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Class numbers and periodic smooth maps

SyLvaiN E. CappeELL* and JuLius L. SHANESONT

§1. Introduction

For m a positive integer, let ¢,, be a primitive mth root of unity, and let Z(¢{,,)
denote the ring of integers of the cyclotomic field Q(¢,,) over the rationals Q. It is
well-known that Z({,,) is just the collection of polynomials in ¢,, with integral
coeflicients. Two ideals « and  of Z({,,) are said to be equivalent if there exists
c€ Q(¢,,) with 2 =6 - c. The equivalence classes of ideals form the class group C,,,
a finite group with order h(m), the class number of m. Complex conjugation
induces an involution on C,,; let C,, denote its (—1)-eigenspace. Then h™(m), the
order of C,, is a factor of h(m). This paper studies the significance of the parity of
h~(m) for the behavior near fixed points of periodic diffeomorphisms of the
sphere. From this definition, it is almost immediate that h(m) and h~(m) actually
have the same parity. For m a prime this relationship between h(m) and h™(m),
defined differently, was first noticed by Kummer [K].

Let 3 be a smooth manifold, f:3 — 3 a diffeomorphism. Let x be a fixed
point; i.e., f(x) =x. Then the derivative

(df)y: 3, = 3

will be a linear isomorphism of the tangent space of 3 at x with itself. Then a
question of P. A. Smith asks whether, for 3 a (homotopy) sphere, f periodic (i.e.,
f™ =ids for some m), and x and y isolated fixed points of f, (df), and (df), would
be linearly similar. Linear similarity means by definition that there is a linear
isomorphism L:3, — 3, with L(df),L™" =(df),. Results of Atiyah-Bott, Milnor
(see [AB]), Bredon, and Sanchez established this in many cases. However, in
[CS2], this was shown to be false even when I is a differentiable sphere. Petrie
had previously given examples of actions of highly non-cyclic groups with inequi-
valent fixed point representations. His examples fail to satisfy the conclusions of
classical “Smith theory”; they all have subgroups whose fixed point sets are
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168 SYLVAIN E. CAPPELL AND JULIUS L. SHANESON

disconnected but not isolated. The actions of [CS2] satisfy the conclusions of Smith
theory in the strongest possible way, viz the fixed point set of f', any j, is also a
differentiable sphere. Some more recent examples will appear in the Ph.D. thesis
of Alan Siegel.

Given a periodic diffeomorphism f of 3, a root of unity £ and a fixed point x
of f, let my(x, &) denote the multiplicity of £ as an eigenvalue of (df),. The linear
similarity of df,, df, is just the assertion that m(x, &) = my(y, &), for all roots of
unity & By the mod two Smith Conjecture one means the following weaker
statement: For each root of unity &,

me(x, &) =mi(y, )  (mod 2).

Unlike the original question, the mod two version is true for smooth maps of
period a power of any prime, by the above quoted results for odd primes and by
results of Bredon for the prime two.

Recall that a periodic map g is free if, for all j, either g’ is the identity or g’
fixes .no points. For smooth maps of homotopy spheres of period q or 2q, with g
odd, that are free outside of a 1-dimensional set, it follows from the arguments of
Atiyah-Bott, Milnor and Sanchez that the mod two Smith conjecture is actually
true.

THEOREM 1.1. For a positive odd integer q, the following statements are
equivalent:

1. The mod two Smith conjecture holds for periodic diffeomorphisms of
homotopy spheres, of period 4q, that are free outside of a 1-dimensional set; and

2. q has at most two prime divisors and h™(q)=1 (mod 2).

Thus, the mod two Smith Conjecture holds for periodic smooth maps of
period 4q, q odd, free outside a one-dimensional set, that have period less than
116. The first counter-example is a map of period 116 on the standard sphere of
dimension 17. It can actually be shown that the mod two Smith Conjecture holds,
for all periods less than 112, for periodic diffeomorphisms that are free outside a
1-dimensional set.

