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Plongements d’espaces homogénes

D. LunNa et TH. VusT

Introduction

Soient G un groupe algébrique affine connexe, H un sous-groupe algébrique
de G non nécessairement connexe (le corps de base sera algébriquement clos, de
caractéristique nulle et méme - lorsque cela nous arrange — non dénombrable). Un
plongement de I’espace homogeéne G/H est une variété algébrique intégre dans
laquelle G opeére algébriquement et qui contient G/H comme orbite ouverte.

Ce travail propose un cadre pour I’étude des plongements. Aux §81 et 2, nous
précisons la définition des plongements en adoptant un point de veu ‘“‘rationnel”.
Au §3, nous introduisons la notion de plongement élémentaire: il s’agit des
plongements lisses composés de deux orbites, I’orbite ouverte G/H et une orbite
fermée de codimension 1. Le charme et la maniabilité de cette notion viennent de
ce qu’'on peut la déguiser sous des apparences assez différentes: un plongement
élémentaire est aussi une certaine valuation du corps des fonctions rationnelles
sur G/H (voir le §3), puis également une classe d’équivalence de “germes de
courbes formels divergents” dans G/H (voir le §4). Nous abordons I’étude des
plongements élémentaires pour eux-mémes au §5, ou nous indiquons aussi leur
lien avec 'immeuble sphérique. Mais les plongements élémentaires sont surtout
intéressants pour le role qu’ils promettent de jouer dans I’étude des plongements
généraux: par exemple, les critéres valuatifs de séparation et de propreté
s’expriment trés naturellement, pour les plongements, en termes de plongements
élémentaires (voir le §6).

Aux paragraphes suivants nous abordons une étude plus poussée des plonge-
ments, en supposant le groupe G réductif et la variété du plongement normale.
Appelons “complication” de G/H la codimension minimale des orbites d’un
sous-groupe de Borel de G dans G/H. L’analyse des plongements que nous
faisons aux §§7 et 8 est surtout significative lorsque la “complication” de G/H est
=1: dans ce cas nos résultats conduisent a une classification de tous les plonge-
ments normaux - méme non nécessairement quasi-projectifs. Au dernier para-
graphe, comme illustration de ce qui précéde, nous examinons en détail le cas
G =SL(2) et H={e}.
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Nous devons notre point de départ bien évidemment a la théorie des plonge-
ments toriques ([5], [6]), mais aussi a I’article [10] de V. L. Popov, dans lequel est
donnée la classification des espaces presque-homogenes affines normaux sous
SL(2). Nous remercions tous ceux qui, par l'intérét qu’ils y ont pris et par leurs
suggestions, ont contribué a la réalisation de ce travail — en particulier C. DeCon-
cini, H. Kraft, M. Lejeune-Jalabert, C. Procesi, G. Rousseau et tout
particulierement F. Pauer ([20], [21]) qui nous a beaucoup aidés.

Nous dédions ces pages a notre ami Jacques Vey.

1. Préliminaires

Dans toute la suite, nous désignerons par G un groupe algébrique affine
connexe, et par H un sous-groupe algébrique de G non nécessairement connexe,
le corps de base k étant algébriquement clos et de caractéristique nulle.

Un plongement de ’espacé homogeéne G/H est la donnée

1) d’une variété algébrique intégre X dans laquelle G op¢re algébriquement;

2) d’un plongement ouvert de I’espace homogéne G/H dans X, plongement

qui commute a 'opération de G.
Insistons sur le fait que, par définition, X contient un point privilégié (I'image du
point H/H de G/H), dont I’orbite est ouverte et dont le groupe d’isotropie est H;
c’est par ce détail que la notion de plongement differe de celle d’espace presque-
homogene (employée par exemple dans [10] et [12]). Dorénavant, on considére le
plongement G/H< X comme une inclusion, et donc G/H comme un sous-
ensemble de X.

Lorsque Z est une variété algébrique intégre, notons k(Z) le corps des
fonctions rationnelles, et k[Z] I'algeébre des fonctions régulieres. Pour tout
plongement X, linclusion G/Ho X identifie k(X) et k(G/H), et les algébres
locales Ox,, x € X se trouvent donc contenues dans k(G/H). Comme on voit,
lorsqu’on s’intéresse aux plongements, on est tout naturellement conduit a
adopter un point de vue ‘‘rationnel” en géométrie algébrique (point de vue
actuellement quelque peu délaissé, qui donne un rdle prépondérant au corps des
fonctions rationnelles).

Pour la commodité du lecteur et pour fixer nos notations, nous commencerons
par résumer brievement ce point de vue (voir aussi [4]).

1.1 Soit K un corps, extension de type fini de k.

On appelle localités de K les sous-k-algébres locales de K qui ont K comme
corps des fractions. On dit qu’une localité est géométrique, si elle peut étre
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obtenue comme localisé d’'une sous-k-algebre de type fini de K. On notera 2(K)
I’ensemble des localités géométriques de K. On appelle sous-algébres affines de K
les sous-k-algebres de type fini de K qui ont K comme corps des fractions. Les
sous-ensembles de &(K) qu’on obtient en localisant une sous-algébre affine en ses
différents idéaux premiers, forment la base d’une topologie de (K), la topologie
de Zariski.

Désignons par X(K) ’ensemble des localités géométriques de K dont le corps
résiduel est isomorphe a k. On considere X(K) muni de la topologie induite par
celle de R(K). Si A est une sous-algébre affine de K, on désigne par X, le
sous-ensemble de X(K) qu’on obtient en localisant A en ses divers idéaux
maximaux; les X, forment une base de la topologie de X(K). Les “points” de
X(K) sont en fait des “germes de variétés algébriques integres ayant K comme
corps de fonctions rationnelles.” On notera les éléments de X(K) par
x, x',...lorsqu’on les considérera comme points de I’ensemble X(K), et par pur
artifice, on écrira O, lorsqu’on pense plutdt a la sous-algébre locale qui est
‘““associée’’ a x (et on notera m, I'idéal maximal de @,). On identifie de maniére
naturelle X(K)XZX(K) a un sous-ensemble de X(L), ou L désigne le corps des
fractions de K@, K.

Dans la présente perspective, une variété algébrique intégre ayant K comme
corps de fonctions rationnelles n’est alors rien d’autre qu’un sous-ensemble X de
X(K) qui est ouvert, noethérien, et séparé (séparé signifie ici: la diagonale de
XXX <X(L) est fermée dans X X X). Si x €e X <X(K), on écrira aussi Ox, pour
0, (faisant ainsi le lien avec les notations habituelles).

Soit K’ un sous-corps de K contenant k, et soient X < X(K), X' < X(K') deux
ouverts. Un morphisme (dominant) ¢:X — X' est une application telle que
Ox ox) < Ox.x, quel que soit x € X.

1.2. L’opération naturelle de G dans G/H se refléte en une opération de G dans
k(G/H), G opérant par automorphismes de corps; on en déduit une opération
(ensembliste) de G dans X(k(G/H)), et une opération de I'algebre de Lie B de G
dans k(G/H), B opérant par dérivations. Désignons par X(G/H) I’ensemble des
x € X(k(G/H)) tels que O, soit stable par ‘B.

PROPOSITION. X(G/H) est ouvert dans X(k(G/H)).

Preuve. Soit x € X(G/H). Choisissons une sous-algébre affine A de k(G/H)
telle que x € X, puis un systéme de générateurs f,, ..., f, de A, et enfin une base
X, ..., X, de %B. Puisque par hypothése Xif,€0,, on peut trouver g;e€ A et
g€ A —m, tels que Xif, = g,/g. On vérifie sans peine que A[g™'] est stable par B,
donc que X 4,-1<X(G/H) et que x € X 5,-1;. La proposition en résulte.
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1.3. On notera e I’élément neutre de G. L’opération de G dans G/H se refléte en
une injection w : k(G/H) = O xg/.excu< k(G X G/H). Au numéro suivant, nous
aurons besoin de connaitre p en termes de I’opération de B dans k(G/H).

Désignons par S(B*) =@, ., S,.(B*) I'algébre symétrique sur le dual de B, et
par S, (B*) =, -0 S.(B*) son idéal maximal gradué. Pour toute k-algebre A
posons A[B]=S(B*)Q A ; c’est I’algebre des fonctions polyndmes sur B a valeurs
dans A. Désignons par A[[®8B]] le complété de A[B] pour I'idéal S,(B*)RA;
A[[8B]] s’identifie au produit des S, (B*)R A, neN.

Supposons maintenant que B opére dans A par dérivations. Soit f€ A; pour
tout neN, f donne par Xe®B—>(1/n!)X"fe A un élément de S,(B*)®A; des
propriétés bien connues de I’exponentielle résulte aussitét que ceci définit un
homomorphisme d’algebres (i : A — A[[®B]]. Il est clair que (i est fonctoriel en A.

Si €@ est un anneau local, nous désignerons par 0 son complété pour I'idéal
maximal. L’homomorphisme fi:05,.— O0g [[®B]] et 'augmentation O, — k in-
duisent une injection Og.— k[[*B]] qui permet d’identifier 6s. avec k[[B]]
(penser aux développements de Taylor). De 'inclusion Og < k[[®B]] résulte par
tensorisation une injection Og @ k(G/H)SK[[B]I® k(G/H)< k(G/H)[[B]], qui
permet d’identifier O x5 oxcu avec k(G/H)[[B]]. Désignons par i I'inclusion de
O xaexcu dans k(G/H)[[®B]] qu’on en déduit.

LEMME. On a iow=.
Preuve. 11 suffit clairement de démontrer le lemme dans le cas ou H ={e}, et il

suffit de vérifier alors que i o u = i sur k[G], 'algebre des fonctions réguliéres sur
G.

Par fonctorialité de @, on a un diagramme commutatif

[

k[G] > k[G]®K[G]

ﬁl lﬂ
n[[B1]

k[GI[B]]— (kK[GI®K[GDI[*®B]]

ou le i a droite est relatif a 'opération de B dans k[G]® k[G] par ‘“‘translations
a gauche dans le premier facteur”. Le diagramme suivant est clairement aussi
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commutatif

i®k[G]

k[GI®K[G] > k[GI[BII®kK[G]

i évident

(k[GI®K[GDI[B]]
d’ou il résulte que i sur k[G]R®k[G]<=Ogxg.exc €5t donné par

K[GI®K[G] > (K[GI®K[GDIBI ™, kGBI,

ol on considére e comme homomorphisme d’algébres k[G]— k. Comme
(e®k[G]) ° u est 'identité de k[G], il s’ensuit bien que i u et i coincident sur
k[G].

1.4. L’opération ensembliste naturelle de G dans X(k(G/H)) laisse clairement
stable X(G/H).

PROPOSITION. Soit X un ouvert de X(k(G/H)), stable par G. Pour que
I’application G X X — X donnée par I’opération de G dans X soit un morphisme, il
faut et il suffit que X soit contenu dans X(G/H).

Preuve. L’application G XX — X sera clairement un morphisme si et seule-
ment si, pour tout x€ X, u:k(G/H)— k(G X G/H) envoie Oy, dans Ogxx.cxx-
Désignons par @ le complété de Og.x.x. pour I'idéal des fonctions nulles sur
e X X. Les inclusions

O6xx.exx0GxGH, xG/HC!’) k(G/H)[[*8]]= 6 G xG/H,e xG/H

permettent d’identifier € avec Oy [[0]]. Puisque @ N k(G X G/H) =0 x ¢ xx (VOIr
par exemple [3], chap. III p. 73), et d’apres 1.3, p envoie Ox, dans Og.x .« Si €t
seulement si i envoie Ox, dans Oy, [[B]]. D’aprés la définition de fi, cette
derniére condition est remplie si et seulement si B laisse stable Ox,.

1.5. D’aprés ce qui précede, on peut reformuler la définition des plongements de
la maniere suivante.
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DEFINITION. Un plongement de G/H est la donnée d’un sous-ensemble X
de X(G/H), qui est ouvert dans X(G/H), noethérien, séparé, et stable par G.

Tourner ainsi la définition des plongements, permet d’énoncer les criteéres
simples de noethérienté et de séparation que voici.

PROPOSITION. Soit X un ouvert de X(G/H). S’il existe un ouvert noethérien
(resp. séparé) X' de X(G/H) tel que X< G - X', alors X est noethérien (resp.
séparé).

~ Preuve. 1l suffit de démontrer la proposition lorsque X est stable par G.
Désignons par w: G XX(G/H) — X(G/H) 'opération de G dans X(G/H).

Supposons d’abord X’ noethérien. Posons X" =(G x X )Nu Y (X"); X" est un
ouvert de G X X' contenant e X X'. Faisons opérer G dans G X X’ par translations
a gauche dans le premier facteur. Puisque G XX’ est noethérien, il existe
S1,...,5,.€G tels que GXX' = U™, s X”. Par suite,

x<6 - X' =u(Gxx)=u(0) sx")= 0 sux)=J X’

d’ou il résulte bien que X est noethérien.

Montrons enfin que X non séparé entraine X' non séparé. Si X est non
séparé, on a Ax# Ay ou Ay désigne la diagonale de X X X. Le groupe G opére
diagonalement dans X X X en laissant stable Ay —Ax. Soit T une orbite de G
dans Ay —Ax. Puisqu’on suppose X< G - X', les deux ouverts TN(X'XX) et
TN (X xX')de T ne sont pas vides. Par conséquent, puisque T est irréducible, on
a @+ TNX XX)<Ax N(X' X X") = Ay.. 11 s’ensuit que Ay # Ax-, ce qui signifie
bien que X' est non séparé€.

1.6. La reformulation de la définition des plongements et le critere de
noethérienté et de séparation de 1.5, permettent de ‘‘construire” des plonge-
ments: il suffit de choisir une sous-algebre affine A de k(G/H), stable par ‘B, et de
poser X =G * X,.

Ilustrons ceci a I’aide d’un exemple simple. Posons G = k* et H ={e}; alors
k(G/H) s’identifie a k(t). L’algebre de Lie de k* qui est de dimension 1, opére
par D =t(d/dt) dans k(t). Posons f=t/(1+t)* et g=t/(1+1t)>. On vérifie sans
peine qu’on a Df =2g—f, Dg =g —3f* et f/g = 1 +t. Il s’ensuit que la sous-algebre
A de k(t) engendrée par f et g est une sous-algebre affine stable par I'algébre de
Lie. On obtient donc un plongement de k* par X =k™ - X,,. I est facile de voir
que I’identité de k* se prolonge en un morphisme ¢ :P; — X tel que ¢(0) = (),
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En regardant de plus pres, on voit que X est obtenu a partir de P, en identifiant O
et © en un point double ordinaire.

Cet exemple possede la particularité suivante: X est une courbe projective,
mais X n’est pas un plongement projectif, a savoir X ne peut pas étre plongé dans
un espace projectif dans lequel k* opére, par un morphisme qui est compatible
avec les opérations de k*. En effet, supposons qu’il existe un tel morphisme. La
droite qui correspond alors au point fixe de k* dans X, admet un hyperplan
complémentaire stable par k*. L’ensemble des points de X qui correspondent a
des droites non contenues dans I’hyperplan, forme alors un ouvert affine de X,
stable par k* et contenant le point fixe de X. Mais un tel ouvert est forcément X
tout entier, donc n’est pas affine, d’ou une contradiction. ’

2. Germes de plongements

Soit X un plongement de G/H, et soit Y un fermé de X, irréductible et stable
par G. Le comportement de 'opération de G dans X au voisinage de Y est
déterminé en grande partie par 'algebre locale Oy y, qui se trouve contenue dans
k(G/H)=k(X). Dans ce §, nous caractérisons ces sous-algébres locales de
k(G/H), et nous précisons leur signification géométrique. Les démonstrations de
ce § sont formelles et sans imprévu.

2.1. Rappelons (voir 1.1), qu’une localité de k(G/H) est une sous-k-algebre
locale de k(G/H) dont le corps des fractions est k(G/H). Une localité est appelée
géométrique, si elle est le localisé d’une sous-k-algebre de type fini de k(G/H).
Notons &(k(G/H)) ’ensemble des localités géométriques de k(G/H); (k(G/H))
est muni de la topologie de Zariski. On notera les éléments de {(k(G/H)) par
LLl,... lorsqu’on les considérera comme points d’un ensemble, et par pur artifice,
on écrira @, lorsqu’on pense plutdt a la sous-algébre locale de k(G/H) qui est
“associée’” a | (et on notera m; I'idéal maximal de 0@, et k,=0/m; le corps
résiduel).

On désigne par &(G/H) ’ensemble des [ € {(k(G/H)) tels que @, est stable par
G et par 8.

Remarquons qu’il existe des sous-algébres de k(G/H), stables par G mais non
stables par 8. Par exemple, considérons G =k et H={0}. Dans ce cas, k(G/H)
s’identifie a k(t), et un générateur de B=k opere par d/dt dans k(t). La
sous-algebre de k(t) engendrée par 1/t+ 1/(t+ 1) et ses translatés, n’est pas stable
par dérivation. Toutefois, nous ne savons pas s’il existe des localités géométriques
stables par G et non stables par B (voir aussi 3.2).
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Soit 1e (G/H). Soit X un plongement de G/H, et soit Y un fermé de X,
irréductible et stable par G. On dit que le couple X, Y est une réalisation

géométrique de &, si 0, =04 .

PROPOSITION. Pour tout l € X(G/H), il existe des réalisations géométriques.

Preuve. Puisque 0, est géométrique, on peut trouver une sous-algeébre affine A
de k(G/H), contenue dans 0, et telle que O, soit égal au localisé de A en A Nm,.
Puisque O, est stable par %8, en raisonnant comme dans 1.2, quitte & agrandir A,
on peut supposer de plus A stable par 8. Posons X =G - X, ; c’est un plonge-
ment de G/H d’apres 1.5. Désignons par Y, le fermé de X, qui correspond a
I'idéal A Nm; de A. Puisque O, est stable par G, on voit que (s - YA)NX, € Y,,
quel que soit s € G. Un nombre fini de translatés de X, suffisent pour recouvrir
X. On en déduit que Y=G - Y, est un fermé de X, irréductible et stable par G,
et quon a YNX, = Y4, Enfin, Oxyv=0x, v, =0, donc XY est une réalisation
géométrique de L.

2.2. On désigne par &,(G/H) I’ensemble des | € (G/H) tels que °k; = k.

PROPOSITION. Il y a une bijection naturelle entre I’ensemble &,(G/H) et
I’ensemble des orbites de G dans X(G/H).

