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DŒttY and the Artin cokerne!

Robert Oliver

Let p be an odd prime. If ir is a p-group and 3JI^Qtt is a maximal order
containing Ztt, then we set

D(Zir) Ker [K0(1tt) -* K0$K)]

as usual. Since D(Ztt) is a p-group [2], the involution g »-» g&quot;1 induces a natural
splitting

D(Ztt) £&gt;(Ztt)+ 0 D(Zir)-;

where D(Zir)+ and D(Ztt)~ are the +1 and -1 eigenspaces, respectively. The
involution can be extended to a linear action of F* on D(Ztt); and this induces
further eigenspace décompositions

(p-3)/2 (p-3)/2
D(Itt)+= X 2iD(l7r) and D(Zir)-= X 2i+1D(Z&lt;7r).

i=0 i=0

The groups D(Ztt)~ and 2l+1D(Zir) hâve been studied extensively in [3] and

[14]; and the order of D(Zir)~ for abelian rr is computed in [3]. In this paper,
attention is focused on 0D(Ztt). This is the part of D(Ztt)+ which is independent
of number theoretic properties of p; and in fact, °D(Zir) D(Ztt)+ whenever p is

regular.
For any finite group ir, we define the &quot;Artin cokernel&quot; Aq(tt) to be the group

tt) Coker[Ind: X{Kq(o-)icjc^o- cyclic}-? JRq(it)],

where RqM dénotes the rational représentation ring. The main resuit hère is that
°D(Z7r) AQ(&apos;7r) for any p-group v (p odd). Among other conséquences, this
gives new insight into Martin Taylor&apos;s resuit [13] that the image T(Ztt) of the
Swan homomorphism has order equal to the Artin exponent of tt : T(Ztr) corresponds

under this isomorphism to multiples of the identity in Rq(tt).
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292 ROBERT OLIVER

We end by deriving a formula for |°D(Z7r)|-in fact, a formula for the order of
Aq(tt) for arbitrary finite tt. Also, for the sake of completeness, the formula for
|D(Ztt)~| in [3] is generalized to cover arbitrary p-groups; thus giving a complète
calculation of |D(Ztt)| when tt is a p-group and p any odd regular prime.

For n=^ 1, Q£n always dénotes the field generated by the n-th roots of unity
(and similarly for Zfn, Zp£n, etc.) Also, &lt;p(n) will always mean the Euler &lt;p-

function.
Throughout the paper, unless otherwise stated, p will be a fixed odd prime.

We start with the foliowing well known description of Qtt when ir is a p-group.

PROPOSITION 1. Let tt be a p-group. Then Qtt is a product of matrix rings
over fields Q£p* for various s ^ 0. Furthennore, for each s ^ 0, the number of simple
summands isomorphic to matrix rings over Q£p* is equal to the number of conjugacy
classes of cyclic subgroups a ç tt such that

k/O, N(cr)]| H • |Z(&lt;r)|/|N(cr)| ps.

Proof. That Qir is a product of matrix algebras over the Q£pS is shown (though
not explicitly stated) by Roquette in [11]. In Section 2 of [11] he shows that the
division algebra for any irreducible représentation M of tt is isomorphic to the
division algebra of a primitive faithful représentation of some subquotient of ir;
and in Section 3 he shows that the only p-groups with primitive faithful représentations

are the cyclic groups.
Now, for ail s ^ 0, let ws be the number of simple summands of Qtt which are

matrix algebras over Qfp» ; and let vs be the number of conjugacy classes of cyclic
subgroups otctt with |o/[cr, N(tr)]| ps. Let pn |tt|. We say that two éléments

g,hs7r aie Q£pm-conjugate (any m ^0) if g is conjugate to ha for some

a € Gai (Q£pn7Q£p~) s Gai (Q^/Z) (Z/pn)*.

In other words, a 1 (mod pm) if m ^ 1, or p J( a if m 0.

