odd regular prime.

For n=1, Q¢, always denotes the field generated by the n-th roots of unity
(and similarly for Z¢,, Zpgn, etc.) Also, ¢(n) will always mean the Euler ¢-
function.

Throughout the paper, unless otherwise stated, p will be a fixed odd prime.
We start with the following well known description of Q# when 7 is a p-group.

PROPOSITION 1. Let 7 be a p-group. Then Qr is a product of matrix rings
over fields QZ,. for various s = 0. Furthermore, for each s =0, the number of simple
summands isomorphic to matrix rings over Q¢,. is equal to the number of conjugacy
classes of cyclic subgroups o <  such that

lo/[o, N(o)]| =l - |Z(o)|/IN(a)| = p*.

Proof. That Qr is a product of matrix algebras over the Q¢,. is shown (though
not explicitly stated) by Roquette in [11]. In Section 2 of [11] he shows that the
division algebra for any irreducible representation M of = is isomorphic to the
division algebra of a primitive faithful representation of some subquotient of r;
and in Section 3 he shows that the only p-groups with primitive faithful represen-
tations are the cyclic groups.

Now, for all s =0, let w, be the number of simple summands of Q# which are
matrix algebras over Q¢,.; and let v, be the number of conjugacy classes of cyclic
subgroups o < 7 with |g/[a, N(o)]|=p°. Let p" =|w|. We say that two elements
g, h € 7 are Q¢,~-conjugate (any m =0) if g is conjugate to h* for some

a € Gal (QZ,-/QL,~) < Gal (QL,-/Z) = (Z/p™)*.

In other words, a=1 (mod p™) if m=1,or p 4 a if m=0.

For each cyclic o = 7, the number of conjugacy classes of generators of o is
just (lo/[o, N(a)])). So for any m =0, the number of Q&,~-conjugacy classes in
is

Y v, - min{e(p™), ¢(p*)}. (1)

s=0

On the other hand

1k Ko(@¢,-[#]) = ). w, - min {e(p™), ¢(p*)}; (2)

s=0
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and by Theorem 21.5 in [1], the numbers in (1) and (2) are equal for all m. So
v, =w, forall s=0. O

Thus, if 7 is a p-group and L = Z(Qr) is the center, then the reduced norm
v: K (@Q,m)—=>(L,)*

is just the product of the determinant maps for the simple summands of me If
M<Qnm and O <L are maximal orders, then v induces an isomorphism of
Kl(ﬁmp) with (@p)*: by [9, Theorem 21.6], Emp is a product of matrix algebras over
the components of Q,. In particular, Kl(ﬂnp) can be regarded as a subgroup of
Kl(ﬁp'n'). We let K;(IR) and K {(prn-) denote the images of K,(I) and Kl(zpfn) in
K 1(@p1r); and let K{(M)" denote the p-adic closure of K ().

We will use the following description of D(Z ), based on the formulas in [4].

PROPOSITION 2. Let m be a p-group, and let 1< Z 1 be a maximal order in
Q. Then there is an isomorphism

D(Zw)=Coker [K}(Z,7) — K,(I?,)/K (D) ]

which is natural in .

Proof. Let L=Qar be its center, and let 0 < L be its maximal order. Since
Zq[w]=ﬂjlq for all primes q# p [9, Theorem 41.1], Theorems 1 and 2 in [4]
reduce to the formula

D@ m)=K,(M,)/K{(M) - Ki(Z,m).

Furthermore, Kl(imp)/K {(?_p'n') is finite [12, Proposition 8.15]; and so K{(I) can
be replaced by its p-adic closure. [

Now let
K :F¥— (2,)*

denote the inclusion into the group of (p—1)-st roots of unity (with k(a)=a
(mod p) for a €F%). If « is an abelian p-group, then the group homomorphisms
g — g“@ for aeF* and ge w induce actions of F} on K;(Zw), K;(Z,m), DZw),
etc. The next problem is to find a natural way to do this when 7 is non-abelian.
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Let 7 be an arbitrary p-group. Then by Proposition 1, the center Z(Q) is a
product of fields Q. for various s =0. The natural embedding F} < Gal (Q¢,./Q)
(where a €F} sends ¢,- to {5%) induces actions of F}; on the centers Z(Qm) and
Z(Qp'rr); and hence on K(@,7). If a:m— =’ is a homomorphism of p-groups,
then

oy Kl(ﬁp'tr) — Kl(ﬂpﬂr')

is a product of norm, includion, and diagonal maps between the groups of units of
the field components of the centers; and is hence IF",;-linear.