Preuve. Soit T une orbite de G dans X(G/H). Choisissons un plongement X
de G/H (c’est-a-dire un ouvert de X(G/H), noethérien, séparé et stable par G)
qui contient T. Il est clair que Ox  ne dépend que de T et non du plongement
choisi; par conséquent, posons 01 =0x 1 (et notons my I'idéal maximal de O, et
ky =O0p/m le corps résiduel). Il est clair que O est géométrique, et qu’il est
stable par G et par B. Puisque kr=k(T), on a aussi Sk = k. Par suite, a toute
orbite T de G dans X(G/H), on peut associer un [ €®,(G/H) bien déterminé,
vérifiant 0, = 0.

Soit 1€ X,(G/H). Choisissons une réalisation géométrique X,Y de L Puisque
k(Y)=k, et quon suppose °k, =k, G a une orbite ouverte T dans Y (voir par
exemple [11]). Par construction, on a Ox = Ox v = 0,. Montrons que I’orbite T ne
dépend que de | et non de la réalisation géométrique choisie. Supposons que
X',Y’, soit une autre réalisation géométrique de [ et désignons par T I'orbite
ouverte que G posséde alors dans Y. Choisissons des sous-algebres affines A et
A' de k(G/H) telles que X, <X, TNX,F D et Xpo <X, T'NX, # . 1l n’est
pas difficile de voir qu’il existe fe A—m; et f'e A'—m; tels que A;=A}. I
s’ensuit que TNT' # J, ce qui implique T =T'. La proposition est démontrée.
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Soit 1e®,(G/H). On désignera par T, l'orbite de G dans X(G/H) qui lui
correspond d’aprés la proposition précédente. Il est clair qu’une réalisation
géométrique de | n’est rien d’autre qu’un ouvert de X(G/H), noethérien, séparé,
stable par G et contenant T,.

2.3. Soit e &(G/H). Tout localisé de O, en un idéal premier stable par G est
encore une localité géométrique de k(G/H), stable par G et par 8. Désignons par
L:(G/H) ’ensemble des € L2(G/H) tels que tout localisé © de @, en un idéal
premier stable par G vérifie ©(0/m) = k. Il est clair que £;(G/H)<{,(G/H).

PROPOSITION. Soit | € (G/H). Les conditions suivantes sont équivalentes.
(1) On a 1e%(G/H).
(2) Il existe une réalisation géométrique X, Y de | dont le nombre d’orbites est

fini.

Preuve. Soit X, Y une réalisation géométrique de l. Désignons par ¥ ’ensem-
ble des fermés irréductibles de X stables par G et contenant Y. Les idéaux
premiers stables par G de 0, sont en bijection avec les éléments de %. Si Z e %,
le localisé de O, par rapport a I'idéal qui correspond a Z, s’identifie a Ox 2. La
condition (1) signifie alors: pour tout Ze%, on a °k(Z) =k, autrement dit G a
une orbite ouverte dans Z. Il s’ensuit aussitét que (2)=(1).

Réciproquement, supposons (1) vrai. Désignons par X, louvert de X
constitué des orbites de G dans X dont la dimension est =n, et par X}, la réunion
des orbites dans X, qui contiennent T, dans leur adhérence (T, est bien défini, car
L:(G/H) < &,(G/H)). Montrons, par récurrence descendante, que X/, est ouvert et
que le nombre des orbites de G dans X, est fini. On a X}, g;u = G/H. Supposons
I’assertion démontrée pour n+1. Les composantes irréductibles du fermé
X, — X}, +1 sont de deux especes: ou bien elles ne contiennent pas T, dans leur
adhérence dans X, ou bien grice a (1), il s’agit d’orbites de dimension n de X/,
On voit qu’on obtient X}, a partir de X/,,, en Otant de X, ces composantes de la
premicre espece, et que ce faisant on n’ajoute qu’un nombre fini d’orbites a X/, ;.
La récurrence aboutit donc & X4, 1, qui est bien une réalisation géométrique de |
dont le nombre d’orbites est fini. La preuve de la proposition est terminée.

Si 1€%(G/H), on voit que lintersection de toutes les réalisations
géométriques de | est encore une réalisation géométrique de I. On I’appellera la
réalisation géométrique minimale, et on la notera X, Il est clair que X est la
réunion des orbites de X(G/H) qui contiennent T; dans leur adhérence.
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2.4. —Soit H' un sous-groupe algébrique de G contenant H. Soit X' un plonge-
ment de G/H', T' une orbite de G dans X'.

PROPOSITION. Soit | € ,(G/H). Les conditions suivantes sont équivalentes.

(1) 0, domine Ox .

(2) Il existe une réalisation géométrique X de | possédant la propriété suivante:
le morphisme naturel G/H — G/H' se prolonge en un morphisme ¢ : X — X'
tel que o(T))=T'.

Preuve. 11 est clair que (2)=>(1).

Supposons (1) vrai. Choisissons une sous-algebre affine A’ de k(G/H')
vérifiant: X, < X' et X, NT' est un fermé non vide de X ,.; en particulier, il
s’ensuit que A'<Ox - et que le fermé X, NT de X,  est associé a l'idéal
A'Nmy »=A'"Nm; de A’. Choisissons ensuite une sous-algebre affine A de
k(G/H) vérifiant: A est stable par 8, on a A'c A <@, et O, est le localisé de A
en I'idéal A Nm,. Posons X = G - X,4. Il est clair que le morphisme ¢, : X5, — X4
donné par 'inclusion A’'c A, se prolonge en un morphisme ¢ : X — X', qui induit
le morphisme naturel G/H — G/H’ et qui envoie T, sur T.

COROLLAIRE. On suppose le%:(G/H). Les conditions suivantes sont
équivalentes.
(1) ©, domine O .
(2) Le morphisme naturel G/H — G/H' se prolonge en un morphisme ¢ : X; > X’
tel que o(T))=T'.

2.5. Soit H' un sous-groupe algébrique de G contenu dans H, et soit
I'e Q(G/H).

LEMME. Soit A une sous-algebre de k(G/H) qui posséde les propriétés
suivantes: A est contenue dans 0, A est de type fini, A est stable par B et le corps
des fractions de A est k(G/H). On obtient un élément | € &,(G/H) en prenant pour
O, le localisé de A en l’idéal premier A Nm,.

Preuve. Désignons par O le localisé de A en I'idéal premier A Nm,. Il est clair
que O est géométrique et qu’il est stable par 8. Un peu moins clair est que O est
aussi stable par G. Pour le prouver, considérons ’ouvert X, de X(G/H) associé a
A, et choisissons un x € X, tel que f(x)=0 quel que soit fe A Nm;. Désignons
par U P'ouvert des se G tels que s 'xeX,. Si s€ U, pour tout fe A, puisque
feOx, onas - feOx, ;parsuite sf=g/h,avec g, he A et h(x) #0,d’ou sfeO.
Donc sA < 0, quel que soit s € U, d’ou 'on déduit sans peine que O est stable par G.
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On obtient donc un élément [ € {(G/H) par 0, =0. Puisque 0, domine 0, et que
I'e &,(G/H), il est clair que [ € <,(G/H).

3. Plongements ¢élémentaires et valuations invariantes

Les plongements élémentaires de G/H que ’on introduira dans ce §, sont en
relation étroite avec certaines valuations sur k(G/H). C’est pourquoi on com-
mence par rappeler quelques généralités sur les valuations (pour plus de détails,
voir [14] et [3], chap. VI).

3.1. Soit K un corps, extension de k. On pose K*=K —{0}. Une valuation
discréte de K sera pour nous une application v:K* — Q (qu’on prolonge sur K
par v(0) = +o0) vérifiant

1) v(K*)=2Z;

2) v(fg)=v(f)+v(g) et v(f+g)=inf(v(f), v(g)), quels que soient f, ge K

3) v(f)=0si fek™.
On dit que la valuation est normalisée si v(K*)=Z. A toute valuation discréte v,
on associe par O,={fe K, v(f)=0} une sous-k-algébre locale de K, d’idéal
maximal m, = {f € K, v(f) =0}. On pose k, =0,/m,, qu'on appelle le corps résiduel
de v. Si v est une valuation discréte de K, alors

1) le corps des fractions de O, est K;

2) 0, est noethérienne, intégralement close et de dimension de Krull égale a

1.

Une sous-k-algebre locale de K vérifiant 1) et 2) s’appelle une sous-algébre de
valuation discrete de K. L’application v — @, établit une bijection entre I’ensem-
ble des valuations discrétes normalisées et 1’ensemble des sous-algébres de
valuation discréte.

Supposons maintenant que K soit de type fini sur k, de degré de transcen-
dance n. Soit v une valuation discréte de K. Nous dirons que v est géométrique, si
0, est géométrique (c’est-a-dire, si on peut obtenir @, comme localisé d’une sous-
k-algeébre de type fini de K). Si v est géométrique, son corps résiduel k, est de
type fini sur k et de degré de transcendance n—1 sur k. Inversement, s’il existe
dans k, n—1 éléments algébriquement indépendants sur k, on peut montrer que v
est géométrique. Mais attention, pour tout nombre i compris entre 0 et n—1, on
peut trouver des. exemples de valuations discrétes dont le corps résiduel est de
degré de transcendance i sur k; il peut méme arriver que le corps résiduel ne soit
pas de type fini sur k (voir [14]).
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Le résultat suivant nous sera tres utile. Soient K' une extension de type fini de
K, v une valuation discréte de K, v’ une valuation discrete de K’, extension de v;
alors le degré de transcendance de K’ sur K est supérieur ou égal au degré de
transcendance de k, sur k, (voir [3], chap. VI, §10 n°® 3).

COROLLAIRE. Si v’ est géométrique, v ’est aussi.

Preuve. Notons d( , ) le degré de transcendance. On a d(K',K)=
d(K” k)_d(Ka k) et d(kv” ku) = d(kv’, k)—d(kw k)- De d(K,> K)Zd(ku’, kv)
résulte alors que

d(k,, k)=d(K, k)—-d(K', k)+d(k,, k)=d(K, k)—1.
D’apres ce que nous avons rappelé, il s’ensuit bien que v est géométrique.

3.2. Soit v une valuation discrete de k(G). Nous dirons que v est invariante par
translations a gauche, si v(s - f) = v(f), quels que soient s€ G et fe k(G).

LEMME (voir aussi [15]). Pour toute valuation discréte v de k(G) il existe une
(unique) valuation discréete © de k(G) qui possede la propriété suivante: pour tout
fe k(G) il existe un ouvert non vide U de G tel que O(f) =v(s - f) quel que soit
s € U. La valuation ¥ est invariante par translations a gauche. De plus, si v est
géométrique, O I’est également.

Preuve. Posons A =k(G)®O, < k(G XG) et p=k(G)®m,. Désignons par O
le localisé de A en I'idéal premier p. Il est clair que @ est une sous-algebre de
valuation discréte de k(G X G) a laquelle correspond donc une valuation
discréte w de k(G X G). Désignons par u:k(G)s k(G X G) ’'homomorphisme
injectif de corps qui correspond a la multiplication G X G — G. Posons ¥ = w ° .

Soit ge k[G]. Les s - g (s € G) restent dans un espace vectoriel de dimension
finie de k[G]. Désignons par U, I'ouvert de G ou la fonction v(s - g) atteint son
minimum. Si n(g)=Y g ®g! et si secG,onas-g=y g(s")g/. De la et de la
définition de w on déduit que 6(g) =inf,. g v(s - g) = v(s - g) quel que soit s € U,
Si fe k(G), on écrit f=gh™", avec g, he k[G]; alors, pour tout se U= U, N U,
on a H(f)=90(g)—d(h)=v(s- g)—v(s-h)=v(s-f).

Il est clair que § est invariante par translations a gauche. Enfin, si v est
géométrique, w I’est manifestement aussi. De o = w o u et de la fin de 3.1 résulte
alors que 0 est également géométrique.

COROLLAIRE 1. Soit v une valuation discrete de k(G/H), invariante par G.
Il existe des valuations © de k(G), invariantes par translations a gauche, dont la
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restriction a k(G/H) est égale a v. Si v est géométrique, on peut choisir ¥
géométrique.

Preuve. Il existe des valuations discrétes w de k(G), non invariantes par
translations a gauche, dont la restriction a k(G/H) est égale a v, et si v est
géométrique, on peut choisir w géométrique (voir par exemple [3], chap. VI).
Alors ¥ = w répond aux exigences du corollaire 1.

COROLLAIRE 2. Soit v une valuation discrete de k(G/H), invariante par G.
Soient f, g€ k(G) et s€ G tels que fg et (s - f)g appartiennent a k(G/H). Alors

v(fg) = v((s - f)g).

Preuve. Soit ¥ une valuation de k(G), invariante par translations a gauche,
“au-dessus” de v comme dans le corollaire 1. Alors v((s - f)g)=0(s - )+ 0(g) =

o(f)+o(g) = v(fg).

COROLLAIRE 3. Pour toute valuation discréte G-invariante v de k(G/H), O,
est stable par ‘B.

Preuve. Grice au corollaire 1, il suffit de considérer le cas ou H = {e}. Puisque
l’opération de G dans k[ G] est rationnelle, la Z-filtration que v induit dans k[G],
étant stable par G, est aussi stable par 8. Par conséquent, si fe k[G] et si X €D,
on a v(Xf)=v(f), autrement dit v(Xf/f)=0. Soit maintenant fe k(G). Ecrivons
f=gl/h, ou g hek[G]. On a Xf/f = Xg/g — Xh/h. Par suite, si v(f) =0, il suit que

v(Xf) = v(Xf/f) = min (v(Xg/g), v(Xh/h)) =0,
ce qui signifie bien que @, est stable par ‘B.

3.3. On appellera plongement élémentaire de G/H tout plongement X vérifiant:
1) X est lisse;
2) X est composé de deux orbites, I’orbite ouverte G/H et une orbite fermée
de codimension 1 dans X.

Lorsque G/H est affine, tout plongement normal composé de deux orbites est
élémentaire: en effet, le complémentaire de tout ouvert affine dans une variété
algébrique étant toujours pur de codimension 1, on voit que I’orbite fermée est de
codimension 1; il s’ensuit que X est lisse, puisque ’ensemble singulier de X, qui
est de codimension =2 a cause de la normalité et qui est aussi stable par G, est
vide.
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On notera V(G/H) I’ensemble des valuations discrétes normalisées de
k(G/H), géométriques et invariantes par G. On désignera par V';(G/H) I’ensem-
ble des v € V(G/H) tels que ©k, = k. On notera par V',(G/H) le complémentaire
de V',(G/H) dans V'(G/H).

PROPOSITION. Il y a une bijection naturelle entre I’ensemble V,(G/H) et
I’ensemble des plongements élémentaires de G/H.

Preuve. Le corollaire 3 de 3.2 permet d’identifier V';(G/H) a un sous-
ensemble de &,(G/H). Puisque les seuls idéaux premiers de €, sont m, et 0, on a
méme V',(G/H)<L:(G/H). Soit v e V'1(G/H). Le plongement minimal X, associé
a v (voir 2.3) est manifestement composé de deux orbites, G/H et T,. Puisque T,
est de codimension 1 dans X, et que @, est intégralement clos, X, est normal
donc lisse. Par conséquent, X, est un plongement élémentaire. Il est clair qu'on
obtient tout plongement élémentaire de cette fagon, d’ou la proposition.

3.4. Soit H' un sous-groupe algébrique de G contenant H. Soit X un plongement
élémentaire de G/H, d’orbite fermée T.

PROPOSITION. De deux choses l’une: ou bien le morphisme naturel
G/H - G/H' se prolonge en un morphisme X — G/H'; ou bien il existe un unique
plongement élémentaire X' de G/H', d’orbite fermée T', tel que le morphisme
naturel G/H — G/H' se prolonge en un morphisme ¢ : X — X' vérifiant ¢(T)=T'.

Preuve. Cela résulte aussitot de 2.4, 3.1 et 3.3.

3.5. PROPOSITION. Pour tout 1e X(G/H), il existe veV(G/H) tel que O,
domine O,

o~

Preuve. Soit G/H X, Y une réalisation géométrique de I Désignons par X
Péclaté normalisé de X le long de Y, et notons 7 : X — X le morphisme naturel.
Le groupe G opére dans X, et puisque :7 (G/H)=> G/H est un isomor-
phisme, X est I'espace d’un plongement de G/H. Choisissons une composante
irréductible ¥ de 7 %(Y); Y est stable par G et de codimension 1 dans X. Par
conséquent, il existe une valuation v dans V(G/H) telle que 0,=0xy. Par
construction, 0, domine Ox y=0,.

4. Plongements élémentaires et germes de courbes

On désigne par k[[t]] I’algebre des séries formelles en une indéterminée ¢, et
par k(t)) le corps des fractions de k[[t]]. On note (G/H)y .y (resp. (G/H)i.p)
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I’ensemble des points de G/H a valeurs dans k((t)) (resp. dans k[[t]]), et on pose
(GIH)¥ (5= (G/H)x(1yy— (GIH)y e C’est “I’ensemble des germes de courbe for-
mels divergents dans G/H". Dans ce §, on fera correspondre a tout élément de
(G/H)¥ ., un plongement élémentaire, puis on étudiera cette correspondance.

4.1. Pour la commodité du lecteur, rappelons quelques généralités au sujet des
points a valeur dans k((t)).

Soit X une variété algébrique (integre) sur k. Un élément A de X est la
donnée d’une localité O, de X et d'un homomorphisme de k-algebres
A:0 — k((t)) qui induit une injection O/IM — k((t)). On appelle O le domaine
de définition de A. Le cas ou X est affine est particulierement simple: on a
alors forcément k[X]< O, et A est déterminé par sa restriction a k[X].

Un AeX,) est dit convergent, s’il existe xeX tel que 0,<0 et
A(O,) < k[[t]]; on appelle alors x la limite de A et on écrit x =1lim, oA(t)
('unicité de la limite résulte de la séparation de X). On note X l'en-
semble des points convergents de X (- Si X est affine, pour que A soit convergent,
il faut et il suffit que A(K[X])<k[[t]], et la limite est alors donnée par
k[X] > k[[¢11 — k[[¢])/ek[[¢]] = k.

Nous utiliserons la structure naturelle de groupe sur Gy, induite par la
structure de groupe algébrique sur G; Gy,p est un sous-groupe de Gy, €t G
s’identifie a un sous-groupe de Gy, ;- Nous utiliserons aussi I’opération naturelle
de Gy dans (G/H)y -

4.2. Quel que soit le corps K, nous désignerons par v,: K((t))* — Z la valuation
discréte naturelle sur K((t)) ('ordre en t des séries formelles). Dans ce qui va
suivre, on considére k[G]®k((t)), ainsi que son corps des fractions, plongé de
maniere naturelle dans k(G)((¢)).

