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Complete minimal hypersurfaces in hyperbolic n-manifolds

MICHAEL T. ANDERSON

This paper is concerned with the existence and basic properties of minimal
hypersurfaces in hyperbolic n-manifolds. A powerful and general method fo
constructing minimal hypersurfaces in complete Riemannian manifolds N™ is
given by geometric measure theory. For example, it is known that there exists an
area-minimizing hypersurface, with small singular set, in any codimension one
homology class of N. More recently, Schoen-Yau [SY] and Sachs—Uhlenbeck
[SU] have constructed smooth branched minimal immersions of surfaces f: 5, —
N, area-minimizing in a conjugacy class of homomorphisms w(2,) — m(N),
provided f, is injective on ;. In case N is a 3-manifold, these surfaces are
smooth immersions and in fact embeddings in case f is homotopic to an embed-
ding (see [FHS)).

Restricting ourselves to hyperbolic manifolds (or more generally manifolds of
negative curvature), we prove existence theorems for minimal hypersurfaces
related to the above results, but distinct in several ways. The method, briefly
stated, is as follows. Let N" be a complete manifold of strictly negative sectional
curvature ¢, <Ky <c;<0 and let N™ be its universal cover. Using geometric
measure theory, we produce complete area-minimizing hypersurfaces in N™, with
prescribed behaviour at infinity; if I" is a discrete group of isometries of N™ whose
action at infinity is sufficiently tame, we prove the existence of I'-invariant
area-minimizing hypersurfaces in N". Thus when I' acts freely, one obtains
complete immersed minimal hypersurfaces in N", provided I'< 7,(N™).

In dimensions greater than three, these existence results are new; however, the
generality of the result is unclear, since the action at infinity of discrete subgroups
of isometries is not well understood in these dimensions.

In dimension three, these results partially overlap with those of [SY] and [SU];
in many respects, their results are much stronger. However, the lifts of least area
incompressible surfaces to the universal cover are not in general area-minimizing,
so that there is reason to believe the two methods may produce different surfaces
in the quotient 3-manifolds. We show in sections §4 and §5 that this is in fact so
and is related to the non-uniqueness of minimal surfaces in a given homotopy
class. Prévious examples of such non-uniqueness are due to Thurston and
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Complete minimal hypersurfaces in hyperbolic n-manifolds 265

discussed in [SU]; see also the interesting work of Uhlenbeck [U] for related
discussion.

From a somewhat different point of view, the results for I'-invariant minimal
surfaces complement the construction of Lawson [L] on complete minimal sur-
faces in S® and Nagano-Smyth [NS] on surfaces in R>® invariant under discrete
groups of isometries. The construction of surfaces in H> and H" is simpler and
more complete than in the other space forms, due to the structure of H" at
infinity.

We now present our results and organization of the paper in more detail. The
first section is of a preliminary nature, providing the necessary background in
geometric measure theory and hyperbolic geometry. In §2, we prove a general
existence theorem for complete area-minimizing hypersurfaces in H" with pre-
scribed behavior at infinity; for example, one may choose the boundary at infinity
in H? to be an arbitrary Jordan curve (perhaps non-rectifiable). The constructions
used in this theorem occur repeatedly throughout the paper. We also remark that
a similar result holds for manifolds of negative curvature c, =<Ky =<c¢,;<0, al-
though we do not give a proof here.

In §3, we discuss the action of discrete groups I' of isometries on H"
(“Kleinian groups’”) and prove the existence of I'-invariant area-minimizing
hypersurfaces provided the limit set A is sufficiently tame; this class includes in
particular the case of quasi-Fuchsian groups in all dimensions. This leads to a new
method of constructing closed minimal hypersurfaces in manifolds of negative
curvature in dimensions greater than three.

The last two sections are concerned with dimension 3, where a great deal more
can be said. We first prove that for any torsion free quasi-Fuchsian group I" acting
on H?, there is a complete smoothly embedded I'-invariant minimal disc; when
I'c 7,(M?) for M? a hyperbolic 3-manifold, one obtains in this fashion stable
incompressible minimal surfaces in M? in the given homotopy class. This dupli-
cates a special case of general results of [SY] and [SU] in the case I" has no cusps
or torsion. (Our method encompasses this case also.) The method of proof relies
on the work of Almgren-Simon [AS] on embedded solutions to the Plateau
problem; based on this work, one may prove the existence of curves y on §%() in
H? such that any complete absolutely area-minimizing surface 3 asymptotic to vy
has genus greater than a fixed g,.

In §5, these results are used to prove certain non-uniqueness and non-
finiteness results. First, we note that there are naturally occurring quasi-circles vy
(limit sets of quasi-Fuchsian groups I') for which any I'-invariant area minimizing
surface asymptotic to y at infinity has infinite genus. As corollaries of this, it is
shown that such curves must bound an infinite number of complete smoothly
embedded minimal surfaces at infinity. Second, such groups I' have at
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least two distinct I'-invariant minimal discs; thus one finds non-uniqueness of
incompressible minimal surfaces in a given homotopy class, for a large class of
quasi-Fuchsian manifolds of a given genus. Further, such manifolds provide
examples where the least area incompressible surfaces of [SY] are not homologi-
cally area-minimizing. Finally, we establish a general finiteness result for compact
area-minimizing surfaces in hyperbolic 3-manifolds, based on the method of Tomi
[To]. These last results answer some questions of Uhlenbeck in [U].

This paper may be viewed as a sequel to [An], which we refer to occasionally.
A portion of the results in this paper are based on part of the author’s Ph.D.
Thesis at U.C. Berkeley. I wish to thank my advisor, H. Blaine Lawson, for his
unending guidance and encouragement. Also, I wish to thank Bill Dunbar for
helpful conversations on 3-manifolds and orbifolds.

§1. Preliminaries

We discuss briefly in this section basic concepts from geometric measure
theory and hyperbolic geometry used throughout the paper.

A natural class of objects in which the Plateau problem admits a solution with
desired smoothness properties is the class of integral p-currents; these may be
thought of as suitable generalizations of smooth oriented p-manifolds. Recall that
given an oriented smooth Riemannian manifold N™, the space of p-currents on N
is defined to be the space of continuous linear functionals (2°)* on the space of
p-forms of N, endowed with the weak topology. Clearly, there is a natural
embedding of the set of smooth oriented p-manifolds SP of finite volume in
(02°)*, given by

[S)(a)= L " a e 2°(N).