For each cyclic ct^tt, the number of conjugacy classes of generators of or is

just &lt;p(|cr/[&lt;r, N(cr)]|). So for any m ^0, the number of Q£pm-conjugacy classes in ir
is

X vs- min {&lt;p(pm),&lt;p(ps)}. (1)
SsSO

On the other hand

rk Ko(Q(p-lirD I ws • min {&lt;p(pm), &lt;p(ps)}; (2)
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and by Theorem 21.5 in [1], the numbers in (1) and (2) are equal for ail m. So

vs ws for ail s^O.

Thus, if tt is a p-group and L Z(Qtt) is the center, then the reduced norm

is just the product of the déterminant maps for the simple summands of Ûptt. If
SDÎçQtt and O^L are maximal orders, then v induces an isomorphism of
Kt0tp) with (dp)*: by [9, Theorem 21.6], $?p is a product of matrix algebras over
the components of Ôp. In particular, K^ffîlp) can be regarded as a subgroup of
Ki(Ôpir). We let K[(W) and K[(Îptt) dénote the images of K^Wl) and K1(Zptt) in

^i(Op7r); and let KïQDlf dénote the p-adic closure of K^&amp;fl).

We will use the following description of D(Ztt), based on the formulas in [4].

PROPOSITION 2. Let irbea p-group, and let ffî^lir be a maximal order in
Qtt. Then there is an isomorphism

D(Ztt) s Coker [K[(Îptt) -&gt; K^J/K^mf]

which is natural in tt.

Proof. Let LçQtt be its center, and let CçL be its maximal order. Since

tq[7r] Élq for ail primes q/p [9, Theorem 41.1], Theorems 1 and 2 in [4]
reduce to the formula

D(Z7r)^K1($0îp)/Ki(2«) • K[{tv&gt;rr).

Furthermore, K1(^p)/iC;(Zp7r) is finite [12, Proposition 8.15]; and so K^ÇSR) can

be replaced by its p-adic closure.

Now let

dénote the inclusion into the group of (p-l)-st roots of unity (with K(a) a

(modp) for a g F*). If tt is an abelian p-group, then the group homomorphisms

g -» gK(a) for a eFp and geir induce actions of F* on JK,(Ztt), ^(Zpir), D(Zir),
etc. The next problem is to find a natural way to do this when tt is non-abelian.
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Let tt be an arbitrary p-group. Then by Proposition 1, the center Z(Qtt) is a

product of fields Q£p. for various s ^ 0. The natural embedding F* £ Gai (Q£p./Q)
(where ae¥% sends £p» to (pia)) induces actions of F* on the centers Z(Qtt) and
Z(Ûptt); and hence on K^Ûpir). If a :tt—» tt&apos; is a homomorphism of p-groups,
then

a*:Kl(Ùpir)-+K1(Ùpir&apos;)

is a product of norm, includion, and diagonal maps between the groups of units of
the field components of the centers; and is hence F*-linear.

PROPOSITION 3. Let tt be a p-group. Then
(i) K[(Zptt) is an ¥%-invariant subgroup of K^Ûpir).
(ii) For any 0^f^p-2, set

tK[(îp7r) {xeKi(îp7r)(p):Ta(x) K(a)t • x for ail aeF*}

(hère ra dénotes the action of aeF*). Then for t^l, fKi(Zp7r) is generated by
induction from cyclic subgroups.

Proof By [8, Theorem 2], there is an exact séquence

0 ^ (kg : A G Z*, g e tt&gt; c* Ki(£pir) -^ J(Épir) ^ nab -^ 0,

natural in ir, where

I(ipir) Ker [e : Zptt -* Zp]/&lt;gxg l - x : g € tt, x 6 Êpir&gt;

and

For a g F*, let fa be the action of a on I(Zptr) given by: fa(£ A.g.) I À,gr(a\ This

clearly leaves Ker (&lt;o) Im (F) invariant. By the définition of F in [8], F is

F*-linear when tt is abelian.
Now set

X(ir) Im [Ind: £ {Kl(Zpa) : a s ir, cr cyclic} -&gt; X;(Zptt)]

and

Y(ir) r-Yldpir)) H Ker [e* : Xi(Zp7r) ^ Z*]. (1)
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Since J(Zp7r) is generated by cyclic induction, Ker (F) c X(tt), and

