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Plongements d&apos;espaces homogènes

D. Luna et Th. Vust

Introduction

Soient G un groupe algébrique affine connexe, H un sous-groupe algébrique
de G non nécessairement connexe (le corps de base sera algébriquement clos, de

caractéristique nulle et même - lorsque cela nous arrange - non dénombrable). Un
plongement de l&apos;espace homogène G/H est une variété algébrique intègre dans

laquelle G opère algébriquement et qui contient G/H comme orbite ouverte.
Ce travail propose un cadre pour l&apos;étude des plongements. Aux §§1 et 2, nous

précisons la définition des plongements en adoptant un point de veu &quot;rationnel&quot;.

Au §3, nous introduisons la notion de plongement élémentaire: il s&apos;agit des

plongements lisses composés de deux orbites, l&apos;orbite ouverte G/H et une orbite
fermée de codimension 1. Le charme et la maniabilité de cette notion viennent de

ce qu&apos;on peut la déguiser sous des apparences assez différentes: un plongement
élémentaire est aussi une certaine valuation du corps des fonctions rationnelles
sur G/H (voir le §3), puis également une classe d&apos;équivalence de &quot;germes de
courbes formels divergents&quot; dans G/H (voir le §4). Nous abordons l&apos;étude des

plongements élémentaires pour eux-mêmes au §5, où nous indiquons aussi leur
lien avec l&apos;immeuble sphérique. Mais les plongements élémentaires sont surtout
intéressants pour le rôle qu&apos;ils promettent de jouer dans l&apos;étude des plongements
généraux: par exemple, les critères valuatifs de séparation et de propreté
s&apos;expriment très naturellement, pour les plongements, en termes de plongements
élémentaires (voir le §6).

Aux paragraphes suivants nous abordons une étude plus poussée des plongements,

en supposant le groupe G réductif et la variété du plongement normale.
Appelons &quot;complication&quot; de G/H la codimension minimale des orbites d&apos;un

sous-groupe de Borel de G dans G/H. L&apos;analyse des plongements que nous
faisons aux §§7 et 8 est surtout significative lorsque la &quot;complication&quot; de G/H est

^1: dans ce cas nos résultats conduisent à une classification de tous les plongements

normaux - même non nécessairement quasi-projectifs. Au dernier
paragraphe, comme illustration de ce qui précède, nous examinons en détail le cas

G SL(2)et H {e}.

186



Plongements d&apos;espaces homogènes 187

Nous devons notre point de départ bien évidemment à la théorie des plongements

toriques ([5], [6]), mais aussi à l&apos;article [10] de V. L. Popov, dans lequel est
donnée la classification des espaces presque-homogènes affines normaux sous
SL(2). Nous remercions tous ceux qui, par l&apos;intérêt qu&apos;ils y ont pris et par leurs
suggestions, ont contribué à la réalisation de ce travail - en particulier C. DeCon-
cini, H. Kraft, M. Lejeune-Jalabert, C. Procesi, G. Rousseau et tout
particulièrement F. Pauer ([20], [21]) qui nous a beaucoup aidés.

Nous dédions ces pages à notre ami Jacques Vey.

1. Préliminaires

Dans toute la suite, nous désignerons par G un groupe algébrique affine

connexe, et par H un sous-groupe algébrique de G non nécessairement connexe,
le corps de base fc étant algébriquement clos et de caractéristique nulle.

Un plongement de l&apos;espacé homogène G/H est la donnée
1) d&apos;une variété algébrique intègre X dans laquelle G opère algébriquement;
2) d&apos;un plongement ouvert de l&apos;espace homogène G/H dans X, plongement

qui commute à l&apos;opération de G.

Insistons sur le fait que, par définition, X contient un point privilégié (l&apos;image du
point H/H de G/H), dont l&apos;orbite est ouverte et dont le groupe d&apos;isotropie est H;
c&apos;est par ce détail que la notion de plongement diffère de celle d&apos;espace presque-
homogène (employée par exemple dans [10] et [12]). Dorénavant, on considère le

plongement G/H&lt;-*X comme une inclusion, et donc G/H comme un sous-
ensemble de X.

Lorsque Z est une variété algébrique intègre, notons k(Z) le corps des

fonctions rationnelles, et fc[Z] l&apos;algèbre des fonctions régulières. Pour tout
plongement X, l&apos;inclusion G/H&lt;^&gt;X identifie fc(X) et k(G/H), et les algèbres
locales ^Xx,xgX se trouvent donc contenues dans k(G/H). Comme on voit,
lorsqu&apos;on s&apos;intéresse aux plongements, on est tout naturellement conduit à

adopter un point de vue &quot;rationnel&quot; en géométrie algébrique (point de vue
actuellement quelque peu délaissé, qui donne un rôle prépondérant au corps des

fonctions rationnelles).
Pour la commodité du lecteur et pour fixer nos notations, nous commencerons

par résumer brièvement ce point de vue (voir aussi [4]).

1.1 Soit K un corps, extension de type fini de k.

On appelle localités de K les sous-fc-algèbres locales de K qui ont K comme

corps des fractions. On dit qu&apos;une localité est géométrique, si elle peut être
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obtenue comme localisé d&apos;une sous-fc-algèbre de type fini de K. On notera
l&apos;ensemble des localités géométriques de K. On appelle sous-algèbres affines de K
les sous-fc-algèbres de type fini de K qui ont K comme corps des fractions. Les
sous-ensembles de &amp;(K) qu&apos;on obtient en localisant une sous-algèbre affine en ses

différents idéaux premiers, forment la base d&apos;une topologie de &amp;(K), la topologie
de Zariski.

Désignons par 3i(K) l&apos;ensemble des localités géométriques de K dont le corps
résiduel est isomorphe à fc. On considère £(K) muni de la topologie induite par
celle de S(K). Si A est une sous-algèbre affine de K, on désigne par XA le
sous-ensemble de ?£(K) qu&apos;on obtient en localisant A en ses divers idéaux
maximaux; les XA forment une base de la topologie de 3£(K). Les &quot;points&quot; de

H(K) sont en fait des &quot;germes de variétés algébriques intègres ayant K comme
corps de fonctions rationnelles.&quot; On notera les éléments de 3c(K) par
x, x&apos;, lorsqu&apos;on les considérera comme points de l&apos;ensemble 3E(K), et par pur
artifice, on écrira ûx lorsqu&apos;on pense plutôt à la sous-algèbre locale qui est
&quot;associée&quot; à x (et on notera mx l&apos;idéal maximal de Ox). On identifie de manière
naturelle £(K)x£(K) à un sous-ensemble de 3£(L), où L désigne le corps des

fractions de K®kK
Dans la présente perspective, une variété algébrique intègre ayant K comme

corps de fonctions rationnelles n&apos;est alors rien d&apos;autre qu&apos;un sous-ensemble X de

di(K) qui est ouvert, noethérien, et séparé (séparé signifie ici: la diagonale de

XxXdX(L) est fermée dans XxX). Si x€Xc3E(K), on écrira aussi €XtX pour
€x (faisant ainsi le lien avec les notations habituelles).

Soit K&apos; un sous-corps de K contenant fc, et soient Xcï(K), X&apos;a3i(Kr) deux
ouverts. Un morphisme (dominant) &lt;p:X-»X&apos; est une application telle que
®x&apos;Mx)c= ^x,x&gt; Quel que soit xeX.

1.2. L&apos;opération naturelle de G dans G/H se reflète en une opération de G dans

k(G/H), G opérant par automorphismes de corps; on en déduit une opération
(ensembliste) de G dans 3£(fc(G/H)), et une opération de l&apos;algèbre de Lie 93 de G
dans k(G/H)9 93 opérant par dérivations. Désignons par 3£(G/H) l&apos;ensemble des

x€3£(fc(G/H)) tels que €x soit stable par 93.

PROPOSITION. 3E(G/H) est ouvert dans 3E(fc(G/H)).

Preuve. Soit xe%(GIH). Choisissons une sous-algèbre affine A de k(G/H)
telle que x € XA, puis un système de générateurs fl9 ...,/„ de A, et enfin une base

Xu ...,Xm de 93. Puisque par hypothèse X^eC^ on peut trouver &amp;,€A et

geA — niy. tels que X/, g,,/g. On vérifie sans peine que A[g-1] est stable par 93,

donc que XAfg-i]C:3E(G/H) et que x€XA[g-i3. La proposition en résulte.
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1.3. On notera e l&apos;élément neutre de G. L&apos;opération de G dans G/H se reflète en
une injection jul : k(G/H) —&gt; €G&gt;&lt;G/Hte&gt;&lt;G/Hci fc(G x G/H). Au numéro suivant, nous
aurons besoin de connaître jul en termes de l&apos;opération de 93 dans k(G/H).

Désignons par S(93*)=©nao Sn(93*) l&apos;algèbre symétrique sur le dual de 93, et

par S+(93*) ©n&gt;0 Sn(93*) son idéal maximal gradué. Pour toute fc-algèbre A
posons A[93] S(93*)&lt;8&gt;A; c&apos;est l&apos;algèbre des fonctions polynômes sur 93 à valeurs
dans A. Désignons par A[[93]] le complété de A[93] pour l&apos;idéal S+(93*)&lt;8&gt;A;

A[[©]] s&apos;identifie au produit des Sn(93*)&lt;g&gt;A, neN.
Supposons maintenant que 93 opère dans A par dérivations. Soit /e A; pour

tout neN, f donne par Xe93-*(l/n!)X7eA un élément de Sn(93*)®A; des

propriétés bien connues de l&apos;exponentielle résulte aussitôt que ceci définit un
homomorphisme d&apos;algèbres fi : A —» A[[93]], II est clair que fi est fonctoriel en A.

Si û est un anneau local, nous désignerons par û son complété pour l&apos;idéal

maximal. L&apos;homomorphisme il:OGje-^OGe[[^d]] et l&apos;augmentation ûGe-*k
induisent une injection GGe -* fc[[93]] qui permet d&apos;identifier ÔGe avec fc[[93]]

(penser aux développements de Taylor). De l&apos;inclusion €Gte&lt;^k[\S&amp;]] résulte par
tensorisation une injection (^G&gt;e(8)k(G/H)^fc[[93]](8)fc(G/H)^fc(G/H)[[93]], qui
permet d&apos;identifier OG&gt;&lt;G/He&gt;&lt;GJH avec fc(G/H)[[93]]. Désignons par i l&apos;inclusion de

/H dans fc(G/H)[[93]] qu&apos;on en déduit.

LEMME. On a i ° jx fi.

Preuve. Il suffit clairement de démontrer le lemme dans le cas où H {e}, et il
suffit de vérifier alors que i ° jul jx sur fc[G], l&apos;algèbre des fonctions régulières sur
G.

Par fonctorialité de fi, on a un diagramme commutatif

fc[G] &gt;fc[G]&lt;g)fc[G]

u.rn8Ti *
fe[G][[93]] &gt; (fc[G]&lt;8) fc[G])[[93]]

où le fi à droite est relatif à l&apos;opération de 93 dans fc[G]®fc[G] par &quot;translations

à gauche dans le premier facteur&quot;. Le diagramme suivant est clairement aussi
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commutatif

fc[G]®fc[G]

évident

(fc[G]®fc[G])[[93]]

d&apos;où il résulte que i sur fc[G]&lt;8&gt;fc[G]&lt;= 0GxaexO est donné par

fc[G]®fc[G]-

où on considère e comme homomorphisme d&apos;algèbres fc[G] -» fc. Comme

(e® fc[G]) ° fx est l&apos;identité de fc[G], il s&apos;ensuit bien que t° jut et fi coïncident sur
fe[G].

1.4. L&apos;opération ensembliste naturelle de G dans 3£(fc(G/H)) laisse clairement
stable X(G/H).

PROPOSITION. Soit X un ouvert de £(fc(G/H)), stable par G. Pour que
Vapplication G x X -* X donnée par Vopération de G dans X soit un morphisme, il
faut et il suffit que X soit contenu dans 3L(G/H).

Preuve. L&apos;application G x X -» X sera clairement un morphisme si et seulement

si, pour tout xeX, ii:k(G/H)^&gt;k(GxG/H) envoie €x,x dans ^GxX&gt;exx.

Désignons par O le complété de ^GxXieXx pour l&apos;idéal des fonctions nulles sur
c x X. Les inclusions

permettent d&apos;identifier Û avec Ox^lO]]. Puisque ÛH k(G x G/H) ^GxX&gt;eXX (voir

par exemple [3], chap. III p. 73), et d&apos;après 1.3, /x envoie Ox,x dans 0Gxx,«xx si et
seulement si jî envoie ûXtX dans ^x,xII®]]- D&apos;après la définition de ji, cette
dernière condition est remplie si et seulement si 93 laisse stable 0x,x-

1.5. D&apos;après ce qui précède, on peut reformuler la définition des plongements de

la manière suivante.
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DEFINITION. Un plongement de G/H est la donnée d&apos;un sous-ensemble X
de 3E(G/H), qui est ouvert dans 3E(G/H), noethérien, séparé, et stable par G.

Tourner ainsi la définition des plongements, permet d&apos;énoncer les critères

simples de noethérienté et de séparation que voici.

PROPOSITION. Soit X un ouvert de di(G/H). S&apos;il existe un ouvert noethérien

(resp. séparé) X&apos; de 3£(G/H) tel que XcGX&apos;, alors X est noethérien (resp.

séparé).

Preuve. Il suffit de démontrer la proposition lorsque X est stable par G.

Désignons par jli : G x£(G/H)-»£(G/H) l&apos;opération de G dans 3c(G/H).
Supposons d&apos;abord X1 noethérien. Posons X&quot; (GxX&apos;)C\yL~\X&apos;)\ X&quot; est un

ouvert de G xX&apos; contenant exX&apos;. Faisons opérer G dans GxX&apos; par translations
à gauche dans le premier facteur. Puisque GxX&apos; est noethérien, il existe

su...,smeG tels que G xX&apos; U^i s,X&quot;. Par suite,

xX&apos;) J U sjA Û sMX&quot;) Û stX,
\l l / 1 1 1 1

GX&apos;

d&apos;où il résulte bien que X est noethérien.
Montrons enfin que X non séparé entraîne X non séparé. Si X est non

séparé, on a Âx =£ Ax où Ax désigne la diagonale de X x X. Le groupe G opère
diagonalement dans XxX en laissant stable Âx-Ax. Soit T une orbite de G
dans Âx ~ 4X. Puisqu&apos;on suppose X^G • X&apos;, les deux ouverts T H (X&apos; x X) et

TH(XxX&apos;) de T ne sont pas vides. Par conséquent, puisque T est irréducible, on
a 0^Tn(X&apos;xX&apos;)cÂxn (X&apos; x X&apos;) ÂX. Il s&apos;ensuit que Ax f Ax, ce qui signifie
bien que X&apos; est non séparé.

1.6. La reformulation de la définition des plongements et le critère de

noethérienté et de séparation de 1.5, permettent de &quot;construire&quot; des plongements:

il suffit de choisir une sous-algèbre affine A de k(G/H), stable par 33, et de

poser X G • XA.

Illustrons ceci à l&apos;aide d&apos;un exemple simple. Posons G fc* et H {e}; alors

k(G/H) s&apos;identifie à fc(f). L&apos;algèbre de Lie de fc* qui est de dimension 1, opère

par D t(d/dt) dans k(t). Posons /=f/(l + f)2 et g f/(l + f)3. On vérifie sans

peine qu&apos;on a Df 2g -/, Dg g - 3/2 et //g 1 +1. Il s&apos;ensuit que la sous-algèbre

A de fc(r) engendrée par / et g est une sous-algèbre affine stable par l&apos;algèbre de

Lie. On obtient donc un plongement de fc* par X= fc* • XA. Il est facile de voir

que l&apos;identité de fc* se prolonge en un morphisme &lt;p :PX -» X tel que &lt;p(0) &lt;p(°°),
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En regardant de plus près, on voit que X est obtenu à partir de Pl en identifiant 0

et oo en un point double ordinaire.
Cet exemple possède la particularité suivante: X est une courbe projective,

mais X n&apos;est pas un plongement projectif, à savoir X ne peut pas être plongé dans

un espace projectif dans lequel fc* opère, par un morphisme qui est compatible
avec les opérations de fc*. En effet, supposons qu&apos;il existe un tel morphisme. La
droite qui correspond alors au point fixe de fc* dans X, admet un hyperplan
complémentaire stable par fc*. L&apos;ensemble des points de X qui correspondent à

des droites non contenues dans l&apos;hyperplan, forme alors un ouvert affine de X,
stable par fc* et contenant le point fixe de X. Mais un tel ouvert est forcément X
tout entier, donc n&apos;est pas affine, d&apos;où une contradiction.

2. Germes de plongements

Soit X un plongement de G/H, et soit Y un fermé de X, irréductible et stable

par G. Le comportement de l&apos;opération de G dans X au voisinage de Y est
déterminé en grande partie par l&apos;algèbre locale Ox,y&gt; qui se trouve contenue dans

fc(G/H) fc(X). Dans ce §, nous caractérisons ces sous-algèbres locales de

k(G/H), et nous précisons leur signification géométrique. Les démonstrations de

ce § sont formelles et sans imprévu.

2.1. Rappelons (voir 1.1), qu&apos;une localité de k(G/H) est une sous-k-algèbre
locale de k(G/H) dont le corps des fractions est k(G/H). Une localité est appelée
géométrique, si elle est le localisé d&apos;une sous-fc-algèbre de type fini de k(G/H).
Notons £(fc(G/H)) l&apos;ensemble des localités géométriques de k(G/H); fi(fc(G/ff))
est muni de la topologie de Zariski. On notera les éléments de &amp;(k(G/H)) par
I, /&apos;,... lorsqu&apos;on les considérera comme points d&apos;un ensemble, et par pur artifice,
on écrira Û{ lorsqu&apos;on pense plutôt à la sous-algèbre locale de k(G/H) qui est
&quot;associée&quot; à I (et on notera mx l&apos;idéal maximal de ûh et kx=0ilmx le corps
résiduel).

On désigne par Q(G/H) l&apos;ensemble des J e&amp;(fc(G/H)) tels que 0j est stable par
G et par 93.

Remarquons qu&apos;il existe des sous-algèbres de k(G/H), stables par G mais non
stables par 93. Par exemple, considérons G fc et H {0}. Dans ce cas, k(G/H)
s&apos;identifie à k(t)9 et un générateur de 93 fc opère par d/dt dans fc(f). La
sous-algèbre de k(t) engendrée par 1/f + l/(f +1) et ses translatés, n&apos;est pas stable

par dérivation. Toutefois, nous ne savons pas s&apos;il existe des localités géométriques
stables par G et non stables par 93 (voir aussi 3.2).
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Soit le&amp;(G/H). Soit X un plongement de G/H, et soit Y un fermé de X,
irréductible et stable par G. On dit que le couple X, Y est une réalisation
géométrique de £, si €t ÛXyY-

PROPOSITION. Pour tout le&amp;(G/H), il existe des réalisations géométriques.

Preuve. Puisque 0x est géométrique, on peut trouver une sous-algèbre affine A
de k(G/H), contenue dans 6X et telle que Oi soit égal au localisé de A en A flnti.
Puisque Ot est stable par 93, en raisonnant comme dans 1.2, quitte à agrandir A,
on peut supposer de plus A stable par 93. Posons X G • XA; c&apos;est un plongement

de G/H d&apos;après 1.5. Désignons par YA le fermé de XA qui correspond à

l&apos;idéal AOrrii de A. Puisque 6t est stable par G, on voit que (s • YA)ClXA c YA,
quel que soit se G. Un nombre fini de translatés de XA suffisent pour recouvrir
X. On en déduit que Y= G - YA est un fermé de X, irréductible et stable par G,
et qu&apos;on a YCiXA - YA. Enfin, Ox,y @xA,vA @i, donc X,Y est une réalisation
géométrique de /.

2.2. On désigne par Z^G/H) l&apos;ensemble des le£(G/H) tels que Gk{ k.

PROPOSITION. Il y a une bijection naturelle entre l&apos;ensemble Z^G/H) et
Vensemble des orbites de G dans £(G/H).