Soit A € (G/H)y (). L'opération de G dans G/H donne un morphisme
dominant

G x Spec k((1))——>G x G/H — G/H

d’ou une injection de corps i, : k(G/H) — k(G)((1)).

Posons @, = (iy) " (k(G)[[t]]); c’est une algebre locale dont nous noterons m,
I’idéal maximal et k, le corps résiduel. Posons v, = v, * i, : k(G/H)* — Z. Lorsque
0, # k(G/H), v, est une valuation discréte (non nécessairement normalisée) de
k(G/H), dont O, est la sous-algébre de valuation discréte (voir 3.1); désignons
par n, Pentier positif tel que (1/n,)v, soit normalisée.
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Nous verrons plus loin que (1/m)v, € V1(G/H). Le point délicat est la
géométricité de O0,, que nous démontrerons en 4.6. Vérifions déja que O, est
stable par G et que Sk, = k: le premier résulte de ce que k(G)[[t]] est stable sous
I’'opération de G par translations a gauche dans k(G) et de ce que i, commute
aux opérations de G; le second de ce que k, s’identifie 2 un sous-corps de k(G).

4.3. Le morphisme canonique G — G/H induit une application Gy (y, = (G/H)y )
Si A € Gy(yy, notons A son image dans (G/H),(.)- Du diagramme clairement
commutatif

résulte que vy est la restriction de v,.

L’application Gy — (G/H)y () n’est pas en général surjective. Néanmoins,
on obtient par un argument classique un résultat qui est presque aussi bon que la
surjectivité.

LEMME. Pour tout [T (G/H)k((t))a il existe ne N* etAe Gk(({'/[)), tels que X =M1
(ot ’on considére uw comme point de G/H a valeurs dans k((¥1)) 2 k((1)).

Preuve. D’apres le théoreme de normalisation de Noether, on peut trouver
des sous-algebres affines A de k(G/H) et B de k(G) vérifiant

1) AcB;

2) X, <G/H et Xg <G;

3) il existe des éléments g4, ..., g, de B algébriquement indépendants sur A,

tels que B soit fini sur A[g;,..., g)-

Quitte a translater A et B par un s € G convenable, on peut supposer de plus
que p € (X4 )@y 11 est alors clair que w peut se relever en un point de G a
valeurs dans une extension finie de k((t)), lesquelles sont isomorphes aux
k((¥D), n eN*, ce qui démontre le lemme.

Ce lemme (et la remarque qui le préceéde) vont nous permettre dans I’étude
des éléments de (G/H)y .y de supposer qu’ils proviennent d’éléments de G-

4.4. Le groupe Gy opére ‘“‘par translations a droite” dans k[G]®k((t)), en
respectant sa structure de k((t))-algebre. Précisons I'opération: soit A € Gy,
que nous considérons comme un homomorphisme de k-algébres A : k[G]— k((1));
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alors R,, la “translation a droite par A”’, est donnée sur k[G] par
comulit. 1®A
k[G]—— k[GI®K[G]—k[G]I®Kk((1)),

homomorphisme de k-algébres qui se prolonge par k((t))-linéarité en un isomor-
phisme de k[G]®k((t)) sur lui-méme.

Si A€ Gyqgy, on voit que R, laisse stable k[GI®k[[t]]. I s’ensuit que
I'opération de Gy, dans k[G]®k((t)) se prolonge en une opération dans
k(G)((t)) vérifiant v, ° R, =v,, pour tout A € G, Par contre, 'opération de
G« ne se prolonge pas a k(G)((t)); tout au plus peut-on la prolonger au corps
des fractions de k[G]®k((¢t)).

Remarquons que, dans le cas ou H ={e}, linjection i, définie dans 4.2
coincide avec R,, modulo les inclusions k(G)<corps des fractions de

k[GI®k((t))s k(G)((1)); cette remarque nous servira dans la démonstration
suivante.

LEMME. Si A€ (G/H)k((t)) et si [T Gk[[t]]s alors Uy = Ui

Preuve. D’aprés 4.3, on peut supposer que A € Gy ). Quel que soit fe k(G),
on a alors v,,,(f) = (v, © i) = V(R.f) = V,(R.R\) = v,(R\f) = (v, ° iy )(f) = v (f).

4.5. On appellera germe de courbe (éventuellement divergent) dans G/H la
donnée

1) d’une courbe lisse C,

2) d’un point ¢ de C,

3) d’un morphisme y:C—{c}— G/H.

Tout isomorphisme €. = k[[t]] donne une inclusion k(C)<k((t)), qui permet
d’associer au germe de courbe un point de (G/H), ), qu’on appellera un germe
formel associé au germe de courbe. Soit A € (G/H)(,y, et désignons par O le
domaine de définition de A; pour que A puisse s’obtenir comme germe formel
associé a un germe de courbe, il faut et il suffit clairement que A(O) soit un
sous-corps de k((t)) de degré de transcendance =<1 sur k.

LEMME. Pout tout A € Gy il existe u € Gy tel que pA soit le germe formel
associé a un germe de courbe dans G.

Preuve. Plongeons G comme un sous-groupe fermé dans un SL(n). Soient
P1s--->Dm € k[x;, 1=i,j=n] des équations polynomes qui définissent G dans
I’ensemble des matrices nXn. Si p(t) = (p;(t))1<ij=n avec p;(t)ek((t)), on a
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p(t) € Gy Si et seulement si
(*) pr(pti(t)a 1 Si,jS n) = 0, pour r-= 1, R UN

D’aprés un théoréme d’Artin ([1]), pour tout NeN, il existe A(t) = (Xi,-(t))ls_i,,-s"
vérifiant

1) les A;(t) sont algébriques sur k(t);

2) les A;(t) vérifient les équations (*);

3) on a A;(t)— A, () € tNK[[¢]].
Pour N assez grand, on a A(OA(t) ' =pn(t) e Geq> €€ qui s’écrit aussi w(A(t) =
A(t). Les coefficients de A(t) étant tous algébriques sur k(t), tous les éléments de
A(k[G)) sont algébriques sur k(t). Le sous-corps de k((t)) engendré par A (k[G]) est
donc bien de degré de transcendance <1 sur k, ce qu’il fallait démontrer.

4.6. A tout A €(G/H), () tel que 0, # k(G/H), nous avons associé en 4.2 une
valuation discréte normalisée (1/n,)v, de k(G/H).

PROPOSITION. On a (1/n,)v, € V'1(G/H).

Preuve. Nous savons déja que v, est invariante par G, et que “k, =k (voir
4.2). Reste a prouver que 0, est géométrique.

D’aprés 4.3 et 3.1, il suffit de considérer le cas H ={e}. D’aprés 4.4 et 4.5,
nous pouvons de plus supposer que A est le germe formel d’un germe de courbe
dans G.

Soit donc C,ceC,y:C—{c}— G un tel germe de courbe. Le morphisme
dominant

mult.

G X(C—{c)—HGXxG—2 G

se reflete en une injection i, : k(G)— k(G X C). L’isomorphisme 6C,c=k[[t]]
induit une identification de Ogxcgxi; avec k(G)[[t]]l, d’ou une injection
de corps j:k(GXC) S k(G)((t)). Par construction, on a i, =j°i,. Puisque
k(GXC)néGxC.Gx{c}zUGXC,Gx{c}, il s’ensuit que O, = (i,) " (Ogxcoxicy)s €t Or
est géométrique d’apres 3.1.

4.7. Soit AE(G/H)k((t)). Si fe k(G/H), posons ih(f) =Zn>>—-on fx’”tn, ou iA est 'in-
jection de k(G/H) dans k(G)((t)) introduite dans 4.2.
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LEMME. Pout tout f € k(G/H), il existe un ouvert non vide U de G vérifiant:
pour tout se U, on a

1) fo.€0cg pour tout n;

2) s~ f est dans le domaine de définition de A;

3) A(s—l ' f) =Zn»-——w fx,n(s)tn-

Preuve. D’apres 4.3, on peut supposer que A € Gy (). Dans ce cas A est donné
par un homomorphisme d’algébres A : k[G] — k((t)), et application i, est donnée
sur k[G] par

KG1Z s k[GI® K[G > k[GIR (1) > kLG (1))

il s’ensuit que, pour f € k[G], les trois propriétés sont vraies avec U = G. Dans le
cas général, écrivons f=g/h, ou g hek[G]. Soit i\(h)=2,=n, hant", avec
Ma#0. On vérifie sans peine que l'ouvert U={se G, h,, (s)#0} convient
pour f.

4.8. Soit A € (G/H) ) tel que 0, # k(G/H). D’aprés 4.6 et 3.3, O, correspond a
un plongement élémentaire de G/H. Nous le désignerons par X,, et par T,
lorbite fermée de G dans X,.

PROPOSITION. Dans X,, lim,_,, A(t) existe et appartient a T,.

Preuve. Choisissons une sous-algébre affine A de k(G/H) vérifiant: X, < X,
et X4 N T, # J; en particulier, on a A ©€Ox 1, =0,. D’aprés 4.7, quitte a transla-
ter A par un s € G convenable, on peut supposer de plus que, pour tout f€ A, on
a

1) fi.€0g. pour tout n;

2) f appartient au domaine de définition de A;

3) )‘(f) = Zn »>—00 f)t,n(e)t“-

Puisque A < @,, on en déduit que A(A) < k[[t]], c’est-a-dire que lim,_,o A(t) existe
dans X,. De plus, on voit que A envoie I'idéal A Nm,, qui correspond au fermé
X4 NT,, dans tk[[t]], ce qui signifie bien que lim,_o A(t) € T,.

Rappelons que (G/H)¥ ) =(G/H)k»— (G/Higy
COROLLAIRE. Soit A € (G/H)(y- Pour que 0, # k(G/H), il faut et il suffit
que A € (G/H)¥ ).

Preuve. Si ¢, # k(G/H), la proposition précédente montre que A € (G/H)F .-
Si @, = k(G/H), un argument trés voisin de celui employé dans la démonstration
précédente montre que A € (G/H).p-
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4.9. Soient X un plongement de G/H, T une orbite de G dans X. Soit
A € (GIH ),

PROPOSITION. Les conditions suivantes sont équivalentes:

(1) lim,_o A(2) existe dans X et appartient a T,

(2) ’identité de G/H se prolonge en un morphisme ¢ : X, — X tel que ¢(T,)=T;
(3) 0, domine Oy .

Preuve. 1’équivalence (2) © (3) résulte de 2.4, I'implication (2)=>(1) de 4.8.

Reste a montrer (1)=>>(3). Posons x =lim,_o A(t) € T. Choisissons une sous-
algébre affine A de k(G/H) telle que x € X, < X. Choisissons ensuite un ouvert
non vide U de G tel que sx € X, quel que soit s € U, et tel que U vérifie les trois
conditions du lemme 4.7 pour tout fe A. Si feA et si seU, on a donc
A7) =3 o fFan(s)t™. Puisque lim,_,, sA(t) = sx existe dans X, il s’ensuit que
fan(s)=0 pour n<0 et se U, c’est-a-dire f,,=0 pour n<O0, autrement dit
v\ (f) = 0. De plus v, (f) =0 équivaut a f, , # 0, et cette derniere condition signifie
qu’il existe se U tel que 0# f, o(s) = lim,_,, f(s)A(t) = f(sx). Autrement dit, on a
AcO,, et ANm, est'idéal des fe A qui s’annulent sur X, N T, ce qui entraine
bien que @, domine Ox, x, r=O0x T

4.10. Le groupe Aut, k[[t]] opére de maniére naturelle dans Gy, par automor-
phismes de groupes. On peut donc former le produit semi-direct I'=
G X Auty k[[t]]. Le groupe I' opére dans (G/H)¥ ., par

[(e, @) - A () = (DA (@()), (w,@)el, Ae(G/H).

Considérons 1’application (G/H)’,f((t))—>Vl(G/H)><N* qui envoie A sur
[(1/ny)vn, 1.

PROPOSITION. L’application précédente passe au quotient en une bijection
I\(G/H){ )= V1(G/H) xN*.

Preuve. D’aprés 4.4, 'application est constante sur les orbites de Gyy; il est
clair qu’elle I’est aussi sur les orbites de Aut, k[[t]]; elle passe donc bien au
quotient par I

Considérons un plongement élémentaire X d’orbite fermée T. Choisissons une
courbe lisse C, un point c € C et un morphisme y:C — X vérifiant: y(c)=xeT
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et vy est transverse a T. Cette derniére condition implique que le morphisme
G X C— X, qu’on déduit de 'opération de G dans X, est lisse. Soit A € (G/H)¥ ),
un germe formel associé & y comme dans 4.5. En raisonnant comme en 4.6, on
voit que X, =X; de la lissit¢ de GXX — X résulte en plus que n, =1. En
considérant les A(t"),neN*, on voit que I’application I‘\(G/H)z‘«,» —»
V1(G/H) xN* est surjective.

Soit A’e (G/H){ ) tel que X, = X. D’aprés 4.8, quitte 2 multiplier A’ par un
s € G convenable, on peut supposer que lim,_,, A’'(t) = x. Grice a une propriété de
relévement bien connue des morphismes lisses, il existe p € Gpp (vérifiant
lim, o p(t) =€) et B e tk[[t]] tels que A'(t) = w(t)A(B(1)). 11 suffit alors de prendre
une racine n-ieme de B, ou n est 'ordre de B, pour voir que A’(t) est sur 'orbite
de I' passant par A(t"). On a visiblement n =n,.,, d’ou il suit que 'application
I'\(G/H)¥ )= V1(G/H) XN¥ est aussi injective.

Remarque. Résumons pour la suite une partie des résultats précédents, en les
reformulant légeérement. A normalisation prés, toute valuation de V' ,(G/H)
s’obtient comme restriction a k(G/H) d’un v,, A € G (. De plus, si (u, v, a)€e
Grgen X Hiwy X (tk[[T)— 2k[[t1]), et si A'(t) = n(D)A(a(t))v(2), alors v, et v, ont
méme restriction a k(G/H).

4.11. Soit ve V'(G/H). Si V est un sous-espace vectoriel de k(G/H) et si jeQ, on
pose

Fiv={feV,v()=j};

les F.V sont des sous-espaces vectoriels de V, et i <j implique F,V> F,V.
On dira qu’une suite v, (n €N) dans ¥'(G/H) converge géométriquement vers
v dans V(G/H) si
1) il existe une suite r, (n €N) de nombres rationnels positifs telle que r,v, (f)
converge vers v(f), quel que soit fe k(G/H);
2) pour tout sous-espace vectoriel de dimension finie V de k(G/H), il existe
un entier n(V) tel que, pour tout n=n(V), chacun des F,V (i € Z) est égal
a I'un des Fi V (jeZ).
Lorsqu’on connait déja les valuations de V';(G/H), pour déterminer celles de
¥,(G/H), on peut parfois se servir de la proposition suivante (voir par exemple

[16].

PROPOSITION. Tout élément de V(G/H) est limite géométrique d’une suite
d’éléments de V(G/H).
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Soit G/H< X un plongement de G/H, avec la variété X affine. Soit Y un
fermé de X, stable par G. Choisissons un point x dans Y. Soit A € (G/H) ) tel
que lim,_,, A(t) = x.

LEMME 1. Pour tout f € O, et pour tout voisinage assez petit U de e dans G, A
est défini en s - f pour tout s U, et v, (f) =inf,cy v,(A(s™" - f)).

Preuve. Pour tout f € k(G/H), posons comme dans 4.7 i, (f) =Y, »_« fiat"; par
définition de v, on a v, (f) = v,(iy (f)). Si g€ k[G/H], on a g, ,€ k[G] quel que soit
neZ, A est définie sur s™' - g quel que soit s€G, et A(s™' - g) =Y, »_w Eanl8)t";
par suite, quel que soit 'ouvert non vide U de G, on a v,(g) =inf,.y v, (s~ - g). Si
h e k[X]< k[G/H], lim,_, A(t) =x € X implique k[X]<=O,, donc h,,=0 pour
n<0; si de plus pour un se€ G, h(s-x)#0, alors A(s™' - h)=Y,.0 hy (s)t"#0,
car h,o(s)=h(s-x)#0 et v,(s™' - h)=v,(h)=0.

Soit maintenant feOx,. On peut écrire f=g/h, avec g,he k[X] et h(x)#0.
Soit U un voisinage de e dans G vérifiant h(s - x) # 0 quel que soit s € U. Alors,
on a clairement

1

v (f)=0(g) = inlfj v(s - g)= in[f] v(s7'-f), caqfd

Gardons les mémes hypotheéses que pour le lemme 1. Supposons de plus X
normale, Y de codimension 1 dans X, et x lisse dans X et dans Y. Désignons par
v la valuation de V'(G/H) telle que 0, =0 y.

LEMME 2. Pour tout sous-espace vectoriel de dimension finie V de Ox,, il
existe un entier p qui vérifie: pour tout q > p, on peut trouver A € (G/H)¥ ), tel que

1) lim,_o A(t) =x;
2) FLV=FJV, quel que soit je Z;

3) o)=L vu(f)
q

=< plq, quel que soit fe V—{0}.

Preuve. Choisissons fi, ..., f,e m,Nk[X]< k[G/H] des coordonnées locales
en x, de maniére a ce que f, =0 définit Y au voisinage de x. On utilisera les
identifications Ox , < Ox . =k[[f:,...,f.]]. Tout fek[[fi,...,f]] peut s’écrire de
maniére unique f=Y;—,c(fi, ou ¢(PNekllfs, ..., ]]; on définit ainsi des .
applications linéaires ¢ :k[[f1,...,f,]1—=kllfs, ..., f.]] (ieN). Choisissons
a,,...,a, €tk[[t]] algébriquement indépendant sur k, et désignons par
A k[[fs ..., . ] k[[t]] 'unique homomorphisme d’algebres tel que A'(f;))=
a; (i=2,...,r). Par construction, A’ est injectif en restriction a k[f,,...,f,]. llen
résulte que A’ reste injectif en restriction a la sous-algébre des éléments de
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k[[fz, ..., f,]] qui sont algébriques sur k[f,,...,f,]. Tout feOx, est algébrique
sur k[f;,....f,]; il s’ensuit facilement, par récurrence sur i, que c(f) est
algébrique sur k[f, ..., f,] quel que soit i eN. Par suite, on peut choisir N assez
grand pour que (co(f), ..., cn(f))F(0,...,0) quel que soit fe V—{0}. Posons

p =max {v(A"(c;()), fe V—{O}, ;() #0, i [0, NT.