ï(Zpir) fKer (ai) &apos;Im (F) (2)

for f#l (O^t^p-2); it follows that

X;(Zp7r) X(7r)+Y(7r). (3)

By naturality, X(tt) is an F*-invariant subgroup of K^âpir), and F | X(ir) is

Fp-linear. It follows that for n large,

(4)

Furthermore,

the torsion in JK^âpir) cornes from roots of unity in the center. It follows by (4)
that Y(7r)c1K1(âpiT); and hence by (3) that K[(Ïptt) is F*-invariant. Furthermore,

by (1), this shows that F is F*-linear. Since I(î.pir) is generated by cyclic
induction, &apos;KKZpTr) is generated by cyclic induction for f# 1 by (2).

Propositions 2 and 3 now imply the existence of natural actions of F* on
D(Z&lt;tt):

PROPOSITION 4. For any p-group tt, there is a natural linear action of F* on
D(Zir) such that the isomorphism of Proposition 2 is F*-linear.

In particular, for any p-group tt and 0^f^p-2, set

lD(Z7r) {x€ D(Ztt) : ra(x) K(a)f • x for ail a € F*}.

Since D(Ztt) is a p-group [2], and p X |F*|,

p-2 (p-3)/2
D(Ztt)= X &apos;£&gt;(Z7r) and D(Ztt)+= X 2iD(Z&lt;n).

t=0 i=0

Hère, D(Zir)+ is the group of éléments invariant under the involution t-ù
induced by complex conjugation on Z(Qtt).

If p is regular, then results of Iwasawa (see, /x, [7, Theorem 7.5.2]) show that
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for any s^O and any even

So by Proposition 1, if 3JÎ3 l&lt;n is a maximal order in Qtt, then ^1
and hence fD(Z7r) 0 for such f. In other words:

PROPOSITION 5. If p is an odd regular prime and tt is a p-group, then

D(l7r)+ °D(lir).

In order to study the groups °D(ïtt), we must first describe

for any s ^ 0. The following resuit must be well known, but we hâve been unable

to find a référence.

PROPOSITION 6. For any s^O,

Proof. This is clear if s 0. So fix s&gt;0, let KçQ£pS be the fixed subfield of
F*, and let R^K be the ring of integers. Then F Gai(K/Q) is cyclic of order
ps~\ Set £ CP&gt;, and let yeT be the generator: y(O Cp+1-

Let

be the prime idéal over p. Set

where N is the norm of KPIÛP. Note that U&apos;c pp
Fix m g 17&apos;. By Hilbert&apos;s Theorem 90, there is x e X* such that u y(x)/(x).

Write x zlv, where v e (JRP)* and z is the élément defined above. Then

SI /i __ Hp+l)K(a)\ »

[ /».(.)
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Furthermore, N(v) e k(F*)x(1 + pstp) (the norm group has index ps-1 by local
class field theory). So there exists w e (Zp)* such that N(w) wpsl N(v). Then

Nivw&apos;1) 1 and yivw&apos;1)/^-1) y(v)/v x • Mz1)/*1)&quot;&quot;1.

In other words,

(1)

But 17&apos; is a Zp[r]-module, and the closure of K*n(l + p) is a ZP[F]-
submodule. Since Z[F] is a local ring with maximal idéal generated by p and 7 - 1,

no proper submodule of U&apos; can generate

U&apos;l(y(v)/v,vp:veUf).

So by (1), R*n(l + p) is dense in l/&apos; Ker(N); and

By Proposition 6, if tt is a p-group and SDÎçQtt is a maximal order, then
Ûlp)IK[$fl) ](p) is a sum of one copy of Zp for each irreducible Oir-module;

and is thus (abstractly, at least) isomorphic to Zp® jRq(tt). The key remaining step
is to construct a natural isomorphism between thèse groups; once this is done the

isomorphism between °D(Zir) and the Artin cokernel will follow easily.
We temporarily allow p to be an arbitrary prime (possibly p 2). If A is a

&lt;Ôp-algebra, and V is an A-module with draiop(V)&lt;&lt;»; let det(u, V), for m g A,
dénote the déterminant over Ûp of u : V —» V. Define

L:(ZP)*^ZP

by setting L(w) 1/plog (u/k(û)) for ug(Zp)* and m g F* its réduction modp
(note that u/k(û)g l + pZp).