Preuve. Soit T une orbite de G dans 3c(G/H). Choisissons un plongement X
de G/H (c&apos;est-à-dire un ouvert de 3£(G/H), noethérien, séparé et stable par G)
qui contient T. Il est clair que OXyT ne dépend que de T et non du plongement
choisi; par conséquent, posons OT Ox,t (et notons mT l&apos;idéal maximal de €T9 et
kT=ÛT/mT le corps résiduel). Il est clair que 0T est géométrique, et qu&apos;il est
stable par G et par 93. Puisque kT — fc(T), on a aussi GkT k. Par suite, à toute
orbite T de G dans ï(G/H), on peut associer un le2&gt;i(G/H) bien déterminé,
vérifiant Oi=OT.

Soit iefixCG/H). Choisissons une réalisation géométrique X,Y de l Puisque

k(Y)^ki et qu&apos;on suppose Gkx fc, G a une orbite ouverte T dans Y (voir par
exemple [11]). Par construction, on a ^x,t ^x,y=^ Montrons que l&apos;orbite T ne
dépend que de l et non de la réalisation géométrique choisie. Supposons que
X&apos;, Y&apos;, soit une autre réalisation géométrique de / et désignons par V l&apos;orbite

ouverte que G possède alors dans Y&apos;. Choisissons des sous-algèbres affines A et
A&apos; de k(G/H) telles que XA c=X, THXA^ 0 et XA.cX&apos;, TC\XA&gt;£0. Il n&apos;est

pas difficile de voir qu&apos;il existe feA-rrii et feA&apos;-mi tels que Af Af&apos;. Il
s&apos;ensuit que THT1 ^ 0, ce qui implique T= T&apos;. La proposition est démontrée.
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Soit leS^G/H). On désignera par Tx l&apos;orbite de G dans 1(G/H) qui lui
correspond d&apos;après la proposition précédente. Il est clair qu&apos;une réalisation
géométrique de / n&apos;est rien d&apos;autre qu&apos;un ouvert de 3£(G/H), noethérien, séparé,
stable par G et contenant 7].

2.3. Soit le2(G/H). Tout localisé de 0t en un idéal premier stable par G est

encore une localité géométrique de k(G/H), stable par G et par 93. Désignons par
&amp;f(G/H) l&apos;ensemble des le2(G/H) tels que tout localisé Û de Û{ en un idéal
premier stable par G vérifie G(07m) fc. Il est clair que Sf(G/H)c:S1(G/H).

PROPOSITION. Soit leQ(G/H). Les conditions suivantes sont équivalentes.
(1) Onale2f(GIH).
(2) II existe une réalisation géométrique X,Y de l dont le nombre d&apos;orbites est

fini.

Preuve. Soit X, Y une réalisation géométrique de I. Désignons par 9* l&apos;ensemble

des fermés irréductibles de X stables par G et contenant Y Les idéaux

premiers stables par G de €{ sont en bijection avec les éléments de 9. Si Z g ^,
le localisé de 0x par rapport à l&apos;idéal qui correspond à Z, s&apos;identifie à 6x,z- La
condition (1) signifie alors: pour tout Ze9, on a Gk(Z) fc, autrement dit G a

une orbite ouverte dans Z. Il s&apos;ensuit aussitôt que (2)=&gt;(1).

Réciproquement, supposons (1) vrai. Désignons par Xn l&apos;ouvert de X
constitué des orbites de G dans X dont la dimension est &gt;n, et par Xrn la réunion
des orbites dans Xn qui contiennent Tx dans leur adhérence (Tx est bien défini, car
fi/CG/flOczfi^G/H)). Montrons, par récurrence descendante, que X^ est ouvert et

que le nombre des orbites de G dans X&apos;n est fini. On a X^G/h G/H. Supposons
l&apos;assertion démontrée pour n + 1. Les composantes irréductibles du fermé
Xn—X&apos;n+i sont de deux espèces: ou bien elles ne contiennent pas Tt dans leur
adhérence dans X, ou bien grâce à (1), il s&apos;agit d&apos;orbites de dimension n de X&apos;n.

On voit qu&apos;on obtient X; à partir de X&apos;n+1 en ôtant de Xn ces composantes de la

première espèce, et que ce faisant on n&apos;ajoute qu&apos;un nombre fini d&apos;orbites à X&apos;n+t.

La récurrence abouti^ donc à X^ Tl, qui est bien une réalisation géométrique de /

dont le nombre d&apos;orbites est fini. La preuve de la proposition est terminée.

Si l€fi/(G/H), on voit que l&apos;intersection de toutes les réalisations
géométriques de / est encore une réalisation géométrique de L On l&apos;appellera la
réalisation géométrique minimale, et on la notera Xj. H est clair que Xx est la
réunion des orbites de 3E(G/H) qui contiennent Tx dans leur adhérence.
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2.4. - Soit H&apos; un sous-groupe algébrique de G contenant H. Soit X&apos; un plonge-
ment de G/H\ V une orbite de G dans X&apos;.

PROPOSITION. Soir lett^G/H). Les conditions suivantes sont équivalentes.
(1) Oi domine @xr,T&apos;-

(2) II existe une réalisation géométrique X de l possédant la propriété suivante :

le morphisme naturel G/H —&gt; G/Hf se prolonge en un morphisme &lt;p : X —» X&apos;

tel que &lt;p(Tt) T.
Preuve. Il est clair que (2)=^(1).

Supposons (1) vrai. Choisissons une sous-algèbre affine A&apos; de k(G/H&apos;)

vérifiant: XA&apos;&lt;=X&apos; et XA&apos;(1T&apos; est un fermé non vide de XA\ en particulier, il
s&apos;ensuit que A&apos;c0xvr et que le fermé XA&gt;C\T de XA&gt; est associé à l&apos;idéal

A&apos;nmXvr A&apos;finit de A&apos;. Choisissons ensuite une sous-algèbre affine A de

k(G/H) vérifiant: A est stable par 83, on aA&apos;cAc^,, et Ox est le localisé de A
en l&apos;idéal A D mx. Posons X G • XA. Il est clair que le morphisme &lt;pA : XA -* XA&apos;

donné par l&apos;inclusion A&apos; &lt;= A, se prolonge en un morphisme &lt;p : X —&gt; X&apos;, qui induit
le morphisme naturel G/H -» G/H&apos; et qui envoie Tx sur T.

COROLLAIRE. On suppose ie£f(G/H). Les conditions suivantes sont
équivalentes.

(1) Ox domine OX\t-
(2) Le morphisme naturel G/H —» G/H&apos; se prolonge en un morphisme &lt;p : Xt —» X&apos;

tef que &lt;p(Ti) T.

2.5. Soit H7 un sous-groupe algébrique de G contenu dans H, et soit
l&apos;e&amp;^G/H&apos;).

LEMME. Soit A une sous-algèbre de k(G/H) qui possède les propriétés
suivantes: A est contenue dans 0v, A est de type fini, A est stable par 93 et le corps
des fractions de A est k(G/H). On obtient un élément le&amp;i(GIH) en prenant pour
O{ le localisé de A en Vidéal premier A flmr.

Preuve. Désignons par O le localisé de A en l&apos;idéal premier A fln-ty. Il est clair

que O est géométrique et qu&apos;il est stable par 93. Un peu moins clair est que 0 est
aussi stable par G. Pour le prouver, considérons l&apos;ouvert XA de 3£(G/H) associé à

A, et choisissons un x€XA tel que /(x) 0 quel que soit feAr)mv. Désignons

par U l&apos;ouvert des seG tels que s&quot;1xeXa. Si se 17, pour tout feA, puisque

f g CXa&gt;5-.x, on a s • / € CXa,x ; par suite sf g/h, avec g, h e A et h(x) f 0, d&apos;où sf g O.

Donc sA c O, quel que soit seU, d&apos;où l&apos;on déduit sans peine que 0 est stable par G.
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On obtient donc un élément le&amp;(GIH) par 0t 0. Puisque ûv domine €t et que
VeZ^G/H), il est clair que le&amp;^G/H).

3. Plongements élémentaires et valuations invariantes

Les plongements élémentaires de G/H que l&apos;on introduira dans ce §, sont en
relation étroite avec certaines valuations sur k(G/H). C&apos;est pourquoi on
commence par rappeler quelques généralités sur les valuations (pour plus de détails,
voir [14] et [3], chap. VI).

3.1. Soit K un corps, extension de fc. On pose K* K — {0}. Une valuation
discrète de K sera pour nous une application t; : K* —&gt; Q (qu&apos;on prolonge sur K
par u(0) +oo) vérifiant

1) t&gt;(K*)-Z;

2) v(fg) v(f) + v(g) et u(/+g)&gt;inf(u(/), v(g)\ quels que soient f9geK;
3) i&gt;(/) 0si/efc*.

On dit que la valuation est normalisée si v(K*) Z. A toute valuation discrète v,
on associe par ^={/eK5t;(/)&gt;0} une sous-fc-algèbre locale de K, d&apos;idéal

maximal mv {fe K, vif) ^ 0}. On pose kv - €Jmv, qu&apos;on appelle le corps résiduel
de v. Si v est une valuation discrète de K, alors

1) le corps des fractions de ûv est K;
2) €v est noethérienne, intégralement close et de dimension de Krull égale à

1.

Une sous-fc-algèbre locale de K vérifiant 1) et 2) s&apos;appelle une sous-algèbre de

valuation discrète de K. L&apos;application v —&gt; Ov établit une bijection entre l&apos;ensemble

des valuations discrètes normalisées et l&apos;ensemble des sous-algèbres de
valuation discrète.

Supposons maintenant que K soit de type fini sur fc, de degré de transcendance

n. Soit v une valuation discrète de K. Nous dirons que v est géométrique, si

Ûv est géométrique (c&apos;est-à-dire, si on peut obtenir Ûv comme localisé d&apos;une sous-
fc-algèbre de type fini de K). Si v est géométrique, son corps résiduel fc^ est de

type fini sur fc et de degré de transcendance n — 1 sur fc. Inversement, s&apos;il existe
dans fc,, n — 1 éléments algébriquement indépendants sur fc, on peut montrer que v
est géométrique. Mais attention, pour tout nombre i compris entre 0 et n-1, on

peut trouver des. exemples de valuations discrètes dont le corps résiduel est de

degré de transcendance i sur fc ; il peut même arriver que le corps résiduel ne soit

pas de type fini sur fc (voir [14]).
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Le résultat suivant nous sera très utile. Soient K&apos; une extension de type fini de

K, v une valuation discrète de K, v&apos; une valuation discrète de K&apos;, extension de v;
alors le degré de transcendance de K&apos; sur K est supérieur ou égal au degré de
transcendance de kv&gt; sur kv (voir [3], chap. VI, §10 n° 3).

COROLLAIRE. Si v&apos; est géométrique, v Vest aussi.

Preuve. Notons d( le degré de transcendance. On a d(K&apos;, K)
d(K\k)-d(K,k) et d(kv,,kv) d(kv,,k)-d(kv,k). De d(K&apos;,K)&gt;d(kv,,kv)

résulte alors que

d(kv, k)&gt;d(K, k)-d(K&apos;, k) + d(kv,, k) d(K, fc)-l.

D&apos;après ce que nous avons rappelé, il s&apos;ensuit bien que v est géométrique.

3.2. Soit v une valuation discrète de fc(G). Nous dirons que v est invariante par
translations à gauche, si v(s • /) v(f), quels que soient seGet/e k(G).

LEMME (voir aussi [15]). Pour toute valuation discrète v de k(G) il existe une

(unique) valuation discrète v de fc(G) qui possède la propriété suivante: pour tout

fek(G) il existe un ouvert non vide U de G tel que v(f) v(s •/) quel que soit

seU. La valuation v est invariante par translations à gauche. De plus, si v est

géométrique, v Vest également.

Preuve. Posons A k(G)&lt;8&gt;€v &lt;= fc(G x G) et p fc(G)&lt;8&gt;nv Désignons par O

le localisé de A en l&apos;idéal premier p. Il est clair que C est une sous-algèbre de

valuation discrète de k(GxG) à laquelle correspond donc une valuation
discrète w de k(GxG). Désignons par /u, :fc(G)^-&gt;fc(GxG) l&apos;homomorphisme

injectif de corps qui correspond à la multiplication GxG-&gt; G. Posons v w ° |ul.

Soit ge fc[G]. Les s • g (se G) restent dans un espace vectoriel de dimension
finie de k[G]. Désignons par l/g l&apos;ouvert de G où la fonction v(s • g) atteint son
minimum. Si ^(g) Yi &amp;®gî et si s g G, on a s • g £ g^sT^gî. De là et de la
définition de w on déduit que v(g) infseG v(s • g) v(s • g) quel que soit s € l/g.
Si fe k(G), on écrit /= gh~\ avec g, h e fc[G]; alors, pour tout s g U= l/g H Uh,

on a v(f) «(g)-v(h) v(s • g)- v(s • h) v(s • /).
Il est clair que v est invariante par translations à gauche. Enfin, si v est

géométrique, w l&apos;est manifestement aussi. De v w ° fx et de la fin de 3.1 résulte
alors que v est également géométrique.

COROLLAIRE 1. Soit v une valuation discrète de k(G/H), invariante par G.

Il existe des valuations v de k(G), invariantes par translations à gauche, dont la
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restriction à k(G/H) est égale à v. Si v est géométrique, on peut choisir v
géométrique.

Preuve. Il existe des valuations discrètes w de fc(G), non invariantes par
translations à gauche, dont la restriction à k(G/H) est égale à v9 et si v est

géométrique, on peut choisir w géométrique (voir par exemple [3], chap. VI).
Alors v w répond aux exigences du corollaire 1.

COROLLAIRE 2. Soit v une valuation discrète de k(G/H), invariante par G.

Soient f, g € fc(G) et seG tels que fg et (s • f)g appartiennent à k(G/H). Alors

Preuve. Soit v une valuation de fc(G), invariante par translations à gauche,
&quot;au-dessus&quot; de v comme dans le corollaire 1. Alors v((s • f)g) v(s */) + t5(g)

COROLLAIRE 3. Pour toute valuation discrète G-invariante v de k(G/H), Ov

est stable par 93.

Preuve. Grâce au corollaire 1, il suffit de considérer le cas où H {e}. Puisque
l&apos;opération de G dans fe[G] est rationnelle, la Z-filtration que v induit dans fc[G],
étant stable par G, est aussi stable par 93. Par conséquent, si fe k[G] et si Xe93,
on a v(Xf)^v(f), autrement dit v(Xflf)&gt;0. Soit maintenant fek(G). Ecrivons

/ g/h, où g, h € fc[G]. On a Xflf Xg/g -Xh/h. Par suite, si v(f) &gt; 0, il suit que

v(Xf) &gt; v{Xflf) &gt;min (©(Xg/g), v(Xh/h)) &gt;0,

ce qui signifie bien que Ûv est stable par 93.

3.3. On appellera plongement élémentaire de G/H tout plongement X vérifiant:
1) X est lisse;
2) X est composé de deux orbites, l&apos;orbite ouverte G/H et une orbite fermée

de codimension 1 dans X.

Lorsque G/H est affine, tout plongement normal composé de deux orbites est
élémentaire: en effet, le complémentaire de tout ouvert affine dans une variété

algébrique étant toujours pur de codimension 1, on voit que l&apos;orbite fermée est de

codimension 1; il s&apos;ensuit que X est lisse, puisque l&apos;ensemble singulier de X, qui
est de codimension &gt;2 à cause de la normalité et qui est aussi stable par G, est
vide.
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On notera Y(G/H) l&apos;ensemble des valuations discrètes normalisées de

fc(G/H), géométriques et invariantes par G. On désignera par Yt(G/H) l&apos;ensemble

des v € Y(G/H) tels que Gkv fc. On notera par Y2(G/H) le complémentaire
de Y1(G/H) dans Y(G/H).

PROPOSITION. Il y a une bijection naturelle entre l&apos;ensemble Y^G/H) et
Vensemble des plongements élémentaires de G/H.

Preuve. Le corollaire 3 de 3.2 permet d&apos;identifier YX(GIH) à un sous-
ensemble de &amp;i(G/H). Puisque les seuls idéaux premiers de Ov sont mv et 0, on a

même T^G/f-f^S^G/H). Soit veY^G/H). Le plongement minimal X^ associé
à i; (voir 2.3) est manifestement composé de deux orbites, G/H et Tv. Puisque Tv

est de codimension 1 dans X^ et que ûv est intégralement clos, Xv est normal
donc lisse. Par conséquent, X^ est un plongement élémentaire. Il est clair qu&apos;on

obtient tout plongement élémentaire de cette façon, d&apos;où la proposition.

3.4. Soit H&apos; un sous-groupe algébrique de G contenant H. Soit X un plongement
élémentaire de G/H, d&apos;orbite fermée T.

PROPOSITION. De deux choses Vune: ou bien le morphisme naturel

G/H--* G/Hr se prolonge en un morphisme X—&gt; G/H&apos;; ou bien il existe un unique
plongement élémentaire X&apos; de G/H&apos;, d&apos;orbite fermée T&quot;, tel que le morphisme
naturel G/H-* G/H&apos; se prolonge en un morphisme &lt;p :X—&gt; X&apos; vérifiant &lt;p(T) T.

Preuve. Cela résulte aussitôt de 2.4, 3.1 et 3.3.

3.5. PROPOSITION. Pour tout Ï€S(G/H), il existe veY(GIH) tel que Ûv

domine Ox.

Preuve. Soit G/H&lt;^X, Y une réalisation géométrique de l. Désignons par X
l&apos;éclaté normalisé de X le long de Y, et notons ttiX-^X le morphisme naturel.
Le groupe G opère dans X, et puisque tt : tt~1(G/H) -^ G/H est un isomor-
phisme, X est l&apos;espace d&apos;un plongement de G/H. Choisissons une composante
irréductible Y de rr^iY); Y est stable par G et de codimension 1 dans X. Par

conséquent, il existe une valuation v dans Y(G/H) telle que Ov=€xS-
construction, Ov domine Ox,y @i-

4. Plongements élémentaires et germes de courbes

On désigne par fc[[f]] l&apos;algèbre des séries formelles en une indéterminée t9 et

par fc(0) le corps des fractions de fc[[t]]. On note (G/H)k((()) (resp. (G/H)k[[t]])
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l&apos;ensemble des points de G/H à valeurs dans fc((0) (resp. dans fcftr]]), et on pose
(G/H)*((t)) (G/H)k((t))~(G/H)k[[tjj: c&apos;est &quot;l&apos;ensemble des germes de courbe
formels divergents dans G/H&quot;. Dans ce §, on fera correspondre à tout élément de

(G/H)k((t)) un plongement élémentaire, puis on étudiera cette correspondance.

4.1. Pour la commodité du lecteur, rappelons quelques généralités au sujet des

points à valeur dans fc((*))•

Soit X une variété algébrique (intègre) sur fc. Un élément À de Xk((t)) est la
donnée d&apos;une localité &lt;?, 33Î de X et d&apos;un homomorphisme de fc-algèbres

k:€-+k((t)) qui induit une injection 6/3R-+k((t)). On appelle 6 le domaine
de définition de À. Le cas où X est affine est particulièrement simple: on a

alors forcément k[X]c=-O, et A est déterminé par sa restriction à k[X].
Un À €Xfc((t)) est dit convergent, s&apos;il existe xeX tel que €x&lt;^€ et

MQJ^fctM]; on appelle alors x la limite de À et on écrit x limt^oÀ(f)
(l&apos;unicité de la limite résulte de la séparation de X). On note Xk[[t]]
l&apos;ensemble des points convergents de Xk((t)). Si X est affine, pour que À soit convergent,
il faut et il suffit que À(fc[X])c: fc[[*]], et la limite est alors donnée par
k[X] -4 k[[t]] -* k[[t]]/tk[[t]} fc.

Nous utiliserons la structure naturelle de groupe sur Gk((t)), induite par la

structure de groupe algébrique sur G; GkIItI| est un sous-groupe de Gk((t)), et G
s&apos;identifie à un sous-groupe de Gkfft]]. Nous utiliserons aussi l&apos;opération naturelle
&lt;*e Gk((t)) dans (G/H)k((t)).

