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Quasiaspherical knots with infinitely many ends

F. GONZALEZ-ACURNA AND JOSE MARIiA MONTESINOS*

A smooth n-knot K in S™*? is called quasiaspherical [3] if H,.,(U)=0 where
U is the universal cover of the exterior of K. Let G be a finitely generated group
such that G/G'= Z and let H be a subgroup of G which is not contained in G'.
We say that (G, H) is unsplitable if G does not have a free product with
amalgamation decomposition A : B with F finite and H contained in A.’

THEOREM 1. K is quasiaspherical if and only if (7,(S"**—K), H) is unsplit-
able, where H is the subgroup generated by a meridian.

The “only if”” part of this theorem was proved by Swarup [7]. A sketch of the
“if”” part was given in [2]; for the sake of completeness we give the details in § 1.

A knot K has infinitely many ends if for each integer m there is a compact set
in U whose complement has more than m components with non compact closure.

The property of having infinitely many ends depends only on 7r,(S"*? - K).

THEOREM 2. [5]. K has infinitely many ends if and only if either

(i) m(S"*~K)=A % B where F is finite; or
(i) m(S"2-K)=A <> ¢ where F is finite and properly contained in A and

¢ :F— A is a monomorphism.?

Therefore, a knot which is not quasiaspherical has infinitely many ends. There
are examples of n-knots which are not quasiaspherical, for n =2 [2] [4].

Ratcliffe conjectures ([4, p. 323], [3, Problem 3]) that n-knots with infinitely
many ends are not quasiaspherical. We give counter-examples to this conjecture
for n=2. Thus, by the results of Lomonaco [3; Theorem 10.1], even in the class

* Supported by “Comision Asesora del MUI”.
! Whenever we write A x B it is understood that C is a proper subgroup of A and B.

2The HNN group A <5 ¢ is (A *||t: —|))/N, where N is the normal closure of {tft '¢(f)"':fe F}.
Here ||t: —|| is an infinite cyclic group generated by t.

257



258 F. GONZALEZ-ACUNA AND J. M. MONTESINOS

of infinitely many ended knots there are knots for which the homotopy type of the
complement is determined by its algebraic 2-type.

First we obtain sufficient conditions for a pair (A <> ¢, H) to be unsplitable;
then we realize geometrically examples of such pairs. An affirmative answer to the
question we ask in § 1 would characterize unsplitable pairs (A <> ¢, H). We settle
it when A has at most one end and H is generated by the stable letter. In §2 we
construct a 2-knot whose group is (Z,, X Z,~_;) <D ¢ where Z, Uy(Z,) gener-
ates the semidirect product Z, X Z,~_,, a meridian being represented by the
stable letter. Using § 1 one shows that this is a quasiaspherical knot with infinitely
many ends.

We thank Professor Milnor for his comments on the paper.

§1. Algebraic part

Let G be a finitely generated group and let H be a subgroup of G. Viewing
ZG as a left G-module by left multiplication, we consider the restriction
homomorphism r: H(G; ZG) — H'(H; ZG). Swarup [7, Th. 4] proved:

PROPOSITION 1. If r: HY(G; ZG) —» H'(H; ZG) is not injective then G =
A * B or G = A >¢ where F is finite and H< A.

The converse of this theorem is valid [10, Theorem 5.2]:

PROPOSITION 2. If G=A *B or G=A <> ¢ with F finite and if Hc A
then r: H(G; ZG) — H'(H; ZG) is not injective.

COROLLARY 1. Let G be a finitely generated group such that G/G'=Z and
let H be a subgroup of G such that H¥ G'. Then (G, H) is unsplitable if and only if
the restriction r: H'(G; ZG) — H'(H; ZG) is injective.

Proof. G cannot be of the form A <> ¢ with H= A because A <G'. The

result then follows from Propositions 1 and 2.

Now if U is the universal cover of the exterior of a knot K then using the
exact sequence of (U, dU), Poincaré duality and the isomorphisms Hl(U)=
HYG;ZG) H!(9U)=H(H; ZG) it follows that H,,,(U) is isomorphic to the
kernel of r.

From these observations and Corollary 1, Theorem 1 follows.

If G=A x B, where F is finite, we say that A is a factor of G.
In the remainder of this section we let G=A <> ¢ where F is finite and
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G/IG'=2Z let m=aqaptha, " ta,q;€¢Ai=1,...,nand Y ;¢ =1and let H be
the (infinite cyclic) subgroup of G generated by m.

PROPOSITION 3. Let C be the subgroup of A generated by FU ¢(F)U
{ag, ..., a,}. If Cis a finite proper subgroup of A or if C is contained in a factor of
A then (G, H) is not unsplitable.