When h7(q) is even or q has more than two prime divisors, it can also be
shown that the minimal dimension of a counter-example to the mod two Smith
Conjecture is at most 2¢(q) + 1, and that in this counter-example, the eigenvalues
of (df), and (df), other than —1 will (necessarily) be disjoint and of multiplicity
one. (Here ¢(q) is the Euler ¢-function.) Moreover, there is a counter-example
to the mod two Smith Conjecture, on the standard sphere, in every odd dimen-
sional above the minimal one. An interesting problem relating topology and
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number theory is to find a formula for the minimal dimension of a counter-
example to the mod two Smith Conjecture, when h™(q) is odd or q has more than
two prime factors.

The class number actually plays a role even when q has more than two prime
divisors. In fact, it will actually be shown below that 1. of Theorem 1.1 is
equivalent to the assertion that the index of the Stickelberger ideal S~ in
Z[G(q)]” is odd, G(q) the Galois group of Q({,) over Q. Theorem 1.1 then
follows from the results of Iwasawa that the index of this ideal is h™(q) for g
divisible by at most two primes and of Sinnott that this index is 25"2h~(q) for g
the number of primes dividing q, g>1. (See [SI].) Thus, the failure of the mod
two Smith Conjecture for more than three prime divisors is due to the extraneous
powers of two in Sinnott’s theorem. It is possible to relate with more refinement
the type of behavior that can occur at the fixed points with the structure of
(Z[G(q)]/S7). Even when g >2, it will still be possible to distinguish phenomena
related to the class number h™(q) and to formulate, as above, a purely topological
necessary and sufficient condition that h™(q) be odd. These matters will be the
subject of a future paper.

The results of [CS2] [CS3] also give much, and in some cases complete,
information on the possible pairs of linear maps (df),, (df), that can arise as
derivatives at fixed points of the same periodic smooth f map of a homotopy
sphere 3. A periodic smooth map f of ¥ is said to be of Smith type if the fixed
points set of {7, all j, is either discrete or connected. The results of [CS2] [CS3]
provide evidence for the revised conjecture that if f is of Smith type and x and y
are fixed points, then (df), and (df), are topologically similar, i.e., there is a
homeomorphism ¢ : 3, — 3, with ¢(df).¢ " =(df),.

[Historical Note: It should be pointed out that the conjecture that for rota-
tions topological and linear similarity would be equivalent was first proposed at
the 1935 International Topology Conference in Moscow by deRham. He reduced
it to the periodic case and made a number of other fundamental contributions to
this problem as well. In [KR], this conjecture was extended to include all linear
endomorphisms with all eigenvalues of modules one, and their extended conjec-
ture also reduced to the periodic case. They and other authors (see [CS1] for
details) produced further evidence. In [CS1], however, this conjecture was settled
in the negative.]

The revised Smith Conjecture is established in [CS2] for periodic smooth maps
that are free outside a 1-dimensional set. For period 4q, q odd, the converse is
also established (compare Theorem 4.1 below). That is, given A and B, linear
isomorphisms of a m-dimensional vector space, that are periodic of period 4q and
free outside of 1-dimensional sets, there exists a periodic smooth map f of S™*,
with isolated fixed points x and y, with (df), linearly similar to A and (df), to B,
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if and only if A and B are typologically similar. Thus, to Theorem 1.1 one can
add the following statement as equivalent to 1 or 2:

3. If A and B are periodic topologically similar linear maps of real vector
spaces, with A free outside a 1-dimensional set, then every root of unity appears as
eigenvalues of A and of B with multiplicities congruent mod two.

For 2| g, both the algebraic and geometric situations are more involved and
will be taken up in later papers.

The first two sections of this paper will be purely algebraic and number-
theoretic. Using results of Iwasawa-Sinnott, we relate the notion of tempered
numbers to class-numbers of cyclotomic fields. The notion of tempered numbers
is a measure of how multiples of integers distribute when reduced mod a given
integer. In the final section, geometric results of [CS1] and [CS2] are compared
with the algebra to obtain the theorem.