4.2. Quel que soit le corps JK, nous désignerons par vt : K((t))* —&gt; Z la valuation
discrète naturelle sur K((t)) (l&apos;ordre en t des séries formelles). Dans ce qui va
suivre, on considère fc[G]&lt;8)fc((f)), ainsi que son corps des fractions, plongé de

manière naturelle dans k(G)((0).

Soit À € (G/H)k((t)). L&apos;opération de G dans G/H donne un morphisme
dominant

G x Spec k((î))-^G x G/H -* G/H

d&apos;où une injection de corps ik : k(G/H) -&gt; fc(G)((f)).
Posons Ok (ix)~1(k(G)[[t]]); c&apos;est une algèbre locale dont nous noterons mx

l&apos;idéal maximal et kK le corps résiduel. Posons vk vt - ik : k(G/H)* -* Z. Lorsque
Ûk ^fc(G/H), vK est une valuation discrète (non nécessairement normalisée) de

k(G/H), dont 6k est la sous-algèbre de valuation discrète (voir 3.1); désignons

par nk l&apos;entier positif tel que (l/nk)vk soit normalisée.
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Nous verrons plus loin que (l/nK)vk eT^G/H). Le point délicat est la
géométricité de Ok, que nous démontrerons en 4.6. Vérifions déjà que Ûk est
stable par G et que GkK k: le premier résulte de ce que fc(G)[[f]] est stable sous
l&apos;opération de G par translations à gauche dans k(G) et de ce que ik commute
aux opérations de G; le second de ce que kk s&apos;identifie à un sous-corps de fc(G).

4.3. Le morphisme canonique G —» G/H induit une application Gk((t)) —» (G/H)k((t)).
Si À € Gk((t)), notons À son image dans (G/H)fc((f)). Du diagramme clairement
commutatif

résulte que vk est la restriction de vK.

L&apos;application Gk((0) —&gt;(G/H)kat)) n&apos;est pas en général surjective. Néanmoins,
on obtient par un argument classique un résultat qui est presque aussi bon que la
surjectivité.

LEMME. Pour tout /m 6 (G/H)fc((t)), il existe n e N* et À e Gk(iy-t)), tels que À /ul

(où Von considère /ul comme point de G/H à valeurs dans f
Preuve. D&apos;après le théorème de normalisation de Noether, on peut trouver

des sous-algèbres affines A de k(G/H) et B de fc(G) vérifiant
1) AciB;
2) XAczG/H et XBaG;
3) il existe des éléments gl9..., gm de B algébriquement indépendants sur A,

tels que B soit fini sur A[gu gm].

Quitte à translater A et B par un s g G convenable, on peut supposer de plus

que jxe(XA)k((t)). Il est alors clair que jul peut se relever en un point de G à

valeurs dans une extension finie de fc((f)), lesquelles sont isomorphes aux
k((&lt;ft)), neN*, ce qui démontre le lemme.

Ce lemme (et la remarque qui le précède) vont nous permettre dans l&apos;étude

des éléments de (G/H)k((t)) de supposer qu&apos;ils proviennent d&apos;éléments de Gk((t)).

4.4. Le groupe Gk((t)) opère &quot;par translations à droite&quot; dans fc[G]®fc((0), en

respectant sa structure de fc((0)-algèbre. Précisons l&apos;opération: soit ÀeGk((t)),
que nous considérons comme un homomorphisme de fc-algèbres À : fc[G]—&gt; k((t));
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alors JRA, la &quot;translation à droite par À&quot;, est donnée sur fe[G] par

k[G]&lt;g&gt; fc[G]^&gt; fc[G]&lt;g&gt; fc((r)),

homomorphisme de fc-algèbres qui se prolonge par fc((O)-linéarité en un isomor-
phisme de fc[G]®fc((f)) sur lui-même.

Si À€Gkfft]], on voit que Rk laisse stable fc[G]®fc[[f]]. Il s&apos;ensuit que
l&apos;opération de Gkttt]] dans fc[G]&lt;8)fc((f)) se prolonge en une opération dans

k(G)((0) vérifiant vt°RK vt, pour tout À€Gk[[t]]. Par contre, l&apos;opération de

Gk((t)) ne se prolonge pas à k(G)((t)); tout au plus peut-on la prolonger au corps
des fractions de fc[G]&lt;g&gt;fc((0).

Remarquons que, dans le cas où H {e}, l&apos;injection ix définie dans 4.2
coïncide avec RK, modulo les inclusions fc(G)c-&gt;corps des fractions de
fc[G]®fc((f))c-&gt;fc(G)((t)); cette remarque nous servira dans la démonstration
suivante.

LEMME. Si A g (G/H)k((t)) et si pe Gk[[t]], alors vk v^K.

Preuve. D&apos;après 4.3, on peut supposer que À e Gk((t)). Quel que soit fe fe(G),

on a alors v^if) (vt ° i^)(f) vt(R^J) vt(R^RJ) vt(RJ) (vt ° ik)(f) vK(f).

4.5. On appellera germe de courbe (éventuellement divergent) dans G/H la
donnée

1) d&apos;une courbe lisse C,

2) d&apos;un point c de C,

3) d&apos;un morphisme y:C-{c}-+ G/H.

Tout isomorphisme Oc,c~k[lt]] donne une inclusion fc(C)&lt;^fc((r)), qui permet
d&apos;associer au germe de courbe un point de (G/H)kat)), qu&apos;on appellera un germe
formel associé au germe de courbe. Soit À € (G/ff)k((t)), et désignons par C le

domaine de définition de À; pour que À puisse s&apos;obtenir comme germe formel
associé à un germe de courbe, il faut et il suffit clairement que À (C) soit un

sous-corps de k((t)) de degré de transcendance &lt;1 sur k.

LEMME. Pout tout À e Gk((t)) il existe /x g GkŒtD tel que jxà soit le germe formel
associé à un germe de courbe dans G.

Preuve. Plongeons G comme un sous-groupe fermé dans un SL(n). Soient

Pu • • • » Pm £ k[XiP 1 ^ i, j =£ n] des équations polynômes qui définissent G dans
l&apos;ensemble des matrices nxn. Si p(t) (piJ(t))1^lfJ^n9 avec p,,(0^fc((0), on a
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p(t)s Gk((t)) si et seulement si

(*) Pr(py(0, l&lt;i,j^n) O, pour r l,..., m.

D&apos;après un théorème d&apos;Artin ([1]), pour tout Ne M, il existe
J

vérifiant
1) les ÀtJ(0 sont algébriques sur k(t);
2) les ÀtJ(r) vérifient les équations (*);
3) onaA^O-À^Oer^fctM].

Pour N assez grand, on a A(r)A(r)~1 jtt(f)€ Gk[[t]], ce qui s&apos;écrit aussi /m(f)A(0
A(0- Les coefficients de Â(f) étant tous algébriques sur fc(f), tous les éléments de
Â(fc[G]) sont algébriques sur k(t). lue sous-corps de fc((f)) engendré par Â(fc[G]) est
donc bien de degré de transcendance &lt;1 sur fc, ce qu&apos;il fallait démontrer.

4.6. A tout A e (G/H)fc((t)) tel que Okj=k(G/H)y nous avons associé en 4.2 une
valuation discrète normalisée (l/nk)vK de k(G/H).

PROPOSITION. On a (l/nJ^eT^G/H).
Preuve. Nous savons déjà que ux est invariante par G, et que GfcA k (voir

4.2). Reste à prouver que ÛK est géométrique.

D&apos;après 4.3 et 3.1, il suffit de considérer le cas H {e}. D&apos;après 4.4 et 4.5,
nous pouvons de plus supposer que A est le germe formel d&apos;un germe de courbe
dans G.

Soit donc C9c€Qy:C-{c}-* G un tel germe de courbe. Le morphisme
dominant

lx-y mult
Gx(C-{c}) &gt;GxG &gt;G

se reflète en une injection ik : k(G) -+ k(G x C). L&apos;isomorphisme êCc - k[[t]]
induit une identification de (5GxCiGx{c} avec fc(G)[[f]], d&apos;où une injection
de corps /:fc(GxC) *¦» fc(G)((f)). Par construction, on a ix=j°iy. Puisque
fc(GxC)n$Gxc.Gx{c} 0Gxc,Gx{c}, il s&apos;ensuit que 0K =(iY)&quot;1(CGxCGx{c}), et ©x

est géométrique d&apos;après 3.1.

4.7. Soit Àe(G/H)k«o). Si fek(G/H), posons fx(/)=In»-oo/x,n^n, où i\ est
l&apos;injection de k(GIH) dans fc(G)((0) introduite dans 4.2.
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LEMME. Pout tout fe k(G/H), il existe un ouvert non vide U de G vérifiant:
pour tout s e [/, on a

1) fk,neÛGjS pour tout n\
2) s&quot;1 • / est dans le domaine de définition de À;
3) A(s-1-/)=in&gt;&gt;_oo/

Preuve. D&apos;après 4.3, on peut supposer que À e Gk((t)). Dans ce cas À est donné

par un homomorphisme d&apos;algèbres À : fc[G]—» fc((0), et l&apos;application ix est donnée

sur fc[G] par

comult 1®X
fc[G] &gt; fc[G]&lt;g&gt; fe[G] &gt; k[G]® fc((t)) c* fc[G]((0) ;

il s&apos;ensuit que, pour /e fc[G], les trois propriétés sont vraies avec U=G. Dans le
cas général, écrivons /=g/h, où g, hek[G]. Soit ik(h) Zn*znohKntn, avec
h\,no fi 0. On vérifie sans peine que l&apos;ouvert U {seG, hKno(s) ^ 0} convient

pour /.

4.8. Soit A e (G/H)k((t)) tel que ûk^k(G/H). D&apos;après 4.6 et 3.3, Ok correspond à

un plongement élémentaire de G/H. Nous le désignerons par Xx, et par TK

l&apos;orbite fermée de G dans Xx.

PROPOSITION. Dans Xx,limt^0 MO existe et appartient à Tx.

Preuve. Choisissons une sous-algèbre affine A de k(G/H) vérifiant: XA&lt;=XA

et XA H Tx ^ 0 ; en particulier, onaAc 0xx,tx ^x- D&apos;après 4.7, quitte à translater

A par un s € G convenable, on peut supposer de plus que, pour tout fe A, on
a

1) fKne0G,e pour tout n;
2) / appartient au domaine de définition de À ;

3) À(fl Ln»-a./A.n(e)tn.
Puisque A c=0x, on en déduit que A(A)c: fc[[r]], c&apos;est-à-dire que limt_^0 MO existe

dans XA. De plus, on voit que À envoie l&apos;idéal A H mx, qui correspond au fermé

-Xa ^ T\&gt; dans ffc[[f]], ce qui signifie bien que limt_*o À(f)€ Tx.

Rappelons que (G/H)î((t)) (G/H)k((t))-(G/H)kŒt]].

COROLLAIRE. Soit A e (G/H)k((t)). Pour que Ûk + k(G/H), il faut et il suffit

que À€(G/H)fc((o).

Preuve. Si Ùk^k(G/H)9 la proposition précédente montre que À g(G/H)*((t)).
Si 0X fc(G/JFf), un argument très voisin de celui employé dans la démonstration

précédente montre que À € (G/H)kfft]].
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4.9. Soient X un plongement de G/H, T une orbite de G dans X. Soit

PROPOSITION. Les conditions suivantes sont équivalentes:
(1) limt^0 A(r) existe dans X et appartient à T;
(2) Videntité de G/H se prolonge en un morphisme &lt;p : Xx —&gt; X tel que &lt;p(Tk) T;
(3) €K domine ûx,t-

Preuve. L&apos;équivalence (2)O(3) résulte de 2.4, l&apos;implication (2)=&gt;(l) de 4.8.

Reste à montrer (1)=&gt;(3). Posons x =limt_^0À(f)e T. Choisissons une sous-
algèbre affine A de k(G/H) telle que xeXA&lt;=X. Choisissons ensuite un ouvert
non vide U de G tel que sx e XA quel que soit s e U, et tel que U vérifie les trois
conditions du lemme 4.7 pour tout feA. Si fe A et si seU, on a donc
A(s~1/) Xn»-oo/\,n(s)fn. Puisque limt_*0 s\(t) sx existe dans XA, il s&apos;ensuit que
/x,n(s) 0 pour n &lt; 0 et s e £/, c&apos;est-à-dire /x,n 0 pour n &lt; 0, autrement dit
ux(/)&gt;0. De plus vK(f) 0 équivaut à f^oi=0, et cette dernière condition signifie
qu&apos;il existe se U tel que 0^fKO(s) \imt^Qf(s)\(t) f(sx). Autrement dit, on a

A&lt;=-€k, et A rimx est l&apos;idéal des feA qui s&apos;annulent sur XA D T, ce qui entraîne
bien que ûk domine ^xA)xAnT ^x,T-

4.10. Le groupe Autk fc[[f]] opère de manière naturelle dans Gk[[t]], par automor-
phismes de groupes. On peut donc former le produit semi-direct F
^k[[t]]x Autk k[[t]]. Le groupe F opère dans (G/H)*((t)) par

[(iui,a)-A](0 fx(r)A(a(0), (mi,a)Gr, À e (G/H)f((t)).

Considérons l&apos;application (G/H)*((t))-^T*1(G/H)xN* qui envoie A sur
[(l/nk)vK, nK].

PROPOSITION. Uapplication précédente passe au quotient en une bijection

r\(G/H)J((t)) -^ V1(GIH) x N*.

Preuve. D&apos;après 4.4, l&apos;application est constante sur les orbites de Gk[[t]]; il est
clair qu&apos;elle l&apos;est aussi sur les orbites de Autk fc[[f]]; elle passe donc bien au

quotient par F.

Considérons un plongement élémentaire X d&apos;orbite fermée T. Choisissons une
courbe lisse C, un point c € C et un morphisme y : C --» X vérifiant: y(c) xeT
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et y est transverse à T. Cette dernière condition implique que le morphisme
GXC-+X, qu&apos;on déduit de l&apos;opération de G dans X, est lisse. Soit A g(G/H)*((t))
un germe formel associé à 7 comme dans 4.5. En raisonnant comme en 4.6, on
voit que XX=X; de la lissité de GxX—»X résulte en plus que nx l. En
considérant les À(fn), neN*f on voit que l&apos;application F\(G/H)*((t))-»
Yx(G/H)xN* est surjective.

Soit à&apos;g(G/H)*((0) tel que XK=X. D&apos;après 4.8, quitte à multiplier À&apos; par un
seG convenable, on peut supposer que limt_&gt;oÀ&apos;(f) x. Grâce à une propriété de

relèvement bien connue des morphismes lisses, il existe n g GfcfftI] (vérifiant
limt_*o fx(r) e) et j3 g ffcftf]] tels que À&apos;(0 jx(t)AO(t)). n suffit alors de prendre
une racine n-ième de p, où n est l&apos;ordre de 3, pour voir que À&apos;(0 est sur l&apos;orbite

de F passant par À(fn). On a visiblement n nk&gt;, d&apos;où il suit que l&apos;application

r\{GIH)tmr+Yx(GIH)xN* est aussi injective.

Remarque. Résumons pour la suite une partie des résultats précédents, en les
reformulant légèrement. A normalisation près, toute valuation de Y^G/H)
s&apos;obtient comme restriction à k(G/H) d&apos;un vk, À g Gfc((0). De plus, si (/ut, v, a)e
Gkfft3]xHk((t))x(rfc[[fI|-î2fc[[t]]), et si \&apos;(t) ii(t)k(a(t))v(t), alors vk et vk&gt; ont
même restriction à k(G/H).

4.11. Soit veY(G/H). Si V est un sous-espace vectoriel de k(G/H) et si jgQ, on

pose

les F£V sont des sous-espaces vectoriels de V, et i&lt;j implique FÎV^^V.
On dira qu&apos;une suite vn (n g N) dans Y(G/H) converge géométriquement vers

v dans Y(G/H) si
1) il existe une suite rn (neN) de nombres rationnels positifs telle que rnvn(f)

converge vers v(f), quel que soit /g k(G/H);
2) pour tout sous-espace vectoriel de dimension finie V de k(G/H), il existe

un entier n(V) tel que, pour tout n &gt; n(V), chacun des FlvV (i gZ) est égal

àl&apos;undesFiwV(jGZ).
Lorsqu&apos;on connaît déjà les valuations de Y^G/H), pour déterminer celles de

Y2(G/H), on peut parfois se servir de la proposition suivante (voir par exemple
[16]).

PROPOSITION. Tout élément de Y(G/H) est limite géométrique d&apos;une suite
d&apos;éléments de YX(GIH).
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Soit G/H^X un plongement de G/H, avec la variété X affine. Soit Y un
fermé de X, stable par G. Choisissons un point x dans Y. Soit À € (G/H)fc((0) tel

que limt_

LEMME 1. Pour toutfeûXx et pour tout voisinage assez petit Udee dans G, À

est défini en s&quot;1 • / pour tout seU, et vK(f) infseU ^(ÀCs&quot;1 • /)).

Preuve. Pour tout /€ k(G/H), posons comme dans 4.7 ik(f) Zn»-°o/x,n*n; par
définition de vk on aux(/) vt(ik(f)). Si g g k[G/H], on a gAn€ fc[G] quel que soit

neZ, À est définie sur s&quot;1 • g quel que soit 5 € G, et K(s~l • g) Xn»-oo gx,n(s)*n;

par suite, quel que soit l&apos;ouvert non vide U de G, on a vk(g) infseU vt(s~l • g). Si

fiefc[X]c: fc[G/H], limt_*0 MO x e X implique k[X]czOVx, donc hKn 0 pour
n&lt;0; si de plus pour un se G, h(s • x)^0, alors ACs&quot;1 • h) £n2:o hx&gt;n

car hK0(s) h(s-x)^0 et t^s&quot;1 • h) ux(fi) 0.

Soit maintenant feOx,x- On peut écrire f=g/h, avec g,fi€fc[X] et
Soit (7 un voisinage de e dans G vérifiant h(s • x) ^0 quel que soit s g U. Alors,
on a clairement

Vk(f) t&gt;x(g) inf UtCs&quot;1 • g) inf v^s&apos;1 • /), c.qi.d.
seU set/

Gardons les mêmes hypothèses que pour le lemme 1. Supposons de plus X
normale, Y de codimension 1 dans X, et x lisse dans X et dans Y. Désignons par
v la valuation de V(GIH) telle que 0V OXY.

LEMME 2. Four rouf sous-espace vectoriel de dimension finie V de €x,Xy U

existe un entier p qui vérifie: pour tout q&gt;p, on peut trouver A. e (G/H)*((t)) tel que

2) PVV F£KV, quel que soit jeZ;
~ 1

3) p/q, quel que soit fe V—{0}.

Preuve. Choisissons /1,...,/remxnfc[X]cfc[G/H] des coordonnées locales

en x, de manière à ce que /i 0 définit Y au voisinage de x. On utilisera les

identifications OXyX^CXtX k[[fu /r ]]. Tout fe k[[fu /r]] peut s&apos;écrire de

manière unique / £r=oCt(/)A&gt; où cx(f)e k[[f2,... ,/r]]; on définit ainsi des

applications linéaires ct : fc[[/i,..., /r]] —? fc[[/2» • • » /r]] (î eM). Choisissons

a2,..., ar e tk[[t]] algébriquement indépendant sur k, et désignons par
*&apos;:fc[[/2&gt; • • • ,/rE-*fcIMl l&apos;unique homomorphisme d&apos;algèbres tel que A&apos;(/t)

a, (î 2,..., r). Par construction, À&apos; est injectif en restriction à k[/2? • • •, fr\ D en
résulte que À&apos; reste injectif en restriction à la sous-algèbre des éléments de
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fc[[/2&gt; • • • •&gt; frli qui sont algébriques sur k[f2,..., /r]. Tout fe€x,x est algébrique
sur fc[/i,.. «,/r]; il s&apos;ensuit facilement, par récurrence sur i, que ct(f) est

algébrique sur fc[/2&gt; • • •, fA quel que soit i eN. Par suite, on peut choisir N assez

grand pour que (co(/),..., cN(/)) ^ (0,..., 0) quel que soit fe V-{0}. Posons

p max fe(À&apos;(c(/))),/€ V-{0}, c,(/) ^ 0,i e [0, N]}.