PROPOSITION 3. Let m be a p-group. Then
(i) K {(prn) is an Fi-invariant subgroup of Kl(@pw).
(ii) For any 0=t=p—2, set

‘K{(Z,w) ={xe K{(Z,f:r)(p) :7,(x)=x(a)' - x for all a eF}}

(here 7, denotes the action of acF}). Then for t#1, ‘K{(Z,'n') is generated by
induction from cyclic subgroups.

Proof. By [8, Theorem 2], there is an exact sequence
0—>(Ag:AeZ% genw) S Ki(2,m) 5 I(Z,7) % 7 — 0,

natural in 7, where

I2,7)=Ker[e:2,m —>1,)Kgxg ' —x:gem xel,m)
and

e Ag)=2A; o Ag)=ITgh
For a e[F*, let 7, be the action of a on I(Z,m) given by: #,(¥ \:ig) =Y Ag:®. This
clearly leaves Ker (w)=Im(I') invariant. By the definition of I' in [8], I is
F-linear when 7 is abelian.

Now set

X(m)=Im[Ind: Z {K {(2,,0) :o <, o cyclick— K {(2,,17)]

and

Y(m)=T"'CI(Z,7) NKer [e4: K|(Z,m) — 1%]. (1)
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Since 1(2,—;:) is generated by cyclic induction, Ker (I') < X (), and

‘I(Z,7) ="Ker () ="Im (I') ()
for t#1 (0=t=p—2); it follows that
K(Z,m) = X(w)+ Y(w). (3)

By naturality, X(r) is an F}-invariant subgroup of Kl(ﬁ,,'rr), and I'| X(m) is
F%-linear. It follows that for n large,

Y(m)"" <X (7). 4)
Furthermore,

tors (Kl(@p’n'))(p) < lKl(Qp’ﬂ'):
the torsion in Kl(Q,,'n-) comes from roots of unity in the center. It follows by (4)
that Y(w)glKl(@pw); and hence by (3) that K}(Z,m) is F%-invariant. Further-
more, by (1), this shows that I" is F%-linear. Since I (Z,w) is generated by cyclic
induction, ‘K {(2,,17) is generated by cyclic induction for t# 1 by (2). O

Propositions 2 and 3 now imply the existence of natural actions of F} on

D(Z):

7

PROPOSITION 4. For any p-group , there is a natural linear action of F¥ on
D(Z ) such that the isomorphism of Proposition 2 is F}-linear. [J
In particular, for any p-group  and 0=t=p -2, set

'D@Zw)={xe DZm):7,(x)=k(a)" - x for all aeF}}.

Since D(Zm) is a p-group [2], and p £ |F%,

p—2 ®32
D(@Zm)= )Y, ‘D@Zw) and D@w)*= Y *DZn).
t=0 i=0

Here, D(Zw)* is the group of elements invariant under the involution 7_;;
induced by complex conjugation on Z(Qr).
If p is regular, then results of Iwasawa (see, fx, [7, Theorem 7.5.2]) show that
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for any s =0 and any even 0<t=p-—3,
‘@8 1= 25>

So by Proposition 1, if Y2 Z = is a maximal order in Qr, then ‘K;(IN)" = ‘Kl(fmp);
and hence ‘D(Z#) =0 for such t. In other words:

PROPOSITION 5. If p is an odd regular prime and = is a p-group, then
D@Z#=)"=°D@Zw). O

In order to study the groups °D(Z ), we must first describe

L2l 1@y

for any s =0. The following result must be well known, but we have been unable
to find a reference.

PROPOSITION 6. For any s=0,
O[(ngp’)*/ (ZZ:")A](D) = Zp‘

Proof. This is clear if s =0. So fix s>0, let K<Q(,. be the fixed subfield of
IFt, and let R < K be the ring of integers. Then I' = Gal (K/Q) is cyclic of order
p*~'. Set {=¢,., and let yeT be the generator: y({)={""".