More generally, a rectifiable p-current is a convergent sum of such currents
& =3.-1ilS;], where {S;}7 is a collection of mutually disjoint oriented p-rectifiable
sets and

M&)= Y j9°(S,) <o

i=1

here #* is Hausdorff p-measure for the metric on N. There is a natural mass
norm on the space &,(N) of rectifiable p-currents, given as

M(¥) =sup {F(w): M(w) =<1},
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where M(w)=sup,.n |W;|, |W,|=sup{w,(£): € a unit simple p-vector}. The sup-
port of ¥ = 3j[S;] is defined as supp & = |J;=; S;; finally, the boundary operator on
(Q2°)* is given by

(8F)(w) = F(dw).

One now defines the space of integral p-currents $,(N) on N to be the set of
currents & such that & and 0¥ are rectifiable. One of the deep theorems of
geometric measure theory is the

COMPACTNESS THEOREM ([FF])). Let K<N" be a compact set and
CeR™. Then the set

{# € F,(N):supp <K, M(¥)+M(0¥) = C}
is compact in the weak topology.

It follows easily from the definition that the mass norm is lower semi-
continuous in the weak topology; this, together with the compactness theorem,
allows one to solve the Plateau problem in the category of integral currents. Thus,
if B> ! is a (p—1) manifold (or integral (p— 1)-current) such that B* ™' =32, for
some ¥ € $,(N), then there is an ¥, £,(N) satisfying 0¥, =B and

M(&y)=M(¥), V¥ st. 3 =B.

One says that &, is absolutely area minimizing for the boundary B. We will often
work with currents of non-compact support. One defines the group $;>° of locally
integral p-currents as the currents & such that for all x € N, there is a 7€ $,(N) of
compact support such that x¢supp (¥—1). We then say ¥ £ >°(N) is absolutely
area-minimizing if, for all compact sets K < N, one has

M(¥LK)=M(7),

for any 7€ #,(N) with #(¥LK)=09r.

Next, we briefly discuss the regularity properties of area-minimizing currents.
A point a e supp (&) \supp (8%) is regular if there is a neighborhood W of p such
that WNsupp (S) is a connected p-dimensional C?-submanifold of N™. If a is
regular, then the manifold B = WNsupp & is oriented by S?lB and & is given by
integration over B, up to multiplicity. A fundamental theorem in the subject is the
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REGULARITY THEOREM (cf. [F]). Let & be an absolutely area-
minimizing integral (n — 1)-current in U < N™. Then the interior singular set Z of &
has codimension =8, i.e. #%(Z)=0, for all q>n—8.

In particular, if n=<7, then any area-minimizing (n—1)-current & is the
standard orientation current over a smoothly embedded hypersurface.

For further information and details regarding geometric measure theory, we
refer to the basic references [Al], [F].

Throughout much of this paper, the ambient space N will be hyperbolic space
H" of constant curvature —1, or a quotient of H"™ by a discrete group of
isometries. Usually we identify H™ with the unit ball B"(1) of Euclidean space via
the Poincaré model. In this model, the unit sphere represents the sphere at infinity
S" () of H" and provides a natural conformal compactification of H"; every
point p € S""!(x) represents an asymptote class of geodesics in H". Analogously,
we define the asymptotic boundary s of a locally integral p-current 3 in H" by

o =supp SN S" (),

where — denotes closure in the Euclidean topology.

Recall that in the Poincaré model, geodesics are arcs of circles intersecting the
sphere at infinity orthogonally; similarly, totally geodesic k-planes are domains on
Euclidean k-spheres having orthogonal intersection with S™ (). One defines the
convex hull €(S) of a set S in H" as the intersection of all half-spaces containing
S; a half-space is a component of H"—P, where P is a totally geodesic hyperp-
lane.

Finally, we use standard notation and results from Riemannian geometry;
geodesic balls of radius r are denoted by B? or BP(r), where p is dimension.

§2. The boundary-value problem at infinity

In this section, we will prove the existence of complete area-minimizing
hypersurfaces in H" asymptotic to a rather general class of boundaries in $™~'();
such boundaries arise naturally as limit sets of discrete groups acting on H".

Given compact sets A, B in a metric space (X, d), recall that the Hausdorff
distance between A and B is given by

p(A, B)=max (pa(B), pg(A)),

where p,4 (B)=sup{d(x, B):xcA}.



Complete minimal hypersurfaces in hyperbolic n-manifolds 269

We now state the main existence theorem of this section; both the theorem
and its proof will be used often in the sequel.

THEOREM 2.1. Let ScS" " '(x) be a closed set such that S" '(©)\S has
exactly 2 connected components. Suppose there are (n—2)-dimensional smooth,
closed, connected manifolds M; < S™ () such that

lim p(M;, $)=0.

Then there exists an absolutely area-minimizing integral (n — 1)-current 3, asympto-
tic to S at infinity.

Proof. The outline of the proof resembles that of Theorem 4 of [An], where
an analogous theorem was proved for the case of S a k-manifold in $""'(x). We
choose O € H" as an origin and view M;  $"7'(j) via geodesic projection from O.

Let 3; be an integral (n—1)-current representing a solution to the Plateau
problem with boundary M;; thus we have 43, = M, and

M(3,)=M(¥),

for & any integral (n — 1)-current with 3% = M. The proof is based on establishing
the estimates

¢ =M(,LB,)=C, (2.2)
on the mass of 3; inside the geodesic r-ball B, centered at O.

[A] Existence of C,
We begin with

LEMMA 2.3. Let 3 be an area-minimizing (n—1) current in B"(s) with
83 = M a connected manifold in S™'(s). Then supp X is connected and disconnects
B"(s) into two components ™.

Proof. We recall that supp 3 is an analytic submanifold outside a closed subset
Z of Hausdorff dimension at most n—8. The work of Hardt-Simon [HS] on
boundary regularity shows that Z Nsupp 3 = . Thus the boundary of each
component of supp 2 is M, and so it follows that supp 3 is connected. Since Z is
of high codimension, it follows that m,(B"(s)—Z)=0; see, e.g., [HP: Theorem
4.1b].
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Suppose B"(s)\supp 3 were connected; choose a regular point x € supp 3 and
L a transverse curve so that L Nsupp 3 =x. We may join the endpoints 4L in
B"(s)\supp 3 and obtain an embedding f: S' — B"(s) such that f(S)Nsupp I =
x. It follows that f extends to a map f:DD?— B"(s); assume w.l.o.g. that f is
transverse to supp (3 —Z). Thus f '(supp (¥ —Z)) is a 1-manifold with single
boundary component x, a contradiction.