Choisissons q>p et désignons par A :k[[f,,...,f.]]— k[[t]] 'unique homomor-
phisme d’algebres tel que A(f;) =t et A(f))=a; (i=2,...,r). Via les inclusions
k(G/H)>O0x, < k[[fi,...,f,]l, on peut considérer A comme élément de
(G/H)y(y)- Reste a vérifier que p, q et A possedent les propriétés 1), 2) et 3) du
lemme 2.

Par construction, il est clair que lim,_4 A(t)=x, d’ou 1).
Soit fe V—{0}. Supposons que v(f)=j. On peut alors écrire f=fig, ou
ge 0y ,.—f10x, (algeébre O, est factorielle). Autrement écrit, cela devient

f=ci(Ofi+ i = file; () + hfo),

ou ¢;(f)ekl[fa, ..., f,]1—{0} et he k[[f, ..., f]]. On a clairement j=<N. Par suite
0,(A(¢;(H))) = v (A (¢;(f))) =< p. Puisque v,(A(hf;) =v,(A(f))) = q et que par hypothese
q>p, on a v,(A(g))=0v,(A(ci(f))=p. D’apres le lemme 1, il en résulte que
u(g)=p.

D’un autre coté, désignons par U 'ouvert des s G tels que s~ ' - f; =0 soit
encore une équation de Y au voisinage de x. Si s € U, on peut écrire s " - f, = f,u,
ol ueOx, vérifie u(x)#0. D’ol, pour tout se U, v,(A(s™" - f))=v.(A(f1) =g,
puisque v,(A(u))=0. Il en résulte, puisque f,€k[X]<k[G/H], que uv,(f,)=
infseU vt(A(Swl ’ f)) = vt(A(fl)) =q.

En résumé, on a montré que pour tout fe V—{0}, v(f) =j entraine

g=v()=qi+p<q(+1).

D’ou aussitot 3) et linclusion F,V < F¥V, quel que soit jeZ. Si f¢ F,V, on a
v(f) =j' <j, donc v, (f) < q(j' + 1) =gqj, d’ou f¢ F¥, ce qui entraine ’égalité de 2).

Preuve de la proposition. Grace a 3.2, il suffit de considérer le cas H ={e}.

Montrons qu’on peut en plus supposer que v € ¥'(G/{e}) prenne au moins une
valeur strictement positive sur k[G). Considérons G = G x{e}< G X k* et posons
k[G % k*]= k[G]t, t!]. Il existe une unique valuation ¢ € ¥'((G x k*)/{e}) dont la
restriction 2 k(G) est v et qui vérifie 5(t) = 1. Il est clair qu’il suffit de démontrer
la proposition pour .
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Supposons donc que v € V' (G/{e}) et qu’il existe f € k[G] tel que v(f)>0. Dans
ce cas, on peut trouver un plongement G = G/{e}< X, avec la variété X affine et
normale, et un fermé Y dans X, stable par G et de codimension 1, tels que
0, =0xy. Autrement dit, nous sommes dans les conditions du lemme 2.

Soit V, (n€N) une suite croissante de sous-espaces vectoriels de dimension
finie de k[X], telle que U,y V., =k[X]. Pour tout neN, soit p, I'entier que le
lemme 2 associe a V,,; choisissons g, > p, tel que la suite p,/q, — 0; soit enfin A,
I’élément de G¥,, que le lemme 2 associe a V, et g, Désignons par v, la
valuation de 7;(G/{e}) obtenue en normalisant v, .

Alors v, tend géométriquement vers v. En effet, soit r, (n eN) la suite des
nombres rationnels positifs telle que r,v, =(1/q,)v, . D’apres la propriété 3) du
lemme 2, si f € k[X], dés que fe V,, on a |r,v,(f)— v(f)|=p,/q. qui tend vers 0. Si
f e k(G/H), écrivons f=g/h avec g, h e k[X]; alors r,v,(f) =r,v,(g)—r.v.(h) qui
tend vers v(g)—v(h)=v(f). D’autre part, si V est un sous-espace vectoriel de
dimension finie de k(G), il existe ge k[G] et n=n(V) tels que gV < V,. Alors,
pour tout ie€Z, si j=(i+v(g))/r, —v,(g), de la propriété 2) du lemme 2 on déduit
que F,V =Fl V, ce qui termine la preuve de la proposition.

5. Compléments sur les plongements élémentaires

Les plongements élémentaires sont les plongements les plus simples possibles.
A ce titre, ils méritent d’€tre étudiés, ce que nous commencerons a faire, apres
deux préliminaires, dans les trois derniers numéros de ce paragraphe.

5.1. Soit G’ un sous-groupe algébrique de G contenant H.

Sous 'opération de G’ par translations a droite, G est I’espace total d’un fibré
principal de base G/G'. Pour toute G'-variété X', on peut donc former le fibré
associé a ce fibré principal, de fibre type X'. On le notera G * 4 X'. L’opération
de G dans lui-méme par translations & gauche, passe au quotient en une
opération de G dans G x5 X',

Il est clair que, pour que X' soit un plongement (resp. un plongement
élémentaire) de G'/H, il faut et il suffit que G * 5. X' soit un plongement (resp. un
plongement élémentaire) de G/H.

LEMME. Soit X un plongement élémentaire de G/H d’orbite fermée T. Pour
qu’il existe un plongement élémentaire X' de G'/H tel que X =G * 5 X', il faut et il
suffit que I’adhérence de G'/H dans X rencontre T.
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Preuve. 11 est clair que la condition est nécessaire. Montrons qu’elle est aussi
suffisante. Désignons par X' ’adhérence de G/H dans X. C’est un plongement de
G'/H, mais a priori X' n’est pas nécessairement lisse. Considérons le G-
morphisme naturel ¢ : G *5 X' — X. Modulo I'identification G/H =G *4 G'/H,
¢ induit I'identité de G/H, et en particulier ¢ est birationnel. Pour tout x€ T, on a
dim G, =dim H+ 1. Par suite, dim G,=dim H+1, d’ou

dim G'/G} =dim G’ —dim G;=dim G'-dim H—1=dim G'/H—1.

Puisque dim (TN X')<dim G'/H, il s’ensuit que G’ a au plus un nombre fini
d’orbites dans X'N T, et que les fibres de ¢ sont finies. D’aprés le théoréme
principal de Zariski, ¢ est un isomorphisme. Il s’ensuit que X’ est un plongement
élémentaire de G'/H, ce qui démontre le lemme.

5.2. La proposition du numéro suivant s’appuiera également sur le lemme que
voici (qui concerne les groupes réductifs de transformations).

LEMME. Soient K un groupe algébrique réductif connexe, X une variété
algébrique affine lisse dans laquelle K opéere algébriquement, Y une sous-variété
lisse de X distincte de X et stable par K, et enfin x un point de Y fixé par K. On
suppose que K n’a pas de point fixe dans X — Y. Il existe alors une orbite de K dans
X —Y dont I’adhérence dans X contient x.

Ce lemme résulte par exemple sans peine des résultats de [7].
5.3. Dans la suite de ce paragraphe, on se bornera a considérer le cas H ={e}.

Soit X un plongement élémentaire de G = G/{e} (on considére G comme
espace homogéne, G opérant dans lui-méme par translations a gauche), d’orbite
fermée T. Si x € T, le groupe d’isotropie G, est de dimension 1. Deux cas peuvent
se produire: ou bien (G,)° la composante connexe de G,, est isomorphe au
groupe multiplicatif k*; ou bien (G, )° est isomorphe au groupe additif k. Dans ce
numéro et le suivant nous allons considérer le premier cas, et dans le numéro 5.5
nous pensons plutdt au second.

Voici une maniére simple de construire des plongements élémentaires de G:
choisissons un sous-groupe G' de G isomorphe a k*, et considérons le plonge-
ment élémentaire k*Gk, ou k™ opére linéairement dans k; il induit par
G *g'-»k un plongement élémentaire de G. Ce qu’on a obtenu ainsi comme
G-variété n’est rien d’autre qu’un G-fibré en droites sur G/G’, dont la section
nulle forme une orbite fermée, et dont le complémentaire de la section nulle est
isomorphe a G.
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PROPOSITION. Soit X un plongement éléementaire de G d’orbite fermée T, et
soit x € T. On suppose (G,)°=k*. Alors G, =k*, et il existe un conjugué G' de G,
dans G tel que X =G *g5.+ k.

Preuve. D’aprés un théoréme de Sumihiro (voir [6]), (G,)° étant un tore et X
lisse donc normal, on peut trouver un voisinage de x dans X, ouvert affine et
stable par (G,)°. D’aprés 5.2, il existe une orbite de (G,)° dans X— T dont
I’adhérence dans X contient x. On en déduit I’existence d’un conjugué G’ de
(G,)° dans G, dont ’adhérence dans X rencontre T. D’aprés 5.1, on peut trouver
un plongement élémentaire X' de G' tel que X=G *4 X'. Puisque les seuls
plongements élémentaires de k* sont k et P, —{0}, quitte a choisir convenable-
ment isomorphisme G'=k*, on a X=G *g._,+k. Il s’ensuit que G, est un
conjugué de G'; en particulier, G, est connexe.

5.4. On désigne par X4(G) ’ensemble des morphismes de groupes algébriques
A:k*— G non triviaux (c’est-a-dire tels que A(k*)#{e}). L’inclusion
k[t, t ']< k((t)) permet de plonger Xy,(G) dans Gy ).

Pour tout A e G¥ ), on note G(A) I’ensemble des se G tels que
A(t)sA(1)"' € Gypy; on vérifie sans peine que G(A) est un sous-groupe de G.
Si M, AeX4(G), on pose A'~A, s’il existe n’,neN* et se G(A) tels que
A(EA™)=sA(t™)s™ 1.

Si AeXu(G)<=G¥,) rappelons quon désigne par X, le plongement
élémentaire associé 2 A (voir 4.8). Posons G' = A(k*)<= G; c’est un sous-groupe
algébrique de G isomorphe a k*. Il est clair d’aprés 5.3 que X, =G *g/—i*k.

PROPOSITION. Soient A', A € X4(G). Pour que X, .= X,, il faut et il suffit que
A ~A.

Preuve. Pour démontrer la proposition, on peut clairement se ramener au cas
ot les deux morphismes A’, A : k* — G sont injectifs; il suffit alors de montrer que
X, =X, si et seulement s’il existe s € G(A) tel que A'(£) =sA(t)s .

Supposons qu’il existe se G(A) tel que A () =sA(t)s™ 1. Alors, si 'on pose
w(t)=sA()s 'A()"!, on a w(t)€ Gygy €t A'(H) =p(DA(1), ot X, =X, d’apres
4.10.

Inversement, supposons X, =X,. ‘Puisque A(k*) et A'(k*) s’interprétent
comme groupes d’isotropie des orbites fermées dans X, et X, , on voit qu’il existe
se G tel que A'(t)=s""'A(t)s. Par ailleurs, en raisonnant comme dans 4.10, on
peut trouver (o, p) € Aut, k[[t]]X G.p tel que A'(t) = p()A(a(t)). Puisque A est
un morphisme de groupes, on a A(a()A(t)'=A(a(®)/t)€ Gy Dol
ADOSA@® T =sAOA)  =su(OA(@(D)A () € Gy 11 s’ensuit que se€ G(A),
autrement dit que A’ ~A.
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Remarque. Lorsque G est réductif, on peut montrer que les G(A), A € X4(G)
sont des sous-groupes paraboliques de G, et I’ensemble quotient X4(G)/~ n’est
alors rien d’autre que la version de Mumford de I'immeuble sphérique de G (voir
[8]), qu’on peut donc considérer comme plongé dans V';(G/{e}).

5.5. Soit X un plongement élémentaire de G d’orbite fermée T, et soit x e T.

PROPOSITION. Le groupe G,/(G,)° est cyclique.

Preuve. Comme dans 4.10, soit A un germe formel associé a une courbe dans
X transverse a T, tel qu’on ait lim,_,o A(t)=x. Si s€ G, on a alors se€ G, si et
seulement si lim,_ o sA(t) =x, c’est-a-dire si et seulement s’il existe (w,a)e
Gy X Autik[[t]] vérifiant lim,_o u(t) =e et sA(t) = w()A(a(2)).

Afin de pouvoir reformuler cette caractérisation de G, de fagon plus com-
mode, introduisons quelques notations. Posons & = Aut, k[[t]], et désignons par
s, I'ensemble des a € o qui induisent I'identité dans k[[t])/t" " k[[t]]. Les 4,
sont des sous-groupes distingués dans & = o, et 'on a /A, =k* et A,/A .1 =k
si n=1. Designons par &(A) ’ensemble des a € o tels que lim, o A(a(t))A ()7}
existe dans G. Définissons h: (M) — G par h(a)=1lim,_,A(ax(t)A(t)"'. On
vérifie sans peine que (A) est un sous-groupe de 4, et que h est un homomor-
phisme de groupes. La caractérisation précédente de G, peut se reformuler de la
fagon suivante: on a h(£(A)) =G,.

De plus, on vérifie sans peine que, dés que n est assez grand:

1) o, =sAA);

2) A(A)/ A, est un sous-groupe algébrique du groupe algébrique A/, ;

3) h passe au quotient en un morphisme de groupes algébriques
AA)/ A, — G. Puisque (H(A)NA,)/A,, étant unipotent, est connexe, et
que AN)/(HEA)NHA,) sinjecte dans oA/, =k* on voit que
(AN)/A,)/(AN)/A,)° est cyclique. Par suite G,/(G,)° est cyclique, comme
quotient d’'un groupe cyclique.

6. Reformulation de la définition des plongements
Dans ce §, nous assemblons les résultats des §81 a 4.

6.1. Rappelons que I’ensemble &,(G/H) est en bijection naturelle avec I’ensem-
ble des orbites de G dans X(G/H) (voir 2.2); si 1 € ®,(G/H); nous avons désigné
par T, l'orbite qui lui correspond. Si X est un sous-ensemble stable par G de
X(G/H), nous désignerons par L(X) I’ensemble des [ € &,(G/H) tels que T, < X.
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PROPOSITION. Soit X un sous-ensemble stable par G de X(G/H).

1) Pour que X soit ouvert dans X(G/H), il faut et il suffit que L(X) soit ouvert
dans 2,(G/H).

2) Pour que X soit noethérien, il faut et il suffit que L(X) le soit.

Preuve. Soit A une sous-algebre affine stable par B8 de k(G/H). Rappelons
que nous avons noté X, I’ensemble des x € X(G/H) tels que O, soit un localisé de
A; désignons de manicre analogue par L, ’ensemble des | € &,(G/H) tels que O,
soit un localisé€ de A. Il est clair que X, < X si et seulement si L, < L(X). La
premiere partie de la proposition en résulte aussitot.

Si X est noethérien, on a X = U, X4, pour des sous-algebres affines stables
par B de k(G/H) convenables, d’ou L(X)<= U{L; L,, ce qui montre bien que
L (X) est noethérien. Inversement, si L(X) est noethérien, on a L(X)< UL, L4,
ou Ay, ..., A, sont certaines sous-algébres affines stables par 8 de k(G/H), d’ou
X<G(UL, X,), ce qui d’apres 1.5 implique bien que X est noethérien.

6.2. Soit € X,(G/H). Nous désignerons par ¥, I’ensemble des v e V';(G/H) tels
que O, domine O, Nous appellerons %, la facette de L Il résulte de 4.9 que
F,# . La facette %, constitue un renseignement important sur /; dans certains
cas, les éléments de &,(G/H) sont méme déterminés par leur facette (voir §9).

Si L est un sous-ensemble de &,(G/H), nous dirons que L est séparé si les
facettes &%,, l € L sont disjointes.

PROPOSITION. Soit X un ouvert stable par G de X(G/H). Pour que X soit
séparé, il faut et il suffit que L(X) le soit.

Preuve. 11 est bien connu qu’aucune localité ne peut dominer deux localités
distinctes d’une variété séparée; par suite, si X est séparé, les facettes ¥, l € L(X)
sont disjointes.

Réciproquement, supposons X non séparé. On a alors Ay # Ay, ou Ay désigne
la diagonale de X x X. L’opération diagonale de G dans X X X laisse stable Ay,
A, et Ay — A Il nest pas difficile de voir que Ay s’identifie 3 a un ouvert stable par
G de X(G/H), Lt que les deux projections X S XxX ™ X induisent deux
morphismes X <——Ax 5 X qui commutent a 'opération de G et qui induisent
I'identité de G/H. Soit T une orbite de G dans Ax — Ax. Puisque toute orbite de
G dans X(G/H) posséde un voisinage séparé (1.5), on a m(T) # m,(T). Désignons
par [, et [, les éléments de L(X) qui correspondent a m(T) et m,(T). Par
construction, 0z, _r domine 0,, et 0,,. D’apres 4.9, il existe v e V',(G/H) tel que O,
domine O3 _r. Il s’ensuit que les facettes &, et F,, ne sont pas disjointes.
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6.3. Nous pouvons maintenant reformuler la définition des plongements.

DEFINITION. Un plongement de G/H est la donnée d’un sous-ensemble
ouvert, noethérien et séparé de &,(G/H).

On voit comment cette reformulation se rattache a la définition des plonge-
ments donnée au §1: posons X(L)=U,.; T; <X(G/H); lorsque L parcourt les
différents sous-ensembles ouverts noethériens et séparés de &,(G/H), griace a 6.1
et 6.2, on obtient par X(L) les différents plongements de G/H.

De 2.3, on déduit que £;(G/H) est ouvert dans £,(G/H); de plus, pour qu’un
sous-ensemble L de £;(G/H) soit ouvert, il faut et il suffit manifestement qu’il
soit saturé par localisation dans £;(G/H) (c’est-a-dire, tout ! de &;(G/H), pour
lequel il existe I'e L tel que @, soit un localisé de 0, appartient a L). Il s’ensuit,
pour les plongements de G/H dont le nombre d’orbites est fini, une
caractérisation particulicrement simple: ce sont les sous-ensembles finis de
L:(G/H), saturés par localisation dans £;(G/H), et séparés.

Soit H' un sous-groupe algébrique de G contenant H. Soient X un plonge-
ment de G/H, X' un plongement de G/H'. De 2.3, on tire aussitdt que les
assertions suivantes sont équivalentes.

1) Le morphisme naturel G/H — G/H' se prolonge en un morphisme X — X'.

2) Pour tout le L(X) il existe un (unique) I'e L(X") tel que @, domine O,.

6.4. Soit H' un sous-groupe algébrique de G contenant H. Soient X un plonge-
ment de G/H, X' un plongement de G/H'. Si ve V' (G/H), rappelons que 'on
désigne par X, le plongement élémentaire correspondant.