Let

p—1
p=<z =11 (I—C““))>2R
a=1
be the prime ideal over p. Set
U’'=Ker[N:(R)*— (2,)*],
where N is the norm of K,/Q,. Note that U'< 1+pR,.

Fix ue U'. By Hilbert’s Theorem 90, there is x elz’: such that u = y(x)/(x).
Write x = z'v, where v e (R,)* and z is the element defined above. Then

v(zH/z' = ﬁ (M)i e R*N(1+p).

a=1 l_gx(a)
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Furthermore, N(v)ex({F’;)X(lersZp) (the norm group has index p*~' by local
class field theory). So there exists w (Z,)* such that N(w)= w” ™' = N(v). Then

N(w™)=1 and vy(w )/(ow™)=y(v)/v=x - (y(z')/z")"".
In other words,

U'={y(v)/v:ve U} (R*N(1+p)). (1)

But U’ is a 2,,[1" ]-module, and the closure of R*N(1+p) is a Z,[I" 1T-
submodule. Since Z[I'] is a local ring with maximal ideal generated by p and y—1,
no proper submodule of U’ can generate

U'{y(v)/v, v :v e U").

So by (1), R*N(1+p) is dense in U’ =Ker (N); and

l

UZo8 ) 1@ L) Ty = [(R)*I(R*) ]y = (Im (N))y =2, O

By Proposition 6, if 7 is a p-group and I <Q is a maximal order, then
°[K1(§mp)/K {(flR)A](p) is a sum of one copy of Zp for each irreducible Qsr-module;
and is thus (abstractly, at least) isomorphic to Z,@RQ(W). The key remaining step
is to construct a natural isomorphism between these groups; once this is done the
isomorphism between °D(Zm) and the Artin cokernel will follow easily.

We temporarily allow p to be an arbitrary prime (possibly p=2). If A is a
@p—algebra, and V is an A-module with dimg (V)<; let det (u, V), for ue A,
denote the determinant over Q, of u:V — V. Define

L:Z,)*—1,
by setting L(u)=1/p log (u/x(@x)) for ue(zp)* and #e€lF} its reduction mod p
(note that u/k (1) e 1+p2,,).

Now assume A is a finite dimensional semisimple Qp-algebra, and let Yc A
be any order. Let V,, ...V, be the distinct irreducible A-modules, and set

ni = [EndA (‘/1) . Qp]
Define a homomorphism

8= 8y:K,A) > Q,®,Ko(A)
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by setting, for any matrix u € GL,(),

k
1
8(uD= L —-L(det(w, VD)-[Vi]
i=1 M
PROPOSITION 7. For any prime p, the maps 8y are natural with respect to

homomorphisms between orders in semisimple Qp-algebras.

Proof. We must show, for any homomorphism a: A — B, orders A< A and
8 < B such that a(¥)<c B, and u e A*, that

o (8y(u)) = dp(a(u)) e ap Q@ K(B).

Let V,,..., V; be the irreducible A-modules, and W,, ..., W, the irreducible
B-modules. Define a;;, b; € Z by setting

t s
ax(V)) =Y ayW, a*(W)=) bV,
i=1

i=1

(where ax(V;)=B®,V,, and a*(W,) is W, regarded as an A-module). We also
set

m; = [EndA (‘/i):ap]a n] =[EndB (W) :Qp]a

and write L; = L(det (u, V;)) for short. Then

as(u(w) = as( T @m)IVI) =T @Lim)W)

i=1

and
Sw(a(u)) = ), nj'L(det (u, a*(W))[W;1= Y (byLi/n)[W;].
i=1 i
It remains to check that (b;/n;) = (a;/m;) for all i, j. But

dim Hom, (V,, W) =mb;, dimHomg (axV;, W,)= na;;;

and these two dimensions are equal by [1, Theorem 2.19]. O

We now again restrict to the case where p is odd.
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PROPOSITION 8. Let m be a p-group, let M < Qm be any maximal order, and
set 8, = 8a .. Then

Im[8,: K,(M,) - Q, ®K(@Q,m)] =2, K,Q,m);
and &, induces an isomorphism
8 = 8,,: °[K,(P,)/K () Ny —> 2, ® Ko(@Q,m) =7, ® R ().