To see there are at most two components of B"(s)\supp 3, let x, L be as
above and for any ye€ B"(s)\supp 3, let 7, be a shortest geodesic from y to
supp 3. If p, is the endpoint of ,, then p is regular and one may join p and x by a
path v in the regular set of 3. By sliding y in the direction normal to supp 3, one
may join y to one endpoint of L by a path in B"(s)\supp 3. W

We apply Lemma 2.3 to the current 2; in B"(j) and see that supp 3, separates
B"(j) into 2 components. The current 3; is of multiplicity 1, so that J; represents
a boundary of least area in B"(j); in other words, letting B"(j)\supp 3; =
07U Q;, we have 3;=940; and

vol (02 NK)=vol K N ),
for any compact K < B"(j). Choosing K = B"(r), r <j, it follows that
M(3,LB,) <3 vol S(r), (2.4)
for all j. This gives the upper bound C, =2 vol S(r).

[B] Existence of c,

Recall that given a set T<H" one may define the convex hull ¢(T) of T as
the smallest geodesically convex set containing T. It is not difficult to prove that if
S is a stationary p-current in H", then

supp 3 < €(supp 43); (2.5)
see e.g. [An], [AS]. We note also the useful fact that for T < S" ()

€TINS ' (@)=T. (2.6)

Now choose points x, y in different components of $"~'(«)\ S and let vy be the
unique geodesic asymptotic to x and y. For j sufficiently large, it is clear that the

intersection yNS™~'(j) consists of two points x;, y; with x;— x and y;—y as
j—> and x,, y; lie in distinct components of S™'(j)\ M;. Since, by Lemma 2.3
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again, supp 3; separates B"(j) into two components, it follows that
supp 3; Ny# I,

for all j sufficiently large. Since supp 3 = €(M,) and €(M;) converges to 6(S) as
j — =, we see that the sequence

{supp 3;Ny}< K,

for some compact set K cH" In particular, it follows that there is a pe+y and
R >0 such that

dist (p, supp 3;) <R, for all j.

Thus, supp 3; intersects a fixed ball of radius R in H", for each j. The
existence of the lower bound ¢, now follows from standard monotonicity esti-
mates on the mass of stationary currents in geodesic balls, see e.g., [An], [L,].

The proof of Theorem 2.1 is now straightforward. The estimate (2.2) together
with the compactness theorem for integral currents show that the sequence
{2;LB;}i=; has a weakly convergent subsequence for each fixed i. Choosing such
for each i and taking the diagonal subsequence, we find there is a subsequence
{3;} of {3;} and an integral (n—1)-current 3 such that

=3

on any compact set, in the weak topology. The current 3 is absolutely area
minimizing, being a limit of area-minimizing currents, and is easily seen to have
asymptotic boundary S, using (2.5) and (2.6) again. W

Remark 1. We note that these currents 3 are smoothly embedded complete
submanifolds in case n =7 and have singular set Z of Hausdorff codimension at
least 8 in higher dimensions. As examples of boundaries S to which the theorem
applies, we mention the following.

EXAMPLE 1. In dimension 3, we may choose S to be an arbitrary Jordan
curve (not necessarily rectifiable) on S?(). This follows from the fact that any
Jordan curve may be approximated, in the Hausdorff distance, by inscribed
polygons.

EXAMPLE 2. In higher dimensions, let S be the image of the equator
S$""2< §"~! under a homeomorphism h of S"~'. Then S satisfies the hypothesis of
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the theorem. In fact, for any £ >0, let T={x:d(x, S"?)<e} be the e-tubular
neighborhood of the equator $" 2. Define

1
ez—d(x, Sn—2)2 .

fiT>R by f(x)=

Then f, =feh™':h(T)—>R is a proper exhaustion function of h(T). We may
choose a uniform approximation to f, by a C* function f, and, for any regular
value q, define

M, = fﬁl(Q)

Thus, p(S, M,)<e, as desired.

Remark 2. It is unknown whether a result analogous to Theorem 2.1 holds in
higher codimension; the estimation (2.4) is no longer valid.

Remark 3. We note that a result analogous to Theorem 2.1 holds in complete
manifolds of curvature ¢, <Ky =c,; <0; the proof will appear elsewhere.

§3. Kleinian groups and invariant solutions

In this section, we will study the existence of area-minimizing hypersurfaces
invariant under a discrete group of isometries acting on H™.

Let I' be a discrete subgroup of O*(n, 1), the group of orientation-preserving
isometries of H". The limit set A of I' is the set of accumulation points of an
orbit I, xe H" on S™" '(e); this turns out to be independent of the choice of
xe€ H". Ar is a closed set, minimal under the conformal action of I' on S™ !(x);
we have

Sn—l(oo) = QF U AI‘a

where (2 is the ‘domain of discontinuity’ of I'; I' acts properly discontinuously on
Or. O may be empty, or have one, two or infinitely many components. We will
call I quasi-Fuchsian if Qr has exactly two components. In case I" acts freely (I"
is torsion free), we see that I' is quasi-Fuchsian if and only if the quotient
manifold €"

‘%‘(Ar)cMn=H"UDp

€ ="T T
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is a ‘convex’ hyperbolic manifold with two boundary components strictly con-
tained in M"; we note that

T (M™) = 1, (0M).

[A manifold N is convex if any path in N is homotopic to a geodesic in N, relative
to the endpoints.] In H>, Maskit [M] has shown that if I' is finitely generated and
torsion free, then I' is quasi-Fuchsian if and only if I' is a quasi-conformal
deformation of a Fuchsian group, i.e. a discrete subgroup of Isom (H?); in this
case, Ar is the image of a circle S' under a quasi-conformal homeomorphism of
SZ.

Remark. In dimension 3, if I' is a surface group, i.e. I'=7,(3) where I' is a
(punctured) surface, {2 has either 0, 1 or 2 components; it is conjectured that the
‘degenerate’ groups with 2 having O or 1 component are suitable limits of
quasi-Fuchsian groups. Thus quasi-Fuchsian groups play a central role in dimen-
sion 3.

The main result of this section is the following.

THEOREM 3.1. Let I' be a quasi-Fuchsian group acting on H". Then there
exist complete I'-invariant absolutely area-minimizing (n—1)-currents 3 in H".