On dira que v domine X si 'identité de G/H se prolonge en un morphisme
X, — X; on dira que v domine X' si le morphisme naturel G/H — G/H' se
prolonge en un morphisme X, — X'. Si le morphisme naturel G/H — G/H' se
prolonge en un morphisme X — X', il est clair que tout v € ¥'{(G/H) qui domine
X, domine aussi X'.

PROPOSITION. Supposons que le morphisme naturel G/H' — G/H se pro-
longe en un morphisme ¢ : X — X'. Pour que ¢ soit propre, il faut et il suffit que tout
v € V1(G/H) qui domine X', domine déja X.

Preuve. Soient X, Y deux variétés algébriques integres, U un ouvert non vide
de X, et ¢: X — Y un morphisme. Si A € X, On note ¢ °A son image par ¢
dans Y. On a le critére suivant de propreté: pour que ¢ soit propre, il faut et
il suffit que, si A € Uy, toutes les fois que lim,_,o (¢ © A)(t) existe dans Y, alors
lim,_,, A(t) existe déja dans X. La proposition résulte aussitdt de 1a et de 4.9.
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COROLLAIRE. Soit X un plongement de G/H. Pour que X soit une variété
compleéte, il faut et il suffit que tout v e V'{(G/H) domine X.

7. Valuations invariantes sous un groupe réductif

Dans la suite, nous supposerons le groupe G réductif et I’algebre k[G]
factorielle. Au début de ce §, nous expliquons de quelle maniére nous utiliserons
ces hypotheses. Puis en 7.4, nous commengons par en tirer des conséquences pour
les valuations invariantes. Comme premiére application, nous obtiendrons en 7.5
que, pour certains espaces homogenes, le nombre d’orbites dans tout plongement
est fini. Enfin en 7.6, nous esquisserons une voie a suivre pour déterminer les
valuations invariantes.

7.1. Supposons que I’algébre k[G] soit factorielle.

Pour I’étude des plongements, cette hypothése n’est pas trés restrictive: il est
bien connu que pour tout groupe algébrique affine G, il existe un revétement fini
de groupes algébriques p: G — G tel que k[G] est factorielle; et si H=p~'(H),
on peut clairement identifier plongements de G/H et plongements de G/H.

Désignons par k[G]* ’ensemble des éléments inversibles de k[G]. Il est bien
connu que tout élément de k[G]* est, a facteur scalaire prés, un caractére (c’est-
a-dire un morphisme de groupes algébriques G — k*).

Désignons par 2(G) I’ensemble des fermés irréductibles de G de codimension
1. Pour tout D € 9, choisissons un fp € k[G] qui engendre I'idéal des f € k[G] nuls
sur D. Tout fe k(G) s’écrit alors de manie€re unique

f=¢g Il fz®
DeaG)

ol ge k[GT* et ol les vp(f), D€ @(G) sont des entiers presque tous nuls. Pour
tout D e @(G), la fonction vp : k(G)* — Z est une valuation discréte de k(G).

Soit H un sous-groupe algébrique de G (non nécessairement connexe).
Désignons par 7 : G — G/H la projection naturelle et par 2(G/H) ’ensemble des
fermés irréductibles de G/H de codimension 1. Pour tout D € 9(G/H), H opére
(par translations & droite) de fagon transitive dans I’ensemble des composantes
irréductibles D, ..., D, de w7 (D). Posons fp =fp,*- """ fp,. Il est clair que les
fo (D € 9(G/H)) sont des vecteurs propres de H. De plus, tout vecteur propre
fek(G) de H (et en particulier tout fe k(G/H)) s’écrit de maniere unique

f=¢ Il fr®,

Dea(G/H)
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ou ge k[GT* et ou les vp(f), D € D(G/H) sont des entiers presque tous nuls. Pour
tout D e @(G/H), la fonction vp :k(G/H)*— Z est une valuation discréte de
k(G/H).

Soit f € k(G/H). Ecrivons f = gh™', avec g, h € k[ G] sans diviseur commun. De
ce qui précede résulte aussitot que g et h sont des vecteurs propres de H, de
méme caractére.

Autre fait que nous utiliserons: pour tout fe k[G], il existe s € G tel que f et
s - f sont sans diviseur commun. En effet, pour s € G en “position générale”, le
fermé de G ou s’annulent f et s - f est de codimension =2.

7.2. Supposons que le groupe G soit réductif. Rappelons quelques faits de base
sur les groupes réductifs et leurs représentations rationnelles (en caractéristique
nulle).

Toute représentation rationnelle d’un groupe réductif est complétement
réductible. Pour connaitre un G-module rationnel N, il suffit donc de connaitre
tous les sous-G-modules irréductibles de N.

Désignons par G I'ensemble des (classes d’isomorphismes de) G-modules
rationnels irréductibles. Pour décrire G on procéde traditionnellement de la
maniere suivante. On fixe un sous-groupe unipotent maximal U de G. On pose
B = Ng(U), le normalisateur de U dans G; c’est un sous-groupe résoluble
maximal de G, qui est connexe et dont le radical unipotent est U. On écrit T pour
le quotient B/U qui est un tore, et on note X(T) le groupe des caracteres de T (et
de B). Pour tout M e G, I’espace vectoriel YM est de dimension 1. L’opération
naturelle de T dans YM fournit donc un caractére x,, de T. L’application
G — X(T) qui envoie M sur x,; est injective. On note P l'image de cette
application, et on appelle P I’ensemble des poids dominants.

On se sert de P pour indexer G et pour manier les G-modules rationnels. De
maniére plus précise, soit N un G-module rationnel, et soit Me G de poids
dominant 7 € P; alors un sous-G-module de N est irréductible et isomorphe a M
si et seulement s’il est engendré par un vecteur propre de B dans N, de caractére
7. Autrement dit, pour connaitre ’opération de G dans N, il suffit de connaitre
les vecteurs propres de B dans N et leurs caractéres.

7.3. Supposons maintenant a la fois G réductif et I’algebre k[G] factorielle.

Fixons un sous-groupe algébrique H et un sous-groupe unipotent maximal U
de G. Dans ce qui suit, les groupes G, U et B = N;(U) opéreront toujours par
“translations a gauche” et le groupe H toujours par “translations a droite”.

On désignera par ? ’ensemble des f € k(G) qui sont a la fois vecteur propre
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de B et vecteur propre de H; P est un sous-groupe multiplicatif de k(G)*. On
notera PP (G/H) l’ensemble des D e PD(G/H) qui sont stables par B. Si
D € 9(G/H), pour que fp € 2, il faut et il suffit que D € B@(G/H). De plus, il est
clair que tout fe @ s’écrit de maniére unique

f=g I F»,
DeBa(G/H)
ou ge k[G]*.

Soit A un sous-espace vectoriel de k(G/H). Nous dirons que A est quasi-G-
stable, s’il existe une famille M(h), he ® de sous-G-modules de k[G] telle que
A =Upcep hM(h).

Nous dirons d’un sous-espace vectoriel N de A qu’il est “bon”, s’il existe un
ensemble W de valuations (discrétes, normalisées) G-invariantes de k(G/H), et
une famille d’entiers n,, (w € W), tels que N est ’ensemble des fe A qui vérifient

w(f)=n,, quel que soit we W'

LEMME. Soit A un sous-espace vectoriel quasi-G-stable de k(G/H), et soient
N et N’ deux “bons” sous-espaces vectoriels de A. Pour que N— N'# J, il faut et il
suffit que PN(N—N")# .

Preuve. Si he®, désignons par N(h) (resp. N'(h)) I’ensemble des ge M(h)
tels que gh € N (resp. N'). D’apreés le corollaire 2 de 3.2, on a v((s - g)h) = v(gh),
quels que soient s€ G et g€ M(h) et quelle que soit la valuation G-invariante v
de k(G/H). Puisque N et N’ sont “bons,” il s’ensuit que N(h) et N'(h)
sont des sous-G-modules de M(h). Si N-N'# O, il existe he®? tel que
N(h)— N'(h) # &. Grice aux propriétés des représentations rationnelles des groupes
réductifs rappelées en 7.2, B posséde un vecteur propre f dans N(h)— N'(h).
Puisque he ® et que hM(h)< A < k(G/H), tous les éléments de M(h) sont des
vecteurs propres de H. Par conséquent fe® et hfe N(N—-N")# J, c.q.f.d.

Remarque. Nous avons vu en passant qu’un “bon” sous-espace vectoriel d’un
espace vectoriel quasi-G-stable est encore quasi-G-stable.

7.4. Rappelons que, dans toute la suite, G sera un groupe réductif dont I’algébre
k[G] est factorielle, H un sous-groupe algébrique de G, et U un sous-groupe
unipotent maximal de G, qui resteront fixés. De plus, sauf mention expresse du
contraire, les groupes G, U, B = Ng(U) opéreront par “translations a gauche”, et
le groupe H par “translations a droite”.

PROPOSITION. Deux wvaluations discrétes G-invariantes de k(G/H), qui
coincident en restriction a ? Nk(G/H), sont égales.
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Preuve. Désignons par A l’ensemble des fe k(G/H) qui peuvent s’écrire
f=gh, avec gek[G] et he®; A est une sous-algebre de k(G/H).

Soit fe k(G/H). Ecrivons f=g,g5", ou g, g, € k[G] sont sans diviseur com-
mun. D’apres 7.1, g, et g, sont des vecteurs propres de H, de méme caractére.
Dans le G-module engendré par g; choisissons un vecteur propre h de B (voir
7.2). 1l est clair que h est aussi un vecteur propre de H de méme caractére que g,
et g,. Par suite he® et g.h™', g,h '€ A. 1l s’ensuit que f est dans le corps des
fractions de A. Autrement dit, nous avons montré que A posséde k(G/H) comme
corps des fractions.

Pour tout h e @, désignons par M(h) I’ensemble des g € k[G] qui sont vecteur
propre de H, de caractére inverse a celui de h. Il est clair que les M(h), h € ? sont
des sous-G-modules de k[G], et que A =U,.» hM(h). Autrement dit, A est
quasi-G-stable (voir 7.3).

Soient maintenant v, et v, deux valuations discrétes G-invariantes de k(G/H),
qui coincident en restriction 3 2Nk(G/H)=®NA. Puisque A est quasi-G-
stable, de 7.3 résulte aussitdt que v; et v, coincident sur A. Puisque le corps des
fractions de A est k(G/H), il s’ensuit que v, = v,, c.q.f.d.

7.5. Si le degré de transcendance de Pk(G/H) sur k est =1 (autrement dit, si B
posséde une orbite de codimension <1 dans G/H), la structure de P@(G/H) est
particulierement simple.

1) Si degtr, Bk(G/H)=0, c'est-a-dire si B a une orbite ouverte dans
G/H,B9(G/H) est I'ensemble fini des composantes irréductibles du
complémentaire de cette orbite ouverte ('orbite étant affine, son
complémentaire est pur de codimension 1).

2) Si degtr, Bk(G/H) =1, soit U I'ouvert de G/H formé des orbites de B de
codimension 1 dans G/H; alors, si D € B®(G/H), ou bien D est ’adhérence
dans G/H d’une orbite de B dans U, ou bien D est une composante du
complémentaire de U dans G/H.

PROPOSITION (voir aussi [19]). On suppose que B a une orbite ouverte dans
G/H. Alors le nombre des orbites de G dans tout plongement de G/H est fini.

Preuve. Si B a une orbite ouverte dans G/H, nous venons de voir que
I’ensemble B9(G/H) est fini. 1l est clair que cela implique que les groupes #/k™ et
(@ Nk(G/H))/k* sont de type fini. Soient fi, ..., f, des éléments de # Nk(G/H)
qui avec k™ engendrent le groupe ? Nk(G/H). D’aprés 8.1, toute valuation
v e V(G/H) est déterminée par (v(fy),...,v(f,))eZ". 1l s’ensuit que ’ensemble
V' (G/H) est dénombrable.

Raisonnons maintenant a ’envers. Supposons qu’il existe un plongement X de
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G/H dont le nombre des orbites est infini. Ce nombre est alors forcément
non dénombrable (nous supposons le corps de base non dénombrable!). Soit
L = 2,(G/H) I’ensemble des orbites de G dans X. On sait que les facettes ¥, le L
sont disjointes (cela exprime le fait que X est séparé, voir 6.2) et non vides (voir
4.9). De L non dénombrable suit donc 7,;(G/H) non dénombrable, ce qu1
démontre la proposition.

Remarques. 1) Lorsque B a une orbite ouverte dans G/H, il résulte aussitdt
de la proposition précédente que V' (G/H) ="V (G/H), et plus généralement que
L(G/H) =2,(G/H) =£,(G/H).

2) De nombreux auteurs ont déja étudié (et classé) les sous-groupes H de G
tels que B possede une orbite ouverte dans G/H (en demandant parfois que H
possede une orbite ouverte dans G/B, ce qui revient au méme), voir par exemple
[17]. Voici quelques cas de tels H: les sous-groupes de G qui contiennent un
sous-groupe unipotent maximal; les sous-groupes de G fixés par un automor-
phisme involutif.

7.6. Terminons ce § par quelques indications pratiques sur la détermination de
V(G/H).

Pour tout 7 e@®, désignons par M, un G-module rationnel irréductible de
poids dominant 7. Notons M?, le dual de M,. Il est bien connu que k[G], en tant
que G XG-module (G opérant par “translations a gauche et a droite”), est
isomorphe & @, .p M,®@M,,. 1l s’ensuit que Yk[G], I'algébre des invariants de U
opérant par ‘“‘translations a gauche”, est isomorphe, en tant que G-module (G
opérant par “translations a droite”), a @ ,.p M,. L’opération de T = B/U dans
Yk[G] se retrouve dans la graduation de @, .p M, par les poids P < X(T).

Pour tout 7 € P, choisissons un isomorphisme de M, sur 'unique sous-G-
module de Yk[G] qui lui est isomorphe, et convenons dans la suite d’identifier M,,
a son image (deux telles identifications ne different que par une homothétie).
I’ensemble & N k[ G] s’identifie alors a la réunion des vecteurs propres de H dans
les M,,, weP.

Pour simplifier notre discussion, supposons que G/H soit quasi-affine. Dans ce
cas, on peut trouver des f, (o€ 3) dans ? Nk[G/H] qui engendrent le groupe
P Nk(G/H). D’aprés 7.4, toute valuation v de V' (G/H) est déterminée par les
v(f,) (o €X). Reste alors a trouver les familles d’entiers n,, (o € 3) pour lesquelles
il existe v € ¥V'(G/H) tel que v(f,) = n,.

Lorsque A € Gy, on peut calculer v,(f,) de la maniére suivante. Supposons
que f,e M, =M,k =« M, ®k((t)). Le groupe Gy opere de manicre naturelle
dans M, @ k((t)) et v, (f,) n’est rien d’autre que 'ordre en t de la série formelle
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A f,e M, ®k((t)). De plus, le groupe
I' = (G X Hicay) X Auty k[[t]]

opere de maniere naturelle dans Gy, €t v, et v, coincident en restriction a
k(G/H) lorsque A, A’ € Gy () sont sur une méme orbite de I' (voir 4.10).

D’ou une voie a suivre pour déterminer ¥;(G/H): on cherche d’abord sur
chaque orbite de I' dans Gy un A d’une forme simple, puis on calcule les
0\ (f,) (o € X). Enfin, pour trouver les valuations de ¥',(G/H), on peut se servir de
4.11.

Ces indications semblent assez raisonnables lorsque le degré de transcendance
de Pk(G/H) sur k est <1 (pour un exemple, voir [16]).

8. Germes de plongements normaux sous un groupe réductif

Dans ce §, nous étudierons les germes de plongements (lorsque la variété est
normale et le groupe est réductif) dans le méme esprit qu’au § précédent les
valuations invariantes. Pour cela, nous nous appuierons beaucoup sur la théorie
des anneaux de Krull (pour un bon exposé de cette théorie, voir par exemple [3],
chap. 7).

8.1. Désignons par "(G/H) I’ensemble des [eR(G/H) tels que O, soit une
algeébre intégralement close dans k(G/H). Si 1eR"(G/H), 0, est un anneau
noethérien intégralement clos, donc un anneau de Krull, dont les valuations
essentielles sont manifestement de deux sortes:

1) un nombre fini de valuations appartenant a ¥'(G/H) (si X est un plonge-
ment de G/H et si Y est un fermé stable par G de X, tels que Ox =0, il
s’agit des valuations correspondant aux composantes irréductibles de
X —GJ/H, qui sont de codimension 1 dans X et qui contiennent Y); on
notera ¥, ’ensemble de ces valuations;

2) un certain nombre de valuations du type vp, ou D e @(G/H) (si X, Y sont
comme plus haut, il s’agit des D dont I’adhérence dans X contient Y); on
notera 9, I’ensemble de ces éléments de @(G/H).

Puisque @, est un anneau de Krull, 0, est déterminé par V', et 9;; plus
précis€ément

01= ﬂ O’Dﬂ n Ovp‘

veV, Degy
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Voici en gros le programme de ce §: nous montrerons que tout | e X" (G/H) est
déja déterminé par V', et PP, =9, NBP(G/H) (8.3), puis nous caractériserons les
couples V', 2%, (8.8).

8.2. Si Nck[G] et si ge k(G), on désignera par gN le sous-ensemble de k(G)
des gf (fe N), et par k[gN] la sous-algebre de k(G) engendrée par gN.

LEMME. Soit l € "(G/H). Il existe un sous-G-module de dimension finite M
de k[G] et un he P N M vérifiant:

1) "' Mco;

2) O, est le localisé de k[h™'M] en ’idéal premier k[h " *M]Nm,.

De plus, h vérifie alors forcément vy (h) =0 quel que soit D € 9,.

Preuve. La localité | étant géométrique, on peut trouver une sous-algébre de
type fini A de O, telle que O; soit le localisé de A en I'idéal premier A Nm,.
Choisissons un systéme de générateurs de A sous la forme f,g™',...,f.g”"', ou
fi,--.,f, et g sont des éléments de k[G] sans diviseur commun. D’aprés 7.1,
fi,...,f, et g sont alors des vecteurs propres de H, de méme caractére. Si N
désigne le sous-espace vectoriel de k[G] engendré par fi,...,f et g on a
A =k[g"'N]. Puisque N et g sont dans diviseur commun, et que g 'Nc A <0,
vp(g) =0 quel que soit De 9.