Proof. Using Proposition 1, it will suffice to show that whenever A =M, Q&)
and Mc A is a maximal order, then 8 =84 induces an isomorphism

&' : (K, (R,)/ K (D) )iy —> 2, ® Ko(A).
By [9, Theorem 21.6], we may assume that I = M, (Z¢,.).

Let V=(Q,L,:)" be the irreducible A, -representation. For any uel+J &@,)
(where J (Emp) is the Jacobson radical),

8(u) = —— L(det (u, V)) - [V]
¢(p°)

1
) 108 Mage(@eta,; (W) - [V]

Furthermore, by local class field theory,
Nodet(1+JER,)=1+p°Z,
(or 1+p2p if s =0). Since log (1+p52p) = p’Z,, for s=1, we have

(K (IM))py=8(1+IM)) =2, - [V]=27,BK(A).

If u is a global unit, then N(det (u))==+1, and so 8(u)=0. Furthermore, 8 is
F3-linear when K((A) is given the trivial action; and so 8 induces a surjection

6' : O[Kl(mp)/Kll(mA](p) s Zp ®KO(A) = Zp-

But the two groups are isomorphic by Proposition 6, and so 8’ is an
isomorphism. [
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We can now prove the main result. Recall that the Artin cokernel Ag(7) is
defined by

Agql(m)=Coker[Ind: Z {Rq(0):0 < m, o cyclic} — Rq(m)].
THEOREM 9. For any p-group w (p-odd), 8" induces an isomorphism
8":°D(Zm)— Ag(m).

Proof. Let C be the set of cyclic subgroups of «. Propositions 2, 7, and 8
combine to give the following commutative diagram with exact rows:

Y °Kil,0)—2> Y 7,QRq(0)—=— ¥ °D(Zo)—>0

oeC oeC cgeC

Ki@,m)—=—> 2,®Rg(m)—=—> °D@Zmw)—>0

Here I,, I,, and I; are the induction maps; and 6, and 7, are the composites
(M < @ a maximal order):

6, : 2, ® Ro(m) —E25 K, (M, )/ K5 () 1) —> D@ m)
(the second map being the map of Proposition 2), and
N °K5(2,m) = °Ky () —=—> 7, @ Ra().

By Proposition 3(ii), I, is onto. Assume that °D(Zo) = 0 for any cyclic p-group
o. It then follows by diagram chasing that

°D(Zw) = Coker (I,) = Agq().

(Aq(m) is a p-group by the Artin induction theorem: see, for example, [1,
Theorem 15.4]).

It remains to check that °D(Z o) = 0 for cyclic o: This is implicit in [6], [5], and
[15]; but doesn’t seem to be stated explicitly. If |o|=p, then D(Zo)=0 by [10,
Theorem 6.24].
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So assume |o| = p” for n=2. Let p < o be the order p subgroup, and assume
inductively that °D(Z[a/p])=0. There is a commutative diagram

2,® Rq(p)——>2,®Rqo(0)—=—7,® Rqa(o/p)

FE

0=°D(Zp)——"D(Zo) ——>"D(Z[o/p])=0,

where iy and jy are induced by inclusion and projection. Since K,(Z,0) maps
onto K,(Z,[ca'p]),

jx(Ker (6,)) =Ker (6,,,) =2, ® Ra(a/p).

In other words, 6, | Ker (jx) is onto. Furthermore, Ker (jx) < Im (iy): if V=Q¢,-
and W=Q(, are the faithful irreducible Qo- and Qp-representations, then [V]
generates Ker (jg), and V =1IndJ (W). We thus get that 6, | Im (iyx) is onto, but
0,°isx=0, and so °D(Zo) =0.

One easy consequence of Theorem 9 is an alternate proof, for odd p-groups,
of Martin Taylor’s theorem [13] involving the image T(Zw) of the Swan
homomorphism. T(Zr) is the group of all elements

[3, n]—[Zw]e D(Z),

for (n, |w|) =1, where [3, n] is the projective module

[, n]l=nZnw+7Z- (Z g).C.Z'zr.

gET

So if 7 is a p-group and M < Zx is a maximal order in Q, then [, n]—[Zm]
corresponds, under the identification in Proposition 2, to the element of Kl(ﬁmp)
which is n e(Zp)* at the identity component and 1 at all other components (in
particular, T(Zm) < °D(Z)). The isomorphism of Theorem 9 thus sends T(Z ) to
the group of multiples of the identity in

Rg(m)/ Z {IndZ(Rg(0)): 0 < 7 cyclic}.
In other words:

THEOREM 10. (M. Taylor [13]) For any p-group m, T(Z) is cyclic of order
equal to the Artin exponent of w. [
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The computation of |°D(Z )| can now be carried out, using the same idea as
for the calculation in [3]: that of comparing discriminants. We first consider the
Artin cokernel of an arbitrary finite group.

