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Local homology of groups of volume-preserving diffeomorphisms, Il

Dusa McDurr*

§1. Introduction

This is the second in a series of three papers on the local homology of groups
of volume-preserving diffeomorphisms: see [9], [10]. It may be read indepen-
dently of the other two papers since it uses none of their results or methods of
proof. Here is a statement of the main theorem. (A slightly sharper version is
stated in §2.) We will explain later how it is related to the results of [9], [10].

We consider a compact, oriented, smooth manifold W, with boundary oW;.
Let W,< W, be the complement of an open collar neighbourhood of aW,. If w is
a volume form on Int W,, we write Diff, (W, rel 9) for the discrete group of all
w-preserving diffeomorphisms of W, which are the identity near aW,. Clearly
Dift,, (W, rel 9) < Diff , (W, rel 9).

THEOREM 1. The inclusion Diff, (W,, rel 8) < Diff,, (W, rel 9) induces an
isomorphism on (untwisted) integer homology.

This theorem holds for any volume form on Int W,. In particular, taking
o =dx;A---Adx, on R", we see that the inclusion of the group of w-preserving
diffeomorphisms of R" with support in the open unit disc into the group of
compactly supported w-preserving diffeomorphisms of R" is a homology
isomorphism.

Observe also that if we were considering the group Diff (W, rel 3) of all, not
necessarily volume-preserving, diffeomorphisms with support in Int W,, then the
above result follows easily from the fact that G; = Diff (W, rel 9) is the union of
subgroups G;;, where

Go1€Gpc € Gy=G11 =G - =Gy,

and where, for any i, j, there is g € G; which commutes with G, and conjugates
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136 DUSA MCDUFF

G,; to G,. However these conjugating maps cannot preserve volume, and so one
cannot argue in this way in the volume-preserving case.

The main application of Theorem 1 is to the study of the ‘““local homology’ of
groups of volume-preserving diffeomorphisms. Recall from [7] that if ¥ is a
topological group whose underlying discrete group is G, then the homotopy fiber
B% of the natural map BG — B% depends only on the algebraic and topological
structure of a neighbourhood of the identity in 4. Therefore the homology of the
space B% is called the “local homology of ¥ at the identity.” When ¥ is a Lie
group, it follows from van Est’s theorem that the ‘““differentiable’ part of its local
cohomology is just the cohomology of the Lie algebra of 4. See [4]. If
Deft,, (W, rel 3) denotes the group Diff, (W, rel 9) in its usual C™-topology, it is
not hard to see that the inclusion of D, (W, rel d) into Def,, (Wi, el d) is a
homotopy equivalence. For example, using [6] one can easily construct a family h,
of contractions of W,; which preserve w up to a constant and are such that
h{(W;) = W,. Then one can homotop D, (Wy,rel ) into D, (W, rel ) by
conjugating by h,. Thus Theorem 1 is equivalent to the statement:

THEOREM 1'. The inclusion
B Diff., (W, rel 8) & B Deoff., (W, rel 9)

induces an isomorphism on (untwisted) integer homology.

This is a very special case of a general theorem [10] which asserts that the
local homology of groups such as Dé¢#,, (W, rel 9) is a homotopy invariant of the
pair consisting of W together with its tangent bundle. In fact, the local homology"
of Dff,, (W, rel, d) is isomorphic to the homology of the space of sections of a
bundle over W which is associated to the tangent bundle. In the ordinary, non-
volume-preserving case, this theorem is due to Mather in dimension 1 and to
Thurston in dimension >1. See [8]. In the volume-preserving case, Theorem 1’ is
the crucial link which allows one to deduce the theorem for compact manifolds of
finite volume from that for non-compact manifolds of infinite volume which is
established in [9].

The proof of Theorem 1’ is surprisingly delicate. It is based on ideas of
Thurston which he used in [11] to show that when n =dim W= 3, the inclusion

B D 2 (V, 1€l 3) & B D & (W, rel 9)

induces an isomorphism on H,, where V is any compact n-dimensional sub-
manifold of W, and where @4#’:,’0 is the subgroup of Y, consisting of elements
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which are isotopic to the identity and have zero flux. This, in turn, is the key step
in showing that @Wﬁo (W, rel 9) is a simple group when n=3. The case n =2
coincides with the symplectic case and was considered by Banyaga in [1].

The proof of Theorem 1’ has two steps. First, one shows that the space
B Deff oo (W, rel 8) deformation retracts onto a subspace which is made up from
diffeomorphisms of ‘“‘small” support in W;. An elegant proof of this deformation
lemma in the non-volume-preserving case is given by Mather in [8] §15, following
ideas of Thurston. However that proof does not work either in the volume-
preserving or the C° case. The present proof is much more complicated, but it
does work in both these cases as well as in the symplectic case. See Remark 4.15
below. In fact, it is just a generalization to higher dimensions of Thurston and
Banyaga’s proof of a similar result for the 2-skeleton. Second, one shows that any
cycle on this subspace made from diffeomorphisms of small support may have its
support conjugated into W,. The techniques used here, notably the construction
of the maps h, in Lemma 3.6, do not appear to generalize immediately to the
symplectic case.