§2. Tempered numbers

Let n be a positive integer and a any integer. Let R, (x) denote the least
non-negative number congruent to x mod n. Then, for x any integer, the func-
tion'¥ whose value is 1 if 0<R(ax)=n/2 and is zero otherwise depends only
upon the congruence class of x mod n and so defines a.map

f&:.ZinZ - {0,1}=2Z/2Z

which also depnds only upon the congruence class of a mod n.

Now let n=4q, with q odd, q>1, and consider only the functions & with
the least common divisor (a,4q)=1, a defined mod n (i.e., ae(Z/nZ)*), and
a=1 (mod 4). These functions satisfy the obvious linear relations

(#)ni:fa+f2q—-a =f1+f2q—1~

As in [CS1], we say that the number n =4q is tempered if all linear relations
among the functions {f™|ae(Z)*, a=1 (mod4)} are consequences of the
relations (#),.

In this section we wish to reduce the notion that 4q is tempered to a statement
about modules over Z,[G(q)]. The functions f@, (a, q) =1, satisfy the obvious
linear relations

()q:F0+ Q= O+ 9

* It would be equivalent to consider the function that is zero for R(ax)=n/2 and 1 otherwise.
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We will say that the odd number q is tempered if all linear relations among the
functions {f{ | a € (Z/qZ)*} are consequences of the relations (*),.

THEOREM 2.1. Let q be odd. Then 4q is tempered if and only if q is tempered.

Proof. The proof is based on a series of simple identities. For example,
suppose that y=4k +1. Then

(@—1)y=4kq+(q—y)
and

(2q—2)y =8kq+2(q—y).
Hence, if 0=y <4q—1, the sum

(g - Dy)+f*((2q - 2)y)

is zero for 0=y=2q and 1 for y>2q. Thus, if we set § : Z/nZ — {0, 1} to be
function that is 1 except for §(0) =0, we obtain that for y=1 (mod 4)

fi*P(y) =8+ f1((a— Dy) + (29 - 2)y).
Since f&9(x)=f{(ax), it follows that
2.11) fi®%x)=8+f3(q—Dx) +fi”((2q-2)x)), x=1(mod 4)
Similarly one can obtain the formula

(2.1.2) féx) =8, + (1 —q@)x) +f((2—2q)x)), x=1(mod 4)
Here
0 x#i

%(x)= {1

This can actually be obtained from 2.1.1 by noting that f,(x)=f_,(x) and
fa +f_a =8 +62q.
For y=4k+2, 0=<y=4q-1,

(@—1)y=4kq+(2q—y).
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Hence,

fi(y) =80+ 8,4+ f1((@—Dy).
Thus, we obtain, as above

(2.1.3) For x=2 (mod 4),

fE(x) = 86+ 824 + faV((2q — 2)x).
Finally, since f,(x) +f,(—x) = 8 + 8,,, from (2.1.1) and (2.1.2) one also obtains:

(2.1.4) fé(x) =8, + (g — Dx) + (29 —2)x), x =3 (mod 4);
(2.1.5) fé4(x)=8+FfLY((1—q)x)+ fL((2—2q9)x), x =3 (mod 4).

Now let H, <(Z/4gZ)* be the set of elements congruent to 1 mod 4. Then the
above identities will be used to obtain;

(2.1.6) Let A, €40, 1} for each a€ H,. Then

Y ASf.=0 (in Z)2Z)

acH,
if and only if

Y Afax)=0 Vx =0 (mod 4).

acH,

One implication follows by restriction. Conversely, suppose

Y Afu(x)=0  Vx=0(mod4).

acH,

Then since
fa+f—-a = 6+82q
and since f,(—x)=f_.(x), it follows that

Y A (B(x)+8,,(x))=0  Vx=0(mod 4).

acH,
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Let x =4, then 8(x)=1, 8,,(x)=0. Hence

Y A, =0 (mod 2).

acH,
Suppose now that g =1 (mod 4). Then for x =1 (mod 4),
L Afa(®)= 2 A (B+fE0(q—Dx)+fP(2q - 2)x)).