Désignons par M le sous-G-module de k[G] engendré par N. Puisque les
opérations par translations a gauche et a droite commutent, les éléments de M
sont encore des vecteurs propres de H, de mé€me caractere que g. Par suite
g 'M c k(G/H). D’apres le corollaire 2 de 3.2, il s’ensuit que v(g™'(s- f))=
v(g 'f)=0, quels que soient seG,feN et veV, D’autre part, vp(g~'f)=
vp(g™H =0, quels que soient fe M et De @, Par suite, toutes les valuations
essentielles de O, restent positives sur g~'M, d’ou il suit que g"'M <0,

Choisissons un v e V(G/H) tel que €@, domine 0, (voir 3.5). Le sous-espace
vectoriel M’ des fe M tels que g~ 'fem, peut alors aussi se définir par 1'inégalité
v(g™'f)>0. Par suite, du corollaire 2 de 3.2 résulte que M’ est stable par G. Par
construction, g€ M— M’ # (J. Grace aux propriétés des représentations rationnel-
les des groupes réductifs rappelées en 7.2, B posséde un vecteur propre h dans
M — M'. Puisque les éléments de M sont des vecteurs propres de H, he 2. Par
construction g 'heOF. Par suite, h ' 'M=(g 'h)'-g7'M<c0O, dou 1). De
g 'M=(gh ") '- h™'M résulte que g~'M (et donc aussi A) est contenu dans le
localisé de k[h™'M] en I'idéal premier k[h~'M]Nm, d’ou aussitdt 2).

Enfin, M est un sous-G-module de k[G], he M et h™'M < 0,; puisqu’on peut
choisir s G tel que h et s - h sont sans diviseur commun, de (s - h)h ™' € @, suit
aussitdt vp(h) =0 quel que soit D e %,
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8.3. Soit D<= B(G/H) et soit W <V (G/H).

PROPOSITION. Il existe au plus un le 8"(G/H) tel que B@, =D et V', =W.

Preuve. Désignons par #(®) ’ensemble des h e P tels que vp(h) =0 quel que
soit De 9. Désignons par A(®) la sous-algebre des fe k(G/H) qui peuvent
s’écrire f=gh, ou ge k[G] et he P(P). Enfin, désignons par A=A(D, W) la
sous-algebre des fe A(D) tels que w(f) =0 quel que soit we W.

Soit | e " (G/H) tel que 2@, =9 et V', = W. Puisque toute valuation essentielle
de O, reste positive sur A, @, contient A. Si M et h sont comme dans le lemme de
8.2, il est clair que h™'M < A. 1l s’ensuit que @, est le localisé de A en I'idéal
premier A Nm,. Enfin, # N A Nm; peut aussi se décrire comme ’ensemble des
fe® qui vérifient vp,(f) =0 (DePD=2) et w(f)=0(we W =7"), I'une au moins
des inégalités étant stricte.

Soit maintenant I’ un “autre” élément de "(G/H) tel que 2%, =D et V= W.
Il est clair que A (D) est quasi-G-stable, au sens de 7.3. D’autre part, A NI, et
A NM,., sont des ‘“bons” sous-espaces de A(D): en effet, si ve V(G/H) est tel
que O, domine O, (voir 3.5), A NN, peut aussi se décrire comme ’ensemble des
fe A(D) tels que w(f) =0 (we W) et v(f) >0, et pareil pour A NIN;.. D’apres 7.3,
de PNANIM =PNAND résulte alors AN, =ANI,, dou I=1, c.qf.d.

8.4. On notera X(H) le groupe des caractéres de H. Si f€ k(G) est un vecteur
propre de H, on notera x; son caractere, xy € X(H). Soit E < k(G). Si x € X(H),
on notera E, I’ensemble des vecteurs propres de H dans E de caractere x. Enfin,
on désignera par Xg(H) I'’ensemble des x € X(H) tels que E, # .

En général, on a X, (g(H) # X(H); X [c;(H) est seulement un sous-monoide
de X(H) qui engendre X(H) en tant que groupe; pour que X;s(H)= X(H), il
faut et il suffit que I’espace homogéne G/H soit une variété quasi-affine (voir [8]).

Posons #* =2 Nk[G]. Pour tout x € X(H), k[G], est un sous-G-module de
k[G]. Par suite, grice aux propriétés des représentations rationnelles des groupes
réductifs rappelées en 7.2, si k[G], # 0, B posséde un vecteur propre dans k[G],.
Il s’ensuit que X;gi(H) = Xg-(H).

Soit < B9(G/H). Rappelons que (D) est le sous-groupe des fe P tels que
vp(f) =0 quel que soit D e 9, et que A(D) est la sous-algebre des f e k(G/H) qui
peuvent s’écrire f = gh, avec g€ k[G] et h e P(D).

LEMME. Pour que le corps des fractions de A (D) soit égal a k(G/H), il faut et
il suffit que @ vérifie la condition
(D) X(H) est engendré, en tant que monoide, par Xz-(H) et Xz a),(H).

Preuve. Supposons que @ vérifie (D). Soit fe k(G/H). Ecrivons f = fif;", ou
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f1, f2€ k[G] sont sans diviseur commun. Nous savons que f, et f, sont alors des
vecteurs propres de H, de méme caractére. D’aprés (D), il existe un vecteur
propre g de H dans k[G] et un h e P(D), tels que x;.' = x7.' = XX». Puisque f,gh
et f,gh appartiennent alors a A(9), f est dans le corps des fractions de A(9). Par
conséquent, le corps des fractions de A(@) est bien k(G/H).

Inversement, supposons le corps des fractions de A(9D) égal a k(G/H). Puisque
Xg+(H) engendre le groupe X(H), pour montrer que 9 vérifie (D), il suffit de voir
que, pour tout vecteur propre g de H dans k[G], x, est dans le monoide
engendré par Xg-(H) et Xz (H). Choisissons s € G tel que g et s - g sont sans
diviseur commun. On a (s - g)g~ ' € k(G/H). Par hypothese, il existe f,, f, € k[G]
et he®(@) tels que fihf,hek(G/H) et (s:-g)g '=fih(fh) ' =f.f3'. Les
éléments g et s - g étant sans diviseur commun, il existe fe k[G] tel que gf =f5. 1l
est clair que f, et f sont des vecteurs propres de H. De g~ ' =ff5' =fh(f,h)"}, on
tire alors xg ' = XgXn C-q.f.d.

8.5. Soit D<= BB(G/H) et soit W < ¥V (G/H). Rappelons que nous avons désigné
par A(D, W) la sous-algebre des f € A (D) tels que w(f) =0 quel que soit we W.

Pour tout D € 9(G/H), choisissons s € G tel que fp et s - fp sont dans diviseur
commun (pour la définition de fp, voir 7.1). Posons gp =(s - fp)fp . On vérifie
sans peine les assertions suivantes: g € k(G/H), vp(gp) <0, vp(gp) =0 quel que
soit D'e A(G/H)—{D}, et v(gp)=0 quel que soit veV(G/H) (cette derniére
assertion résulte du corollaire 2 de 3.2).

LEMME 1. Soit D € Ba(G/H). Pour que D € 9, il faut et il suffit que vp reste
positif sur A(2, W).

Preuve. Si De, il est clair que vp reste positif sur A(D, W). Si
D e B9 (G/H) - D, alors gp € A(D, W) et vp(gp) <O.

Dans la suite de ce numéro, on supposera que W est un sous-ensemble fini de
V(G/H).

LEMME 2. Pour que le corps des fractions de A (D, W) soit égal a k(G/H), il
faut et il suffit que @, W vérifient les conditions (D) et
(W) Il existe fe P NA(D) tel que w(f)>0 quel que soit we W.

Preuve. Posons A =A(2, W).
Supposons que le corps des fractions de A est k(G/H). Puisque A < A(@)<

k(G/H), le corps des fractions de A(D) est alors aussi k(G/H). D’apres 8.4, il
s’ensuit que @ vérifie (D). D’autre part, pour tout we W, A Nm,, #{0}: en effet,
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sinon, puisque le corps des fractions de A est k(G/H), w s’annulerait sur
k(G/H)*, ce qui n’est pas possible. Il s’ensuit que A N[, <y M, 7 {0}. 11 est clair
que A(D) est quasi-G-stable (au sens de 7.3), et que A N[ ),cw M, €st un “bon”
sous-espace de A(®). D’aprés 7.3, il s’ensuit que PNA N[\, ecw M, F I, ce qui
signifie que @, W vérifient (W).

Inversement, supposons que @, W vérifient (D) et (W). Soit ge A(D). Si
fe® N A(D) posséde les propriétés de (W), alors fe A et gf™ € A, dés que NeN
est assez grand. Il s’ensuit que A et A(®) ont méme corps de fractions. D’aprés
8.4, puisque @ vérifie (D), ce corps est k(G/H).

Posons @ =9U (9(G/H)—Ba(G/H).

LEMME 3. On suppose que 9, W vérifient (D) et (W). L’algebre A(D, W) est
un anneau de Krull dont les valuations essentielles sont les vp, (D € D) et certaines
des valuations de W

Preuve. Posons A = A(@, W). D’apres le lemme 2 le corps des fractions de A
est k(G/H). Désignons par A’ le localis¢é de k[G] en la partie multiplicative
k[GINP(D); A’ est un anneau factoriel. Du fait que A = A'N (), cw O, il résulte
que A est un anneau de Krull (toute intersection finie d’anneaux de Krull est
encore un anneau de Krull). Puisque A =(\pcg0,, N[ lwew Ow, il est clair que les
valuations essentielles de A se trouvent parmi les vy (D€ P) et les w (we W). Si
De®, ona vp(gp) <0, donc gr¢ A, mais vp(gp)=0 quel que soit D'e$—{D},
et w(gp) =0 quel que soit w e W’ par suite, les valuations vp (D € @) sont toutes
essentielles pour A.

Considérons encore les deux conditions suivantes portant sur @, W'
(W');  Pour tout we ¥, il existe g, e P NA(D) tel que w(g,)<O.
(W), Sicard W=2, pour tout we W, il existe f,, e PN A(D) tel que

>0 si weW—{w'}
=0 si w=w'.

w(fw') {

Remarques. 1) Si I'espace homogéne G/H est affine, la condition (W’); est
toujours remplie: en effet, toute valuation de V' (G/H) prend alors des valeurs
strictement négatives sur k[G/H], donc aussi sur ? Nk[G/H].

2) Lorsque card W=2,(W’')., implique (W) (il suffit de prendre pour f le
produit de deux des f,, weW).

Pour abréger, nous désignerons par (W’) la réunion des conditions (W'); et

(W')zz-

LEMME 4. On suppose que @, W vérifient (D) et (W). Pour que toutes les
valuations de W soient essentielles pour A(D, W), il faut et il suffit que @D, W
vérifient (W').
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Preuve. Posons A = A(%2, W). Par hypothése, le corps des fractions de A est
k(G/H).

Si toutes les valuations de W sont essentielles pour A, on a
A@)-A@,{wh+ I

et

(A(Qb)ﬂ n mw>—mw:% 2,

weW—{w'}

quels que soient w, w'e W. D’apreés 7.3, ces ensembles contiennent des éléments
de @, d’ou aussitot (W), et (W').,.

Soit we W. De (W'), suit que w est une valuation essentielle pour
A@)NO, = A(D,{w}). Cela termine la preuve si card W = 1. En tout cas, 0, est
alors le localisé de A(9)N 0O, enl’idéal premier A(D)NIN,,. Soit g A(D)NO,,. Si
card W =2, d’aprés (W').,, il existe f, € A(D)NO,, inversible dans O,, et tel
que gfy € A dés que NeN est assez grand. Il s’ensuit que O, est encore le localisé
de A en l'idéal premier A Nm,, ce qui montre bien que w est une valuation
essentielle pour A.

8.6. Soit @ = BR(G/H) et soit W < ¥ (G/H). On dira d’'un sous-ensemble qu’il est
cofini si son complémentaire est fini.

LEMME 1. Si A(@, W) est une algébre de type fini, alors @ est cofini dans
Ba(G/H).

Preuve. Soit fy,...,f un systtme de générateurs de l’algebre A(D, W).
D’aprés le lemme 1 de 8.5,%9 peut se caractériser comme |’ensemble des
D eB%(G/H) tels que vp reste positif sur A(D, W). Mais vp reste positif sur
A(D, W) si et seulement si vp(f;) =0, ..., vp(f,) =0, condition qui détermine un
sous-ensemble confini de BP9 (G/H).

LEMME 2. Pour que ’algébre A(D, W) soit de type fini, il faut et il suffit que
9D, W vérifient la condition
(F) PN A(D, W) engendre une sous-algébre de type fini de k(G).

Preuve. L’opération de B dans k(G) laisse stable A (@, W). La sous-algebre de
k(G) engendrée par # N A(D, W) n’est rien d’autre que YA (@2, W). On doit donc
montrer que A (D, W) est de type fini si et seulement si YA (D, W) 'est. Soit t une
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indéterminée. Pour tout h € #(D), notons p, : k[G]t]— k(G) ’homomorphisme
d’algebres qui prolonge l'inclusion k[G]< k(G) et qui envoie t sur h. Faisons
opérer G dans k[G][t] = k[G]®k[t] par “translations & gauche” dans k[G] et
trivialement dans k[t]; p, commute seulement & 'opération de U. Nous savons
que A(D, W) est quasi-G-stable (plus précisément, si he ®(D) et si M(h) est
I’ensemble des g € k[G] tels que hge A(D, W), alors les M(h), h € (D) sont des
sous-G-modules de k[G], et A(D, W)= U,.p@ hM(h)). Si A est une sous-
algebre de k[G][t], stable par G, grice aux propriétés des représentations
rationnelles des groupes réductifs, il s’ensuit que p,(A) = A(D, W) si et seulement
si po(YA)="A(@, W). Pour conclure, il suffit alors de savoir que A est de type
fini si et seulement si YA l'est. Puisque G opére rationnellement dans A, ce
résultat est bien connu.

8.7. Soit 1eL"(G/H) et soit @< BB(G/H). Nous dirons que P est adapté a I, si

1) A9, 7)) est une algébre de type fini;

2) A@,V)<c0y;

3) O, est le localisé de A(@, V') en I'idéal premier A(9, V';) Nm,.
D’aprés 8.5 et 8.6, ces conditions entrainent que %, <%, et que 9, V', vérifient
(D), (W), (W), (F) (d’oui en particulier que 9 est cofini dans 2@(G/H)).

Si @ est adapté a [, 'algebre A (D, V';) est une sous-algébre affine de k(G/H),
qui est clairement stable par 1’algebre de Lie de G; il lui correspond donc un
ouvert X 4 1, de Z(G/H) (voir §1).

PROPOSITION. Soit 1€ R"(G/H). Il existe des @ <Ba(G/H) adaptés a l. De
plus, pour toute réalisation géométrique X', Y’ de |, on peut trouver @ < ®%(G/H),
adapté a | et tel que X5, vy < X'

Preuve. Soit X', Y’ une réalisation géométrique de [ Puisque O; est
intégralement clos, 'ouvert des points normaux de X' rencontre Y'. Par
conséquent, quitte a rétrécir X', on peut supposer la variété X' normale.

Soient M et h comme dans 8.2, et posons A =k[h™'M]; c’est une sous-
algebre affine de k(G/H), stable par I’algebre de Lie de G. Notons X, ’ouvert de
X(G/H) qui correspond a A, et posons X =G - X, ; c’est ’espace d’'un plonge-
ment de G/H. Désignons par Y le fermé de X tel que O0,=0xy; par
Yy,..., Yy Youi,..., Yg les composantes irréductibles de X — G/H qui sont de
codimension 1 dans X, ou Y,,..., Y, sont celles qui contiennent Y et qui
correspondent aux éléments de V'; enfin désignons par Y3,..., Y/ les com-
posantes irréductibles de X —X'.

L’inclusion M c k[G] induit des applications naturelles S"(M)— k[G] (ou
S"(M) est la puissance symétrique n-ieme de M). Notons S"(M) I'image de
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S™(M) dans k[G]. 1l est clair que tout fe A peut s’écrire f =h™"g, avec neN* et
ge S"(M). 1l s’ensuit que A est quasi-G-stable.

Pour tout fermé Z de X, désignons par a(Z) I'idéal des éléments de A qui
s’annulent sur ZNX,. Si Z est irréductible et stable par G, on peut choisir
v eV (G/H) tel que 0, domine Oy »; a(Z) peut alors aussi se décrire comme
I’ensemble des fe A tels que v(f)>0.

Puisque Y n’est pas contenu dans Y,.y,..., Yg, Yi,..., Y\, on a

(@(Yei) N -Na(Yg)Na(YDN---Na(Y)—a(Y)# J.

D’aprés 7.3, dans cet ensemble existe au moins un élément de P, disons h'.
Posons A’ = A[(h')"']; A’ est une algébre de type fini. La variété X ,. s’identifie a
I'ouvert de X, ou la fonction h' ne n’annule pas. Puisque h’ s’annule sur X — X',
et que nous supposons X' normale, A’ est intégralement clos, donc un anneau de
Krull. Puisque h' s’annule sur Y,.;,..., Yg mais ne s’annule pas sur Y, on voit
que les valuations essentielles de A’ sont celles de V| et certaines des vp,
D € 9(G/H).

Désignons par @ I’ensemble des D € P@(G/H) tels que vp(h)=uvp(h')=0. Si
D € 9%(G/H), il est clair que A'<=0, si et seulement si D€ ®. Par suite, on a
A'=A@, 7). Il Sensuit que A(D, V) est une algebre de type fini. Puisque h' ne
s’annule par sur Y,ona A(9, V) = A'< 0,. Puisque A < A’ = A(9, V), on voit que
P est adapté a L. Enfin, puisque h’' s’annule sur X— X', on a X @y, =Xa < X'.

8.8. Soit D<=BP(G/H) et soit W un sous-ensemble fini de V(G/H). Si
| € XY(G/H), on désignera par D(W, ) 'ensemble des D e 9 tels que vp s’annule
sur P NA(D, W)NOF, et par W(D, 1) 'ensemble des we W qui s’annulent sur
PNAD, W)NOF.

Soit v € ¥',(G/H). Voici deux conditions portant sur @, W', v.
(V) Pour tout fePNA(D, W), on a v(f)=0.
(V') Tout we W s’annule sur # N A(D, W)NO* (autrement dit, W = W(9, v)).

PROPOSITION. On suppose que D, W vérifient (D), (W), (W'), (F).

1) Soit veV(G/H) tel que @, W, v vérifient (V). Il existe alors | € R1(G/H) tel
que O, est le localisé de A(D, W) en ’idéal premier A(D, W)Nm,. On a
veF B =a(W,v) et V=W(D,v).

2) Inversement, soit | LN(G/H) qui vérifie PD,=D(W,1) et Vi=W(D,1), et
soit ve F,. Alors @, W, v vérifient (V) et O, est le localisé de A(D, W) en
’idéal premier A(2, W) Nm,,.
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Preuve. Posons A = A(9, W). D’aprés 8.5 et 8.6, A est une sous-algébre
affine de k(G/H), et A est un anneau de Krull, dont les valuations essentielles
sont les vp (D) et les w (weW).