Proof. Let 6(Ar) be the convex hull of Ar and let M; be a sequence of smooth
manifolds in the interior of €(A;) eventually lying outside any compact set in H".
We may apply Theorem 2.1, since S$" () \ Ar- has exactly two components; let 3
be a complete area-minimizing hypersurface in H" asymptotic to Ar. We may
assume that supp 3 is connected, since we may replace it by a component of
supp 3. Then, by Lemma 2.3, H" \supp 3 has two components 2* such that
0N*NS" }(x) are the two components of S"~'(»)\ Ar; we note these latter are
I'-invariant. Consider the currents g3 defined by

(g2)w)=3(g*w), for gel.

Each g¥ is a minimizing integral (n — 1)-current; in fact g3 is a boundary of least
area;

a(gN?™) = g3,

where g0* are the components of H" \supp (g3). Consider

01 = n g\0+.

gel



274 M. T. ANDERSON

It is clear that {2, is I'-invariant and so it follows that a2, is also I'-invariant.
If 442, is a boundary of least area, we are done. If not, then we proceed to solve
the Plateau problem in (2, as follows. Let B; be a sequence of smooth connected
(n —2) manifolds in 2, N€(Ar), eventually lying outside any compact set K < H".
Let &, be a solution to the Plateau problem with boundary B;. We now claim that
&; < ], for all i. To see this, one has B; < (2,, so that in particular B; c gQ", for
any geI. Since g2" has a boundary of least area, it follows that &; c g™, for
any g; this gives the claim. Thus there is a sequence of boundaries of least area
{#:} in 2,, with {0%;} converging to Ar in the sense of Hausdorff distance. Apply
the proof of Theorem 2.1 to {¥,}; it follows there is a convergent subsequence,
call it {#;} again, such that

&, — P! weakly,
with supp ¥ < @,. Now &' is a boundary of least area with support ‘above’ all
g3, g e I'. In other words, one may define an ordering < on the set of complete
minimal currents asymptotic to Ap by

3,<2, 07203,
where 27 NS™ () is the + component of $" () \ Ar. We thus have

g2 <!, forall ger.

Now repeat on &' the process above. If #' is not I'-invariant, let

0,= N 8(01)+
gell

where (£2,)* gives the positive component of $" '(x)\ Ar. Continuing in this
fashion, we produce a sequence of boundaries of least area & such that

3=F'<F < <FH <,
and also
gL <FH,

for all ge I, and for all i. Each & is a complete area-minimizing (n—1) current
asymptotic to A, satisfying

supp & < €(Ar).
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One may again apply the proof of Theorem 2.1 to obtain a convergent subsequ-
ence {¥*} < {¥*} with

F >3 as k-—>o, weakly.

It is now clear that 3 is a complete area-minimizing integral (n—1)-current
asymptotic to Ar. To see that 3 is I'-invariant, note that 3 =lim,_,.. * so that
g3 =lim,_,.. g¥*; by construction, g¥* <¥**! so that

g}:rszr,
for any geI. Replacing g by g7}, it follows that g5 =3, for all geI. W

We now discuss some applications to closed minimal hypersurfaces in hyper-
bolic manifolds. The theory is most complete for surfaces in 3-manifolds, so we
begin with this.

Let I' be an arbitrary quasi-Fuchsian group (not necessarily finitely generated).
The orbit space

M?>=H?/T

is a 3-manifold with boundary equal to Q/I'; note that M>=~ (Q2¢/I") X I, where

r are the components of £2r. Conversely, recall the simultaneous uniformization
theorem of Bers [B] which states that, given any pair of homeomorphic Riemann
surfaces 3, 3, (possibly having punctures and branch points), there is a quasi-
Fuchsian group I' such that Q/I'=3,UZ%,; I' is unique up to conjugation in
PSL(2, C). In case that I' acts freely, M>, and its boundary /I, inherit complete
hyperbolic metrics. On the other hand, there are, for example, groups I' with
M3/I'~=S$2X I topologically; clearly I does not act freely, since §>x I does not
admit any complete hyperbolic metric.

The following is a simple consequence of Theorem 3.1.

COROLLARY 3.2. Let M®>=H?/T be a quasi-Fuchsian 3-manifold. Then
M? contains a branched minimal embedding of a Riemann surface S satisfying

1(S) = 7 (M?) = 0.

In case I' acts freely, S is a smoothly embedded complete stable minimal surface
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with

0— my(S) > m(S)>T'—0,
where S is the I'-covering of S in H>.

Proof. The first statement follows from Theorem 3.1 by passing to the orbit
space H>/T'; in this context, minimality means vanishing of the mean curvature
away from the branch points of S. The second statement follows similarly; it a
consequence of [F-CS, Theorem 1] that the embedded surface S is stable when I
acts freely.

Remark 1. It is not necessarily true that m(S) =0; in §4 and §5, we will prove
the existence of smoothly embedded minimal surfaces S in certain M>=H?/T’
with m,(S)#0; in particular, these surfaces are not incompressible. On the other
hand, in §4 (see Theorem 4.4), we will also show the existence of embedded
minimal surfaces S in M> with ,(S)=m;(M?) =T, for every torsion-free quasi-
Fuchsian group I

Remark 2. In case I' acts freely and represents a compact surface, I' = m,(3,),
Schoen-Yau [SY] and Sachs—-Uhlenbeck [SU] have obtained very strong results
on the existence of incompressible minimal surfaces in Riemannian manifolds. It
is clear however that in general, the surfaces produced above are inequivalent; in
particular, the lifts of incompressible minimal surfaces in compact 3 manifolds to
H? are not necessarily area-minimizing. Further, our constructions apply to surfaces
having cusps and branch points, as well as infinitely generated ;.

For higher dimensions, one obtains the following.

COROLLARY 3.3. Let N" be a compact convex hyperbolic n-manifold with
exactly two boundary components. Then there is a closed minimal hypersurface
(integral (n— 1)-current) 3 satisfying

0 — 7y (supp 3r) — 7, (supp X) = 7, (N") —> 0

where 3 is the I'-lift of 3 to H". In case n=<7, X is a smoothly embedded stable
submanifold.

Proof. Theorem 3.1 gives the existence of complete area-minimizing integral
(n—1)-currents 3 invariant under the action of I' = 7;(N™) on H". Passing to the
orbit space gives the desired current 3 ; stability follows as in Corollary 3.2.
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Remark 3. Corollary 3.3 proves the existence of closed stable minimal
hypersurfaces 3 in compact hyperbolic n-manifolds N which are covered by a
hyperbolic manifold N" having two ends and compact convex hull; furthermore,
we have

my(supp X) — WI(N) < 1 (N).