aeH, acH,

Since g—1=2q—-2=0 (mod 4) and since } , A, =0 (mod 2), the right side vanishes.
Hence

Z Afo(x)=0 for x=1 (mod 4).

acH,

The same argument also proves that

Y Adfa(x)=0,

acH,

for x=2(mod4), using (2.1.2), and x=3(mod4), using (2.1.4). For g=
—1 (mod 4), we use (2.1.2) and (2.1.5) instead. Thus

Z Afa(x)=0 Vxe Z/4qZ,

acH,

so (2.1.6) is proven.
Let w: H, — (Z/qZ)* be reduction mod q. Then 7 is an isomorphism, and the

following identity is immediately verified:
(2.1.7)  f$94x) =f2,(x), x=0,1,...,q—1.
Combining this with (2.1.6) yields

(2.1.8) Y. ASEY=0 if and only if

aeH,

Z wag)q) = 0, where Wy = A'n' - l(b)'
be(Z/qZ)*

Since 2q =2 (mod 4), it follows that w(2q—1)=-—m(a), a € H,, or, equivalently,
that 7w~ '(—b)=2q— = '(b). With (2.1.8) and this observation, Theorem 2.1 is
proven.
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From now on, we identify (Z/qZ)* with the Galois group G(q) of Q({,) over
Q, ¢, a primitive qth root of unity. Under this identification, a number a mod g,
(a, q) =1, corresponds to the unique element o, of G(q) with o,({)=¢;.
Let A, be the vector space over Z/2Z ={0, 1} of functions from Z/qZ to
Z/2Z. Then A, is a module over the ring R, = Z,[G(q)], via the action of G(q)
defined by

(o.f)(x) = f(ax).

Let A;<R, be the augmentation ideal; i.e., the kernel of the map to Z/2Z that
sends Y, A0, t0 Y, A,. If M is any module over a ring R and m e M, let

(m)={Am |AeR} and let Ann(m)={AeR|Am =0}.
PROPOSITION 2.2. The odd number q is tempered if and only if
Anmn (f*) = A, (0, +0_,).

Proof. Clearly a,fi* =f®, (a, 4q9) = 1. Hence the relation (*), can be rewritten
as

(01+ 0, )0+ o)\ =0.

The ideal A, is easily seen to be generated over Z/2Z by the elements o + oy,
(a, q)=1. Thus the ideal A,(o,+0_,) consists precisely of linear combinations
over Z/2Z of the elements of (o,+0,)(0,+0_,) for (a, q)=1. The Proposition
follows easily.

In view of 1.1, the equation of 2.2 is also necessary and sufficient for 4q to be
tempered. In a future paper the general problem of when is 28q tempered, q odd,
will be solved.

§3. Stickelberger ideals

Throughout this section let q be a fixed odd integer, q>1, and let G = G(q),
the Galois group of Q({,) over Q as above. Recall from 2.2 that q is tempered iff
Ann (f) = (0, +0_)A,

Let ScZ[G] be the Stickelberger ideal, as defined in [SI]. For any real number
x, let (x) denote the least non-negative residue of x mod Z. For ce Z, let

—ca
-1
ey

0(c)= <
ae(Ziaz)* \ 4
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where o, € G is the element with 0,({,) = {3. Then the subgroup (i.e., Z-module)
S’ of Q[G] generated by the elements 0(c) is actually a Z[G]-module, as
0,0(c) = 8(bc). Then, by definition, S =S'NZ[G].

For any Z[G]-module, M, let M ={xe M | o_,;x =—x}.

LEMMA 3.1* ([L] Chap. 2, §1, Lemma 1). Z[G] =(0,—0_).

In view of this lemma, S~ is contained in the Z[G] ideal (o, —o_;) generated
by o,-0_.;. Let v:Z[G]—>Z,)JG]=R, be mod2 reduction. Then
¥vS™ < y(oy—0o_1) =(o,+0_,). Note that Ann (o, + 0_,) 2 (0, + 0_,); actually it will
be seen that there are equal.