Now assume A is a finite dimensional semisimple Ôp-algebra, and let 9ïc A
be any order. Let Vl9... Vk be the distinct irreducible A-modules, and set

nl=[EndA(Vl):Ôp].

Define a homomorphism
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by setting, for any matrix u € GL&gt;. (91),

PROPOSITION 7. For any prime p, the maps 8% are natural with respect to
homomorphisms between orders in semisimple Ûp-algebras.

Proof. We must show, for any homomorphism a:A—&gt;B, orders 91 cA and
93cB such that a(91)s93, and we9ï*, that

Let Vi,..., Vs be the irreducible A-modules, and Wx,..., Wt the irreducible
B-modules. Define aip &amp;„ gZ by setting

(where a*(V,) B®A Vlf and a*(W,) is W, regarded as an A-module). We also

set

m, [EndA (V.) : Qp], n, [EndB W,) : Qp],

and Write L, L(det (u, V,)) for short. Then

«)) «*(I (LJm,)[Vj) I (a,,.

and

It remains to check that (bjn1) (aljlmt) for ail î,j. But

dim HomA (V,, Wj) mtbip dim HomB (a*Vl9 W})

and thèse two dimensions are equal by [1, Theorem 2.19].

We now again restrict to the case where p is odd.
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PROPOSITION 8. Letirbea p-group, let WlçQnbe any maximal order, and
set S, Ôô^. Then

Im [a, : Kj(^p) -+ âp®K0(Ôpir)] Îp&lt;B&gt;K0(Ûptt);

and 8^ induces an isomorphism

8&apos; ô;:o[K1(^X^â
Proof. Using Proposition 1, it will suffice to show that whenever

and ïïl Ç A is a maximal order, then 6 8^p induces an isomorphism

S&apos; : oiK^/KmX^K®Ko(A).

By [9, Theorem 21.6], we may assume that 3W Mr(Z£p.).
Let V=(ùpÇp.y be the irreducible Âp-représentation. For any

(where /(^2P) is the Jacobson radical),

log (Nâ*^(det^s(H)) &apos;cn

Furthermore, by local class field theory,

(or 1 + pÊp if s 0). Since log(l + pslp) psZp for s^l, we hâve

ZP • [V] Zp

If u is a global unit, then N(det (u)) ±l, and so ô(u) 0. Furthermore, ô is

Fp-linear when K0(A) is given the trivial action; and so 8 induces a surjection

8&apos; :

But the two groups are isomorphic by Proposition 6, and so 8&apos; is an

isomorphism.
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We can now prove the main resuit. Recall that the Artin côkernel Aq(tt) is

defined by

Aq(tt) Coker [Ind : £ {1*q(ct) : a c tt, a cyclic} -&gt; -Rq(tt)].

THEOREM 9. For any p-group rr (p-odd), 8&apos; induces an isomorphism

Proof. Let C be the set of cyclic subgroups of ir. Propositions 2, 7, and 8

combine to give the following commutative diagram with exact rows:

°D(Z&lt;r) »0
tgC i creC

Hère Il9 I2, and J3 are the induction maps; and 6^ and r\^ are the composites
(Sftç ^tt a maximal order):

(the second map being the map of Proposition 2), and

By Proposition 3(ii), Ix is onto. Assume that °D(Ztr) 0 for any cyclic p-group
a. It then follows by diagram chasing that

°D(Zir) Coker (I2) as Aq(tt).

Ctt) is a p-group by the Artin induction theorem: see, for example, [1,
Theorem 15.4]).

It remains to check that °D(Zcr) 0 for cyclic or: This is implicit in [6], [5], and

[15]; but doesn&apos;t seem to be stated explicitly. If |cr|^p, then D(Z&lt;r) 0 by [10,
Theorem 6.24],
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So assume |a| pn for n^2. Let pço-be the order p subgroup, and assume
inductively that °D(Z[or/p]) 0. There is a commutative diagram

0 °D(Zp) &gt;°D(1(t) ?°D(Z[o/p]) 0,

where i* and /# are induced by inclusion and projection. Since Kx(î.p&lt;j) maps
onto Kxdptor&apos;p]),

/*(Ker (0J) Ker (6^,) Zp ®RQ(a/p).