Choisissons q&gt;p et désignons par À : fc[[/i,...,/,.]]—* &amp;[[*]] l&apos;unique homomor-
phisme d&apos;algèbres tel que A(/i) tq et À(/,) a, (i 2,..., r). Via les inclusions

fc(G/H) =3 Ûx,xc fctLfi? • • • &gt; /r]]» on peut considérer À comme élément de

(G/H)k((t)). Reste à vérifier que p, q et A possèdent les propriétés 1), 2) et 3) du
lemme 2.

Par construction, il est clair que limt_&gt;0À(f) x;, d&apos;où 1).

Soit /€V-{0}. Supposons que v(f) j. On peut alors écrire f f[g, où

x~/i^x,x (l&apos;algèbre (7X,X est factorielle). Autrement écrit, cela devient

où Cj(f) € fc[[/2,..., /r]]-{0} et h € fc[[/1?..., /r]]. On a clairement j&lt;N. Par suite

^(A(cJ(/))) ut(A/(cj(/)))&lt;p. Puisque ut(À(h/1)^t?t(A(/1)) q et que par hypothèse
q&gt;p, on a ut(A(g)) ^(ACcjC/)))^^ D&apos;après le lemme 1, il en résulte que

D&apos;un autre côté, désignons par U l&apos;ouvert des seG tels que s&quot;1 */i 0 soit

encore une équation de Y au voisinage de x. Si s e 17, on peut écrire s&quot;1 - fx flu,
où ueûx,x vérifie u(x)j=0. D&apos;où, pour tout seU,vt(\(s~1-f1)) vt(k(f1)) q,

puisque ut(A(u)) 0. Il en résulte, puisque fte fc[X]c= k[G/H], que vx(f1)

infseU t;t(A(s-x • /)) ^(A^)) q.

En résumé, on a montré que pour tout fe V-{0}, v(f) j entraîne

D&apos;où aussitôt 3) et l&apos;inclusion FvVczF^KV, quel que soit jeZ. Si f^F]vV, on a

*&gt;(/) /&apos; &lt; h donc ^x (/) &lt; flO&quot;&apos; +1) ^ 4J&gt; d?(&gt;ù /^ ^S&gt; ce qui entraîne l&apos;égalité de 2).

Preuve de la proposition. Grâce à 3.2, il suffit de considérer le cas H {e}.
Montrons qu&apos;on peut en plus supposer que v e Y(G/{e}) prenne au moins une

valeur strictement positive sur fc[G]. Considérons G G x{e}c G x fc* et posons
fc[G x fc*] fc[G][t, r1]. Il existe une unique valuation v e Y ((G x fc*)/{e}) dont la

restriction à fc(G) est v et qui vérifie v(t) 1. Il est clair qu&apos;il suffit de démontrer
la proposition pour â
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Supposons donc que v eT(G/{e}) et qu&apos;il existe fe fc[G] tel que v(f)&gt;0. Dans
ce cas, on peut trouver un plongement G G/{e}&lt;-»X, avec la variété X affine et
normale, et un fermé Y dans X, stable par G et de codimension 1, tels que
Ûv — €x,y- Autrement dit, nous sommes dans les conditions du lemme 2.

Soit Vn (n e N) une suite croissante de sous-espaces vectoriels de dimension
finie de k[X], telle que UneN Vn fc[X]. Pour tout neN, soit pn l&apos;entier que le

lemme 2 associe à Vn ; choisissons qn &gt; pn tel que la suite pjqn —&gt; 0; soit enfin Àn

l&apos;élément de G*((t)) que le lemme 2 associe à Vn et qn. Désignons par vn la
valuation de Tx{GI{e}) obtenue en normalisant vkn.

Alors vn tend géométriquement vers v. En effet, soit rn (neN) la suite des

nombres rationnels positifs telle que rnvn (l/qn)i\n. D&apos;après la propriété 3) du
lemme 2, si fe k[X], dès que /e Vn, on a \rnvn(f)-v(f)\&lt;pjqn qui tend vers 0. Si

fek(G/H), écrivons f=g/h avec g, hek[X]; alors rnvn(f) rnvn(g)-rnvn(h) qui
tend vers v(g)-v(h) v(f). D&apos;autre part, si V est un sous-espace vectoriel de

dimension finie de fc(G), il existe gek[G] et n n(V) tels que gV&lt;= Vn. Alors,
pour tout i gZ, si / (i + v(g))/rn - vn(g), de la propriété 2) du lemme 2 on déduit
que FlvV F1VnV, ce qui termine la preuve de la proposition.

S. Compléments sur les plongements élémentaires

Les plongements élémentaires sont les plongements les plus simples possibles.
A ce titre, ils méritent d&apos;être étudiés, ce que nous commencerons à faire, après
deux préliminaires, dans les trois derniers numéros de ce paragraphe.

5.1. Soit G&apos; un sous-groupe algébrique de G contenant H.

Sous l&apos;opération de G1 par translations à droite, G est l&apos;espace total d&apos;un fibre
principal de base G/Gr. Pour toute G&apos;-variété X\ on peut donc former le fibre
associé à ce fibre principal, de fibre type X&apos;. On le notera G *GX;. L&apos;opération

de G dans lui-même par translations à gauche, passe au quotient en une
opération de G dans G *GX/.

Il est clair que, pour que X&apos; soit un plongement (resp. un plongement
élémentaire) de G&apos;/H, il faut et il suffit que G *G&apos;X&apos; soit un plongement (resp. un
plongement élémentaire) de G/H.

LEMME. Soit X un plongement élémentaire de G/H d&apos;orbite fermée T. Pour
qu&apos;il existe un plongement élémentaire X&apos; de G&apos;/H tel que X=* G *GX&apos;, il faut et il
suffit que Vadhérence de G&apos;/H dans X rencontre T.
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Preuve. Il est clair que la condition est nécessaire. Montrons qu&apos;elle est aussi

suffisante. Désignons par X&apos; l&apos;adhérence de G/H dans X. C&apos;est un plongement de
G&apos;/H, mais a priori X&apos; n&apos;est pas nécessairement lisse. Considérons le G-
morphisme naturel &lt;p:G *G&gt;X&apos;-+X. Modulo l&apos;identification G/H G*GG7H,
&lt;p induit l&apos;identité de G/H, et en particulier &lt;p est birationnel. Pour tout x e T, on a

dim Gx dim H+1. Par suite, dim Gx&lt;dim H-h 1, d&apos;où

dim G7G; dim G&apos; - dim Gx &gt; dim G&apos; -dim H-1 dim G&apos;/H -1.
Puisque dim(TnX&apos;)&lt;dimG7H, il s&apos;ensuit que G&apos; a au plus un nombre fini
d&apos;orbites dans X&apos;DT, et que les fibres de &lt;p sont finies. D&apos;après le théorème
principal de Zariski, &lt;p est un isomorphisme. H s&apos;ensuit que X&apos; est un plongement
élémentaire de G7H, ce qui démontre le lemme.

5.2. La proposition du numéro suivant s&apos;appuiera également sur le lemme que
voici (qui concerne les groupes réductifs de transformations).

LEMME. Soient K un groupe algébrique réductif connexe, X une variété

algébrique affine lisse dans laquelle K opère algébriquement, Y une sous-variété
lisse de X distincte de X et stable par K, et enfin x un point de Y fixé par K. On

suppose que Kn&apos;a pas de point fixe dans X—Y. Il existe alors une orbite de K dans

X—Y dont Vadhérence dans X contient x.

Ce lemme résulte par exemple sans peine des résultats de [7].

5.3. Dans la suite de ce paragraphe, on se bornera à considérer le cas H {e}.

Soit X un plongement élémentaire de G G/{e} (on considère G comme

espace homogène, G opérant dans lui-même par translations à gauche), d&apos;orbite

fermée T. Si x g T, le groupe d&apos;isotropie Gx est de dimension 1. Deux cas peuvent
se produire: ou bien (Gx)°, la composante connexe de Gx, est isomorphe au

groupe multiplicatif fc*; ou bien (Gx)° est isomorphe au groupe additif fc. Dans ce

numéro et le suivant nous allons considérer le premier cas, et dans le numéro 5.5

nous pensons plutôt au second.

Voici une manière simple de construire des plongements élémentaires de G:
choisissons un sous-groupe G&apos; de G isomorphe à fc*, et considérons le plongement

élémentaire fc*c-&gt;fc, où fc* opère linéairement dans fc; il induit par
G*G^k*k un plongement élémentaire de G. Ce qu&apos;on a obtenu ainsi comme
G-variété n&apos;est rien d&apos;autre qu&apos;un G-fibré en droites sur G/G&apos;, dont la section
nulle forme une orbite fermée, et dont le complémentaire de la section nulle est

isomorphe à G.
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PROPOSITION. Soit X un plongement élémentaire de G d&apos;orbite fermée T, et

soit xeT. On suppose (Gx)° — fc*. Alors Gx — fc*, et il existe un conjugué G&apos; de Gx

dans G tel que X— G *G&apos;-fc*k.

Preuve. D&apos;après un théorème de Sumihiro (voir [6]), (Gx)° étant un tore et X
lisse donc normal, on peut trouver un voisinage de x dans X, ouvert affine et
stable par (Gx)°. D&apos;après 5.2, il existe une orbite de (Gx)° dans X-T dont
l&apos;adhérence dans X contient x. On en déduit l&apos;existence d&apos;un conjugué G&apos; de

(Gx)° dans G, dont l&apos;adhérence dans X rencontre T. D&apos;après 5.1, on peut trouver
un plongement élémentaire X&apos; de G&apos; tel que X—G*GX\ Puisque les seuls

plongements élémentaires de fc* sont fc et Pi~{0}, quitte à choisir convenablement

l&apos;isomorphisme G&apos; —fc*, on a X — G*G&gt;^k*k. Il s&apos;ensuit que Gx est un
conjugué de G&apos;; en particulier, Gx est connexe.

5.4. On désigne par X*(G) l&apos;ensemble des morphismes de groupes algébriques
A:fc*—»G non triviaux (c&apos;est-à-dire tels que A(fc*)^{e}). L&apos;inclusion

k[t, *&quot;*]&lt;= fc((r)) permet de plonger X*(G) dans G*((t)).

Pour tout A € G*((t)), on note G (À) l&apos;ensemble des s e G tels que
A(r)sÀ(f)~1GGk[[t]]; on vérifie sans peine que G(À) est un sous-groupe de G.
Si A&apos;, AeX^G), on pose A&apos;~A, s&apos;il existe n\n eN* et sgG(A) tels que

Si A 6 X^c(G) &lt;= G*((t)), rappelons qu&apos;on désigne par XK le plongement
élémentaire associé à A (voir 4.8). Posons G&apos; A(fc*)&lt;=G; c&apos;est un sous-groupe
algébrique de G isomorphe à fc*. Il est clair d&apos;après 5.3 que Xx —G *G=*k*k.

PROPOSITION. Soient A&apos;, A e X*(G). Pour que Xx, =* Xx, il faut et il suffit que
A&apos;~A.

Preuve. Pour démontrer la proposition, on peut clairement se ramener au cas

où les deux morphismes A&apos;, A : fc* -» G sont injectifs; il suffit alors de montrer que
Xx&apos;^Xx si et seulement s&apos;il existe seG(A) tel que \&apos;(t) s\(t)s~1.

Supposons qu&apos;il existe seG(A) tel que A&apos;(r) sA(r)s~1. Alors, si Ton pose
sA(r)5-1A(0&quot;1, on a ^(i)eGkmi et À&apos;(f) ji,(f)À(f), d&apos;où Xv=-Xx d&apos;après

4.10.
Inversement, supposons Xx =^XX. Puisque A(fc*) et A&apos;(fc*) s&apos;interprètent

comme groupes d&apos;isotropie des orbites fermées dans Xx et Xv, on voit qu&apos;il existe

seG tel que k&apos;(t) s~lk(t)s. Par ailleurs, en raisonnant comme dans 4.10, on

peut trouver (a, jui)g Autk fc[[f]]x Gk[[f]] tel que A&apos;(0 jLt(t)A(a(f)). Puisque A est

un morphisme de groupes, on a A(a(t))A(r)&quot;1 A(a(r)/f)€Gk[[f]]. D&apos;où

A(r)sA(0~1 sA&apos;(0A(0&quot;1 5M&apos;(0A(a(r))A(r)-1GGk[[t]]. Il s&apos;ensuit que seG(k),
autrement dit que A&apos;~A.
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Remarque. Lorsque G est réductif, on peut montrer que les G(À), À eX%(G)
sont des sous-groupes paraboliques de G, et l&apos;ensemble quotient X^(G)/~ n&apos;est

alors rien d&apos;autre que la version de Mumford de l&apos;immeuble sphérique de G (voir
[8]), qu&apos;on peut donc considérer comme plongé dans

5.5. Soit X un plongement élémentaire de G d&apos;orbite fermée T, et soit xeT.

PROPOSITION. Le groupe GJ(GX)° est cyclique.

Preuve. Comme dans 4.10, soit À un germe formel associé à une courbe dans

X transverse à T, tel qu&apos;on ait \imt_&gt;0 k(t) x. Si s g G, on a alors seGx si et
seulement si limt_osÀ(f) x, c&apos;est-à-dire si et seulement s&apos;il existe (jut, a)e
Gk[[t]]xAutkfc[[fI| vérifiant \imt_+0 ii(t) e et sk(t) ix(t)k(a(t)).

Afin de pouvoir reformuler cette caractérisation de Gx de façon plus
commode, introduisons quelques notations. Posons si Autk fc[[f]], et désignons par
sin l&apos;ensemble des aesi qui induisent l&apos;identité dans fc[[t]]/fn+1fe[[f]]. Les sin
sont des sous-groupes distingués dans si si0, et l&apos;on a si\six — fc* et sijsîn+1 — k
si n&gt;l. Désignons par si(k) l&apos;ensemble des aesi tels que limt_^0 kiait))^)&apos;1

existe dans G. Définissons h:si(\)-+ G par h(a) \imt_+ok(a(t))\(t)~l. On
vérifie sans peine que s£(k) est un sous-groupe de si, et que h est un homomor-
phisme de groupes. La caractérisation précédente de Gx peut se reformuler de la
façon suivante: on a fi(^(À)) Gx.

De plus, on vérifie sans peine que, dès que n est assez grand:

2) si(k)/s£n est un sous-groupe algébrique du groupe algébrique si\sin\
3) h passe au quotient en un morphisme de groupes algébriques

si{k)lsdn-*G. Puisque (sd{k)C\s&amp;^)lsin, étant unipotent, est connexe, et

que s&amp;(k)l(s&amp;(k)C\s&amp;^ s&apos;injecte dans si/sii~k*, on voit que
(si(k)/sin)l(M(k)/sin)0 est cyclique. Par suite GJ(GX)° est cyclique, comme
quotient d&apos;un groupe cyclique.

6. Reformulation de la définition des plongements

Dans ce §, nous assemblons les résultats des §§1 à 4.

6.1. Rappelons que l&apos;ensemble Q^G/H) est en bijection naturelle avec l&apos;ensemble

des orbites de G dans 3£(G/H) (voir 2.2); si l eZxiGIH); nous avons désigné

par Ti l&apos;orbite qui lui correspond. Si X est un sous-ensemble stable par G de

3E(G/H), nous désignerons par L(X) l&apos;ensemble des l e &amp;t(GIH) tels que Tt c X.



Plongements d&apos;espaces homogènes 213

PROPOSITION. Soit X un sous-ensemble stable par G de %(GIH).
1) Pour que X soit ouvert dans %(G/H)9 il faut et il suffit que L(X) soit ouvert

dans fix(G/H).
2) Pour que X soit noethérien, il faut et il suffit que L(X) le soit.

Preuve. Soit A une sous-algèbre affine stable par 93 de k(G/H). Rappelons
que nous avons noté XA l&apos;ensemble des x e 3E(G/H) tels que €x soit un localisé de

A; désignons de manière analogue par LA l&apos;ensemble des leSl^G/H) tels que €t
soit un localisé de A. Il est clair que XA &lt;=X si et seulement si LA c=L(X). La
première partie de la proposition en résulte aussitôt.

Si X est noethérien, onaXcU^i XAi, pour des sous-algèbres affines stables

par 2} de k(G/H) convenables, d&apos;où L(X)c= UfLxL^, ce qui montre bien que
L(X) est noethérien. Inversement, si L(X) est noethérien, on a L(X)&lt;^ U^ LAi,
où A!,..., Am sont certaines sous-algèbres affines stables par 93 de k(G/H), d&apos;où

^i XA), ce qui d&apos;après 1.5 implique bien que X est noethérien.

6.2. Soit /eS^G/H). Nous désignerons par 9X l&apos;ensemble des veT^G/H) tels

que Ov domine Ob Nous appellerons 8F
x la facette de l II résulte de 4.9 que

&amp;ij= 0. La facette 8?x constitue un renseignement important sur /; dans certains

cas, les éléments de Q^G/H) sont même déterminés par leur facette (voir §9).

Si L est un sous-ensemble de Q^G/H), nous dirons que L est séparé si les

facettes &amp;h leL sont disjointes.

PROPOSITION. Soit X un ouvert stable par G de X(G/H). Pour que X soit

séparé, il faut et il suffit que L(X) le soit

Preuve. Il est bien connu qu&apos;aucune localité ne peut dominer deux localités
distinctes d&apos;une variété séparée; par suite, si X est séparé, les facettes &amp;ble L(X)
sont disjointes.

Réciproquement, supposons X non séparé. On a alors Âx ¥&quot; A*&gt; ou Ax désigne
la diagonale de XxX. L&apos;opération diagonale de G dans XxX laisse stable âx,
Âx et Âx-Ax. Il n&apos;est pas difficile de voir que Âx s&apos;identifie à un ouvert stable par
G de £(G/H), et que les deux projections X&lt;~XxX—&gt;X induisent deux

morphismes X &lt;— Ax —» X qui commutent à l&apos;opération de G et qui induisent
l&apos;identité de G/H. Soit T une orbite de G dans Âx - Ax. Puisque toute orbite de
G dans X(G/H) possède un voisinage séparé (1.5), on a tt^T) ^ tt2(T). Désignons

par lx et l2 les éléments de L(X) qui correspondent à tt^T) et 7T2(T). Par

construction, ^âx,t domine Û^ et €h. D&apos;après 4.9, il existe v g Tx(GIH) tel que Ûv

domine 0%XtT. Il s&apos;ensuit que les facettes &amp;lt et &amp;h ne sont pas disjointes.
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6.3. Nous pouvons maintenant reformuler la définition des plongements.

DEFINITION. Un plongement de G/H est la donnée d&apos;un sous-ensemble

ouvert, noethérien et séparé de fi^G/H).

On voit comment cette reformulation se rattache à la définition des plongements

donnée au §1: posons X(L) Ul€LTIc36(G/H); lorsque L parcourt les

différents sous-ensembles ouverts noethériens et séparés de fix(G/H), grâce à 6.1

et 6.2, on obtient par X(L) les différents plongements de G/H.
De 2.3, on déduit que &amp;f(G/H) est ouvert dans SixiG/H); de plus, pour qu&apos;un

sous-ensemble L de &amp;f(G/H) soit ouvert, il faut et il suffit manifestement qu&apos;il

soit saturé par localisation dans &amp;f(G/H) (c&apos;est-à-dire, tout / de fif(G/H), pour
lequel il existe VeL tel que 0t soit un localisé de Ov, appartient à L). Il s&apos;ensuit,

pour les plongements de G/H dont le nombre d&apos;orbites est fini, une
caractérisation particulièrement simple: ce sont les sous-ensembles finis de

fif(G/H), saturés par localisation dans £f(G/H), et séparés.
Soit H&apos; un sous-groupe algébrique de G contenant H. Soient X un plongement

de G/H,X&apos; un plongement de G/H&apos;. De 2.3, on tire aussitôt que les

assertions suivantes sont équivalentes.
1) Le morphisme naturel G/H^&gt; G/H&apos; se prolonge en un morphisme X—&gt; X&apos;.