Soit veV'1(G/H) tel que 9, W, v vérifient (V). L’espace vectoriel A étant
quasi-G-stable, la condition (V) entraine €, > A (voir 7.3). L’algébre A étant
stable par I'algebre de Lie de G, il s’ensuit que le localis€ de A en I’idéal premier
ANM, détermine un e (G/H) (voir 2.5); A étant intégralement clos,
l € X}(G/H). Par construction, v e %,

Soit De®. Pour que De®9, c’est-a-dire pour que la valuation v, reste
essentielle pour le localisé de A en I'idéal premier A Nm,, il faut et il suffit que

* ANm,cm,
Par définition de @(W, v), pour que D e (W, v), il faut et il suffit que
**) #NANmM,_ <m,.

Il n’est pas difficile & voir que ANm, est quasi-G-stable: en effet, tout
feANm, peut s’écrire f=hg, ou heP vérifie vp(h)>0 et vp(h)=0
(D’'e 9—{D}), et ol g appartient au sous-G-module des éléments de k[G] qui
vérifient hg € k(G/H) et w(hg)=0(weW).

D’aprés 7.3, il s’ensuit que (*)< (*%).

De méme, si we W, pour que we V', il faut et il suffit que

*) ANm,<m,
Pour que we W(9, v), il faut et il suffit que
**Y 2NANM, Sm,.

L’espace vectoriel A étant quasi-G-stable, (*')& (**').

Soit e QY G/H) tel que B =a(W,1) et V,=W(D,1), et soit veF, De
B@cP et Vic W résulte que A<O,<0,, d’ou il suit que D, W, v vérifient
(V). D’apres la premiére partie de la proposition, il existe I' e R}(G/H) tel que O,
soit le localisé de A en ANIM,. De BB, =D(W, V)=D(W,1)=BB, et de
Vi=W(D,v)=W(D,I) =V, résulte alors [ =’ (voir 8.3), ce qui termine la preuve
de la proposition.
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COROLLAIRE 1. Soient e R} G/H),ve %, et D<Ba(G/H). Pour que P soit
adapté a 1, il faut et il suffit que D, V', v vérifient (D), (W), (W"), (F), (V), (V') et
que 2@, =9V, v).

COROLLAIRE 2. Soit 2<®%(G/H) et soit W un sous-ensemble fini de
V(G/H). Pour qu’il existe | € L}(G/H) tel que 2D, =P et V', =W, il faut et il suffit
qu’on puisse trouver %' <®A(G/H) et veV(G/H) possédant les propriétés
suivantes: 9', W, v vérifient (D), (W), (W'), (F),(V), (V") et =2 (W, v).

COROLLAIRE 3. Soit e Q}(G/H), soit D<®a(G/H) adapté a I, et soit
ve V' (G/H) tel que @,V, v vérifient (V). Pour que ve %, il faut et il suffit que
P, V', v vérifient (V') et que BD, = (v, v).

8.9. Soit 1€ Q}(G/H) et soit D<= PP(G/H). Désignons par L(@, |) ’ensemble des
I'e Y(G/H) possédant la propriété suivante: il existe v'e V' ;(G/H) tel que
@, V', v’ vérifient (V) et tel que Ba, =a(V',, v') et Vi =V1(D, V).

PROPOSITION. La famille des L(9,1), 9 adapté a |, forme une base de
voisinages de | dans &,(G/H) (pour la topologie de Zariski).

Preuve. Soit @< ®%(G/H) adapté a l; A(D, V') est alors une algebre affine de
k(G/H), stable par l’algébre de Lie de G. D’aprés 8.8, L(9,[) peut aussi se
décrire comme l’ensemble des I'e,(G/H) tel que €, soit un localisé de
A@,7V,); par définition de la topologie de Zariski, L(9, I) est donc ouvert dans
L,(G/H). D’autre part, si L est un voisinage quelconque de [ dans &,(G/H), de
8.7 résulte qu’on peut trouver 9 adapté a | tel que le L(@, 1)< L.

8.10. Supposons maintenant que B ait une orbite ouverte U dans G/H.
Désignons par Y;,..., Y, les composantes irréductibles de G/H—U; U étant
affine, Y,, ..., Y, sont de codimension 1 dans G/H, et constituent visiblement les
différents éléments de 29(G/H). Désignons par r” le rang de X(G), le groupe des
caractéres de G, et posons r =r'+r". Il est clair que le groupe #/k* est isomorphe
alz.

Soit @< BH(G/H) et soit W un sous-ensemble fini de V(G/H)="V(G/H).
Rappelons un résultat classique: quelles que soient les applications Q-lin€aires
@1y v s Par Pas1s---» ¢ de Q" dans Q, le monoide formé des feZ" tels que
e1(N=0,...,¢.()=0 et @ . 1(f)="--=¢a(f)=0, est de type fini. Il en résulte
que (P NA(D, W))/k* est un monoide de type fini; en particulier, ? N A(D, W)
engendre une sous-algébre de type fini de k(G). On voit que la condition (F) est

toujours remplie.
Soit 1€R2*(G/H)=L}(G/H)=2}(G/H). De la finitude de "@(G/H) et de ce
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qui précede, résulte que P, est déja adapté a . La résultat du corollaire 2 de 8.8
se simplifie alors comme suit: soit @<®?3(G/H) et soit W un sous-ensemble fini
de V(G/H); pour qu’il existe | € R1(G/H) tel que P, = et V', =W, il faut et il
suffit qu’il existe v € ¥',(G/H) tel que @, W, v vérifient (D), (W), (W), (V), (V') et
que =W, v).

Nous allons reformuler ce résultat, afin de faire ressortir davantage 1’analogie
avec le cas particulier des plongements toriques (voir [5], [6]). Désignons par V le
Q-espace vectoriel de dimension finie obtenu en tensorisant par Q le Z-module
libre (® Nk(G/H))/k*. Les éléments de V(G/H) et les vp (De®Ba(G/H)) se
laissent interpréter comme des €léments de V', I’espace vectoriel dual de V. On
observera que 'application D+~ vp de P@(G/H) dans V' n’est pas injective en
général.

Soit C un cOne convexe de Q". Rappelons qu’on dit que C est saillant, si C ne
contient aucune droite de Q. On notera C° l’intérieur relatif de C (c’est-a-dire
Iintérieur de C dans le sous-espace vectoriel engendré par C). Si C’ est un autre
cone convexe de Q', on dit que C' est une facette de C, s’il existe une forme
linéaire ¢ :Q" — Q, positive sur C, et telle que C'=C N Y(0).

Si @< B(G/H) et si W <V (G/H), désignons par C(D, W) le cone convexe de
V' engendré par W et les vp (D€ D). Si 1eX*(G/H), posons C(l)=C(Ea, V).
Considérons les quatre conditions suivantes:

(a) Le cone C(@, W) est saillant.

(b) Les droites Qw (we W) sont des droites extrémales de C(@, W) et ne

coincident pas avec I'une des Qup (D €9D).

© C@,W)’NV(G/H)#+J.

(d =(D).

PROPOSITION. 1) Soit 2<®B(G/H) et soit W un sous-ensemble fini de
V' (G/H). Pour qu’il existe | e X}(G/H) tel que B2, =% et V', =W, il faut et il suffit
que D, W vérifient les conditions (a), (b), (c), (d).

2) Pour tout e R3(G/H), on a ¥, =V (G/H)NC()°.

3) Si I, I'e Y (G/H), pour que O, soit un localisé de O, il faut et il suffit que
C(I") soit une facette de C(l) et que @, soit I’ensemble des D €%, vérifiant
vp € C(1').

Preuve. 11 est clair que (a)=(W), que (b)=(W’), et que (c) remplace avan-
tageusement (V), (V') et @=(W, v), d’ou 1). Les assertions 2) et 3) résultent
aussitot de 8.8 et 8.9.

9. Classification des plongements normaux de SL(2)

Dans' ce §, nous appliquerons les résultats des 8§ précédents au cas ou
G =SL(2) et H ={e}, pour obtenir la classification des plongements normaux de
SL(2)/{e}=SL(2).
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. . b , )
9.1. Comme d’habitude, SL(2) est le groupe des matrices (: d) de déterminant

ad —bc =1. Pour avoir des notations plus intrinséques, désignons par M =k?
’'unique SL(2)-module rationnel irréductible de dimension 2.
Désignons par U le sous-groupe unipotent maximal de SL(2) formé des
) b
matrices ( 0 1
SL(2), U et B opereront toujours par ‘“‘translations a gauche”.

Le SL(2)-module rationnel Yk[SL(2)] (SL(2) opérant par ‘“‘translations a
droite”’) contient un unique sous-module isomorphe & M. Vu la structure
particulierement simple de SL(2), tout morphisme injectif de SL(2)-modules
M—Yk[SL(2)] sétend en un isomorphisme de  SL(2)-algébres
S(M) = Yk[SL(2)], ou S(M) désigne I’algébre symétrique de M. Nous fixerons
dans la suite un tel isomorphisme et nous le traiterons comme une égalité.

Il y a une bijection naturelle entre P,, ’ensemble des droites de M, et
Bg(SL(2)), I’ensemble des fermés irréductibles de codimension 1 de SL(2),
stables par B. Si D est une droite de M, nous écrirons vp pour la valuation
qui lui correspond, lorsqu’on interpréte D comme élément de P@(SL(2)); si
fe Mc Yk[SL(2)]< k(SL(2)), on a

\), et posons B = Ng ()(U). Sauf mention expresse du contraire,

[0 si feM-D
””m“{l si feD—{0}.

En suivant les notations du § précédent, désignons par ? l’ensemble des
fe k(SL(2)) qui sont des vecteurs propres de B (I'autre condition tombe, puisque
H={e}"). 11 est clair que #Nk[SL(2)] s’identifie a I'ensemble des éléments
homogénes (non nuls) de S(M) (homogenes au sens de la graduation naturelle

S(M) = ®neN Sn(M)~

PROPOSITION. 1) Toute valuation de V' (SL(2)/{e}) est déterminée par sa
restriction a M —{0}.

2) Pour qu’une fonction w: M —{0} — Z soit la restriction d’une valuation dans
V1(SL(2){EY), il faut et il suffit qu’il existe une droite D de M et des entiers p, q
premiers entre eux vérifiant p<0 et p<q=-p, tels que w(M—D)=p et
w(D—{0}) =q.

3) Il n’existe qu’une seule valuation dans V,(SL(2)/{e}), et sa restriction a
M —{0} est identiquement égale a —1.

Preuve. D’aprés 7.4, toute valuation de V'(SL(2)/{e}) est déterminée par sa
restriction au groupe multiplicatif . D’aprés ce qui précede, il est clair que ce
groupe est engendré par M —{0}, ce qui montre la partie 1) de la proposition.
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Soit v e V'(SL(2)/{e}). Si v restait positif sur M —{0}, v resterait aussi positif
sur N k[SL(2)], donc aussi sur k[SL(2)]. Mais cela n’est pas possible, car
k[SL(2)]Nm, serait alors un idéal propre non nul de k[SL(2)], qui serait stable
par translations a gauche. Par suite, v prend au moins une valeur strictement
négative sur M —{0}.

Désignons par M(2) I’espace vectoriel des matrices 2 X 2. Faisons opérer SL(2)
dans M(2)@®k, par multiplication a gauche et a droite dans M(2) et trivialement
dans k. Désignons par X la sous-variété lisse de P,=P(M(2)®D k) définie par
’équation ad —bc—t*=0. L’inclusion SL(2)<>M(2) passe au quotient en un
plongement SL(2)< X, dans lequel opére SL(2)XSL(2). On vérifie sans peine
que Y = X —SL(2) est une seule orbite sous SL(2) X SL(2), isomorphe a P, XP,;
SL(2)% X, considéré comme plongement sous SL(2) X SL(2), est donc un plonge-
ment élémentaire. Désignons par v la valuation de k(SL(2)) qui lui correspond.
Puisque les orbites de SL(2) dans Y (pour I’opération par multiplication a gauche)
sont toutes de dimension 1, on a v € V',(SL(2)/{e}). De l'invariance par ‘‘transla-
tions a droite” de v, il résulte que v reste constant sur M —{0}. Puisque v prend
une valeur strictement négative sur M —{0}, et que v est normalisé, il s’ensuit que
v est égal a —1 sur M—{0}.

Soit D une droite de M, et soient p,q deux entiers vérifiant p<0 et
p<q=-p. Choisissons un se€ SL(2) qui envoie le second vecteur de la base
canonique de k=M dans D, et considérons

tP q

t -
0 t_p)'s '€ SL(2)k(y-

Ao =
I1 est clair que v, (M — D) =p et que v, (D —{0}) = q. Pour que v, soit normalisé, il
faut et il suffit que p et q soient premiers entre eux.

Pour terminer la preuve de la proposition, il suffit de montrer que pour tout
veV(SL(2)/{e}), on a q=-p, ou p (resp. q) désigne le minimum (resp. le
maximum) de v dans M—{0}. On peut supposer que g>0. On voit alors
facilement que P’ensemble des fe k[SL(2)] vérifiant v(f)=0 forme une sous-
algebre de type fini A de k[SL(2)] (voir aussi 9.2), et que A posséde comme
corps des fractions k(SL(2)). Puisque A est stable par SL(2), on peut considérer
A comme algébre des fonctions régulieres d’une SL(2)-variété affine X, et
Pinclusion A < k[SL(2)] se refléte en un plongement de SL(2)/{e} dans X.

D’aprés le critére de Hilbert-Mumford (voir [8]) il existe un sous-groupe a
1-paramétre multiplicatif A de SL(2) tel que lim,_,, A(t) existe dans X, autrement
dit (voir §4) tel que 0, > A. Choisissons h et g linéairement indépendants dans M
tels que v(h) =g, v(g) = p. Vu la maniere dont on obtient v, sur M et ’hypothese
heACO’;,A, il est clair que v,(h)>0 et v,(g)=-v,(h). On a h™"ge€ A, car
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v(h™"g?) =—pq+pq=0. Par suite v,(h™"g?%) =—(p+q)v,(h) =0, d’ol il suit bien
que q=-p.

Profitons de cette description explicite des valuations de V' (SL(2)/{e}) pour
changer 1égerement nos conventions et pour introduire des notations commodes
dans la suite.

Désormais, nous considérons les éléments de ¥'(SL(2)/{e}) renormalisés par la
condition suivante: si v e V' (SL(2)/{e}), on suppose que le minimum de v dans M
est égal a —1 (pour pouvoir le faire, il faut bien siir admettre des valuations a
valeur dans Q!). De maniére plus précise, si D est une droite de M et si reQ
vérifie —1<r=1, on désignera par v(D, r) 'unique élément de ¥';(SL(2)/{e}) qui
vaut —1 sur M—D et r sur D —{0} (avec les notations de la proposition, on a
r=-—q/p).

Nous désignerons enfin par v( , —1) 'unique élément de V,(SL(2)/{e}) qui
vaut —1 sur M —{0}; parfois, on écrira aussi v(D, —1) pour v( , —1), o D est une
droite quelconque de M.

Si Ec<[—1, 1], nous désignerons par v(D, E) I’ensemble des v(D, r), re E.

9.2. Soit @< B(SL(2)) =P, et soit W <V (SL(2)/{e}).

PROPOSITION. Si @ est cofini dans P, et si W est fini, alors A(D, W) est une
algebre de type fini.

Preuve. Posons A = A(@, W). D’apreés 8.6, il suffit de montrer que YA est une
algébre de type fini. Choisissons h e ® Nk[SL(2)] vérifiant: vp(h) =0 quel que
soit De 9, et vp(h)>0 quel que soit D’'eP;—%. Désignons par D,, ..., Dg les
différentes droites de M sur lesquelles au moins un des w € W n’est pas égal a —1.
Choisissons h;e D;—{0}(j=1,..., B), et choisissons deux éléments linéairement
indépendants g,, g, dans M— U¥_, D, Désignons par S le sous-monoide des
(ny, ..., ng my, my, n)eNP*> tels que hfr----- hip-gli-g52-h™eVA (autre-
ment dit, tels que nyw(h,)+- - -+ngw(hg)—m;—m,—nw(h)=0 quel que soit
we W). 1l est classique que de tels monoides sont de type fini; désignons par S’ un
systeéme fini de générateurs de S. On voit facilement que tout élément de YA est
somme d’éléments de la forme hfjre---- hg-fi+---» fm-h™ ou fi,...,fm€
M- U{.; D; et ou (ny,...,ng, m0,n)eS. En écrivant fy, ..., f, comme com-
binaison linéaire de g, et g,, on voit que tout élément de YA est combinaison
linéaire d’éléments de la forme hYi----- hg -gi-gz2-h™, ou
(ny,...,ng,my, my,n)eS. Il s’ensuit que les hjr----- hg- gl -gy:-h™,
(ny, ..., ng, my, my, n)e S’ forment un systeme fini de générateurs de VA,

9.3. Soient % un sous-ensemble cofini de BP(SL(2))=P,, W un sous-
ensemble fini de W(SL(2)/{e}) et ve V(SL(2)/{e}). Posons W ={w,,...,w,} et
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wi=v(D,r) (j=1,...,a). Nous aurons a considérer les six types suivants de
tels @, W, v.

Type A, (a=1)
@=P,—-{D,,...,D,}, ou D,,...,D, sont des droites différentes de M;

- 1
-1<r=1(G=1,...,a)et ) —>1
i =1( §11+r,.

(compte tenu des premiéres inégalités, cette derniere condition est vide si a = 3; si
a =2, elle signifie que r; ou r, est <1; si a =1, elle signifie que r; <0);

ve U v(D,}-1,1DU U v(D; 1-1, 1,D.
De® ji=1
Type AB (a =2)
D,¢d et 2#P,—{D,}; D,=D, et —1=r,<r=1; vev(Dy, Iy, riD.

Type B.(a=1)
D, e D#P,; -1=r<1; vev(Dy, Jry, 1)).

Type B_(a=1)
2=P,—{D:}; 0<n<1l; vev(Dy]ln,1).

Type Bj (a =1)
D=P,; 0<rn<l1; vev(Dy, Iy, 1.

Type C
C’est le cas banal W ={v}.

PROPOSITION. Pour que 9, W, v vérifient (W), (W')_,, (V), (V'), il faut et il
suffit qu’ils appartiennent a ’un des types A_, AB, B,, B_, B, C.

Voici d’abord un lemme qui servira deux fois dans la démonstration de la
proposition.