In other words, 0o. | Ker (/*) is onto. Furthermore, Ker (j#)^Im(i#): if V Qfpn
and W Q^P are the faithful irreducible Qa- and Qp-representations, then [V]
générâtes Ker(/*)&gt; and V Indp(W). We thus get that 6^ | Im (î^) is onto, but
fl^o î^ o, and so °D(lo) 0.

One easy conséquence of Theorem 9 is an alternate proof, for odd p-groups,
of Martin Taylor&apos;s theorem [13] involving the image T(Ztt) of the Swan

homomorphism. T(Ztt) is the group of ail éléments

[2,n]-[Zir]eD(lir),

for (n, |tt|) 1, where [X, n] is the projective module

So if 7T is a p-group and Tt^Zir is a maximal order in Qtt, then [X, n]-[Zir]
corresponds, under the identification in Proposition 2, to the élément of Kx0lp)
which is ne(Zp)* at the identity component and 1 at ail other components (in
particular, T(Z7r)ç°D(Z7r)). The isomorphism of Theorem 9 thus sends T(Zir) to
the group of multiples of the identity in

:&lt;t^tt cyclic}.

In other words:

THEOREM 10. (M. Taylor [13]) For any p-group ir, T(Ztt) is cyclic of order

equal to the Artin exportent of ir.
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The computation of |°D(Ztt)| can now be carried out, using the same idea as

for the calculation in [3]: that of comparing discriminants. We first consider the
Artin cokernel of an arbitrary finite group.

THEOREM 11. Let tt be any finite group, and write

1 1

where the Dt are division algebras. Let Xbe a set of conjugacy class représentatives

for cyclic subgroups agir. Then

1/2

Proof. For convenience, set

G= £ IncÇ (««,(*)) s R^ir).
o-eX

Then

\RqMIG\ [d(G)/d(RQ(7r))]1/2; (1)

where d(-) dénotes discriminant with respect to the usual inner product

For each i, let V, dénote the irreducible représentation of Mrt(Dt); then

,],[VJ]) dimQ(HomQw(V1)V,)) 0 if i¥&gt;j

[D,:Q] if «=/.
So

nQ]. (2)

To compute d(G), consider first the set

S {[CKtt/o-)] : a e X} s
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where Q(tt/o-) dénotes the permutation représentation with Q-basis ît/(t. Thèse
éléments generate G: since

and RQ(cr) (cr e X) is generated by the éléments

Also, rk (JRq(it)) |X| (see [1, Theorem 21.5]); and so S is a basis for G.

It follows that

d(G) det(M) (3)

where M=(M&lt;TT)(TtTGX is the matrix defined by

For treX, let Xa- dénote the character of Q(ir/o-). For any x

X&lt;tW n • #{g ^ it : xga gcr} j-t • #{g € 7T : x € gcrg&quot;1}.

|cr| \cr\

Hence, for a, reX,

xeir I0&quot;! * |T| ITTI g&gt;he&lt;Tr

To simplify what follows, defîne, for n ^ 1 and m i£ 1,

d\n
d&lt;m

Note in particular that q&gt;1(n) n, &lt;pn(«) &lt;p(n), and cpm(n) 0 for m&gt;n. Let
iV max {|cr| : or € X}; and defîne, for 1 ^ m ^N:

Xm={aeX:\a\ m} Ym ={&lt;reX:\*\^m}= U K
i£n



304 ROBERT OLJVER

For ail O^m^N, define a matrix Af(m) (M^\,TeYm9 by setting

• T

In particular, Af(1) M
Fix 1 ^ m ^ N. For &lt;r, t g Xm (i.e., |cr| |t| m),

if

if

In particular,

det(Af&lt;N&gt;)= II f^W)/a|l (5)