THEOREM 11. Let 7w be any finite group, and write

k
Qnmr= H M, (D),

i=1

where the D, are division algebras. Let X be a set of conjugacy class representatives
for cyclic subgroups o < mw. Then

|Aq(m)|= [(GI;[X-?-I(-(\-:TD . |N(0.)/0,‘)/<i=1511 D, :Q])]IIZ

Proof. For convenience, set

G= ZX Ind? (Ra(0)) € Ro(m).
Then
|Ra(7)/G| = [d(G)/d(Rq(m))]"?; (1)

where d(—) denotes discriminant with respect to the usual inner product

L5 o @xwl®).

7| few

(V] [W)D=

For each i, let V; denote the irreducible representation of M, (D,); then

(V;1,[V;]) = dimqg (Homg,, (V;, V}))=0 if i#j
=[D;:Q] if i=j.
So
k
d(Rq(w)) = H [D;:Q]. )

To compute d(G), consider first the set

$ ={[Q(nlo)]: ¢ € X} Ra(m);
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where Q(m/o) denotes the permutation representation with Q-basis m/a. These
elements generate G: since

Q(m/o) =Ind? (Q) e G,
and Rg(o) (o€ X) is generated by the elements
{{Q(a/7)]=Ind7 (Q)): T <o}

Also, 1k (Rg(m))=|X] (see [1, Theorem 21.5]); and so S is a basis for G.
It follows that

d(G) =det (M) (3)
where M = (M, ), ..cx is the matrix defined by

M, ={[Q(m/o)], [Q(=/7)].

For o€ X, let x, denote the character of Q(=x/o). For any x €,

1 1 _
X.(X)=— #gem:xgo=go}=—" - H#gem:xecgog™'}.
o] |o|

Hence, for o, 1€ X,

Mo =27 L9~ 3 lgog~t ek~

xem | | ll ‘ |ghe1-r

- ¥ longrg . (4)

ol - |7l e

To simplify what follows, define, for n=1 and m=1,

@m(n)=n— ; e(d).
d<m

Note in particular that ¢,(n)=n, ¢,(n)=¢(n), and ¢, (n)=0 for m>n. Let
N =max {|o|: 0 € X}; and define, for 1=m =N:

X, ={oceX:|o|=m} Y, ={ceX:lolzm}= U X.

i=zm
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For all 0=m =N, define a matrix M™ = (M), ..v., by setting

1
M =——— ), em(ongrg™).
o} - |7l g;r
In particular, M® = M.
Fix 1=m=N. For 0,7 X, (i.e., |o|=|1|=m),

MP=m2Y o.(ongrg™)

gET

=(e(m)/m?) - #gem:o=grg"}=0 if o7

_e(aD

| | -IN(@)/al if o=1

In particular,

det (M™) = [] [‘P(IGD IN(o)/o I] (5)

G'EXN I I

If 1=m<N and o, 7€ Y,,.; (e, |o|, |7|>m), consider the entries MI? for
p€ X, (lp|=m). By definition, M’ =0 unless |o Ngpg~!|=m for some g; i.e.,
unless gpg~'co. If m +|o], then these MU all vanish; and also M{™ = M{m*D
(@m(n) = @ps1(n) if m 4+ n). If m ||o|, let p e X,, be the unique element conjugate
to a subgroup of o; then

M — (M IMS) - (M&) = [Z em(oNgrg™N— Y en(pNgrg™ 1I)]

o I |7l Lyen gen
1
=Tl Tr] Y GmerlloNgrg™ ) =M.