Proof. Suppose C is a finite proper subgroup of A. Then the homomorphism
from G=A <5 ¢ to (C <5 &) £ A whose restriction to A is the natural inclusion
and which sends the stable letter of A <>¢ to the stable letter of C <>¢ is easily
seen to be an isomorphism. Since C «<»>¢ contains the image of H it follows that
(G, H) is not unsplitable.

Similarly one shows that if C is contained in a factor P of A =P # Q then there
is an isomorphism from G onto (P <, d)) * Q where E is finite and H is mapped

into P <> ¢.
Question. Is the converse of Proposition 3 valid?

A partial answer is the following:

THEOREM 3. Let G = A <, ¢ where F is finite and G/G'=2Z; let H be the
subgroup generated by the stable letter t and let C be the subgroup of A generated by
FU¢(F). Assume

(i) A has at most one end, and

(i) C is not a finite proper subgroup of A. Then (G, H) is unsplitable.

Proof. Associated to a HNN-group there is a natural exact sequence of
cohomology groups [1, Th. 3.1]. The homomorphism of the HNN group H =1 <>
to the HNN group G = A <>¢ sending the stable letter t of H to the stable letter ¢
of G induces a commutative diagram with exact rows

ZG a0, ZG

~1

0—> H(1;: ZG) =25 H°(1; ZG)—>H'(H; ZG)—>0
A r

i i r

0—>H%A: ZG) L5 HO(F; ZG)—HG; ZG)—>H'(A; ZG) =0

|

(ZG)A —2 5 (ZG)F
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Here i can be identified with the inclusion of (ZG)* in ZG and j, with the
inclusion of (ZG)F in ZG. Notice that HY(A; ZG)~H"(A; ZA)®,, ZG =0
because A has at most one end [8, page 145].

LEMMA. Let we ZG. If (1—1t) - we(ZG)F then we (ZG) .

Proof. Write w=)_.sn,-g Then (1-tH)w=Y,.sm, g where m,=
ng —n-1g. Since (1—1t) - we (ZG)F we have m, = my, that is

Ng — Ny-1g = Ngg — Ny-15, g€ G’ f€ G. (*)

We only need to show (i) n, = ng, and (ii) n, = n,, for fe F, ge G.

For a sufficiently large k we have n,«,=n,«,=0. From (*) it follows that
N, = N, for k=i=0. This proves (i).

To prove (ii) notice that n, —n, = Ny, — N1 = Npgy — Ne-15g) = Mg — N (f)g- BY
(i) n, =ng,. Hence n, = ny),. This proves the lemma.

An element x € ker r is the image of an element y € (ZG)F. Then j(y) =y is of
the form (1—t) - w where w € ZG. By the lemma w € (ZG)€. If C is infinite then
w =0 so that x =0; if C= A then y is in the image of (ZG)* and therefore x =0.
Hence, r is injective and, by Corollary 1, (G, H) is unsplitable. This completes the
proof of the theorem.

§2. Geometric realization

Let L be a smooth n-link in $"*2, n> 1, with components L,,...,L,. L has a
unique framing. Denote by N"*? the manifold obtained by surgery on L. Then L
is replaced by M=m,U- - -Um, where each m; is a 1-sphere. M has a natural
framing so that if we perform surgery on M using this framing we recover S™*2,

If G is a group, a cyclic word of G is a subset of G which is the union [g] of
the conjugacy classes of g and g%, for some ge G. The cyclic word of 7 N"*2
determined by m; will also be denoted by m; and will be called a meridian. It
corresponds to a meridian of m;(S"*>— L) under the isomorphism 7,(S"**—L)=
m (N"*2—~M)=~m,;(N"*?). We remark that a finite system of cyclic words

C1,...,¢ of mN determines disjoint 1-spheres (which we also denote by
C1,...,C), well defined up to isotopy, which represent them.

Let (G, m, ¢) be a triple where G is a group, m is a system of r cyclic words
m;,...,m, of G, and c is also a system of r cyclic words c;,...,c, of G.

If, for some i, we replace ¢; by c;=[gg;] where g e gjec; i#j we obtain a
new system ¢’ of cyclic words of G. We say that (G, m, ¢’) is obtained from
(G, m, c).by a band move.
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If in the triple (G, m, c) some cyclic word m; of m coincides with a cyclic word
¢; of ¢ consider the projection G — G where G = G/(m,).* Let 1 be the system

My, ..., Wiy, Wiy, ..., M, and let € be the system é,,. .., &y, G415 - - -, 6. Then
we say that (G, m, ¢) is obtained from (G, m, ¢) by a collapse.