A similar result holds for N™ of pinched negative curvature. However, the class
of manifolds satisfying the above conditions is not well understood.

§4. Minimal surfaces in hyperbolic 3-manifolds

In this section, we will work exclusively with hyperbolic 3-manifolds.
Almgren-Simon in [AS] have proved the existence of embedded minimal discs in
Riemannian 3-manifolds provided the boundary is constrained to lie on a convex
set. More precisely, given a C? Jordan curve y < dC, for C a convex set, consider
the space M, of smooth embeddings

f:D*— M? suchthat flgi=4%.

They show that the area functional achieves a minimum on #, giving the
existence of an embedded minimal disc f,(D?) in M? with boundary . The work
of Meeks—Yau [MY] actually shows that f,(ID?) realizes the minimum area over
all branched immersions D> — M?; however, we shall not be using their techni-

ques here.
We begin by using the result and method of proof of Almgren-Simon to
construct complete embedded minimal discs in H>.

THEOREM 4.1. Let y be a Jordan curve on S*(»). Then there exists a
complete embedded minimal surface D in H> of the topological type of the disc,
asymptotic to vy. Further, D minimizes area in the category of embedded discs.

Proof. Let y; = S%(i) be a sequence of C2-Jordan curves in H> whose limit is v,
in the sense of Hausdorff distance (see §1, Example 1). Then the work of [AS]
gives existence of smoothly embedded minimal discs D; with aD; = v, We apply
the proof of Theorem 2.1 to {D;} (in place of {3;} there). The estimate

M(D,LB,)=3vol S(r), 4.2)

will follow easily from the following lemma.
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LEMMA 4.2. Let D? be a minimally embedded disc with 6D*< S?(r). Then
D*N B3(s) is a disjoint union of discs, for almost all s=<r.

Proof. Let j:D?— H? be the inclusion and let s be a regular value of
d o j: D? —R; where d is the distance function from 0. Then j~'(S?(s)) is a disjoint
collection of circles {S,} in D?. Consider j~(B(r)\ B(s)) = D?: this is a compact
set K in D? with boundary equal to dD*U |J S,. It follows easily from the convex
hull property (2.5) that K is connected; thus none of the curves S, are nested and
so the complement j~*(B(s)) is a union of discs. W

Returning to the proof of Theorem 4.1, we now have by Lemma 4.2 that
D,LB, is a finite collection of discs. The area-minimizing property of D, among
embedded discs then gives (4.2) immediately. We may now copy the proof of
Theorem 2.1 for {D;} and produce a stationary integral 2-current D such that a
subsequence converges

D, — D weakly on compact sets.

One sees that D is a complete stationary integral 2-current asymptotic to y and
area minimizing among comparision discs in the following sense: if y < supp D is
a smooth Jordan curve wtih dT =+, where T is a stationary 2-current and
supp T =supp D, then

M(T)=<vol (V),

where V is any embedded disc in H?, aV =1.

Our aim is to prove that D is in fact a smoothly embedded disc. Thus, consider
X € supp D. The slices 3(DLB,(g)) are closed rectifiable 1-currents, for almost all
€ >0. Similarly, by means of Sard’s theorem, the restriction D; N B, (g) is a union
of smoothly embedded submanifolds with smooth Jordan curves as boundary, for
almost all € >0. By Lemma 4.2, each component of D, N B, (¢) is in fact a smooth
embedded disc.

We claim there is a §>0, with perhaps 6 < e, such that at most four
components of D,NB,(g) intersect B,(8), for all i. To see this, let C,j=
1,2,..., K; denote the components of D, N B, (&) intersecting B, (8); by a simple
area comparison, we have

K,
3, M(C) <M(3(B, (e))).

i=1
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Further, by the local monotonicity of stationary currents (see [An], [L,]), it
follows that

M(C))=1 - vol (B*(e —8)), for each i, j.
Thus we find

K; - vol B%(e —8) <M(3(B, (¢))) = 4mre?,

for € sufficiently small. Since vol B*(e —8) = m(e — §)?, we see that
K, =4, for any i

Thus the limiting current DL B, (8) is the limit of regular currents D,L B, (8)
having at most four components, each a smoothly embedded disc. By relabelling
and passing to a subsequence, we may assume the sequence of components
{C}, converges weakly to a current W’

DLB,(8)=) W'
i

The regularity of the current D follows from the methods of Almgren-Simon. In
fact, let T, be the (varifold) tangent cone to D at x: it is known that T, either has
support contained in a plane or is locally a union of half-discs with common
diameter L (see [AS, Corollary 2]). Let T denote the varifold tangent cones to
W' at x; we then have

YTi=T.
i

For fixed j, we choose a sequence r, —  so that the expansions N, =p, (CL)
converge to the varifold tangent

m, (Ch) — T% weakly, as k —> oo;

here p, denotes geodesic dilation of the ambient space H 3 centered at x,, X, — x
as k — . Now the interior regularity results, Theorems 2 and 3 of [AS], applied
to the sequence {N,}, show that T. is a plane (with multiplicity 1), for each j.
Since the components C}, for fixed k are disjoint, it follows that the tangent planes
T! are identical. We apply the basic regularity theorem of Allard [Al, §8] to
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(D, T.) and find that D is a regular varifold in a neighborhood of x:

DLB(x,8)=p - [S],

for some integer p<4, where S is an analytic, embedded minimal surface in
B(x, 8'). Clearly, p is independent of x and we now see that D is a regularly
embedded minimal surface in H?, asymptotic to v.

The Allard regularity result also shows that the convergence D, — D is
smooth. Since for almost all r, D, N B(r) is a disjoint union of discs, it follows that
DN B(r) is as well; we thus find that D is a complete embedded disc. W

COROLLARY 4.3. Let I be a quasi-Fuchsian group acting on H>. Then there
is a complete smoothly embedded I'-invariant minimal disc D in H?. As above, D
minimizes area among embedded discs.