THEOREM 3.2. The R,-modules Ann (f{*)/A,(0,+0_,) and Ann (yS7)/
(o, +0_,) are isomorphic.

THEOREM 3.3. The odd number q is tempered if and only if yS™ = (o, +0_,).

COROLLARY 3.4. The odd number q is tempered if and only if q has at most
two prime factors and h™(q) is odd.

Corollary 3.4 follows from Theorem 3.3 and the main result of [SI].

LEMMA 3.4* Ann(o,+o_;)=(oy+0-;). (Hence R,/(o;+0_,) and
(o, +0_,) are isomorphic.)

Proof. (o, +0_,)>=0,+0,=0, so one inclusion is obvious. Suppose

(0'1+a'_1)( Z z(g)g) =0.

geG
Then for all g,
z(g)+z(0-,8)=0,

so that, for I'cG any set of representatives of G/{oy, o_,},

Y 2(g)g= 2, z(g)g+ 2, z()o_1g=(or+0_,) X z(g)g

geG gel gel’ gel’

* Results valid for all q.
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LEMMA 3.5*% Ann(yS7)=(o,+0_,) if and only if yS™=(o,+0_,).
Proof. The if part follows from 3.4. To see the converse, note that multiplica-
tion induces a monomorphism.
a:R;/Ann yS™— Homg_ (vS™, R,),

a(x)(y) =xy. Given BeHomg_ (vS™, R,), set

B(x)= ) B.(x)g.

geG

Then the assignment of B, to B is easily seen to induce an isomorphism of
Homg (yS7,R;) and Homg,z (yS7;Z/2Z). Thus dimg,; (R/AnnyS7)=
dimz,> yS™. So if AnnyS™ =(o;+0_;), then by Lemma 3.4

R,/Ann y§™=Ry/(o1+0_)) =(01+0_y),

and so dimz,,» (03 +0_,) =dimz,> ¥S~. Hence, as yS™ (o, +0_;), they must be
equal.

Clearly Theorem 3.3 follows from Lemma 3.5 and Theorem 3.2. The remain-
der of this section will therefore be devoted to proving 3.2. To do this we first
define a map

¥:A,— Z[G]=R,

as follows. Let §;€ A,, 0=d <q, be given by §,(x) =1 iff x =d. Then, if d = sr,,
s|lgand (r, q)=1,letI;={a|1=a<gq, (a,q) =1, a=r, (mod g/s)}, and define

W(8)= ) a;1(=cr,:‘ > «rzl)

ael, acl
Then, for any fe A,, write f=Y3.5 B(d)8; and let ¢(f) = Y304 B(d)(8,). Clearly
¢ is a map of Z/2Z-vector spaces.
Let Tgeg @,8) =2, @8 ", as usual.

LEMMA 3.6* For A €eR,, Y(Af)= x(f), (ie., ¢ is an R,-module map, where
R, has the module structure A - = Aw.)

Proof. If (b,q)=1, I'y, =0}, - I'; (where r, acts on {0,...,q—1} by o,(x)=
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R, (xb)). Hence

W(opd,)= Y, o;;=o;1( ) azl),

acly aerd

which clearly implies the result.

For s | m, let M,cA, be generated over Z/2Z by the functions 8, with d = sr,
(r,q)=1. Clearly o, M;=M, (a,q)=1 and so M, is an R,-submodule. For
example, M, is the submodule generated by §,

LEMMA 3.7% A,=®D M.,

s|m

The proof is quite simple and so is omitted. If follows from this lemma that if
we let h, be the component of f{* in M,, then Ann (f{*)={,,. Ann (h,).

LEMMA 3.8* | M, : M, — Z,[G] is a monomorphism.