If l^m&lt;N and or, re Ym+l (i.e., |a|, |r|&gt;m), consider the entries Af^} for
peXm (|p| m). By définition, M^) 0 unless |&lt;rngpg~1|^m for some g; i.e.,
unless gpg&apos;^a. If m-f |&lt;r|, then thèse M^ ail vanish; and also M^} Af^+1)
(9m(n) &lt;pm+1(n) if m -f n). K m | |cr|, let p € Xm be the unique élément conjugate
to a subgroup of a; then

In other words, for ail a, t g Ym+i,

and Af&lt;m+1) is obtained from M(m) by elementary opérations which eliminate ail
entries M£?} for peXm, tg Ym+1. It follows that

det (M0*0) det (M*&quot;1*1*) • II **£?
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Combining this with (5) gives

d(G) det (M) det (M™) U f^M |N(er)/cr|l.
cr€xL \&lt;r\ J

Finally, combined with (1) and (2), this gives the desired formula for
|JRq(it)/G|. D

When 7t is a p-group (recall that p is always odd), the above formula can be
reformulated solely in terms of cyclic subgroups:

THEOREM 12. Let tt be a p-group, and let X be a set of conjugacy class

représentatives for cyclic subgroups gt^tt. Then

Proof. By Proposition 1, Qir=rLfc-i M-.(A)» when the D, are fields, and

11 [D, :Q]= FI &lt;P(kl ¦ \Z(a)\l\N(a)\)
reX

II M\&lt;r\) • \Z(a)\l\N(a)\].
creX

The resuit now follows by substitution into the formula of Theorem 11.

Finally, for the sake of completeness, we extend Frôhlich&apos;s formula for
|P(Z7r)~~l in [3] to arbitrary (not necessarily abelian) p-groups tt. For any such tt,
Qp7t will dénote the group ring modulo conjugation:

QP7T ÙpttJ(x-gxg 1:xeQptt, ge tt) Ûp7r/(xy - yx : x, y €Qp7r&gt;.

This can be regarded as the Qp-vector space with basis the set of conjugacy
classes in tt. Let Zptt^:Ûptt be the image of Zptt; and let WI^Ûptt dénote the
image of any maximal order Tt c Ûptt.

If F is any field and r^ 1, it is easy to check that

(xy - yx : x, y € Mr(F)) Ker [tr : Mr(F) -&gt; F].

Thus, if ÔpTr^rïMOF;), then ÛpTT^U^, and the projection Ûptt-&gt;Ûptt is the
product of the trace maps. If JR, cF, is the ring of integers, then any maximal
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order 2R, s Mri(Ft) is conjugate to M^JR,) [9, Theorem 21.6]; and so tr (3W;) Rt.
In particular, 2ft [I &amp;i under the above identification (and is thus independent of
the choice of maximal order).

PROPOSITION 13. Lefnbea p-group, and let Zptt, 3Kç&lt;âp7r be as above.

Then, for any odd l^r^p-2,
r)| if t* 1

Proof. Let SK^Ztt be a maximal order, and write

1=1

where F, are fields and 2K, c Al is a maximal order for ail i. Given any x e
which is topologically nilpotent (i.e., p | xn for some n), the séries

x2 x3

converges in Ar We claim that for such x,

tr (log (1 + x)) log (det (1 + x)) € Fr (1)

To see (1), choose n such that p|xpn. Then for any m^O, (l + x)pm+n

l-fpm+1y for some ye3W, and

log (det (1 + x)pn+m) log (det (1 + pm+1y)) * pm+1 • tr (y)

« tr (log (1 + pm+1y)) tr (log (1 + x)pn+m) (mod p2m+2).

Sofor ail m^O,

log (det (1 + x))¦ tr (log (1 + x)) (mod pm~n+2);

and (1) holds.
In particular, log(l + x) for xe J(Zptt) or xeJ($lp) induces homomorphisms

L2 : X1
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such that L1 L2\Kf1(î.p7r)ip). (Hère J means Jacobson radical; note that
J(ïpir)£J$lp) in gênerai.) Furthermore,

Ker (L2) torsp (30Ç) torsp (Qir)* ; Ker (Lx)

and so by Proposition 2, for ail odd t:

lmi^n (2)

For any Zp-lattices Mu M2^Ûp7r, we write for short

[M, : M2] [Mx : Mx H M2]/[M2 : Mx H M2].