In other words, for all o, 7€ Y41,

Mon:+1) =M(dr:)___ Z (Mf,':,‘)/Mf,’,',") . M(p:h’-l);

peX,,

and M™*? js obtained from M by elementary operations which eliminate all
entries M for pe X,,, 7€ Y,,4;. It follows that

det (M™) = det (M™*) - [] M

ceX,,

=det M™*Y) - T] [“’(l"l) IN(a)/o I]

ceX, I I
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Combining this with (5) gives

e(al)

d(G) =det (M) = det (M) = H[ o

oceX

NGl

Finally, combined with (1) and (2), this gives the desired formula for
|Ra(m)/G|. O

When 7 is a p-group (recall that p is always odd), the above formula can be
reformulated solely in terms of cyclic subgroups:

THEOREM 12. Let w be a p-group, and let X be a set of conjugacy class
representatives for cyclic subgroups o < w. Then

N 27172

Proof. By Proposition 1, Qm =[]¥_; M, (D;), when the D, are fields, and

H[D :Ql= [1 el 1Z(@)IN@))

oeX

=TT ool - |Z(@/IN(G)I.

oceX

The result now follows by substitution into the formula of Theorem 11. O

Finally, for the sake of completeness, we extend Frohlich’s formula for
|D(Z7)7| in [3] to arbitrary (not necessarily abelian) p-groups . For any such r,
»7 will denote the group ring modulo conjugation:

7675 =Qm/(x—gxg l:xeQ,m gemy=Q,m/xy —yx:x, ye Q, 7).

This can be regarded as the Qp-vector space with basis the set of conjugacy
classes in . Let Z,7w =Q,m be the image of Z,m; and let M= Q,7 denote the
image of any maximal order M < Q, .

If F is any field and r=1, it is easy to check that

(xy—yx:x,ye M.(F))=Ker [tr: M,(F) — F].

Thus, if @pw =[] M, (F,), then prn =[] F,, and the projection @pw—»@pw is the
product of the trace maps. If R; € F; is the ring of integers, then any maximal



306 ROBERT OLIVER

order M; = M, (F;) is conjugate to M,(R,) [9, Theorem 21.6]; and so tr (I,) = R..
In particular, M =[] R; under the above identification (and is thus independent of
the choice of maximal order).

PROPOSITION 13. Let 7 be a p-group, and let 2,m, M<Q, be as above.
Then, for any odd 1=t=p-—2,

'D@w)| =" P2, ) if t£1
||
|tors,, (Q)*|

= |\ 2, - if t=1.

Proof. Let M =>Zmw be a maximal order, and write

k k
ap'"':nAi; A, =M, (F); ﬁpgn M ;
i=1 i=1

where F; are fields and IR, < A, is a maximal order for all i. Given any x e,
which is topologically nilpotent (i.e., p | x™ for some n), the series

2x3

X
=3 ___..._+-—_._. ..
log (1+x)=x 53

converges in A;. We claim that for such x,
tr log (1+x))=log (det (1+x))eF.. (1)

To see (1), choose n such that p|x°". Then for any m=0, (1+x)*"" =
1+p™*'y for some ye MM, and

log (det (1+x)*""™)=log (det (1+p™*'y))=p™*' - tr (y)
=tr(log (1+p™*'y))=tr(log (1+x)*™) (mod p*™*?).

So for all m=0,
log (det(1+x))=tr (log (1+x)) (mod pm-n+2);

and (1) holds.
In particular, log (1+x) for xe J(Z,m) or x e](ﬁmp) induces homomorphisms

L.:K|@Z,m) e — Q,m; L: K, — Qm
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such that L,=L,| K{(zpw)(p). (Here J means Jacobson radical; note that
J (2,,17)921 (im,,) in general.) Furthermore,

Ker (L) = tors, (J) = tors, (@m)*;  Ker (L) =7*";
and so by Proposition 2, for all odd t:

I'D(Z7)| =["Im (L;): ‘Im (L,)]. (2

For any Zp-lattices M, M,c @pw, we write for short
[M;: M,]=[M,:M; " M,]/[[M,: M, N M,].