Proof. For 8, € M,, 0=d <q, write d = sry, (q, r4) = 1. Suppose ¥ (24, B(d)8,) =
0. where A, consists of those d with 8, M,, 0=d <gq. Then

E,B(d)(rr;‘ ) 0;1)=0;

aerl,
i.e.,
(; B(d)G;‘)(a;rs GZ‘) =0;
i.e.,

(3.8.1) Y. Y B(d)a;t=0.
A, T,

Suppose o,,=0a, where d,ceA,, acl,. Then r,a=r. (modq). Since ael,
a=1 (mod g/s). Hence r;a=r; mod (g/s); hence

da=d (mod q)

as d=sr;, Thus d=c (modq), so d=c, as 0=d, c<q, and then r,=r, and
a=1 (mod q). Hence the left side of (3.8.1) has the form

Y B(d)a; ! +e,
4,
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where ¢ is a linear combination of elements of the set {o;" | a% r; (mod q) for all
d € A,}. Clearly this implies that B(d) =0 for all d € A,, i.e., Y4 B(d)84 =0. Thus
WM, is 1-1.

In view of 3.7 and 3.8

Ann (fi*) = FI] Ann (¢(hy)).

* If we let 2 be the ideal generated by the i(h), s | g, then the right side is just
Anmne={Ae R, | Ax =0 for all xe€a}. So

Ann (f) = Ann ().

Let A,={d|0=d<g-1, s|d, and (dls,q)=1}, as above. Let A'=
{de A, |0<d=[g/2]}. Then

Hence, writing d = sr; as above for d € 4,,

Y(h)= Y Y o lo;!

deA; aeT,
So clearly

[a/2s]

W(h)= Y Y az. (Thus, ¢(h)=0)

b=1 acerl,
(b.g)=1

Let B c a be the ideal consisting of linear combinations

Y Aw(h,), where X A €A, and A,=0.
sla sla

PROPOSITION 3.9. & =+v(S").

Proof. Recall
0(s)= Y, <:9§>a.;1_
acZigz)* \ 4
Hence '

q0(s)= Y, R,(—as)o;'e S< Z[G].
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Clearly R,(—cs) depends only on the class of ¢ mod g/s, and for 1=c<g/s,
R,(—cs)=1(mod 2) iff ¢ is even. Hence

vaosn= ¥ o o2t).

ael,
(b,g)=1

Thus one easily sees that

P(q0(s)) =03 ' Y(h,).

Hence, for de 4,, s|q,
v(q6(d)) = a3, (k).

According to [SI], S~ can be described as the intersection of Z[G] with the
subgroup of Q[G] generated by the elements

e 0(c) = 6(c)—(1/2)s(G),
s(G) the sum of the group elements. Let
p:Z[G]—>Z

be the augmentation. Given for each ¢ =0, w, € Z[G], all but a finite number
being 0,

Y wb(c)=) wce"ﬂ(c)+%p(z wc)s(G).

Hence, since q6(c)e Z[G]Vc,

; w.q0(c)e S~ if p(z wc) =0.

c

Given A, € Z,[G] with

YA €A, and A, =0,
slq

as in the definition of @, it is easy to see that there exist w, € Z[ G] with y(w,) = A,
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and p(Q, w,) =0. Hence
)IZ A(h) = ; Av(qa26(s)) = § Av(q0(2s))

=y Z w,q0(2s)) e vyS™.

sla

Hence BcyS™.
Now suppose that £ S™. Then we can write

=Y A(8(c)-1s5(G)),

c=>0

where A, ¢ >0, c € Z, are integers and all but a finite number are zero. Since q is
odd and q6(c) € Z[G], it follows easily that @ =3, A.) is an integer. Again, since
q is odd,

(&) =v(g€) = Y, Ay(g8(c)) +ws(G)= Y, A3 ¥(h, )+ ws(G),

c>0 c>0

where we now write ¢=s.r, (mod q) with s.|q, (r,q)=1, 0=<s, r.<q. Since
Yes0A. =0(2), Yo50 A0 € A; and so

Y A0zlw(h,)eRB.

c>0

Since I'y={04} and 4, ={a | (a, q)=1},

[a/21
Y(hy) = bz_:l U'b—l-

(b.a)=1

Hence one sees easily that
(3.9.1) (oy+0a-)¥(hy)=s(G),
and so ws(G)e B also. Thus

YS™<B,

proving the proposition.
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Since (o;+0_1)=Ann(o,+0_,)cAnn+vyS~, it follows from 3.9 that (o,+
o_,)<Ann % and that

Ann%B/(o;+0o_;)=Ann yS /(o;+0_)).
Since « = Ann (i), the following lemma will complete the proof of 3.2

LEMMA 3.10. The modules Ann B/(v;+0_,) and Anna/A,(o,+0_,) are
isomorphic.