Proof. Let Ar be the limit.set of I' on S$*(x); since I is quasi-Fuchsian, Ar is a
Jordan curve. By Theorem 4.1, there exists a complete embedded minimal disc D
asymptotic to Ar. We now use the proof of Theorem 3.1 to construct a I'-
invariant minimal disc. If D is not I'-invariant define gD as in Theorem 3.1 by

(gD)(w)=D(g*w), gel.
Then each gD is a smoothly embedded minimal disc; let

‘{21 = n gﬂ+9

gell

where g™ is the component of H" \ supp (gD) containing the positive compo-
nent of S" }()\ Ar in its closure. We see that £, and 982, are I-invariant
currents; if d£2, is a smoothly embedded disc, we are done; if not, choose extreme
C? Jordan curves v; in 2,N%(Ar) eventually lying outside any compact set in
H?. Let &, be an Almgren-Simon solution with boundary v;: thus &, is a smoothly
embedded minimal disc with boundary v, area-minimizing among embedded
discs with the same boundary. We see as before that &, < gQ*, for all ge T, so
that &; < £2,, for all i. Now repeat the process carried out in Theorem 3.1, using
the regularity results of Theorem 4.1. In fact, we see that {&#;} subconverges to a
stationary integral 2-current ¥'; by the proof of Theorem 4.1, ' is a smooth
embedded disc, asymptotic to Ar. One thus obtains a sequence {#'} by repetition
of the above argument. It follows that {¥'} will subconverge to a I'-invariant
stationary integral 2-current D; the fact that D is a complete smoothly embedded
minimizing disc follows from Theorem 4.1. W
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Remark 1. In connection with Remark 1 of §3, Corollary 4.3 produces
complete embedded incompressible minimal surfaces 3 in quasi-Fuchsian 3-
manifolds M>=H?/I', '=m,(3). For example, there are complete minimal
embeddings of a k-fold punctured S? in certain quasi-Fuchsian 3-manifolds, for
any k >3. As far as the author knows, these give the first non-trivial examples of
non-compact complete minimal surfaces of finite volume.

The complete minimal discs constructed in Theorem 4.1 and Corollary 4.3
need not be absolutely area-minimizing. In case they are not, one may construct
surfaces in H> of higher genus. To begin, we recall the results of Almgren-Simon
[AS] in the compact case. Let v be an extreme C>-Jordan curve in H>. Let #,(vy)
be the space of connected, oriented embedded C?-surfaces M < H? with bound-
ary vy, with genus M =g. Let

a,(v) = inf {area (M) : MeM,(v)}
= inf {area (M): MeM, (y): h=g}.

Then it is proved in [AS] that if a,(y)<a,-,(y), there is a surface M e M,(vy)
with area (M) = a,(y).
For complete surfaces in H?, we then prove:

THEOREM 4.4. Let 3, be a complete embedded minimal surface of genus =g
in H? asymptotic to v and area-minimizing among embedded surfaces of genus
=<g. If 3, is not absolutely area-minimizing, then there exists a complete embedded
minimal surface 3, in H>, of genus =<g', for some finite g'> g, asymptotic to .
Further, 3, is area-minimizing among comparison surfaces of genus h=g'.

Proof. As in the proof of Theorem 4.1, let y; be a sequence of extreme
C2?-Jordan curves on X, with v, — vy as i — . By hypothesis, there is an i, and
g' > g such that

ag’(‘Yio) < ag (‘Yio)'

Since we may assume that 3, is an annulus outside of v, it is clear that
o () < ag(y), for all i=i,. By [AS, Theorem 8], there exists smoothly embed-
ded surfaces S,, all of genus g’, satisfying 8S; = v; and area (S;) = a,/(7;). Consider
the sequence of integral 2-currents {S;}. The proof of Theorem 2.1 applies and
gives, after passage to a subsequence, a weak limit

Si - Eg’,

where 3, is a complete stationary integral 2-current asymptotic to . The
regularity arguments of Theorem 4.1 apply here and prove that 3 is a smoothly
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embedded submanifold. Since S; — 3. in the C>-topology and S; has genus g’, it
follows genus 3, =<g'. Finally, the area-minimizing properties of 3, follow from
those of {S;}.

Remark 2. Of course, the surfaces 3, and 3 constructed above are geometri-
cally distinct, since they have distinct area-minimizing properties.

Remark 3. The proof above does not show that genus 3, = g’, or even genus
3, =genus 3, although it is likely that one can find surfaces with these properties.

In order to show that such a ‘hierarchy’ of complete minimal surfaces actually
occurs, we use the following Proposition.

PROPOSITION 4.5. There exist Jordan curves y on S*(®) such that any
absolutely area-minimizing surface 3 asymptotic to y has genus g=g,, for any
prescribed g,=0.

Proof. The proof is a simple modification of work in [AS]; the case go=1 is
given below. Let vy, be the curve consisting of two concentric circles of radii r,, r,
centered at the origin in R?, viewed as infinity in the upper half space model of
H?3. It is not difficult to see that for ir, <r,=<r,, any area-minimizing surface 3,
asymptotic to y does not intersect the line I; = {x =y =0}. To justify this, we note
that any area-minimizing surface asymptotic to 7y, is invariant under rotation
about [;; if 3, intersects [, it follows X, is the union of two totally geodesic
hyperplanes asymptotic to y,. Now simple area-comparision with an annulus
spanning vy, shows that 3, cannot be area-minimizing, given the bounds on ry, r,
above.

Let vy, be the oriented Jordan curve obtained by joining the circles of vy, by
line segments of Euclidean separation ¢, and let 3, be an area-minimizing surface
asymptotic to vy, (see Figure 1). As ¢ >0, 3, converges to 3, in the weak
topology on varifolds.
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Let I, be the ray consisting of the negative x-axis; we assume vy, NI, = .
Choose a ball B such that B is tangent to the plane {z =0} at a point on [, but
BN3,= . It follows from the area-minimizing property and the convergence
3, — 3, that for all ¢ sufficiently small, BNJ, = . Thus there is a loop o in
H?- 3, such that o does not bound in H?— 3. It follows that 3, is not a disc for
¢ sufficiently small. W

Remark 4. We note that the curves y satisfying the above Proposition are
stable under small perturbations; thus, if y< S%(®) has only absolutely area-
minimizing solutions of genus =g, then any Jordan curve ¥’ sufficiently close to vy
in the Euclidean flat topology (or Hausdorff distance) also has only least area
solutions of genus =g,. One proves this by contradiction: if {y,} = S*(x) converge
to vy in the flat topology, then after passing to a subsequence, any least area
solutions 3; asymptotic to <y; will converge smoothly to a least area solution 3
asymptotic to vy; thus for i sufficiently large, genus 3;,=genus 3 = g,

§5. Non-uniqueness, finiteness, and non-finiteness

In this section, we will continue the study of minimal surfaces in hyperbolic
3-manifolds, using the results of §4 in particular. We begin by using Proposition
4.5 to show that complete area-minimizing surfaces of infinite genus arise
naturally in H>.

THEOREM 5.1. There exist torsion-free quasi-Fuchsian groups I', such that any
complete absolutely area-minimizing I',-invariant surface in H> has infinite genus.