2) Pour tout leL(X) il existe un (unique) VeL(X&apos;) tel que Ox domine Ov.

6.4. Soit H&apos; un sous-groupe algébrique de G contenant H. Soient X un plongement

de G/H,X&apos; un plongement de G/H&apos;. Si veT^G/H), rappelons que l&apos;on

désigne par X» le plongement élémentaire correspondant.
On dira que v domine X si l&apos;identité de G/H se prolonge en un morphisme

X^-^X; on dira que t; domine X&apos; si le morphisme naturel G/H-+G/H&apos; se

prolonge en un morphisme X»—&gt;X&apos;. Si le morphisme naturel G/H-^G/H&apos; se

prolonge en un morphisme X-&gt; X&apos;, il est clair que tout v e Y^G/H) qui domine

X, domine aussi X&apos;.

PROPOSITION. Supposons que le morphisme naturel G/H&apos; -» G/H se

prolonge en un morphisme &lt;p : X-» X&apos;. Pour que ç soit propre, il faut et il suffit que tout

veYx(G/H) qui domine X&apos;, domine déjà X.

Preuve. Soient X, Y deux variétés algébriques intègres, U un ouvert non vide
de X, et &lt;p :X—» Y un morphisme. Si À €Xk((t)), on note &lt;p ° À son image par &lt;p

dans Yk&lt;(t)). On a le critère suivant de propreté: pour que &lt;p soit propre, il faut et
il suffit que, si K e Ukm)9 toutes les fois que limt_^o (&lt;P ° ^)(0 existe dans Y, alors

existe déjà dans X. La proposition résulte aussitôt de là et de 4.9.
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COROLLAIRE. Soit X un plongement de G/H. Pour que X soit une variété
complète, il faut et il suffit que tout v e Y^G/H) domine X.

7. Valuations invariantes sous un groupe réductif

Dans la suite, nous supposerons le groupe G réductif et l&apos;algèbre fc[G]
factorielle. Au début de ce §, nous expliquons de quelle manière nous utiliserons
ces hypothèses. Puis en 7.4, nous commençons par en tirer des conséquences pour
les valuations invariantes. Comme première application, nous obtiendrons en 7.5

que, pour certains espaces homogènes, le nombre d&apos;orbites dans tout plongement
est fini. Enfin en 7.6, nous esquisserons une voie à suivre pour déterminer les

valuations invariantes.

7.1. Supposons que l&apos;algèbre fe[G] soit factorielle.

Pour l&apos;étude des plongements, cette hypothèse n&apos;est pas très restrictive: il est
bien connu que pour tout groupe algébrique affine G, il existe un revêtement fini
de groupes algébriques p:G-*G tel que fc[G] est factorielle; et si H p~x(H),
on peut clairement identifier plongements de G/H et plongements de G/H.

Désignons par fc[G]* l&apos;ensemble des éléments inversibles de fc[G]. Il est bien
connu que tout élément de fc[G]* est, à facteur scalaire près, un caractère (c&apos;est-

à-dire un morphisme de groupes algébriques G—»fc*).
Désignons par Q)(G) l&apos;ensemble des fermés irréductibles de G de codimension

1. Pour tout D e 2&gt;, choisissons un fD e fc[G] qui engendre l&apos;idéal des fe fc[G] nuls

sur D. Tout fek(G) s&apos;écrit alors de manière unique

/=g n &amp;m

où gek[G]* et où les vD(f),De$)(G) sont des entiers presque tous nuls. Pour
tout Dg2)(G), la fonction vD :fc(G)*-»Z est une valuation discrète de fc(G).

Soit H un sous-groupe algébrique de G (non nécessairement connexe).

Désignons par tt : G —» G/H la projection naturelle et par Q}(G/H) l&apos;ensemble des

fermés irréductibles de G/H de codimension 1. Pour tout DeQ&gt;(G/H), H opère
(par translations à droite) de façon transitive dans l&apos;ensemble des composantes
irréductibles Du Dr de tt~1(D). Posons fD=fr&gt;x fur- H es* clair que les

/D (D e 3)(G/H)) sont des vecteurs propres de H. De plus, tout vecteur propre
fek(G) de H (et en particulier tout fek{G/H)) s&apos;écrit de manière unique

f=a fj fD&lt;/)
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où g € fc[G]* et où les vD(f), D e Q}(G/H) sont des entiers presque tous nuls. Pour
tout De3)(G/H), la fonction vD :fc(G/H)*—&gt;Z est une valuation discrète de

k(GIH).
Soit fe k(G/H). Ecrivons /= gh~\ avec g, h e k[G] sans diviseur commun. De

ce qui précède résulte aussitôt que g et h sont des vecteurs propres de H, de
même caractère.

Autre fait que nous utiliserons: pour tout fe k[G], il existe s € G tel que / et
s • / sont sans diviseur commun. En effet, pour s g G en &quot;position générale&quot;, le
fermé de G où s&apos;annulent / et s • / est de codimension &gt;2.

7.2. Supposons que le groupe G soit réductif. Rappelons quelques faits de base

sur les groupes réductifs et leurs représentations rationnelles (en caractéristique
nulle).

Toute représentation rationnelle d&apos;un groupe réductif est complètement
réductible. Pour connaître un G-module rationnel N, il suffit donc de connaître
tous les sous-G-modules irréductibles de N.

Désignons par G l&apos;ensemble des (classes d&apos;isomorphismes de) G-modules
rationnels irréductibles. Pour décrire G on procède traditionnellement de la
manière suivante. On fixe un sous-groupe unipotent maximal U de G. On pose
B =NG(U), le normalisateur de U dans G; c&apos;est un sous-groupe résoluble
maximal de G, qui est connexe et dont le radical unipotent est U. On écrit T pour
le quotient B/U qui est un tore, et on note X(T) le groupe des caractères de T (et
de B). Pour tout Me G, l&apos;espace vectoriel UM est de dimension 1. L&apos;opération

naturelle de T dans UM fournit donc un caractère \m de T. L&apos;application

G-^&gt;X(T) qui envoie M sur \m est injective. On note P l&apos;image de cette
application, et on appelle P l&apos;ensemble des poids dominants.

On se sert de F pour indexer G et pour manier les G-modules rationnels. De
manière plus précise, soit N un G-module rationnel, et soit MeG de poids
dominant rreP; alors un sous-G-module de N est irréductible et isomorphe à M
si et seulement s&apos;il est engendré par un vecteur propre de B dans N, de caractère
77. Autrement dit, pour connaître l&apos;opération de G dans N, il suffit de connaître
les vecteurs propres de B dans N et leurs caractères.

7.3. Supposons maintenant à la fois G réductif et l&apos;algèbre k[G] factorielle.

Fixons un sous-groupe algébrique H et un sous-groupe unipotent maximal U
de G. Dans ce qui suit, les groupes G, U et B NG(U) opéreront toujours par
&quot;translations à gauche&quot; et le groupe H toujours par &quot;translations à droite&quot;.

On désignera par 0&gt; l&apos;ensemble des fe k(G) qui sont à la fois vecteur propre
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de B et vecteur propre de H; 0&gt; est un sous-groupe multiplicatif de fc(G)*. On
notera BQ)(G/H) l&apos;ensemble des De3)(G/H) qui sont stables par B. Si

De3}(GIH), pour que fD e $&gt;, il faut et il suffit que DeBQ)(GIH). De plus, il est
clair que tout /eSP s&apos;écrit de manière unique

où gefc[G]*.
Soit A un sous-espace vectoriel de k(G/H). Nous dirons que A est quasi-G -

stable, s&apos;il existe une famille M(h), he9&gt; de sous-G-modules de fc[G] telle que

Nous dirons d&apos;un sous-espace vectoriel N de A qu&apos;il est &quot;bon&quot;, s&apos;il existe un
ensemble W de valuations (discrètes, normalisées) G-invariantes de k(G/H), et
une famille d&apos;entiers nw (w e W), tels que N est l&apos;ensemble des feA qui vérifient
w(f)&gt;nw, quel que soit

LEMME. Soit A un sous-espace vectoriel quasi-G-stable de k(G/H), et soient

N et N&apos; deux &quot;bons&quot; sous-espaces vectoriels de A. Pour que N-N&apos; ^ 0, il faut et il
suffit que &amp; H (N- N&apos;) + 0.

Preuve. Si he&amp;, désignons par N(h) (resp. Nf(h)) l&apos;ensemble des geM(h)
tels que gheN (resp. N&apos;). D&apos;après le corollaire 2 de 3.2, on a v((s * g)h) v(gh),
quels que soient se G et geM(h) et quelle que soit la valuation G-invariante i;
de k(G/H). Puisque N et Nf sont &quot;bons,&quot; il s&apos;ensuit que N(h) et N&apos;(h)

sont des sous-G-modules de M(h). Si N-N&apos;^0, il existe he&amp; tel que
N(h) - N&apos;(h) ^ 0. Grâce aux propriétés des représentations rationnelles des groupes
réductifs rappelées en 7.2, B possède un vecteur propre / dans N(h)-N&apos;(h).

Puisque he@&gt; et que hM(h)cz A &lt;= k(G/H), tous les éléments de M(h) sont des

vecteurs propres de H. Par conséquent /e0&gt; et hfe&amp;n(N-N&apos;)j=0, c.q.f.d.

Remarque. Nous avons vu en passant qu&apos;un &quot;bon&quot; sous-espace vectoriel d&apos;un

espace vectoriel quasi-G-stable est encore quasi-G-stable.

7.4. Rappelons que, dans toute la suite, G sera un groupe réductif dont l&apos;algèbre

fc[G] est factorielle, H un sous-groupe algébrique de G, et U un sous-groupe
unipotent maximal de G, qui resteront fixés. De plus, sauf mention expresse du
contraire, les groupes G, U, B =NG(U) opéreront par &quot;translations à gauche&quot;, et
le groupe H par &quot;translations à droite&quot;.

PROPOSITION. Deux valuations discrètes G-invariantes de k(G/H), qui
coïncident en restriction à 9&gt;nk(G/H), sont égales.
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Preuve. Désignons par A l&apos;ensemble des fek(G/H) qui peuvent s&apos;écrire

f gh, avec gek[G] et he9&gt;; A est une sous-algèbre de k(G/H).
Soit fe k(G/H). Ecrivons /= gig2~\ où g1} g2e k[G] sont sans diviseur

commun. D&apos;après 7.1, g! et g2 sont des vecteurs propres de H, de même caractère.
Dans le G-module engendré par gx choisissons un vecteur propre h de B (voir
7.2). Il est clair que h est aussi un vecteur propre de H de même caractère que gx

et g2. Par suite he&amp; et gih~\ g2h-1€A. Il s&apos;ensuit que / est dans le corps des

fractions de A. Autrement dit, nous avons montré que A possède k(G/H) comme
corps des fractions.

Pour tout h g 0&gt;, désignons par M(h) l&apos;ensemble des g e fc[G] qui sont vecteur

propre de H, de caractère inverse à celui de h. Il est clair que les M(h), he9&gt; sont
des sous-G-modules de fc[G], et que A= Uheg» WVf(h). Autrement dit, A est

quasi-G-stable (voir 7.3).
Soient maintenant vt et v2 deux valuations discrètes G-invariantes de k(G/H),

qui coïncident en restriction à &amp;C)k(GIH) 0&gt;nA. Puisque A est quasi-G-
stable, de 7.3 résulte aussitôt que v1 et v2 coïncident sur A. Puisque le corps des

fractions de A est k(G/H), il s&apos;ensuit que v1=zv2, c.q.f.d.

7.5. Si le degré de transcendance de Bk(G/H) sur k est ^1 (autrement dit, si B
possède une orbite de codimension &lt;1 dans G/H), la structure de B3)(G/H) est

particulièrement simple.
1) Si degtrfcBfc(G/H) O, c&apos;est-à-dire si B a une orbite ouverte dans

G/H,BÇè{G/H) est l&apos;ensemble fini des composantes irréductibles du

complémentaire de cette orbite ouverte (l&apos;orbite étant affine, son
complémentaire est pur de codimension 1).

2) Si deg trk Bk(G/H) 1, soit U l&apos;ouvert de G/H formé des orbites de B de
codimension 1 dans G/H; alors, si DeB2è(G/H), ou bien D est l&apos;adhérence

dans G/H d&apos;une orbite de JB dans U, ou bien D est une composante du
complémentaire de U dans G/H.

PROPOSITION (voir aussi [19]). On suppose que B a une orbite ouverte dans

G/H Alors le nombre des orbites de G dans tout plongement de G/H est fini.

Preuve. Si B a une orbite ouverte dans G/H, nous venons de voir que
l&apos;ensemble B£d(G/H) est fini. H est clair que cela implique que les groupes 0&gt;/fc* et
(9&gt;nk(G/H))/k* sont de type fini. Soient fu...9fr des éléments de 0&gt;nk(G/H)

qui avec fc* engendrent le groupe 0&gt;nk(G/H). D&apos;après 8.1, toute valuation
veT(G/H) est déterminée par (v(fx),..., v(fr))eZr. H s&apos;ensuit que l&apos;ensemble

r(G/H) est dénombrable.
Raisonnons maintenant à l&apos;envers. Supposons qu&apos;il existe un plongement X de
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G/H dont le nombre des orbites est infini. Ce nombre est alors forcément
non dénombrable (nous supposons le corps de base non dénombrable!). Soit
L &lt;=¦ 2X(G/H) l&apos;ensemble des orbites de G dans X. On sait que les facettes SFhleL
sont disjointes (cela exprime le fait que X est séparé, voir 6.2) et non vides (voir
4.9). De L non dénombrable suit donc Y^GIH) non dénombrable, ce qui
démontre la proposition.

Remarques. 1) Lorsque B a une orbite ouverte dans G/H, il résulte aussitôt
de la proposition précédente que Y(G/H) T*1(G/H), et plus généralement que
2(GIH) ZiiG/H) S, (G/H).

2) De nombreux auteurs ont déjà étudié (et classé) les sous-groupes H de G
tels que JB possède une orbite ouverte dans G/H (en demandant parfois que H
possède une orbite ouverte dans G/B, ce qui revient au même), voir par exemple
[17]. Voici quelques cas de tels H: les sous-groupes de G qui contiennent un
sous-groupe unipotent maximal; les sous-groupes de G fixés par un automor-
phisme involutif.

7.6. Terminons ce § par quelques indications pratiques sur la détermination de

T(GIH).

Pour tout il g 0&gt;, désignons par M^ un G-module rationnel irréductible de

poids dominant tt. Notons M^ le dual de M^. Il est bien connu que fc[G], en tant
que G x G-module (G opérant par &quot;translations à gauche et à droite&quot;), est
isomorphe à ©&lt;Tr€PMir&lt;8)Mir. Il s&apos;ensuit que uk[G], l&apos;algèbre des invariants de U
opérant par &quot;translations à gauche&quot;, est isomorphe, en tant que G-module (G
opérant par &quot;translations à droite&quot;), à ©^pÀd^. L&apos;opération de T B/U dans
uk[G] se retrouve dans la graduation de ^^epM^ par les poids P^X(T).

Pour tout ttgP, choisissons un isomorphisme de Mw sur l&apos;unique sous-G-
module de uk[G] qui lui est isomorphe, et convenons dans la suite d&apos;identifier M*
à son image (deux telles identifications ne diffèrent que par une homothétie).
L&apos;ensemble 0&gt; H k[G] s&apos;identifie alors à la réunion des vecteurs propres de H dans
les A^, ire P.

Pour simplifier notre discussion, supposons que G/H soit quasi-affine. Dans ce

cas, on peut trouver des /&lt;,. (a e S) dans 0&gt; H k[G/H] qui engendrent le groupe
&amp;nk(G/H). D&apos;après 7.4, toute valuation v de Y(G/H) est déterminée par les
*&gt;(/&lt;r) (cr e X). Reste alors à trouver les familles d&apos;entiers na (&lt;r g X) pour lesquelles
il existe v e Y(G/H) tel que v(fa) na.

Lorsque À e Gk((t)), on peut calculer Da(/&lt;t) de la manière suivante. Supposons

que /&lt;,.€M^ =Mff®kc]VJjr®/c((0). Le groupe Gk«t)) opère de manière naturelle
dans Mlr®fc((0) et vK(fa.) n&apos;est rien d&apos;autre que l&apos;ordre en t de la série formelle
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A • f&lt;reMn®k((t)). De plus, le groupe

Hkm)) x Autk fc[[f]]

opère de manière naturelle dans Gk((t)), et t\ et vK&gt; coïncident en restriction à

k(G/H) lorsque À, À&apos;e Gkat)) sont sur une même orbite de F (voir 4.10).
D&apos;où une voie à suivre pour déterminer Vt(G/H): on cherche d&apos;abord sur

chaque orbite de F dans Gk((t)) un À d&apos;une forme simple, puis on calcule les
t&gt;x(/&lt;r) (creX). Enfin, pour trouver les valuations de T2(G/H), on peut se servir de
4.11.

Ces indications semblent assez raisonnables lorsque le degré de transcendance
de Bk(G/H) sur k est &lt;1 (pour un exemple, voir [16]).

8. Germes de plongements normaux sous un groupe réductif

Dans ce §, nous étudierons les germes de plongements (lorsque la variété est
normale et le groupe est réductif) dans le même esprit qu&apos;au § précédent les

valuations invariantes. Pour cela, nous nous appuierons beaucoup sur la théorie
des anneaux de Krull (pour un bon exposé de cette théorie, voir par exemple [3],
chap. 7).

8.1. Désignons par 2n(G/H) l&apos;ensemble des le£(G/H) tels que Ûx soit une
algèbre intégralement close dans k(G/H). Si le2n(G/H), Oi est un anneau
noethérien intégralement clos, donc un anneau de Krull, dont les valuations
essentielles sont manifestement de deux sortes:

1) un nombre fini de valuations appartenant à T(G/H) (si X est un plonge-
ment de G)H et si Y est un fermé stable par G de X, tels que OXtY=Oh il
s&apos;agit des valuations correspondant aux composantes irréductibles de

X—G/H, qui sont de codimension 1 dans X et qui contiennent Y); on
notera Vx l&apos;ensemble de ces valuations;

2) un certain nombre de valuations du type vD, où D&lt;=3)(G/H) (si X, Y sont
comme plus haut, il s&apos;agit des D dont l&apos;adhérence dans X contient Y); on
notera 2X l&apos;ensemble de ces éléments de 9)(GIH).

Puisque Cx est un anneau de Krull,€x est déterminé par Yx et %\ plus
précisément

ct= pi ovn n o^
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Voici en gros le programme de ce §: nous montrerons que tout le£n(G/H) est
déjà déterminé par Yx et B% =% nB3)(GIH) (8.3), puis nous caractériserons les

couples ThB% (8.8).

8.2. Si Nczfc[G] et si gek(G), on désignera par gN le sous-ensemble de fc(G)
des gfifeN), et par k[gN] la sous-algèbre de k(G) engendrée par gN.

LEMME. Soit leQn(G/H). Il existe un sous-G-module de dimension finite M
de k[G] et un he&amp;HM vérifiant:

1) h^Mcd;
2) Ox est le localisé de k[h~xM] en Vidéal premier k[h~lM]nmb
De plus, h vérifie alors forcément vD(h) 0 quel que soit

Preuve. La localité l étant géométrique, on peut trouver une sous-algèbre de

type fini A de 6X telle que 6X soit le localisé de A en l&apos;idéal premier Anmx.
Choisissons un système de générateurs de A sous la forme /ig~\ ,/rg&quot;1, où
fu ,fr et g sont des éléments de k[G] sans diviseur commun. D&apos;après 7.1,

fl9..., fr et g sont alors des vecteurs propres de H, de même caractère. Si N
désigne le sous-espace vectoriel de k[G] engendré par fu..., fr et g, on a

A fctg^iV]. Puisque N et g sont dans diviseur commun, et que g~lN^A c= Ob

uo(g) 0 Quel Que s°it D € 3&gt;i.