Proof. Since « < @B, Ann @ < Ann %, and this inclusion induces a mapping

Ann o Ann %
T -
A, (oytoy) (ot+0o_y)

Lemma 3.10 will be proven by showing this map to be an isomorphism.
Suppose that A € Ann <« and that A represents an element in the kernel of 7.

Then A=w - (0,+0_,) for some w. Hence, since (o,+0o_))¢P(h,) =s(G) (see

(3.9.1) above), 0 = Ay(h,) = ws(G). Since 0,5(G)=s(G) for all o, € G(q),

< ) agg)S(G) = ( Y ag)s(G).

geG geG

Hence ws(G) =0 if and only if w € A,. Therefore, A € A, - (o +0_;), which shows
that 7 is one-to-one.

Suppose that A € Ann . Then, for s|q, s#q, A(Y(h,)+¢(h) =0, i.e.,
(3.10.1) Ay(hy) = Ay(hy).

Now, if we A,, Awy(h,)=0. Hence, Ay(h;)e Ann A,. It is easy to see that
Ann A, =(s(G)); hence

AY(hy) = es(G), e=0or1,

as (s(G))={0, s(G)}. But then
A+e(oy,+o_))yY(h) =0,

using 3.9.1. By (3.10.1), applied to A +e(o;+0_,),
Ateg(o,+o0_1)€eAnna.

Thus 7 is also surjective.



182 SYLVAIN E. CAPPELL AND JULIUS L. SHANESON

§4. Class numbers

In this section we prove the equivalence of statements 1. and 2. of Theorem
1.1. Recall that a linear periodic automorphism ¢ of a real vector space V is said
to be pseudo-free if it is free outside of a 1-dimensional, invariant set L; i.e.,
¢(L)=L and ¢' is either the identity or fixes no points of V—L, for all j.

THEOREM 4.1. Let ¢; be automorphisms of vector spaces V,,i =1, 2, with ¢,
of period m and pseudo-free. Then (i) implies (i) and, for m#0 (mod8) or
dim V, <10, (i) is equivalent to (ii) where:

(i) There is a periodic smooth map f:3 — 3 of a homotopy sphere 3, free
outside of a 1-dimensional set, with isolated fixed points, x,, x, and with linear
isomorphisms ¢;: 3, — V,, i=1,2, so that Y7 (df). ¥ = & (i.e., (df),, and &, are
linearly similar); and

(ii) ¢, and ¢, are topologically similar, i.e., there is a homeomorphism ¢ : V; —
V, with ¢ '¢,¢ = &

(Note that ¢; and ¢, topologically similar and ¢, pseudo-free implies ¢,
psuedo-free also.)

This is just part of Theorem 2 of [CS2]. Now consider pseudo-free au-
tomorphisms ¢;, of period 4q, q odd, on vector spaces V. Let p;(t) =det (¢; —tI)
be the characteristic polynomial of ¢;.

THEOREM 4.2. The following are equivalent:

(i) ¢, and ¢, are topologically similar; and

(ii) There are factorizations (over the reals) p.(t)=k(t)h(t) and p,(t)=
k(t)h(—t), where k(—1)=0 if h(t)# 1, so that h(t) =]}, (t—&)t—§&), with & =
exp ((27b;)/4q), (b, 4q) =1, b;=1(mod 4), with | even, and with

2q—1 l
(4.2.1) (1/2)( 2;1 ag}f))le foa =0,

c¥q

Theorem 4.2 is just a minor reformulation to suit the present notation of some
of the results of [CS1]. Here 8{? is just the function from Z/4gZ to {0, 1} that
vanishes on x iff x#d, 0=<x <4q. (See Theorems I, II, and compare 7.14 along
with paragraph preceding 7.12, all in [CS1].)