By Theorem 2 in [8], for any 1=t=p-2,

(1 —;1’- qs) (Im (L)) ="Z,m if t#1

=Ker [1_2_,,—#—9 7] if t=1

Here, ®Q A\g) =Y A\gl; and @ is nilpotent (‘@pw lies in the augmentation ideal,
since t# 0). So

det (1-—-1“ <I>)= 1,
p

and hence

[Zm:'ImQ)]=1  if t#1

(3)
=|w®| if t=1.
Finally, note that for s=0,
['Z,4, :log (Z,4,))]=1 if t#1 @

=p* if t=1:

this follows by noting that log (1+pZ,{,) =pZ,{,, and then counting orders
of the quotients. Since by (1),

k k
Im (L;) = [ log (RN < IT F =@
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(R; € F; the ring of integers), (4) implies that

['Pe:Im (L)]=1 if t#1 -
=[] [tors, (R¥)| = |tors, @Qm)*| if t=1.
So (2), (3), and (5) combine to prove the proposition. [

Generalizing Frohlich’s formula for |D(Z#)7| is now straightforward:

THEOREM 14. Let 7 be a p-group (p odd). Let S <« be a set of conjugacy
class representatives for all 1# ge m. Set

| and p*=1TI1Z(g)l.

geS

p"=|w

For s=1, let w, be the number of simple summands of Qm which are matrix
algebras over Q¢,.. Then |D(Zw)"|=p", where

N=i— [k +4n— ) w(sp*—(s+1)p*'+4s+ 1)].

s=1

Proof. Let 7,77 <M< Q,m be as above. By Proposition 13,

D@m=z o [ 1 o] 0

s=1

Write Q7 =[Ti=1 A, where A; =M, (F) and the F, are fields. As before, the
trace maps tr;: A; — F induce an 1dent1ﬁcat10n of Qp'n' with [] F.. Let pr; Q T —>
A, be the projection; and define an inner product on pr by setting

k
(x,y)= ) trgsa, (tr; o pr; (x) - tryopr; (y))  (x, yeQ,m).

i=1

Since M<[]F, is the product of the rings of integers, we have by definition
discriminants

dM=[1AF) and d@H)=2*""1.] A NR).

Here A(F,), A(F,NR) denote the discriminants over Q; and the power of 2 arises
due to using the trace over F, instead of F, NR.
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By [16, Proposition 7-5-7], for s=1,
AQg,)=p” ™,

By the same proof, or by the composition formula applied to the fields Q¢,/RN
Q¢ [16, Corollary 3-7-20]:

A (R n Qgp‘) =, p%[SPS—(s+1)ps~1_1]'

Hence, d(t") = p™°, where

No=2%) (sp*—(s+1)p*~'+1). (2)

s=1

Now fix g, h € 7. For any given 1=i=k,

trpq, (tr o pr; (g) - tr; o pr; ()= Y x;(8)x;(h),
j=1

]

where xi, ..., x, are the distinct irreducible (complex) characters contained in the
summand A;. Let =™ denote the set of all irreducible complex characters. Then

(g hy=Y x(@xh)=0 if g not conjugate to h™!
xem*

=|Z(g)| if g is conjugate to h™’

by the second orthogonality relation [1, Proposition 9.26]. Hence, eliminating
factors prime to p,

d(z—_ _[ 1/2_ k/2
m =11 1z@|| =p*~ 3)

geS

By (2) and (3), |(21§2"Z_;?r)—| = p™i, where

N, _1 [k ~Y (sp*—(s+1)p* '+ 1)].

4 s=1

Together with (1), this proves the theorem. []

This can also be reformulated solely in terms of cyclic subgroups of =:
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THEOREM 15. Let w be any p-group, and let X, be a set of conjugacy class
representatives for cyclic subgroups 1# o < m. For each o € X,, set

a, =ord, |N(o)/al; b, =ord, (|o| - |Z(a)|/|IN(a))).

Then

ord, |D@Zm) | =ord, |7®*|+} ). [(a, — De(p®)+p® —4b,—1].

O’EXD

Proof. Let w,(s=1) and k be as in Theorem 14. Then each o € X, has ¢(p®)
conjugacy classes of generators, and so

k=) ¢(p®)-(a,+b,).

O'GXO

By Proposition 1, w, is the number of o € X, such that b, =s. So Theorem 14
takes the form

ord, | DZw)™|=ord, |7*|

+1 Y [(ag +by)e(p> )~ byp® + (b, + 1)p*1—4b, — 1]

G’EXO

=ord, |[7®*|+} Y [a,p(p®™)+p® ' ~4b, 1]

O'GXO

=ord, |w**|+} } [(a,— De(p>)+p®™—4b,—~1]. O

OGX()
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