By Theorem 2 in [8], for any l^t^p-2,

if f#l
&gt;-*7Tab] if t=l

Hère, &lt;f&gt;Q[ Algl) I] À.gf; and &lt;P is nilpotent (&apos;ÔpTr lies in the augmentation idéal,
since f#0). So

d^i-F*j=i,
and hence

rmrti^l=i if t±\
(3)

[tZp7r:tIm(L1)]=l if
1^1 if r

Finally, note that for s ^ 0,

*)]=l if l
ps if f=l:

this follows by noting that log(l + pZp£p») pZp£p», and then counting orders
of the quotients. Since by (1),

Im(L2)= fl log(R*)(p)S fl F.aiSÛ
i i
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(Rt cF, the ring of integers), (4) implies thatfl if l
n |torsp (R*)\ |torsp (Qtt)*| if t 1.

So (2), (3), and (5) combine to prove the proposition.

Generalizing Frôhlich&apos;s formula for |D(Zir)~| is now straightforward:

THEOREM 14. Let tt be a p-group (p odd). Let S ç tt be a set of conjugacy
class représentatives for ail 1 # g € ir. Set

pn Wab\ and pk=n|Z(g)|.
geS

For s^l, let ws be the number of simple summands of Qtt which are matrix
algebras over Q£p*. Then |D(Zir)&quot;| ps\ where

Proof. Let Zptt c H)î c Qptt be as above. By Proposition 13,

|D(Zir)1 |WÎ^)1 • pn • [ II PSWsl
• (1)

Write Ôp&apos;7r n!c=i A&gt; where A, =Mri(F,) and the Ft are fields. As before, the

trace maps tr, :Al—&gt;Fl induce an identification of Qptt with n Fr Let pr, :Ûprr —»

A, be the projection; and define an inner product on Qptt by setting

&lt;*&gt; y) Z trF./ôp (tr, ° prt (x) • trE o prt (y)) (x, y € Qptt).

Since ^ZcflF, is the product of the rings of integers, we hâve by définition
discriminants

and d(fî+) 2rk(iî)-1 • R 4(F, HR).

Hère ^(FJ, 4 (F, flR) dénote the discriminants over Q; and the power of 2 arises

due to using the trace over F, instead of F,
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By [16, Proposition 7-5-7], for s ^ 1,

By the same proof, or by the composition formula applied to the fields QÇp&gt;/Un

Q£pS [16, Corollary 3-7-20]:

Hence, d(2T) pN°, where

N0 èZ (sp&apos;-ts + Dp^ + l). (2)

Now fix g, h e ir. For any given 1 ^ i ^ k,

r.opr, (g) • tr, °pr, (h))= X

where Xi, • - • &gt;Xt are the distinct irreducible (complex) characters contained in the
summand Ar Let tt* dénote the set of ail irreducible complex characters. Then

&lt;g&gt; h)= X x(g)x(h) 0 if g not conjugate to h&apos;1

xe-n*

|Z(g)| if g is conjugate to h~l

by the second orthogonality relation [1, Proposition 9.26]. Hence, eliminating
factors prime to p,

By (2) and (3), |(fî&apos;î~7r)1 pN\ where

*i \ \k ~ I (*PS &quot; (s + ^P8&quot;1 +1)1

Together with (1), this proves the theorem.

This can also be reformulated solely in terms of cyclic subgroups of tt:
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THEOREM 15. Let tt be any p-group, and let Xo be a set of conjugacy class

représentatives for cyclic subgroups l^cr^ir. For each &lt;reX0, set

a« ordp |N(cr)/cr|; K ordp (|cr| • |Z(cr)|/|N(cr)|).

Then

ordp |D(Ztt)1 ordp

Proof. Let ws(s^ 1) and k be as in Theorem 14. Then each aeX0 has &lt;p(pb(r)

conjugacy classes of generators, and so

Io-eXo

By Proposition 1, ws is the number of o-eX0 such that b^^s. So Theorem 14

takes the form

| ordp |7rûb|

ordp|7rab|+^ Io-eX0

OTdp\iTab\+k I [(^-lMpM+ p&quot;»-^-!]. D
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