Proof. Let vy be a curve as in Proposition 4.5, given explicitly as in Figure 2.
Then there is a band B around v, given as in Figure 2 also, with the following
property: if 3 is any area-minimizing surface asymptotic to a Jordan curve y’' < B,
then genus 3 =1. This follows by using the arguments of Proposition 4.5.

Now inscribe successively, within the band B, N Euclidean circles C,; so that C,
intersects C,..; at an angle of #/2 and C, N C,,, = J, for all k =2. It is not difficult
to see that this can be done for any N = N,= 30, for example.

Let I" be the Kleinian group acting on H? generated by reflections through
hyperplanes asymptotic to C; and let o< I' be the subgroup of orientation
preserving mappings. It is well known that A, is a Jordan curve lying inside the
circles C; (see [B]): in particular A, = B and I is quasi-Fuchsian. We now claim
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Figure 2.

that I'; has a torsion-free surface subgroup I' of index 2 such that
I'=m(3,), 2, asurface of genus g, where g = N.

To see this, we note that M> = H3/I, is a 3-orbifold in the sense of Thurston [T];
topologically M>~S?x1 where S$* has 2N elliptic points (branch points) with
group Z, determined by the circle intersections at infinity in H>. In fact, the action
of I" on S?(») has a disc with 2N corner angles of m/2 on the boundary as
fundamental domain; passing to I'y, its fundamental domain is two copies of this
disc glued together along the boundary to give the desired S2. Now such orbifolds
have a surface 3, of genus g =N as 2-fold orbifold covers. In fact, embed 3, in
R? in such a way that the z-axis L passes through all the “holes” of 3, and 3, NL -
consists of 2N +2 points; assume that 3, is invariant under rotation by 180° in the
z-axis. Under this Z, action on %, the quotient space 3,/Z, is easily seen to be an
S? with 2N elliptic points with group Z,.

The quasi-Fuchsian group I' has limit set Ar=Ar, since I' is normal in I’y
([T:8.1.3]). Applying Theorem 3.1, we may construct complete, I'-invariant
area-minimizing surfaces 3 in H?; it is clear that such surfaces have genus either
0 or ». Since 5 is asymptotic to Ar < B, 3 cannot have genus 0. W

Remark 1. Define the Bers isomorphism

T(3,) X T(3,)—> QF,
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by associating to any pair of points in the Teichmiiller space of a surface of genus
g the associated quasi-Fuchsian group. Then we have shown that for any g =30,
e.g., there are quasi-Fuchsian groups I, having I',-invariant area-minimizing
surfaces of infinite genus. In the orbit space M> = H>/T,, these surfaces descend to
compact embeded stable minimal surfaces 3; of genus g>g; clearly, these
surfaces are not incompressible. Further examination of the proof shows that for
any g, there is a lower bound N(g) on the number of quasi-Fuchisan groups of
genus g having such surfaces: we have N(g) — o« as g — «. In the other direction,
fixing the genus g, if one takes a sequence in T(Z,) X T(Z,) tending to “infinity”
in both factors (but not diagonally), it seems likely that again the number of
area-minimizing surfaces of infinite genus becomes unbounded; see the discussion
in [U] and [T, §9].

Let 4 be the class of quasi-Fuchsian groups such that any [I'-invariant
area-minimizing surface is of infinite genus, ¥, the subset of I'e § such that
a(H?/I') = m(3,). Thus the above Remark shows that the cardinality of ¥, is
unbounded in g.

We may use these surfaces to construct infinitely many geometrically distinct
complete minimal surfaces asymptotic to a given boundary.

THEOREM 5.2. Let Ar be the limit circle of a quasi-Fuchsian group I'c .
Then there exist infinitely many complete, smoothly embedded minimal surfaces
asymptotic to Ar; furthermore, there is a finite bound on the maximal normal
distance between these surfaces.

Proof. By Theorem 4.1, we know there is a complete I'-invariant embedded
minimal disc 3,. By definition of Ap, 3, is not absolutely area-minimizing; thus
we may choose extreme Jordan curves v; on 3, and embedded minimal surfaces
3, of fixed genus g, >0 with 3; = v,. By the techniques of Theorems 4.1 and 4.4,
{2:} will subconverge to a smoothly embedded surface 3, of genus =g,. If 3
happens to be area-minimizing, the translates h-(3, ), for helI give an infinite
family of distinct (but isometric) minimal surfaces asymptotic to Ar. If 3, is not
area-minimizing, we may repeat the process on 3 : in either case we obtain an
infinite family of distinct surfaces.

To verify the second statement, note that all surfaces are contained in the
convex hull €(Ar): note also that the diameter of 6(Ar)

dr= su {dist (x, 0(€(Af))} <oo;

xe€d(€(Ar))

in particular, there is an upper bound to the distances of all minimal surfaces
asymptotic to Ar. W



286 M. T. ANDERSON

Note. One expects that X, constructed above is not area-minimizing; this
would then give an infinite sequence of isometrically distinct surfaces.

Next we prove a non-uniqueness result for incompressible minimal surfaces in
a given homotopy class in hyperbolic 3-manifolds.

THEOREM 5.3. Let I" be a quasi-Fuchsian group in %,, so w(3;)=1I. Then
in the homotopy class of the inclusion

3, > M*=HT,

there are at least two geometrically distinct compact stable embedded minimal
surfaces of genus g.

Proof. Let 3, be a I'-invariant area-minimizing surface of infinite genus in H?
and let 2* be the I'-invariant components of H>\3,.: we will construct I'-
invariant stably embedded minimal discs in 27, It suffices to work in £27: let y; be
a sequence of smooth extreme Jordan curves in 2N %(Ar) converging to Ar as
i — o, It is well known one may solve the Plateau problem for minimal discs in
07, see e.g. [MY]. By the work of [AS] or [MY], any solution S; is an embedded
minimal disc, area-minimizing among embedded minimal discs in £2*. Letting
i — o, the techniques of Theorem 4.1 show that {S;} subconverges to a complete
embedded minimal disc D" in 2" asymptotic to Ap. If D" is not I'-invariant, we
may use the methods of Corollary 4.4 to produce a I'-invariant minimal disc, call
it again D" in 2*. (In fact there are at least two such in 2% if D* was not
I'-invariant to begin with.) The quotient surfaces D*/I', D™/I" are then stable
minimal surfaces embedded in M?>, inducing an isomorphism on ;. W

Remark 2. This result contrasts with the result that harmonic maps f: M — N
are unique in their homotopy class, provided Ky <0 and N is compact. Thurston
has shown that there are infinitely many (isometric) minimal surfaces in M>=
H3/T, where I is a “doubly degenerate group”, i.e. I' = m,(3,), where 3,— N> —
S! is a smooth fibration over S!, N having a hyperbolic structure. In this case, I’
is a suitable ‘limit’ of quasi-Fuchsian groups: see [T§9].