Désignons par M le sous-G-module de fc[G] engendré par N. Puisque les

opérations par translations à gauche et à droite commutent, les éléments de M
sont encore des vecteurs propres de H, de même caractère que g. Par suite
g&quot;1Mc:k(G/H). D&apos;après le corollaire 2 de 3.2, il s&apos;ensuit que v(g~\s • /))
v(g~lf)&gt;0, quels que soient seGJeN et veVi. D&apos;autre part, vD(g~lf)&gt;

^D(g~1) 0, quels que soient feM et De%. Par suite, toutes les valuations
essentielles de Ox restent positives sur g^M, d&apos;où il suit que g&apos;^c^,.

Choisissons un veV(G/H) tel que ûv domine Ox (voir 3.5). Le sous-espace
vectoriel M&apos; des feM tels que g~xfemx peut alors aussi se définir par l&apos;inégalité

^&gt;(g~1f)&gt;0. Par suite, du corollaire 2 de 3.2 résulte que M&apos; est stable par G. Par
construction, geM-M&apos; ^ 0. Grâce aux propriétés des représentations rationnelles

des groupes réductifs rappelées en 7.2, B possède un vecteur propre h dans
M—M&apos;. Puisque les éléments de M sont des vecteurs propres de H,he&amp;. Par
construction g^heûf. Par suite, h~1M {g~1h)~1 - g~lM^€h d&apos;où 1). De
g~1M (gh~1)~1 • h~xM résulte que g~xM (et donc aussi A) est contenu dans le
localisé de k[h~xM] en l&apos;idéal premier k[h~lM]r\mb d&apos;où aussitôt 2).

Enfin, M est un sous-G-module de fc[G], heM et h~lM&lt;^€x\ puisqu&apos;on peut
choisir seG tel que h et s • h sont sans diviseur commun, de (s • h)h~le€x suit
aussitôt vD(h) 0 quel que soit De9)x.
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8.3. Soit S)cBâ)(G/H) et soit W&lt;= y(G/H).

PROPOSITION. Il existe au plus un leQn(G/H) tel que B®x =0 et Yx W.

Preuve. Désignons par 0&gt;(3&gt;) l&apos;ensemble des he9&gt; tels que vD(h) 0 quel que
soit De 2&gt;. Désignons par A(2&gt;) la sous-algèbre des fek(G/H) qui peuvent
s&apos;écrire f=gh9 où gek[G] et ftG0&gt;(2&gt;). Enfin, désignons par A=A(2), W) la
sous-algèbre des feA(Q)) tels que w(/)&gt;0 quel que soit welT.

Soit le2n(G/H) tel que B3, S&gt; et y, T. Puisque toute valuation essentielle
de ûi reste positive sur A, 0t contient A. Si M et h sont comme dans le lemme de

8.2, il est clair que h~xMcA. Il s&apos;ensuit que €t est le localisé de A en l&apos;idéal

premier A H mj. Enfin, ^HAHmi peut aussi se décrire comme l&apos;ensemble des

/€ 0&gt; qui vérifient vD(f) &gt;0 (D g 9) Bffl,) et w(/) &gt;0 (w g W y,), l&apos;une au moins
des inégalités étant stricte.

Soit maintenant V un &quot;autre&quot; élément de Qn(G/H) tel que B3)v 3) et Vv W.

Il est clair que A(2&gt;) est quasi-G-stable, au sens de 7.3. D&apos;autre part, A nïfy et
AH3Wr, sont des &quot;bons&quot; sous-espaces de A (S): en effet, si veV(G/H) est tel

que 0v domine Oi (voir 3.5), A HSPÏj peut aussi se décrire comme l&apos;ensemble des

/e A(20 tels que w(f) &gt;0 (w g T»0 et v(f)&gt;0, et pareil pour A n2Wr. D&apos;après 7.3,
de ^ H A HSfy ^flA fl2Rr résulte alors A nSfy A nSWr, d&apos;où 1 T, c.q.f.d.

8.4. On notera X(H) le groupe des caractères de H. Si fek(G) est un vecteur

propre de H, on notera Xf son caractère, */e^Clï). Soit Ec fc(G). Si ^gX(H),
on notera jBx l&apos;ensemble des vecteurs propres de H dans E de caractère x- Enfin,
on désignera par XE(H) l&apos;ensemble des x^XiH) tels que Ex^ 0.

En général, on a Xk[G](H)^X(H); Xk[G](H) est seulement un sous-monoïde
de X(H) qui engendre X(H) en tant que groupe; pour que Xk[G](H) X(H), il
faut et il suffit que l&apos;espace homogène G/H soit une variété quasi-affine (voir [8]).

Posons 0&gt;+ 0&gt;Hfc[G]. Pour tout x^MH), k[G]x est un sous-G-module de

fc[G]. Par suite, grâce aux propriétés des représentations rationnelles des groupes
réductifs rappelées en 7.2, si fc[G]x^0, B possède un vecteur propre dans k[G]x.
Il s&apos;ensuit que Xk[o](H) X*+(H).

Soit 9)czBQ}(G/H). Rappelons que &amp;(9i) est le sous-groupe des fe&amp; tels que
vD(f) — 0 quel que soit D g % et que A(0) est la sous-algèbre des /g k(G/H) qui
peuvent s&apos;écrire f=gh, avec gGfc[G] et

LEMME. Pour que le corps des fractions de A(3) soif égaf à k(G/H), il faut et

il suffit que 9) vérifie la condition

(D) X(H) est engendré, en tant que monoïde, par X^&gt;+(H) et X&amp;&gt;m(H).

Preuve. Supposons que Si vérifie (D). Soit fek(G/H). Ecrivons / /i/î\ où
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/i5/2^ fc[G] sont sans diviseur commun. Nous savons que ft et f2 sont alors des
vecteurs propres de H, de même caractère. D&apos;après (D), il existe un vecteur
propre g de H dans fc[G] et un h g 9&gt;(3&gt;), tels que xJÎ Xj* XgXh- Puisque fxgh
et f2gh appartiennent alors à A (2)), / est dans le corps des fractions de A (S). Par
conséquent, le corps des fractions de A(2) est bien k(G/H).

Inversement, supposons le corps des fractions de A(3)) égal à k(G/H). Puisque
X&amp;+(H) engendre le groupe X(H), pour montrer que 2&gt; vérifie (D), il suffit de voir
que, pour tout vecteur propre g de H dans fe[G], Xg est dans le monoïde
engendré par X&amp;+(H) et X9(0)(H). Choisissons s € G tel que g et s • g sont sans
diviseur commun. On a (s * g)g~1ek(G/H). Par hypothèse, il existe fi,f2ek[G]
et he&amp;(®) tels que fA^hekiG/H) et (s • g)g~1 fMfih)&apos;1 hf^1. Les
éléments g et s • g étant sans diviseur commun, il existe fe k[G] tel que gf f2. II
est clair que f2 et / sont des vecteurs propres de H. De g&quot;1 ff2l fh(f2h)~1, on
tire alors Xg1 XgXH, c.q.f.d.

8.5. Soit ^c:B2)(G/H) et soit W&lt;^Y(G/H). Rappelons que nous avons désigné

par A(2&gt;, W) la sous-algèbre des feA(Çè) tels que w(/)&gt;0 quel que soit w g W.

Pour tout D € 2i(G/H), choisissons 5 € G tel que fD et s • fD sont dans diviseur
commun (pour la définition de /o, voir 7.1). Posons gD (s &apos; fn)fH&gt;&apos; On vérifie
sans peine les assertions suivantes: goe k(G/H), vD(gD)&lt;0, vD(gD)&gt;0 quel que
soit D&apos;e9(G/H)-{D}9 et iKgo) 0 quel que soit veT(G/H) (cette dernière
assertion résulte du corollaire 2 de 3.2).

LEMME 1. Soit DeB$)(G/H). Pour que De% il faut et il suffit que vD reste

positif sur

Preuve. Si De3), il est clair que vD reste positif sur A(3), W). Si

DeB3)(GIH)-% alors gDeA(3), W) et uD(gD)&lt;0.

Dans la suite de ce numéro, on supposera que W est un sous-ensemble fini de

LEMME 2. Pour que le corps des fractions de A(3&gt;, W) soit égal à k(G/H), il
faut et il suffit que 2), W vérifient les conditions (D) et

(W) 71 existe fe&amp;nA(2)) tel que w(f)&gt;0 quel que soit weW.

Preuve. Posons A A(% W).

Supposons que le corps des fractions de A est k(G/H). Puisque A c A(âJ)c:
k(G/H), le corps des fractions de A{0) est alors aussi k(G/H). D&apos;après 8.4, il
s&apos;ensuit que 2&gt; vérifie (D). D&apos;autre part, pour tout w€?,Aflmw^{0}: en effet,
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sinon, puisque le corps des fractions de A est k(G/H), w s&apos;annulerait sur
fc(G/H)*, ce qui n&apos;est pas possible. Il s&apos;ensuit que A nnweTr^wT^iO}. Il est clair
que A (20 est quasi-G-stable (au sens de 7.3), et que A nflweîr ™w est un &quot;bon&quot;

sous-espace de A(2)). D&apos;après 7.3, il s&apos;ensuit que &amp;&gt;HA nOw^w^wl^ 0&gt; ce qui
signifie que 2), W vérifient W).

Inversement, supposons que 29W vérifient (D) et (W). Soit geA(2&gt;). Si

/G^nA(2i) possède les propriétés de (W), alors fe A et gfN e A, dès que Ne^J
est assez grand. Il s&apos;ensuit que A et A (2)) ont même corps de fractions. D&apos;après

8.4, puisque 2) vérifie (D), ce corps est k(G/H).

Posons 2i 2&gt; U (2&gt;(G/H) - B2&gt;(G/H).

LEMME 3. On suppose que 2), W vérifient (D) et (W). L&apos;algèbre A (S, W) est

un anneau de Krull dont les valuations essentielles sont les vD (D e 2&gt;) et certaines
des valuations de W.

Preuve. Posons A A(2), W). D&apos;après le lemme 2 le corps des fractions de A
est k(G/H). Désignons par A1 le localisé de fc[G] en la partie multiplicative
fc[G]H0&gt;(2&gt;); A&apos; est un anneau factoriel. Du fait que A A&apos; Pi Clw^w@w, il résulte

que A est un anneau de Krull (toute intersection finie d&apos;anneaux de Krull est

encore un anneau de Krull). Puisque A flDeâ^uD^ Cïwew €w, il est clair que les

valuations essentielles de A se trouvent parmi les vD (D e 3)) et les w (w e W). Si
De2&gt;, on a vD(go)&lt;0, donc go^ A, mais vD&gt;(go)^:0 quel que soit D&apos;e2)-{D},

et w(g£)) 0 quel que soit w eW\ par suite, les valuations vD (D e 2&gt;) sont toutes
essentielles pour A.

Considérons encore les deux conditions suivantes portant sur 2), W.

(W)i Pour tout weW, il existe gwe0&gt;nA(2&gt;) tel que w(gw)&lt;0.

(W%2 Si card W&gt;2, pour tout weW, il existe /w e0&gt;nA(2&gt;) tel que

,- v
f&gt;0 si weW-{w&apos;}

(=0 si w w&apos;.

Remarques. 1) Si l&apos;espace homogène G/H est affine, la condition (W)i est

toujours remplie: en effet, toute valuation de T(G/H) prend alors des valeurs
strictement négatives sur k[G/H], donc aussi sur 3&gt; H k[G/H].

2) Lorsque card1fr&gt;2, (W&apos;)^2 implique (W) (il suffit de prendre pour / le

produit de deux des fw, w e W).
Pour abréger, nous désignerons par (W) la réunion des conditions (W&apos;)i et

LEMME 4. On suppose que 2, W vérifient (D) et (W). Pour que toutes les

valuations de W soient essentielles pour A(2), W), il faut et il suffit que 2), W
vérifient (W).
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Preuve. Posons A A (S, W). Par hypothèse, le corps des fractions de A est
k(G/H).

Si toutes les valuations de W sont essentielles pour A, on a

A(9)-A(â,{w})?t0

et

fi mw)-mw.£0,
Tr-{w&apos;} /

quels que soient w, xv&apos;eW. D&apos;après 7.3, ces ensembles contiennent des éléments
de 0&gt;, d&apos;où aussitôt (W)i et (W&apos;L2.

Soit weW. De (W)i suit que w est une valuation essentielle pour
A(®) nCw= A{% {w}). Cela termine la preuve si card W 1. En tout cas, &lt;9W est
alors le localisé de A (S) H &lt;?w en l&apos;idéal premier A(20 n3Ww. Soit g e A(20 H 0W. Si
card W&gt;2, d&apos;après (W&apos;)^2, il existe /w e A(2)n€w, inversible dans 6W, et tel
Que gfw^ A dès que NeN est assez grand. Il s&apos;ensuit que 0W est encore le localisé
de A en l&apos;idéal premier A H mw, ce qui montre bien que w est une valuation
essentielle pour A.

8.6. Soit 3)c:B2)(G/H) et soit WaY(G/H). On dira d&apos;un sous-ensemble qu&apos;il est

cofini si son complémentaire est fini.

LEMME 1. Si A (S), W) est une algèbre de type fini, alors 9) est cofini dans

Preuve. Soit fl9 ...,/r un système de générateurs de l&apos;algèbre A(3), W).
D&apos;après le lemme 1 de 8.5,2) peut se caractériser comme l&apos;ensemble des

DeB3)(G/H) tels que vD reste positif sur A(3, W). Mais vD reste positif sur
A(2&gt;, W) si et seulement si uD(/i) —0» • • »

^d(/&gt;-)— 0» condition qui détermine un
sous-ensemble confini de BSD(G/H).

LEMME 2. Pour que Valgèbre A(3&gt;, W) soit de type fini, il faut et il suffit que
3&gt;, W vérifient la condition

(F) ?nA(S, W) engendre une sous-algèbre de type fini de k(G).

Preuve. L&apos;opération de B dans fc(G) laisse stable A (2), W). La sous-algèbre de

k(G) engendrée par 0&gt;H A(9, TT) n&apos;est rien d&apos;autre que UA(3&gt;, 1*0. On doit donc

montrer que A(2), TP) est de type fini si et seulement si UA(2), W) l&apos;est. Soit t une
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indéterminée. Pour tout he&amp;(Qi)9 notons Ph:fc[G][f]-&gt; fc(G) rhomomorphisme
d&apos;algèbres qui prolonge l&apos;inclusion fc[G]&lt;=fc(G) et qui envoie t sur h. Faisons
opérer G dans fc[G][t] fc[G]®fc[t] par &quot;translations à gauche&quot; dans fc[G] et
trivialement dans k[t]; ph commute seulement à l&apos;opération de U. Nous savons

que A (S), W) est quasi-G-stable (plus précisément, si ft€0&gt;(2O et si M(h) est
l&apos;ensemble des gek[G] tels que hgeA(% W), alors les M(h), h e &amp;(Sb) sont des

sous-G-modules de fc[G], et A(% W)= UheiH2) hM(h)). Si A est une sous-
algèbre de fc[G][f], stable par G, grâce aux propriétés des représentations
rationnelles des groupes réductifs, il s&apos;ensuit que ph(A) A(2è, W) si et seulement
si ph(uA) uA(&lt;®, IV). Pour conclure, il suffit alors de savoir que A est de type
fini si et seulement si UA l&apos;est. Puisque G opère rationnellement dans A, ce
résultat est bien connu.

8.7. Soit Je£n(G/H) et soit Q)^B2)(GIH). Nous dirons que 3&gt; est adapté à i, si

1) A(3b9Yi) est une algèbre de type fini;
2) AO.rOctf,;
3) Û{ est le localisé de A(2j,T1) en l&apos;idéal premier AO,V|)nmi.

D&apos;après 8.5 et 8.6, ces conditions entraînent que $( c 2&gt;, et que 3, Yx vérifient
(D), (W), (W), (F) (d&apos;où en particulier que 2&gt; est cofini dans B3&gt;(G/H)).

Si S) est adapté à i, l&apos;algèbre A (S, Yx) est une sous-algèbre affine de k(G/H),
qui est clairement stable par l&apos;algèbre de Lie de G; il lui correspond donc un
ouvert XMgbtTl) de 3£(G/H) (voir §1).

PROPOSITION. Soif leQn(G/H). Il existe des â)&lt;=B^(G/H) adaptés à l De
plus, pour toute réalisation géométrique X\ Y&apos; de I, on peut trouver 2&gt;&lt;=B3&gt;(G/H),

adapté à l et tel que XA(2)j Yl)
&lt;= X&apos;.

Preuve. Soit X&apos;, Y&apos; une réalisation géométrique de /. Puisque €t est

intégralement clos, l&apos;ouvert des points normaux de X&apos; rencontre Y1. Par

conséquent, quitte à rétrécir X&apos;, on peut supposer la variété X&apos; normale.
Soient M et h comme dans 8.2, et posons A fc[h~1M]; c&apos;est une sous-

algèbre affine de k(G/H), stable par l&apos;algèbre de Lie de G. Notons XA l&apos;ouvert de

3£(G/H) qui correspond à A, et posons X G • XA ; c&apos;est l&apos;espace d&apos;un plonge-
ment de G/H. Désignons par Y le fermé de X tel que Ot ^y! P^1*

Yl5..., Ya, Ya+i&gt; • • • &gt; Y3 les composantes irréductibles de X—G/H qui sont de

codimension 1 dans X, où Yu..., Ya sont celles qui contiennent Y et qui
correspondent aux éléments de Yx\ enfin désignons par Y&apos;l9..., Y&apos;y les

composantes irréductibles de X-X&apos;.

L&apos;inclusion Mczk[G] induit des applications naturelles Sn(M)-&gt;k[G] (où
Sn(M) est la puissance symétrique n-ième de M). Notons Sn(M) l&apos;image de



Plongements d&apos;espaces homogènes 227

Sn(M) dans fc[G]. H est clair que tout fe A peut s&apos;écrire f=h~ng, avec neN* et
geSn(M). Il s&apos;ensuit que A est quasi-G-stable.

Pour tout fermé Z de X, désignons par a(Z) l&apos;idéal des éléments de A qui
s&apos;annulent sur ZHXA. Si Z est irréductible et stable par G, on peut choisir
veY(GIH) tel que ûv domine Ox,z\ &lt;*(Z) peut alors aussi se décrire comme
l&apos;ensemble des fe A tels que v(f)&gt;0.

Puisque Y n&apos;est pas contenu dans Ya+1,..., Y$, Y&apos;u Y&apos;y, on a

(û(Ytt+1)n---na(Y3)nû(Yi)n---na(Y;))-û(Y)^0.

D&apos;après 7.3, dans cet ensemble existe au moins un élément de &amp;, disons h&apos;.

Posons A&apos; AfXh&apos;)&quot;1]; A&apos; est une algèbre de type fini. La variété XA&gt; s&apos;identifie à

l&apos;ouvert de XA où la fonction h&apos; ne n&apos;annule pas. Puisque h! s&apos;annule sur X — X&apos;,

et que nous supposons X1 normale, A&apos; est intégralement clos, donc un anneau de

Krull. Puisque h&apos; s&apos;annule sur Ya+U Y0 mais ne s&apos;annule pas sur Y, on voit
que les valuations essentielles de A&apos; sont celles de Vl et certaines des t?D,

De3)(G/H).
Désignons par 2&gt; l&apos;ensemble des DeB2è(G/H) tels que vD(h) vD(h&apos;) 0. Si

Deâ)(G/H), il est clair que Afc:OVt3 si et seulement si Deà). Par suite, on a
A&apos; A(3&gt;, Ti). Il s&apos;ensuit que A(3&gt;, T{) est une algèbre de type fini. Puisque h&apos; ne
s&apos;annule par sur Y, on a A(2&gt;, Vt) A&apos; c Q. Puisque AcA&apos; A(§, Ti), on voit que
3) est adapté à l Enfin, puisque h&apos; s&apos;annule sur X—X&apos;, on a XA(2(fYl) XA&gt;&lt;= X&apos;.