LEMME. Soient D,,...,Dg des droites différentes de M et r,,...,r5 des
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nombres rationnels vérifiant —1<r,<1(j=1,...,B) et

8 1
t=(% ——)-1>0.
i=1 1+r,~

]

Posons =P —{D,,...,Dg} et w;=v(D,, 1) (j=1,...,B). Alors, pour tout

ve U oD, (-1, 1)U U o(D, [-1 5D,

De®

il existe des nombres rationnels \;>0(j=1,...,B8) et un homomorphisme de
groupes z :® — Q, positif sur P N A(D), tels que v=A;wy+- -+ Agwg +Z.
Preuve. Posons v=v(D,r). Si D coincide avec I'un des D, (i=1,...,B),

posons

A—l ri—r +6 r+1
T t+ D+ T+l

(ou §; est le symbole de Kronecker), et définissons z sur M —{0} par

z(f) =« 1
t

si D e, posons A; = 1/t(r; +1), et définissons z sur M —{0} par

B
0 si fe U D,
i=1

1
z(f) = < r+l+-; si feD

1
-t— dans les autres cas.

.

Il reste alors a vérifier, dans les deux cas, ’égalité du lemme sur M —{0}, ce qui
n’est pas difficile.
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Preuve de la proposition.

a) Démontrons que les 9, W, v des types A,, AB, B., B_, B, C vérifient les
conditions (W), (W')_,, (V), (V).

Le cas A,

Choisissons h;e D;,—{0}(j=1,...,a) et ge M—Uj_; D;. Soit p un -entier
strictement positif tel que

p g
1+r,-€Z G=1,...,a).
Posons
1+8; ( 1 )
L, == — EZ, : == t+-—
n;j p1+rj m =P\t eN
et fi=hire--.- hye-g™mePNA@) (G j=1,...,a).
On a
wi(fi)=— 2 nax+n;(1+r)—m;
k=1
- 1+8, 1+§; 1 )
= + 1+r)—t——
p(,;::ll-i-rk 1+r,-( =t 1+r
=plt—-1+—+1+8,—t——— )=pé..

D’ou aussitot (W). Si a=2, alors g =[[.; e P2 NA(D), et

>0 si i#j
wi(g) 5w
o {=O st i=j,
d,otl (W')22-
Du lemme précédent résulte Pexistence de nombres rationnels A;>0
(G=1,...,a) et d’une application z:P — Q, positive sur P NA(D), tels que
V=AW +- - s+ A W, + 2. Les propriétés (V) et (V') en résultent aussitot.

Le cas AB

Choisissons DeP,—(@U{D;}), he D,—{0} et ge D—{0}. Soit p un entier
strictement positif tel que pry, proeZ. Posons f; =hPg"= et f,=h"°g"™= On a



Plongements d’espaces homogénes 237

f1, f2e PN A(D) et on vérifie facilement que w;(f;) = 8;p(r;—r,) (i, j =1, 2). Puis-
que par hypothese r, <r;, les propriétés (W) et (W’)., en résultent.
Si v=v(Dy,r), et si

r—r,
Al-': et Azz
ry—r; rh—r

rl_r

on vérifie sans peine que v = A;w; + A,w,. Puisque par hypothese r,<r<r,, on a
A:>0 et A,>0, d’ou aussitot les propriétés (V) et (V).

Le cas B,

Choisissons DeP,—@ et ge D—{0}. On a g 'e PNA(D) et w,(g")=1>0,
d’ou la propriété (W).

Si v=v(D,,r), on vérifie sans peine que v=w;+2, ou z:2—>Q est
I’homomorphisme de groupes déterminé par

r—r, si feD;—{0}

()= {0 si feM-D,.

Puisque par hypothése r, <r, les propriétés (V) et (V') en résultent aussitOt.

Les cas B_ et B,

Si he D,—{0}, on a w;(h)=r,;>0, d’ou la propriété (W).
Si v=v(D,, r), on vérifie sans peine que v=(r/r)w;+2, ou z:P—Q est
I’homomorphisme de groupes déterminé par

r_rl

z(f)=4 n
0 si fe D;—{0}.

Si fEM_Dl

Par hypotheése, on a 0<r,<r, d’ou aussitdt les propriétés (V) et (V).

Le cas C est banal

b) Démontrons que les @,W,v qui Vvérifient les propriétés
(W), (W),, (V), (V') sont forcément de 'un des types A,, AB, B,, B_, By, C.

Posons W={wy,..., w.} et wi=v(D, ;) (j=1,..., a). On peut supposer que
D,,...,Dg (B=a) sont les différentes droites de M sur lesquelles au moins un
des w; n’est pas égal & —1. On peut supposer également, pour tout i=1,..., 5,
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que r, est maximal parmi les r; tels que D,= D, Choisissons h; € D;—{0}
(i=1,...,B). Enfin posons v = v(Dy, ry).

Supposons d’abord B =2.

Montrons que P,—{D,,..., Dg}<=%. Raisonnons par ’absurde: supposons
qu’il existe ge M— UL | D; tel que geP(P). Puisque B=2, on peut trouver
ie[1,B] tel que D;#D,. On a hig7'e PNA(D) et

wi(hg™") = {1 +r sf w;ev(D;, -1, 1])

0 sinon.
Par suite, h,g 'e PNAD, W). Si ge D,, on aurait v(hg ") =—1-r,<0, ce qui
contredit (V). Si g¢ D,, on aurait v(hg )=0 et v;(hg " )=1+r>0, ce qui
contredit (V').

Supposons B=2 et r;=r,=1. Puisque P,—{D,, D,}=%, tout fePNA(D)
peut s’écrire f=h,h,g, ou ny;,neZ et ou gePNk[SL(2)] vérifie vp,(g)=
vp,(g) =0. Pour tous ces f, on a w,(f)+wx(f) =2w,(g) =0, ce qui contredit (W).
Par suite, r; ou r, est <1.

D’aprés (W').,, il existe f,ePNA(D)(i=1,...,B) tels que

>0 si i#j
=0 si i=].

Wi(fi){

Puisque @>P,—{D,, ..., Dg}, on peut écrire

ﬁ = h'l‘n ..... hZie g
ou n;eZ et ou gePNk[SL(2)] vérifie vp(g)=0(,j=1,...,B). Posons m; =
wi(g) =" =wg(g)=0 et Ny=—F,n;+m. On a w(f)=(1+r)n;+N. Par
suite,

[ 8 1
0=m =N+ n>N(1- 3 >=-tN,-.
i=1 ,-=11+r,-

Puisque nous savons déja que t>0, il s’ensuit que N;>0. Par conséquent,

-N,
n; =

= < 1=1,...
T+r, 0 @G=1,...,B)

ce qui montre que =P, —{D,,..., Dg}.
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Si B <a, d’apres le lemme, pour tout j=B+1,...,a, il existerait des A; >0
(i=1,...,B) et un homomorphisme de groupes z;:® —Q, positif sur
P NA(D), vérifiant w; = Ay ;w,+- - -+ Agjwg + z;. Manifestement cela contredirait
(W').,. Donc a =p.

Choisissons un entier strictement positif p tel que

_-p .
n,-—1+rieZ (Gj=1,...,B).
Choisissons ge M—J?_, D,, et posons f=hfji«---- hg - g”. On vérifie sans

peine que w;()=0(j=1,...,B). Si Dy=D,, de (V) résulte alors que

O0=v(f)=

l-l:ri (r, —ro).

Puisque B=2, on a v¢ W, d’ou ro<r,.

En résumé, si B =2, nous avons montré que a = f3 et que P, W, v est du type
A,

Supposons maintenant B =1 et a =2.

Quitte a renuméroter wy,...,w,, on peut supposer que w;=v(D,,r;), ol
—1=r,<r,1<---<r<r;<1. Pour tout i =2,...,a—1, I’égalité

n’est alors pas compatible avec (W’)_,. Il s’ensuit que a =2.
Montrons que D¢ % et que @#P,—{D,}. D’apres (W').,, il existe
fi, €PN A(D) tels que

>0 si i#j
W‘(f"){=0 si =]
Posons f,=hTlg (i=1,2), ou ny,neZ et ou gy, g eP vérifient vp ()=
Up,(g2) = 0. De wy(f;) <w,(f1), on déduit, puisque wy(g;) = wx(g1), que nyr; <nyry;
d’ou, puisque r,<r;, que n;<0. Il s’ensuit que D;¢%D. De wy(fo) <w(f,),
on déduit de la méme fagon que n,>0. Si r;>0, de 0=w(f;)=n,r;+w,(gy)
résulte w,(g,)>0, d'ou g, ¢k[SL(2)]. Si r,=0, de r,<r, et de 0=w,(fr)=
nyry+ wy(g,) résulte wy(g,) >0, d’ou g, ¢ k[SL(2)]. Dans les deux cas, il s’ensuit
que @#P,—{D}.
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Montrons que v € v(Dy, ]r,, ri[). Choisissons un entier strictement positif p tel
que pry, proeZ. Choisissons ge M— D, tel que geP(2). Lorsque Dy=D,, de
wi(h8gP2) =p(r;—r) >0 et w,y(hig?2) =0 résulte, grice a (V), que v(hig™)=
p(ro—ry) =0, c’est-a-dire r,<ry; de wi(h™°g™"1) =0 et wy(h1°g ") =p(r,—ry) >0
résulte, grice a (V) que v(h5g®?) =p(r,—ry,)=0, c’est-a-dire ro=<r,;. Montrons
que D, # D, n’est pas possible: en effet, si ge Dy, on a v(h§g”>2) =p(ror,—1)<0
ce qui contredit (V); si g¢ D,, on a

<0 si —1<r,

v(hi prz)—_p(H'Z){ 0 si —1=r
-T2

ce qui contredit (V) ou (V).

En résumé, si B =1 et a =2, nous avons montré que a =2 et que @, W, v est
du type AB.

Il reste a examiner le cas a = 1.

Supposons d’abord que w,=v(D,, r,) vérifie —1<r;. Choisissons un entier
strictement positif tel que pr, e Z.

Supposons qu’il existe DelP,—(2U{D,}). Choisissons ge D—{0}. On a

Pg7ePNA(D) et wy(hig™)=0. Il en résulte que Dy# D, n’est pas possible:
en effet, si ge Dy, on aurait v(h5g?)=p(r;ro—1)<0, et si g¢ Dy, on aurait
v(h§g”) =—p(1+ry) <0, deux inégalités qui contredisent (V). Si D,= D,, de (V)
résulte que v(h5g?) =p(ro—ry) 20, c’est-a-dire ro=ry; si ro>r,, on a D, €% (en
effet, sinon h;°g " e P NA(D), wi(hi°2 ") =0 et v(hi°g ") =p(r,—ry) <0, ce
qui contredit (V)); autrement dit, nous sommes en type C ou B,.

Supposons que @ =P, —{D,}. Choisissons ge M —D;. Si r; <0, et si Dy= D,
on a hi*g " ePNA(D) et w,(h1°g ") =0, donc d’aprés (V) on a v(hiPg ") =
p(ri—rg)=0, c’est-a-dire ry=<r, et nous sommes en type C ou A;. Le cas r; =0
n’est pas possible: en effet, on aurait alors w,(hig)=<0 quel que soit neZ et
gePNk[SL(2)], ce qui contredit (W). Si r;>0, on a hig"ePNA(D) et
w1(h3g?)=0. Comme plus haut, de (V) résulte alors que Dy=D, et ro=r,, et
nous sommes en type C ou B_.

Supposons @ =P;. Si r; =0, w, resterait négatif ou nul sur 2 Nk[SL(2)], ce
qui contredit (W), donc r,>0. Choisissons g€ M —D;. De w;(h§g”)=0 et de
(V) on déduit alors comme plus haut que Dy= D, et ry=r,. Nous sommes donc
en type C ou B,,.

Enfin, considérons le cas w, = v( , —1). Choisissons hye D,—{0} et g€ M — D,
Puisque v( ,—1) est négatif ou nul sur 2 Nk[SL(2)], 9#P,. Montrons que
Do € 9: en effet, sinon ghy'e ® N A(D), wi(gho') =0 et v(ghg')=—(1+ry) <0, ce
qui contredit (V). Par conséquent, nous sommes en type B,.
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9.4. Soient @, W, v comme dans le numéro précédent. Supposons que @, W, v
vérifient (W), (W').,, (V),(V’). D’aprés 9.2, @, W vérifient aussi (F). D’autre
part, SL(2)/{e} étant un espace homogene affine, @, W vérifient aussi (D) et (W'),.
Par conséquent, d’aprés 8.8, on peut associer 4 @, W, v un e} (SL(2)/{e}) tel
que V=W et Bg,=a(W, v).

PROPOSITION. Si %, W, v sont du type A, (resp. AB, B,, B_, B,), alors 2%, =
lpl _{Dly e sy Da} (resp' @, {Dl}a lpl _{Dl}’ Pl)

Preuve. Ces assertions se déduisent machinalement a partir de la définition de
(W, v) et de 9.3.

Compte tenu de 8.8 et 9.3, la proposition précédente constitue une classifica-
tion des éléments de R{I(SL(2)/{e}). Nous utiliserons dans la suite les notations
suivantes.

Si D,,...,D, sont des éléments différents de P,, et si rq, ..., r, vérifient

-1<r=1(G=1,...,a) et Z———>1 (D, ry;...; D, 1)

sera I’élément 1R} (SL(2)/{e}) tel que B, =P,—{D,,...,D,} et V=
{v(Dy, 1), ..., 0(Dy )}

Si DeP, etsi —1<r,<r,<1,l(D,r,,r,) sera I’élément [ e }(SL(2)/{e}) tel
que 2%, = et v, ={v(D, ry), v(D, ry)}.

Si DeP; et si —1=r<1,1,(D,r) sera I’élément 1e}(SL(2)/{e}) tel que
Bg,={D} et v, ={v(D, r)}.

Si DeP,etsi0<r<1,l_(D,r) (resp. lo(D, r)) sera ’élément 1 € L7(SL(2)/{e})
tel que B®, =P, —{D} (resp. P,) et ¥, ={v(D, r)}.

D’aprés ce qui précéde, l'’ensemble R7(SL(2)/{e}) est composé des
I(Dy,ry;...;D,1), UD, 13, 1y), L(D, 1), 1L(D, 1), lo(D, r) et de V'{(SL(2)/{e}).

9.5. La proposition suivante décrit les facettes des éléments de L7(SL(2)/{e}).

PROPOSITION 1. Si l=1(D4,14;...; D, 1), alors

glz U U(D9]-—1, 1])U U v(Dj:]-‘la ri[)-
DeP,—{D,,....D.} i=1

Si l=1(D,ry, ry), alors F,=v(D, Iry, r1D).

Sil=1.(D,r) (ou I_(D, r), ou lo(D, 1)), alors F,=v(D, ]r, 1]).



242 D. LUNA ET TH. VUST
Preuve. Ces assertions résultent directement du corollaire 3 de 8.8 et de 9.3.

Désignons par &' I’ensemble des [, (D, —1), DeP,. La proposition suivante
précise la topologie de Zariski de Q7(SL(2)/{e}).

PROPOSITION 2. a) Les I(Dy, ry;...; D, r,), 1_(D,r), lo(D, r) appartiennent
a RF(SL(2)/{e}). Pour que (D, r,, ry) (resp. 1,(D, r)) appartienne a RF(SL(2)/{e}), il
faut et il suffit que —1<r, (resp. —1<r).

b) Si le R (SL(2)/e}), I’ouvert de LF(SL(2)/{e}) qui correspond a la réalisation
géométrique minimale de | est {I}UV',.

c) Si l=1(D,—1,r,) (resp. 1.(D,—1)), on obtient un systétme fondamental de
voisinages de | dans L,(SL(2)/{e}) par {I}U{v(D, r)}UL (resp. {I}UL), ot L
parcourt les sous-ensembles cofinis de &'.

Preuve. Ces assertions résultent directement de 8.9.

Remarque. Ce sont les réalisations géométriques minimales des (D, r) qui
sont les seuls plongements normaux affines de SL(2), étudiés par V. L. Popov
dans [10].

9.6. D’aprés le §6, la donnée d’un plongement X de SL(2)/{e} équivaut a la
donnée d’un sous-ensemble ouvert, noethérien et séparé L de &,(SL(2)/{e}); il est
clair que X sera une variété normale si et seulement si L < Q7(SL(2)/{e}).

PROPOSITION. Soit L un sous-ensemble de 27(SL(2)/{e}). Pour que L soit
ouvert, noethérien et séparé, il faut et il suffit que L vérifie les conditions suivantes.
1) Pour tout le L, V', NV (SL(2)/{e}) = L.
2) S’il existe le L tel que v( ,—1)€ V', alors L contient un sous-ensemble cofini
de .
3) L’ensemble L —%' est fini.
4) Les %, le L sont disjoints.

Preuve. D’apres la proposition 2 de 9.5, 1) et 2) signifient que L est ouvert.
Par définition, 4) signifie que L est séparé. On vérifie alors sans peine, pour que L
soit noethérien, qu’il faut et qu’il suffit que L vérifie 3).

Remarque. La condition 4) restreint considérablement le choix des L: par
exemple, elle implique que L contient au plus un des I(Dy, ry;...; D, r,); ou
encore que, pour tout DelP,,L contient au plus un parmi les
LL.(D,r), I_(D,r), l,(D, r); etc. ..

9.7. Terminons ce travail par une présentation graphique de notre classification
des plongements normaux de SL(2)/{e}. Le ‘“support” de la classification est
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Pensemble V' (SL(2)/{e}), qu’on peut dessiner comme suit

(ce dessin représente autant d’intervalles rationnels [—1, 1] qu’il y a de points dans
P, recollés par leur extrémité gauche —1). Puisque les localités dans
LI(SL(2)/{e}) sont presque déterminées par leur facette, on peut les représenter
par les dessins suivants:

L(D,rz,H) l+(D,f)

1-(D.r) Lo(D.r)

N’oublions pas pour les localités [(Dy, ry;...;D,r,) la conditions
i=1 1/(1 +r;) > 1: elle signifie que les dessins suivants ne sont pas permis

Les plongements normaux de SL(2)/{e} sont alors classés par ce que nous
pourrions appeler, si nous voulions suivre la terminologie de Demazure ([5]), des
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éventails coloriés: il s’agit d’ensembles d’éléments de X}(SL(2)/{e}) satisfaisant
aux quatre conditions de 9.6. Ne voulant par répéter ces conditions ici, donnons
seulement trois exemples

Le dessin de gauche correspond a un plongement complet, les deux autres a
des plongements non complets; le nombre d’orbites du plongement correspondant
au dessin de droite est infini, les deux autres plongements contiennent respective-
ment six et huit orbites.
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