The following theorem shows that least area incompressible surfaces con-
structed by Schoen—Yau [SY] are not necessarily area-minimizing in their homol-
ogy class.

THEOREM 5.4. Let 3, <> M? be a least area incompressible surface in M>,
where M?=H?T', m\(3,)~=T. Then if '€ %,, there exists '€ %,,, with I''I" of
finite index such that the lift

HYIM'~3, <> M =HT"
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covering i is a least area incompressible embedding, but [, ]e H,(M', Z) is not of
least area in its homology claass.

Proof. Since 3, “> M? is incompressible, the lift 3, <> H* is a complete
(embedded) disc, asymptotic to Ar. Since I'e ¥, ig is not absolutely area
minimizing. Let D be a domain in 3, such that D is not area-minimizing w.r.t.
aD. Now choose I'"]I" such that D is contained in a fundamental domain of I'’;
this is possible since I is residually finite [H]. Let D’ =}fg NI’ and let S’ be an
area minimizing surface in H> with 8S’ =9D’; clearly D’ and S’ are homologous in
H?>. 1t follows that D'/I"" = 3,, and S'/I"" are homologous in M’ = H?/I"" and since
area (S')<area (D’), area (S'/I') <area (¥}). On the other hand, it is not difficult
to see that 3, is of least area in its homotopy class; see [FHS] (Lemma 3.3) for
the details.

Finally we prove a general finiteness result for stable minimal surfaces in
compact Riemannian 3-manifolds; this will show in particular that “most” hyper-
bolic 3-manifolds admit only finitely many stable minimal surfaces of a given
genus.

Define a surface S in N? to be R-locally area-minimizing if for any geodesic
R-ball B(x, R) in N?, the surface S N B(x, R) is area-minimizing with respect to
its boundary.

THEOREM 5.5. Let N? be a compact oriented 3-manifold with an analytic
Riemannian metric. Then for any given R >0, either

(1) N3 contains only finitely many compact stable, oriented, R-locally minimiz-
ing surfaces of uniformly bounded area, or

(2) N2 fibres over S* with fibres smooth compact minimal surfaces.

We expect the added condition of R-locally minimizing may be dropped, but
have not been able to do so.

Proof. The proof is based on the method of Tomi [To] on the finite solvability
of the Plateau problem in R>. We suppose (1) does not hold; let {M;} be a
sequence of R-locally area-minimizing surfaces in N> with area (M;)<K. The
compactness theorem for integral currents implies that {M;} converges, after
passing to a subsequence, to an R-locally minimizing integral 2-current #. Since
each M, is stable, the regularity theorem of Schoen—Simon [SS] implies that 4 is
a smooth stable minimal surface; furthermore the fact that # is R-locally
area-minimizing implies that # and M; may be locally graphed over the tangent
planes of M, for i sufficiently large, see e.g. [P]. Thus, in sufficiently small geodesic
balls, # and M, are embedded discs D, D,, and the convergence D; — D is C? (in
fact analytic).
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These results show that each M; may be graphed globally over # in the
following sense: for any f e C>*(#), define M; to be the graph of f over M, i.e.,

where E, is the unit normal to # in N. Thus M, defines a unique function f, € C**
such that M; = M;, where f; — 0 as i - % and # = M,. Define

H:C**(M)— C**(M) by

H(f) =mean curvature function of M;.

Using the fact that N, ## and the normal exponential map of # in N are
analytic, it is a straightforward, but lengthy, computation to show that H is an
analytic mapping in a neighborhood of 0€ C**(#).

The arguments of Tomi [To] then show that H~'(0) is an analytic 1-manifold
V in a neighborhood of #. Using the compactness theorem again, we see V is a
compact analytic 1-manifold (diffeomorphic to S') parametrizing diffeomorphic
stable minimal surfaces M, in N>. It now follows that the natural projection

wm:N3>V

w(x)=t where xeM,
gives the desired fibration. [

COROLLARY 5.6. A quasi-Fuchsian 3-manifold M = H?/T" has only finitely
many stable, locally area-minimizing compact surfaces of a given genus.

Proof. The convex hull property shows that all compact minimal surfaces in
M? are contained in the convex part of M: since this latter does not fiber over S'
isometrically, it follows from the proof of Theorem 5.5 that M contains only
finitely many R-locally area-minimizing surfaces of bounded area. Now we have,
for 3, a minimally immersed surface of genus g in a hyperbolic manifold that,

vol (3,) = L 1= -—I K =-2mx(3,),
e zl

where K is the Gaussian curvature of 3, x(3,) =(2—2g) is the Euler characteris-
tic. Thus a bound on genus gives a bound on area, proving the corollary. WM



Complete minimal hypersurfaces in hyperbolic n-manifolds 289

Remark 3. As noted above in Remark 2, the Corollary is false if we drop the
assumption that I' is quasi-Fuchsian. On the other hand, it does hold for any
compact hyperbolic 3-manifold which does not fibre over S' with fibres being
minimal surfaces. We conjecture that no hyperbolic 3-manifold has this property:
more generally, we conjecture that if M> is a closed hyperbolic 3-manifold, then
there does not exist a local 1-parameter family of closed minimal surfaces in M>.

A result of this type, together with Theorem 3.4 would provide a good basis in
understanding the moduli spaces of minimal surfaces in negatively curved 3-
manifolds.

Finally, one obtains a purely topological result from Theorem 5.5.

COROLLARY 5.7. Let N* be a compact 3-manifold admitting a metric of
curvature Ky < c <0. Then for any given g, the set of homotopy classes [3,, N°]; of
incompressible surfaces in N* is finite, up to conjugacy.

Proof. It follows from [SY] that in any class of [3,, N°], there is an immersed
least area incompressible surface. By the estimate in Corollary 5.6, any such
surface has a bound on its area. If there was infinitely many such homotopy
classes, the proof of Theorem 5.5 implies the least area surfaces must subconverge
to a limiting surface; thus all surfaces will eventually be homotopic. W

Corollary 5.7 has been proved by Thurston [T:8.8.6] by means of pleated
surfaces.
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