8.8. Soit 2)czB2)(GIH) et soit TT un sous-ensemble fini de Y(GIH). Si

j€fiï(G/H), on désignera par 2K&quot;W, 0 l&apos;ensemble des De3) tels que dd s&apos;annule

sur 0&gt;nA(3, KO HCf, et par W(3&gt;, l) l&apos;ensemble des weW qui s&apos;annulent sur

Soit veYi(G/H). Voici deux conditions portant sur S, 7T, v.

(V) Pour tout /G0&gt;H A(2&gt;, T), on a u(/)&gt;0.

(V) Tout w € W s&apos;annule sur 0&gt; H A(3, T) n&lt;7* (autrement dit, 7^=

PROPOSITION. On suppose que % W vérifient (D), W), W), (F).
1) Soir i; € Y1(G/H) tel que % W, v vérifient (V). Il existe alors l eSJ(G/H) tel

que €i est le localisé de AO,f) en Vidéal premier A(%W)nmv. On a

ve^bB% 3&gt;0r, v) et Yx TT(a, v).
2) Inversement, soir Je2î(G/H) qui ueri/ie B2), 2KT, I) er r, W(3), I), er

soir t; e&amp;h Alors Sb9 W, v vérifient (V) er Ox est le localisé de A(3,1^) en
V idéal premier A(S&gt;,
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Preuve. Posons A=A(% W). D&apos;après 8.5 et 8.6, A est une sous-algèbre
affine de k(G/H), et A est un anneau de Krull, dont les valuations essentielles

sont les vD (D e 2&gt;) et les w (w e W).

Soit veT^G/H) tel que % W, v vérifient (V). L&apos;espace vectoriel A étant
quasi-G-stable, la condition (V) entraîne 0v=&gt;A (voir 7.3). L&apos;algèbre A étant
stable par l&apos;algèbre de Lie de G, il s&apos;ensuit que le localisé de A en l&apos;idéal premier
An(3Jlv détermine un le&amp;xiG/H) (voir 2.5); A étant intégralement clos,
l e£;(G/H). Par construction, v e 9X.

Soit Deâ». Pour que DeBQ)h c&apos;est-à-dire pour que la valuation vD reste
essentielle pour le localisé de A en l&apos;idéal premier A H mU5 il faut et il suffit que

Par définition de Q)(W, v), pour que DeQ)(W, v), il faut et il suffit que

(**)

II n&apos;est pas difficile à voir que AC\mVD est quasi-G-stable: en effet, tout

feAflm^ peut s&apos;écrire f=hg, où he&amp; vérifie vD(h)&gt;0 et vly(h) O

(D&apos;€â&gt;-{D}), et où g appartient au sous-G-module des éléments de fc[G] qui
vérifient hge k(GIH) et w(hg)&gt;0(weW).

D&apos;après 7.3, il s&apos;ensuit que (*)&lt;=&gt;(**).

De même, si w g W, pour que w e Yh il faut et il suffit que

Pour que w € W(% v), il faut et il suffit que

(**&apos;)

L&apos;espace vectoriel A étant quasi-G-stable, (*&apos;)&lt;*(**&apos;)•

Soit /€S?(G/H) tel que BQil=Q}(WJ) et y, *rO,0, et soit dg^,. De
B2t a 3} et Vtc:W résulte que Acfl,c Ow d&apos;où il suit que % W, v vérifient
(V). D&apos;après la première partie de la proposition, il existe Ve2ï(G/H) tel que Ût

soit le localisé de A en An2Rv. De B% ==2(W9 V) 2)(W, 0 B2\ et de

Vr TT(2&gt;, v) TT(2&gt;, I) r, résulte alors I I&apos; (voir 8.3), ce qui termine la preuve
de la proposition.
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COROLLAIRE 1. Soient l gfi;(G/H), v e &amp;x et 2&gt;c B3&gt;(G/H). Pour qwe 2) soit
adapté à /, il faut et il suffit que % Yh v vérifient (D), (W), W), (F), (V), V) et

que B3)x=2)(Ybv).

COROLLAIRE 2. Soir 2&gt;cBâ&gt;(G/H) er soir 7T un sous-ensemble fini de

Y(G/H). Pour qu&apos;il existe le&amp;ï(G/H) tel que BQ)X=Q) et Yx W, il faut et il suffit
qu&apos;on puisse trouver Q)f&lt;=^BQ}(GIH) et veY^G/H) possédant les propriétés
suivantes: &amp;9 W, v vérifient (D), (W), (W), (F), (V), V) et ® ®&apos;(W, v).

COROLLAIRE 3. Soir feSftG/H), soir 2&gt;cB3&gt;(G/H) adapté à l, et soit

veY^G/H) tel que 2),Yb v vérifient (V). Pour que ve&amp;b il faut et il suffit que
3), Yh v vérifient (V) et que B%=9)(Yh v).

8.9. Soit iefiï(G/H) et soit 2&gt;&lt;=b2j(G/H). Désignons par L(2&gt;, l) l&apos;ensemble des

l&apos;e£ï(G/H) possédant la propriété suivante: il existe v&apos;eY^G/H) tel que
2), Yh v&apos; vérifient (V) et tel que B%, ®(Yh v&apos;) et Yv Tx{% v1).

PROPOSITION. La famille des L(9&gt;, /), &lt;3) adapté à /, forme une base de

voisinages de l dans QxiG/H) (pour la topologie de Zariski).

Preuve. Soit Q)czB2)(G/H) adapté à Z; A(2), Yx) est alors une algèbre affine de

k(G/H), stable par l&apos;algèbre de Lie de G. D&apos;après 8.8, L(% l) peut aussi se

décrire comme l&apos;ensemble des VeQ^G/H) tel que Ox&gt; soit un localisé de

A(% Yx); par définition de la topologie de Zariski, L(% l) est donc ouvert dans

Q^G/H). D&apos;autre part, si L est un voisinage quelconque de l dans Q^G/H), de

8.7 résulte qu&apos;on peut trouver S adapté à / tel que JeL(â&gt;,

8.10. Supposons maintenant que B ait une orbite ouverte U dans G/H.
Désignons par Yl9..., Yr&gt; les composantes irréductibles de G/H- U; U étant
affine, Yu Yr&gt; sont de codimension 1 dans G/H, et constituent visiblement les

différents éléments de B2)(G/H). Désignons par r&quot; le rang de X(G), le groupe des

caractères de G, et posons r r&apos; + r&quot;. Il est clair que le groupe 0&gt;/fc* est isomorphe
à/r.

Soit 2)cB2j(G/JFf) et soit W un sous-ensemble fini de Y(G/H) Yt(GIH).
Rappelons un résultat classique: quelles que soient les applications Q-linéaires
&lt;Pi&gt; • • • » &lt;P«&gt; &lt;P«+i, • • • » &lt;P&amp; de Qr dans Q, le monoïde formé des /eZr tels que
&lt;Pi(/) &gt; 0,..., &lt;pa(/) &gt; 0 et &lt;pa+i(/) • • • &lt;P3(/) 0, est de type fini. Il en résulte

que (&amp;DA(% W))/k* est un monoïde de type fini; en particulier, &amp;DA(% W)

engendre une sous-algèbre de type fini de fc(G). On voit que la condition (F) est

toujours remplie.
Soit le&amp;n(GlH) 2ï(G/H) fy(GIH). De la finitude de B2i(G/H) et de ce
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qui précède, résulte que B% est déjà adapté à I. La résultat du corollaire 2 de 8.8
se simplifie alors comme suit: soit 2)c:b2j(G/H) et soit W un sous-ensemble fini
de Y(G/H); pour qu&apos;il existe JeSRG/H) tel que B% =2) et Yx T, il faut et il
suffit qu&apos;il existe v e Yt(GIH) tel que % W, v vérifient (D), W), W), (V), V) et

Nous allons reformuler ce résultat, afin de faire ressortir davantage l&apos;analogie

avec le cas particulier des plongements toriques (voir [5], [6]). Désignons par V le

Q-espace vectoriel de dimension finie obtenu en tensorisant par Q le Z-module
libre (0&gt;nfc(G/H))/fc*. Les éléments de Y(G/H) et les vD (DeBQ}(G/H)) se

laissent interpréter comme des éléments de V, l&apos;espace vectoriel dual de V. On
observera que l&apos;application D*-+vD de B® (G/H) dans V n&apos;est pas injective en
général.

Soit C un cône convexe de Qr. Rappelons qu&apos;on dit que C est saillant, si C ne
contient aucune droite de Qr. On notera C° l&apos;intérieur relatif de C (c&apos;est-à-dire

l&apos;intérieur de C dans le sous-espace vectoriel engendré par C). Si C&quot; est un autre
cône convexe de Qr, on dit que C&quot; est une facette de C, s&apos;il existe une forme
linéaire &lt;p:Qr—&gt;Q, positive sur C, et telle que C^Cfl^O).

Si @czB@(G/H) et si WcY(GIH), désignons par C(9, W) le cône convexe de

V engendré par W et les vD (De9). Si /e£n(G/H), posons C(l) C(B9i,r,).
Considérons les quatre conditions suivantes:

(a) Le cône C(9, TT) est saillant.
(b) Les droites Qw (w e W) sont des droites extrémales de C(2iï, W) et ne

coïncident pas avec l&apos;une des QvD(De2).
(c)

(d)

PROPOSITION. 1) Soif 2&gt;c:B(G/H) ef soif T un sous-ensemble fini de

T(G/H). Pour qu&apos;il existe l e &amp;Ï(GIH) tel que B9, 9 et Yi W9 il faut et il suffît

que % W vérifient les conditions (a), (b), (c), (d).
2) Pour tout leSRG/H), on a &amp;x =T1(G/H)nC(0°.
3) Si I, r€fiï(G/H), pour que Ov soit un localisé de Ûh il faut et il suffit que

C(V) soit une facette de C(l) et que %&gt; soit Vensemble des De% vérifiant
vDeC(l&apos;).

Preuve. Il est clair que (a) (W), que (b) (W), et que (c) remplace
avantageusement (V), (V) et 3&gt; ai(W9 v), d&apos;où 1). Les assertions 2) et 3) résultent
aussitôt de 8.8 et 8.9.

9. Classification des plongements normaux de SL(2)

Dans ce §, nous appliquerons les résultats des §§ précédents au cas où
G SL(2) et H {e}, pour obtenir la classification des plongements normaux de

SL(2)/{e}
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9.1. Comme d&apos;habitude, SL(2) est le groupe des matrices 1 de déterminant
\c a)

ad — bc — 1. Pour avoir des notations plus intrinsèques, désignons par M=fe2
l&apos;unique SL(2)-module rationnel irréductible de dimension 2.

Désignons par 17 le sous-groupe unipotent maximal de SL(2) formé des

/l b\
matrices I I, et posons B =NSL(2)(L0. Sauf mention expresse du contraire,

SL(2), U et B opéreront toujours par &quot;translations à gauche&quot;.

Le SL(2)-module rationnel ufc[SL(2)] (SL(2) opérant par &quot;translations à

droite&quot;) contient un unique sous-module isomorphe à M. Vu la structure
particulièrement simple de SL(2), tout morphisme injectif de SL(2)-modules
M~» afc[SL(2)] s&apos;étend en un isomorphisme de SL(2)-algèbres
S(M)-^ufc[SL(2)], où S(M) désigne l&apos;algèbre symétrique de M Nous fixerons
dans la suite un tel isomorphisme et nous le traiterons comme une égalité.

Il y a une bijection naturelle entre Pl9 l&apos;ensemble des droites de M, et
B3&gt;(SL(2)), l&apos;ensemble des fermés irréductibles de codimension 1 de SL(2),
stables par B. Si D est une droite de M, nous écrirons vD pour la valuation

qui lui correspond, lorsqu&apos;on interprète D comme élément de B3)(SL(2)); si

/gMcu)c[SL(2)]c fc(SL(2)), on a

O si feM-D
si feD-{0}.

En suivant les notations du § précédent, désignons par &amp; l&apos;ensemble des

/e k(SL(2)) qui sont des vecteurs propres de B (l&apos;autre condition tombe, puisque

H {e}\). Il est clair que 0&gt;Hfc[SL(2)] s&apos;identifie à l&apos;ensemble des éléments

homogènes (non nuls) de S(M) (homogènes au sens de la graduation naturelle

S(M)=®neNSn(M).

PROPOSITION. 1) Toute valuation de Y(SL(2)l{e}) est déterminée par sa

restriction à M-{0}.
2) Pour qu&apos;une fonction w :M-{0}--»Z soit la restriction d&apos;une valuation dans

&gt;r1(SL(2)/{E}), il faut et il suffit qu&apos;il existe une droite D de M et des entiers p, q

premiers entre eux vérifiant p&lt;0 et p&lt;q&lt;-p, tels que w(M-D) p et

3) II n&apos;existe qu&apos;une seule valuation dans Y2(SL(2)l{e})9 et sa restriction à

M-{0} est identiquement égale à -1.

Preuve. D&apos;après 7.4, toute valuation de V(SL(2)/{e}) est déterminée par sa

restriction au groupe multiplicatif 0&gt;. D&apos;après ce qui précède, il est clair que ce

groupe est engendré par M-{0}, ce qui montre la partie 1) de la proposition.
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Soit veT(SL(2)/{e}). Si v restait positif sur M-{0}, v resterait aussi positif
sur 0* fl fc[SL(2)], donc aussi sur fc[SL(2)]. Mais cela n&apos;est pas possible, car
fe[SL(2)]rimu serait alors un idéal propre non nul de fc[SL(2)], qui serait stable

par translations à gauche. Par suite, v prend au moins une valeur strictement
négative sur M—{0}.

Désignons par M(2) l&apos;espace vectoriel des matrices 2x2. Faisons opérer SL(2)
dans M(2)©fc, par multiplication à gauche et à droite dans M(2) et trivialement
dans fc. Désignons par X la sous-variété lisse de P4 P(M(2)©fc) définie par
l&apos;équation ad-bc-t2 0. L&apos;inclusion SL(2)&lt;^M(2) passe au quotient en un
plongement SL(2)c»X, dans lequel opère SL(2)xSL(2). On vérifie sans peine
que Y X-SL(2) est une seule orbite sous SL(2)xSL(2), isomorphe à P^P^
SL(2)&lt;^&gt;X, considéré comme plongement sous SL(2) x SL(2), est donc un plongement

élémentaire. Désignons par v la valuation de fc(SL(2)) qui lui correspond.
Puisque les orbites de SL(2) dans Y (pour l&apos;opération par multiplication à gauche)
sont toutes de dimension 1, on a v eY2(SL(2)l{e}). De l&apos;invariance par &quot;translations

à droite&quot; de v, il résulte que v reste constant sur M-{0}. Puisque v prend
une valeur strictement négative sur M—{0}, et que v est normalisé, il s&apos;ensuit que
v est égal à -1 sur M-{0}.

Soit D une droite de M, et soient p,q deux entiers vérifiant p&lt;0 et
p&lt;q&lt;—p. Choisissons un seSL(2) qui envoie le second vecteur de la base

canonique de fc2 M dans D, et considérons

II est clair que vk(M-D) p et que vk(D -{0}) q. Pour que vk soit normalisé, il
faut et il suffit que p et q soient premiers entre eux.

Pour terminer la preuve de la proposition, il suffit de montrer que pour tout
v eY(SL(2)/{e}), on a q&lt;-p, où p (resp. q) désigne le minimum (resp. le

maximum) de v dans M-{0}. On peut supposer que q&gt;0. On voit alors

facilement que l&apos;ensemble des fek[SL(2)] vérifiant v(f)&gt;0 forme une sous-

algèbre de type fini A de k[SL(2)] (voir aussi 9.2), et que A possède comme

corps des fractions fc(SL(2)). Puisque A est stable par SL(2), on peut considérer

A comme algèbre des fonctions régulières d&apos;une SL(2)-variété affine X, et
l&apos;inclusion A &lt;= k[SL(2)] se reflète en un plongement de SL(2)/{e} dans X.

D&apos;après le critère de Hilbert-Mumford (voir [8]) il existe un sous-groupe à

1-paramètre multiplicatif A de SL(2) tel que lim^o MO existe dans X, autrement
dit (voir §4) tel que ûVk =&gt; A. Choisissons h et g linéairement indépendants dans M
tels que v(h) q, v(g) p. Vu la manière dont on obtient vK sur M et l&apos;hypothèse

heAczûVK, il est clair que vK(h)&gt;0 et vk(g) -vK(h). On a h~pgQeA, car
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v(h~pg&lt;l) -pq + pq 0. Par suite vx(h~pgq) -(p + q)vK(h)&gt;0, d&apos;où il suit bien
que q&lt;—p.

Profitons de cette description explicite des valuations de Y(SL(2)/{e}) pour
changer légèrement nos conventions et pour introduire des notations commodes
dans la suite.

Désormais, nous considérons les éléments de Y(SL(2)/{e}) renormalisés par la
condition suivante: si v e Y(SL(2)l{e}), on suppose que le minimum de v dans M
est égal à -1 (pour pouvoir le faire, il faut bien sûr admettre des valuations à

valeur dans Q!). De manière plus précise, si D est une droite de M et si reQ
vérifie -l&lt;r&lt;l, on désignera par v(D, r) l&apos;unique élément de Yi{SL(2)l{e}) qui
vaut -1 sur M—D et r sur D—{0} (avec les notations de la proposition, on a

Nous désignerons enfin par v( -1) l&apos;unique élément de Y2(SL(2)/{e}) qui
vaut -1 sur M-{0}; parfois, on écrira aussi v(D9 -1) pour v( -1), où D est une
droite quelconque de M.

Si JEc:[—1? 1], nous désignerons par v(D, E) l&apos;ensemble des v(D, r), reE.

9.2. Soit 2jcb2i(SL(2)) P1 et soit WczY(SL(2)/{e}).

PROPOSITION. Si 2&gt; est cofini dans Px et si W est fini, alors A(3&gt;, W) est une
algèbre de type fini.

Preuve. Posons A A(2&gt;, W). D&apos;après 8.6, il suffit de montrer que UA est une
algèbre de type fini. Choisissons he9&gt;nk[SL(2)] vérifiant: vD(h) 0 quel que
soit De% et vD(h)&gt;0 quel que soit D&apos;eP^-S). Désignons par Dl9...,Dp les

différentes droites de M sur lesquelles au moins un des w g W n&apos;est pas égal à — 1.

Choisissons h, e D, — {0} (j 1,..., |3), et choisissons deux éléments linéairement
indépendants gl9 g2 dans M-Uf^iD,. Désignons par S le sous-monoïde des

(n1?..., n3, ml9 m2, n) e M3+3 tels que h?&gt; h&amp;-g?&gt;- g?» • h~n € UA (autrement

dit, tels que n1w(h1) + - • • + n3w(^)-m1-m2-nw(h)&gt;0 quel que soit
w e W). Il est classique que de tels monoïdes sont de type fini; désignons par S&apos; un
système fini de générateurs de S. On voit facilement que tout élément de UA est

somme d&apos;éléments de la forme h?1 h^ • fx fm • h~n, où fl9..., fm e

M- uf=i Dj et où (nl9..., n3, m, 0, n) e S. En écrivant fl9..., fm comme
combinaison linéaire de gt et g2, on voit que tout élément de UA est combinaison
linéaire d&apos;éléments de la forme h^ h%&gt; • g?* • g^2 • h~n, où

(ni,..., n3, m1} m2, n) e S. Il s&apos;ensuit que les h?1 h$ • g?1* • g^2 • h&quot;n,

(ni,..., n3, mi, m2, n)e S&apos; forment un système fini de générateurs de UA.

9.3. Soient 3) un sous-ensemble cofini de B3)(SL(2)) Pl9 W un sous-
ensemble fini de W(SL(2)/{e}) otve Y1(SL(2)/{e}). Posons W {wl9..., wj et
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w, v(Dp r}) (/= 1&gt; •••&gt;«)• Nous aurons à considérer les six types suivants de
tels 3), W9 v.