It is easy to see that

1
zt 82 =P+ 2‘:‘—)1-

c=1,c¥%q



Class numbers and periodic smooth maps 183

Hence (4.2.1) can be rewritten as

4.3)  (U2)FPP+ 15 1)+Z 4a) — ()

Suppose now that q has at most two prime factors and that h™(q) =1 (mod 2).
Then, by Corollary 3.4 and Theorem 2.2, 4q is tempered. Let f be a periodic
smooth map of the homotopy sphere 3, with isolated fixed points x, and x,, and
suppose that f is free outside of a 1-dimensional set. Let V, =23, and (df), = &,
i=1,2. Then by 4.1 and 4.2, the characteristic polynomials of ¢, must factor as
indicated in 4.2(ii). Hence, with b; as in 4.2, (4.2) also holds. From the definition
that 4q be tempered, it then follows easily that, after reordering of indices,

(byy...,b))=(c1y.--5€29—Cy,...,2q—Cs,dy,dy,dp, ds, . .., dy, d).

However, if &= exp (2wib/4q), then —& =exp (27i(2q — b)/4q). It follows that
multiplicity of a root of unity as a root of h(t) =[]} (t— g)(t—é) is congruent to its
multiplicity as a root of h(—t). From this and the fact that ¢, and ¢, have k(t)h(t)
and k(t)h(—t) as characteristic polynomials, respectively, it is immediate the
¢, = (df),, and ¢, = (df),, satisfy the conclusion of the mod two Smith conjecture.
Thus, in Theorem 1.1, it is proven that 2. implies 1.

To prove the converse, suppose that h™(q) =0 (mod 2) or that q has more than
two prime factors. Then 4q is not tempered. Hence, there is a linear relation

;1 fo, =

with 1=b,<4q, b;=1 (mod 4), (b;,4q)=1, j=1,2,...,1, that is not a consequ-
ence of the linear relations (#), (See §2.). Without loss of generality, it may, of
course, be assumed that b, # b; if i#].

Since f,,(29) =1, it is immediate by evaluation at 2q that [ is even. Let

& =exp ((2mib;)/4q), T =exp ((2mi)/4q), i=1,...,1L

If I/2 is even, let

1
h(t)= II (t—&)t—E),
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and if l/2 is odd, let
l
h() =@t —7)t—D)(t+7)(t+7) [[ (t— &)t —E).

Let ¢, and ¢, be periodic automorphism of real vectors space V; with charac-
teristic polynomials (¢ + 1)h(t) and (¢t + 1)h(—1), respectively; these are elementary
to construct. Then (4.3) and hence (4.2.1) is satisfied, so that, by 4.1 and 4.2,
there is a periodic smooth map f:3**'— 3%*! (and actually even of S**') or
321+5 (8§25, free outside a 1-dimensional set, with fixed points x;, x, and with
(df),, linearly similar to ¢,, i =1, 2.

We claim that f is a counter-example to the mod 2 Smith Conjecture. Since
the b; are pairwise distinct, ¢; and ¢, have all their eigenvalues of multiplicity
one. Hence, in this case the mod 2 Smith Conjecture would actually imply the
linear simplicity of ¢, and ¢,; in particular, it would follows that h(t) = h(—t).
From this it follows easily that we must have

{bl, . ..,b,}—‘:{cl,. <5 Cy2s 2q“'C1, v @ .,2q"‘Cl/2}.

Hence our original equation has the form

/2

; (ﬁ:, +f2q—c,») =0.

Since (f, +f24-2)(0) =£,(0) +f,(2q) = 1, it follows by evaluation at zero that /2 is
also even; thus, our original equation Y} fo, =0 is a linear combination of relations
of the form (), namely it is the sum of the relations

fc,+f2q—c,~=f1+.f2q-19 1‘<—]Sl/2,

a contradiction.
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