PROPOSITION 4. Let c ={cy,..., ¢} be a system of cyclic words of m,N™"?;
let m={m,,...,m} be the system of meridians of m N""2. Assume the triple
(1, D, D) can be obtained from the triple (G, m, c) by a finite sequence of band
moves and collapses. Then, if we perform surgery on c, - - c, using suitable
framings, we obtain S™*.

Proof. Consider the (n+2)-manifold x(L,,L,,...,L,; ¢;,...,c,) obtained
from S™*? by surgery on L,,L,,...,L, and then by surgery on cy,...,c; the
framing of L,,..., L, is unique; the framings of ¢, ..., c, are specified later.

A band move on c;,...,c can be realized by a “band move” among the
1-dimensional surgeries. By this we understand the effect on the boundary of a
cobordism when we perform handle slidings; these handle slidings do not change
the cobordism. Thus if ¢'={cy, ..., ¢,} is obtained from ¢ ={c,, ..., ¢} by band
moves then x(L,...,L,; ¢1,...,¢)=xLy, ..., L,;C1,...5C0.

If now some cyclic word of ¢’, say c,, equals some cyclic word of m, say m,,

then if we endow m, with the natural framing x(L,,...,L,; c1,...,Ci_q, m,) =
x(Lq,...,L_4;c1,...,cl_1) because the surgeries on L, and m, cancel. We want
the framings of c,, . . ., ¢, be such that the framing of ¢, coincides with the framing

of m,. Then we have

X(Lla o« e ,Lr;cl) L] 9Cr):=:X(Ll9 L ’Lr—l;ci" sy c,r—-l)

Proceeding this way we eventually obtain

X(Ll,'--3L‘nC1:--'acr)=X(®;®)=Sn+2'

This proves the proposition because we can find the framings of c,,...,c,
working all the process backwards.

Suppose c;, . . ., ¢, are cyclic words of 7, N"*? such that by a finite sequence of
band moves and collapses, it is possible to obtain the triple (1, &, &J) from
(m:N;my,...,m,; ¢1,...,c). Perform surgery on c;U---Uc, using suitable
framings to obtain S"*?. Then c;U- - -Uc, is replaced by a disjoint union of
n-spheres S,,..., S, in S"*2.

The following proposition is clear.

4( ) denotes normal closure.
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PROPOSITION 5. Let 1<k=<r. Then U5, S, is a link in S™*? with group
71N/Ui>k {¢;). The meridian corresponding to S,, i <k, is represented by c..

Remark. This construction of links generalizes the construction introduced in
[2, §1].

Now, we will construct quasiaspherical knots with infinitely many ends. Let
L=L,UL, be a smooth 2-link in S* such that 7 ;N%=|a,t,x:a™=1,
t 'at = a” || where m is odd and ¢, x are the meridians. For example L can be taken
to be a split link one of whose components is a 2-twist spun torus knot and the
other one is trivial. Now let c;, ¢, be the cyclic words of 7;N* represented by xt™*
and a~'xax~? respectively. It is easy to find a sequence of band moves changing
{cq, ¢} into {x, t}. According to Proposition 5 there is a knot K,, in S* whose
group is [la, t,x:a™=1, t ! at=a"", a 'xax*=1||=(Z,. X Zp_,) > ¢ where
Z,, X Z,~_, is the semidirect product ||a, t: a™ =x*""'=1, a 'xa = x?|; the do-
main of ¢ is the subgroup generated by a; and ¢(a)=a'. Moreover xt™!
represents a meridian of K,,,.

THEOREM 4. The 2-knot K,, is quasiaspherical and has infinitely many ends.

Proof. By Theorem 2 ii) K,, has infinitely many ends. To see that it is quasi-
aspherical notice that m(S*~K,,)~|a, x, t: a™ =a 'xax>=1, t 'at=a"< -
la, x,s:a™=a"'xax?=1 s'as=x"'a"Y|=(Z,.XZy_;) s>¢ where f(a)=a,
f(x) =x, f(t)=sx; the domain of ¢ is the subgroup generatmed by a and ¢(a)=
x"'a”'. Since Z,Uy(Z,) generates Z,XZ,~_, and the stable letter s is a
meridian, it follows from Theorems 3 and 1 that K,, is quasiaspherical. This
proves the theorem.

Since the spinning construction preserves meridian, we have:

COROLLARY 2. For n=2 there are quasiaspherical n-knots with infinitely
many ends.

Remark. The knot K,, has the same group as the corresponding knot in
[2, pag. 95]. However, the latter is not quasiaspherical (see [4] or Proposition 3).
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