Type A
2&gt; P1-{D1,..., Da}, où Dx,..., Da sont des droites différentes de M;

(compte tenu des premières inégalités, cette dernière condition est vide si a &gt; 3; si

a 2, elle signifie que rx ou r2 est &lt;1; si a 1, elle signifie que rx&lt;0);

ve U t)(D,]-U])U|J «(AJ-l.^D.

Type AB (a 2)

iDi}; DX D2 et-I^r2&lt;r1&lt;l; ve v(Du]r2, rj).

TypeB+(a l)
Dle2)ÏP1; -lsr,&lt;l; u e v(Dt, &gt;„ 1]).

Type B_ (a 1)

S P1-{D1}; 0&lt;rx&lt;l; vev(Du]ru 1]).

Type Bo (a 1)

r!&lt;l; « e u(D1; ]r1; 1]).

TypeC
C&apos;est le cas banal W {v}.

PROPOSITION. Pour que 3), W, v vérifient (W), (W)a2, (V), (V), il faut et il
suffit qu&apos;ils appartiennent à l&apos;un des types A^, AB, B+, B_, Bo, C.

Voici d&apos;abord un lemme qui servira deux fois dans la démonstration de la
proposition.

LEMME. Soient Dt D$ des droites différentes de M et ru rp des
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nombres rationnels vérifiant -1&lt; r, &lt; 1 (j&apos; 1,..., |3) et
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f

Posons 3)=P -{Du D$} et w, v(D,, r,) (/ |3). Alors, pour tout

ve U u(D,t-l,l])UU »(DJt[-l,r,D,
D3 \

il existe des nombres rationnels k, &gt;0(j 1,..., |8) et un homomorphisme de

groupes z :^ —? Q, positif sur &amp; nA(3)), tels que v ÀxWx + • • • + À0w3 + z.

Preuve. Posons v v(D, r). Si D coïncide avec l&apos;un des D, (i 1,..., |3),

posons

(où ôtJ est le symbole de Kronecker), et définissons z sur M—{0} par

*(/)

0 si

lr,-r-—— sinon;
r r, + l

si D € 2), posons A, 1/rCr, +1), et définissons z sur M-{0} par

si

r+14— si

dans les autres cas.

Il reste alors à vérifier, dans les deux cas, l&apos;égalité du lemme sur M—{0}, ce qui
n&apos;est pas difficile.
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Preuve de la proposition.

a) Démontrons que les 2&gt;, W, v des types Aa, AB, B+, B_, Bo, C vérifient les

conditions W), (W)*2, V), (V).

Le cas Aa

Choisissons \ €DJ-{0}(/ 1, •••,«) et geM-U^iD,. Soit p un entier
strictement positif tel que

Posons

et /, &amp;?•¦

On a

D&apos;où aussitôt (W). Si a&gt;2, alors g, =rii#,/»e^nA(2j), et

^
f&gt;0 si i^j
(=0 si i=j,

d&apos;où (Wk2.
Du lemme précédent résulte l&apos;existence de nombres rationnels A^

0 1, ••,«) et d&apos;une application z:0*^&gt;Q, positive sur &amp;C\A(3}), tels que
v À!W! + • • • + Àawa 4- z. Les propriétés (V) et V) en résultent aussitôt.

Le cas AB

Choisissons DeP1-(SU{D1}), h€Di-{0} et g€D-{0}. Soit p un entier
strictement positif tel que prupr2eZ. Posons f1 hpgpr2 et f2 h~pg~pr2. On a
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fu hG ^ n A(â) et on vérifie facilement que w^) §x$(jx - r2) (i, j 1, 2). Puisque

par hypothèse r2&lt;rx, les propriétés (W) et (W%2 en résultent.
Si t? v(Du r), et si

et

on vérifie sans peine que v À1w1 + À2w2. Puisque par hypothèse r2&lt;r&lt;ru on a

Ax&gt;0 et À2&gt;0, d&apos;où aussitôt les propriétés (V) et (V).

Le cas B+

Choisissons DeP^Q) et geD-{0}. On a g^e^flAO) et w1(g~1) l&gt;0,
d&apos;où la propriété (W).

Si v v(Dl9 r), on vérifie sans peine que v w1 + z, où z : 9&gt; -» Q est

l&apos;homomorphisme de groupes déterminé par

— ri si

si

Puisque par hypothèse rx&lt;r, les propriétés (V) et (V) en résultent aussitôt.

Les cas B_ et Bo

Si heD1-{0}, on a w1(h) r1&gt;0, d&apos;où la propriété (W).
Si v v(Dur), on vérifie sans peine que v (r/r1)w1 + z, où z:0&gt;--»Q est

l&apos;homomorphisme de groupes déterminé par

-—~ si feM-D1
z(f)=\ &apos;i

0 si feDx-{0}.

Par hypothèse, on a 0&lt;r1&lt;r, d&apos;où aussitôt les propriétés (V) et (V).

Le cas C est banal

b) Démontrons que les 2), W, v qui vérifient les propriétés
W), (W%2, (V), V) sont forcément de l&apos;un des types Aa, AB, £+, B_, Bo, C.

Posons TT {w1?..., wa} et w, u(Dp r,) (/ 1,..., a). On peut supposer que
Du D3 O &lt;a) sont les différentes droites de M sur lesquelles au moins un
des w, n&apos;est pas égal à -1. On peut supposer également, pour tout i 1,..., |3,
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que r, est maximal parmi les r, tels que Dj=Dv Choisissons hleDl-{0}
(i 1,..., p). Enfin posons v v(D0, r0).

Supposons d&apos;abord /3 &gt; 2.

Montrons que Px — {Dx,... Dp}&lt;=â}. Raisonnons par l&apos;absurde: supposons
qu&apos;il existe g€M-Uf=1Dt tel que gG0&gt;(2&gt;). Puisque j8^2, on peut trouver
ie[l, 0] tel que Dt + DQ. On a ^e^nAfâ)) et

^U sinon.

Par suite, filg~1€*nAO,&apos;»r). Si g&lt;=D0, on aurait v(hlg~1) -l-ro&lt;0, ce qui
contredit (V). Si g£D0, on aurait v(hlg~1) 0 et vl(hlg~l)= 1 + z, &gt;0, ce qui
contredit (V).

Supposons 0 2 et r1 r2=l. Puisque P1-{D1,D2}c=â), tout /G^HA(â))
peut s&apos;écrire f=hih2g, où n^ n2GZ et où gG^flfc[SL(2)] vérifie vDl(g)
VD2(g)-0- Pour tous ces /, on a w1(/) + w2(/) 2w1(g)&lt;0, ce qui contredit (W).
Par suite, rx ou r2 est &lt;1.

D&apos;après (W)^2, il existe fxe&amp;dA(Çè)(i 1,..., 0) tels que

&gt;0 si î^j
=0 si î=j.

Puisque âJ^Pi—{D1?..., D3}, on peut écrire

où ny g Z et où g, g 0&gt; fl k[SL(2)] vérifie uDj(g») 0 (i, j 1,..., 0). Posons m,

Wi(g,) • • • wp(gl)^0 et N, —Zf=i «ij + wti. On a w,^) (H-rJ)nIJ4-JVl. Par

suite,

0&gt;ml=JVl+ X r

Puisque nous savons déjà que f&gt;0, il s&apos;ensuit que N,&gt;0. Par conséquent,

ce qui montre que % Pj —{D^
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Si /3 &lt; a, d&apos;après le lemme, pour tout j j3 +1,..., a, il existerait des Àt| &gt; 0

(i 1,..., P) et un homomorphisme de groupes z, : 9 —» Q, positif sur
9&gt;nA(3))9 vérifiant w]=k1]w1 + &apos; • • 4-kmw^ + z,. Manifestement cela contredirait

2- Donc a j3.

Choisissons un entier strictement positif p tel que

Choisissons geM—Uf-iA» et Posons f-hïl h^ • gpt. On vérifie sans

peine que w,(/) 0 (j 1,..., (3). Si Do D,, de (V) résulte alors que

Puisque |3&gt;2, on a v&lt;£W, d&apos;où ro&lt;rr
En résumé, si |3 &gt; 2, nous avons montré que a (3 et que 2), W, v est du type

Aa.
Supposons maintenant p 1 et a 2t 2.

Quitte à renuméroter wx,..., wa, on peut supposer que w; v(Du Tj), où
-l&lt;ra&lt;ra_!&lt;- •&lt;r2&lt;r1^l. Pour tout î 2,...,a-l, l&apos;égalité

rl ~r&lt;x

n&apos;est alors pas compatible avec (W&apos;)^2. Il s&apos;ensuit que a =2.
Montrons que Dx£3) et que 2)^P1-{D1}. D&apos;après (W&apos;)a2, il existe

fu h€ &amp; H A (S) tels que

&gt;0 si if]
=0 si i=/.

Posons fl hx*gl (i l,2), où nl9n2el et où gi, g2e^ vérifient DDl(gi)
i)Dl(g2) 0. De WiCfi)&lt; w2(/i), on déduit, puisque WjCgx) w^gx), que nxrx &lt; nxr2,
d&apos;où, puisque r2&lt;ru que nt&lt;0. Il s&apos;ensuit que D!^S. De w2(f2)&lt;w1(/2),

on déduit de la même façon que n2&gt;0. Si rx&gt;0, de 0 w1(/1) rt1r1 + Wi(gx)
résulte w1(g1)&gt;0, d&apos;où g1^fc[SL(2)]. Si r^O, de r2&lt;ri et de 0 w2(/2)
n2r2+w2(g2) résulte w2(g2)&gt;0, d&apos;où g2^fe[SL(2)]. Dans les deux cas, il s&apos;ensuit



240 D LUNA ET TH VUST

Montrons que v e v(Dlf ]r2, r^). Choisissons un entier strictement positif p tel
que prupr2eZ. Choisissons geM-Dx tel que ge0&gt;(2&gt;). Lorsque DO DU de
Wi(h?gpf2) p(r1-r2)&gt;0 et w2(hïgpr*) 0 résulte, grâce à (V), que v(hptgpr*)
p(ro-r2)&gt;0, c&apos;est-à-dire r2&lt;r0; de w1(h~pg~prO 0 et w2(hrpg&quot;prO p(rt- r2)&gt;0

résulte, grâce à (V) que u(ftïgpr2) p(r0-r2)&gt;0, c&apos;est-à-dire r^r^ Montrons
que Dq^Dx n&apos;est pas possible: en effet, si geD0,on a v(hlgpr2) p(r0r2 —1)&lt;0

ce qui contredit (V); si g^D0, on a

&lt;U SI -l^r2
=0 si —l r9

ce qui contredit (V) ou (V).
En résumé, si /3 1 et a &gt; 2, nous avons montré que a 2 et que 3), W, t&gt; est

du type AB.
Il reste à examiner le cas a 1.

Supposons d&apos;abord que w1 v(D1,r1) vérifie -K^. Choisissons un entier
strictement positif tel que prx g Z.

Supposons qu&apos;il existe DePx — (âJLKDj}). Choisissons geD—{0}. On a

hïg^G^flACâJ) et Wi(h?gpri) 0. Il en résulte que DQi=Dx n&apos;est pas possible:
en effet, si geD0, on aurait v(hlgpri) p(r1r0—1)&lt;0, et si g^D0, on aurait
u(hÇgpr0 -p(l + rt)&lt;0, deux inégalités qui contredisent (V). Si Do DU de (V)
résulte que u(hïgpri) p(ro-r1)^0, c&apos;est-à-dire ro^r!; si ro&gt;r1, onaDjGâi (en
effet, sinon hïPg~pr*e&amp;nA(3)\ w1(hrpg~prO 0 et u(hrPg~prO p(ri-r0)&lt;0, ce

qui contredit (V)); autrement dit, nous sommes en type C ou B+.
Supposons que £è P1—{D1}. Choisissons geM-Dx. Si rx&lt;0, et si Dq Dx,

on a hïpg~pri€&amp;nA(9i) et w1(hrpg~pl&apos;1) 0, donc d&apos;après (V) on a u(^rpg~pri)
pCfi — fb) — 0, c&apos;est-à-dire Tq^Tx et nous sommes en type C ou Ax. Le cas ^ 0
n&apos;est pas possible: en effet, on aurait alors Wi(hïg)^0 quel que soit neZ et
ge0&gt;nfc[SL(2)], ce qui contredit (W). Si f^X), on a hîgpr*e0&gt;nA(3&gt;) et
Wi(hïgpr0 0. Comme plus haut, de (V) résulte alors que D0 Dt et ro&gt;ru et
nous sommes en type C ou fî_.

Supposons ® Pj. Si r^O, wx resterait négatif ou nul sur ^nk[SL(2)], ce

qui contredit (W), donc rx&gt;0. Choisissons geM-Dj. De W!(hïgpri) 0 et de

(V) on déduit alors comme plus haut que D0 Dt et ro&gt;rt. Nous sommes donc
en type C ou Bo.

Enfin, considérons le cas wt v( -1). Choisissons hoe Do-{0} et g g M-Do.
Puisque t?( ,-1) est négatif ou nul sur 0&gt;nfc[SL(2)], 3^Pi. Montrons que
Doeâi: en effet, sinon ghô^^HACâ)), w1(ghô1) 0 et v(ghô1) -(l + ro)&lt;0, ce

qui contredit (V). Par conséquent, nous sommes en type B+.
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9.4. Soient 2), W, v comme dans le numéro précédent. Supposons que 2&gt;, W&gt; v
vérifient (W),(W)&amp;2,(V),(V). D&apos;après 9.2, ®,W vérifient aussi (F). D&apos;autre

part, SL(2)/{e} étant un espace homogène affine, % W vérifient aussi (D) et W)i-
Par conséquent, d&apos;après 8.8, on peut associer à 9)9W, v un j€&amp;ï(SL(2)/{e}) tel
que Tx TT et B®,

PROPOSITION. Si S, TT, u sont du type A, (resp. AB, B+, B_, Bo), afors B2&gt;t

P1-{Dl,..., Da} (resp. 0, {D^P^iD^P^.
Preuve. Ces assertions se déduisent machinalement à partir de la définition de

9&gt;(W, v) et de 9.3.

Compte tenu de 8.8 et 9.3, la proposition précédente constitue une classification

des éléments de £ï(SL(2)/{e}). Nous utiliserons dans la suite les notations
suivantes.

Si Dl9..., Da sont des éléments différents de Pu et si r1?..., ra vérifient

-l&lt;rj&lt;l(/=l,...,a) et Zt-—&gt;1, l(D1,r1;...;Da9ra)
j=i i + rç

sera l&apos;élément le&amp;ï(SL(2)l{e}) tel que B% =Px-{Dl9... ,Da} et r,
Si DePj et si -I^r2&lt;r1^l, 1(D, r2, rx) sera l&apos;élément /Gfiï(SL(2)/{e}) tel

que B% 0etT, ={t?(D, r^, v(D, r2)}.

Si De Pi et si -l&lt;r&lt;l,l+(D,r) sera l&apos;élément îgSï(SL(2)/{c}) tel que

Si DePi et si 0&lt;r&lt;l, L(D, r) (resp. lQ(D, r)) sera l&apos;élément i€2?(SL(2)/{e})
tel que B2iI =Pi-{D} (resp. Px) et ^ ={u(D, r)}.

D&apos;après ce qui précède, l&apos;ensemble &amp;ï(SL(2)/{e}) est composé des

l(Du n;... ; Da, rj, «D, r2, ri), /+(D, r), L(D, r), WA r) et de y1(

9.5. La proposition suivante décrit les facettes des éléments de &amp;î(SL(2)/{e}).

PROPOSITION 1. Sil l(Du rx;... ; Da, ra), a/ors

*i= U ^(Al-i^DuÛ^AJ-i,^).
DeP1-{D1, ,D»} J l

Si I l(D, r2, rt), alors &amp;x v(D, ]r2, rxD.

Si l /+(D, r) (ou L(D, r), ou I0(A r)), alors 9X u(D, ]r, 1]).
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Preuve. Ces assertions résultent directement du corollaire 3 de 8.8 et de 9.3.

Désignons par 2&apos; l&apos;ensemble des Z+(D, -1), DePt. La proposition suivante
précise la topologie de Zariski de &amp;ï(SL(2)/{e}).

PROPOSITION 2. a) Les l(Dl9 rt;... ; Dai ra), L(D, r), lo(D, r) appartiennent
à 2?(SL(2)/{e}). Pour que l(D, r2, rx) (resp. /+(D, r)) appartienne à S?(SL(2)/{e}), il
faut et il suffit que —l&lt;r2 (resp. — l&lt;r).

b) Si /efi?(SL(2)/{e}), l&apos;ouDCit de fi?(SL(2)/{e}) qui correspond à la réalisation
géométrique minimale de l est {l}UYt.

c) Si I l(D, —1, Ti) (resp. i+(D,-1)), on obtient un système fondamental de

voisinages de l dans &amp;t(SL(2)/{e}) par {ï}U{i&gt;(D, r^UL (resp. {I}UL), où L
parcourt les sous-ensembles cofinis de fi&apos;.

Preuve. Ces assertions résultent directement de 8.9.

Remarque. Ce sont les réalisations géométriques minimales des lo(D, r) qui
sont les seuls plongements normaux affines de SL(2), étudiés par V. L. Popov
dans [10].

9.6. D&apos;après le §6, la donnée d&apos;un plongement X de SL(2)/{e} équivaut à la
donnée d&apos;un sous-ensemble ouvert, noethérien et séparé L de fi!(SL(2)/{e}); il est
clair que X sera une variété normale si et seulement si LcfiJ(SL(2)/{e}).

PROPOSITION. Soit L un sous-ensemble de fi?(SL(2)/{e}). Pour que L soit

ouvert, noethérien et séparé, il faut et il suffit que L vérifie les conditions suivantes.

1) Pour tout l e L, Y, fï Y!(SL(2)/{e}) c L.
2) S&apos;il existe leLtel que v( -1)e Yb alors L contient un sous-ensemble cofini

défi&apos;.

3) L&apos;ensemble L-2&apos; est fini.
4) Les &amp;hleL sont disjoints.

Preuve. D&apos;après la proposition 2 de 9.5, 1) et 2) signifient que L est ouvert.
Par définition, 4) signifie que L est séparé. On vérifie alors sans peine, pour que L
soit noethérien, qu&apos;il faut et qu&apos;il suffit que L vérifie 3).

Remarque. La condition 4) restreint considérablement le choix des L: par
exemple, elle implique que L contient au plus un des l(Du rx\... ; Da, ra); ou
encore que, pour tout DePuL contient au plus un parmi les

i+(D,r),L(D,r),/0(D,r);etc...

9.7. Terminons ce travail par une présentation graphique de notre classification
des plongements normaux de SL(2)/{e}. Le &quot;support&quot; de la classification est
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l&apos;ensemble Y(SL(2)/{e}), qu&apos;on peut dessiner comme suit
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(ce dessin représente autant d&apos;intervalles rationnels [—1,1] qu&apos;il y a de points dans

Pu recollés par leur extrémité gauche -1). Puisque les localités dans
fi?(SL(2)/{e}) sont presque déterminées par leur facette, on peut les représenter
par les dessins suivants:

\

l-(D.r) to(D.r)

N&apos;oublions pas pour les localités l(Du rx\... ; Djr^) la conditions

=i 1/(1 + r,) &gt; 1: elle signifie que les dessins suivants ne sont pas permis

Les plongements normaux de SL(2)/{e} sont alors classés par ce que nous
pourrions appeler, si nous voulions suivre la terminologie de Demazure ([5]), des
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éventails coloriés: il s&apos;agit d&apos;ensembles d&apos;éléments de &amp;ï(SL(2)/{e}) satisfaisant
aux quatre conditions de 9.6. Ne voulant par répéter ces conditions ici, donnons
seulement trois exemples

Le dessin de gauche correspond à un plongement complet, les deux autres à

des plongements non complets; le nombre d&apos;orbites du plongement correspondant
au dessin de droite est infini, les deux autres plongements contiennent respectivement

six et huit orbites.
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