§2. Basic definitions

First let us recall some facts about the flux homomorphism. We assume
throughout that W, is a connected n-dimensional manifold with non-empty
boundary. Then the volume form  is exact and the flux is a continuous
homomorphism @ from the identity component e/, ,(Wy,reld) of
Diff., (W1, 1€l 9) to H Y{(W;; R)=H""Y(W,,dW,; R). It may be defined as fol-
lows. Given an (n—1)-cycle z in (W;,9W,) then

()= [ o

C

where c is an n-chain with boundary g4(z)— z. (This is independent of the choice
of ¢ because w is exact.) We will write leﬁffo (W,, rel 9) for the kernel of .
Thurston shows in [11] that Diff%, (W,, rel ) is a perfect group when n=3. In
fact, he proves the slightly stronger result that H.B Qbiﬁlﬁo(wl,rel 9);Z)=0.
When n=2, this is no longer true. There is a continuous surjective
homomorphism

p: D 3o (Wy, rel ) >R,

defined by Banyaga in [1] IL4.3, whose kernel we will denote by
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Dl oo (W, rel 3). Banyaga shows in [1] that H,(B Dol 2o (Wy,rel 9); Z)=0. Let

(g__{@l#’i’o(%rela) if n=3,and
i oo (W,reld) if n=2.

We will prove Theorem 1’ in the following sharpened form.

THEOREM 2.1. The inclusion B4, > BY, induces an isomorphism on (un-
twisted) integer homology.

Clearly, it suffices to consider the case when vol W; is finite. Therefore we will
assume from now on that this is so. Also, it will be convenient to reformulate
Theorem 2.1 slightly. Choose a point x,€9dW,;, and put W,= W, —(open disc
nbhd of x;). So W, has corners: see Fig. 1. Let 4, be Dgff P(W,, reld) if n=3
and Dff 56 (W, rel 3) when n =2. If vol W, =vol W,, the discrete groups G, and
G, are direct limits of subgroups which are conjugate in G,. It follows that the
inclusion BG, “» BG, induces an isomorphism on integer homology if and only if
the inclusion BG, <> BG, does. Since the inclusions ¥, <> ¥, and ¢, <> ¥, are
homotopy equivalences, a similar statement is true on the level of B9. Therefore
it will suffice to show that Hy(B%,, B%,;Z)=0 for any W,. Clearly, this is an
immediate consequence of the following lemma.

LEMMA 22. If N>2d?+2, then H,;(B%,B%;Z)=0 whenever
vol (W;—W,)<1/N vol W,.

Before beginning the proof we must make some definitions.

Let Sing % denote the singular complex of the topological group ¥. The
discrete group G acts freely on Sing ¢ by multiplication on the right, and hence
acts freely on the realization |Sing 4| of Sing 4. The quotient space |Sing ¥|/G fits

Fig. 1
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into a fibration sequence
%=|Sing ¢| — |Sing 9|/G — BG

and therefore is weakly equivalent to BY. In this paper, following [8], we will use
|Sing 4|/G as our model for B%. Notice that |Sing 4|/G is the realization of the
simplicial set S =sing%/G. If AP denotes the standard p-simplex with vertices
(vo, - .., U,), @ p-simplex o of S is just a based continuous map

00' . (A P, UO) - (g, ld)

where id is the identity element of 4. Further, if A? is a face of AP with first
vertex v;, the corresponding face of o is given by the map

00: ’ ocr(vi)—l l Aa‘

In other words, one must renormalize 6, as well as restricting its domain.

It turns out to be useful to represent elements of Hy(B%;Z) by maps of
cubical complexes into B9. Thus let K be a finite cell complex which is obtained
from a disjoint union of oriented d-dimensional cubes by making certain linear
identifications of the faces. We will suppose that the vertices of K are ordered and
that for each cube k < K with first vertex v, we are given a map f, :(k, v.) >
(¢,1id). If these maps are compatible, in other words, if

i@ =fd@f ()™,  aea,

whenever A < k, then they fit together in a unique way to give a map f: K — B%.
To see this, let T be the triangulation of K obtained by starring each cube at its
barycenter, and order the vertices of T lexicographically. Then each p-simplex o
in T is taken by f to the simplex in B% which corresponds to the singular simplex

f.f (o)
(A p’ vO) By (O-’ Uc') _> (@9 ld)’

where ¢ is the natural identification and where «x is some cube containing o. The
compatibility conditions ensure that this is independent of the choice of x. Thus
the f,. define a d-chain (K, f). Its boundary 3(K, f) is obtained by restricting f to
the (d —1)-cubes of K, where these are taken with the appropriate cancellations
and multiplicities.

Notice that we do not collapse degeneracies here. Since the degenerate cubes
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are factored out when one defines homology by means of the cubical complex, it
is necessary to check that every element of Hy(B%) may be represented by a
cubical cycle (K, f) as above. However this follows because the standard simplex

A", with barycentric coordinates Ao, ..., A,, has a canonical subdivision into
projectively embedded n-cubes C,, ..., C,. In fact, let C, be the set of all points
in A" for which A, =max{A,, ..., A,}. Then C, is homeomorphic to the standard

n-cube, with linear coordinates 0 <A;/A, <1 for i # p. Therefore one may obtain a
suitable cubical representative of a homology class by subdividing a simplicial
cycle.

An alternative way to describe the chain (K, f) is to define maps f-:C — &,
where C runs over a family of subcomplexes of K which cover K. These maps
must satisfy the compatibility conditions

fe@)felao) ' =fe(a)felag)™, aeCNC),

where a, is any fixed element of CN C'. For example, if K* is a subdivision of K
into little cubes, the f., k < K, define a chain (K™, f*). If we identify K and K* as
topological spaces, the maps f and f* are not equal. However they are clearly
homotopic.

If K’ is a subcomplex of K, we will write (K’, f) for the chain obtained by
restricting f to K'.

EXAMPLE 2.3. Let K be the unit square k ={(a, b):0<a, b=<1} with ver-
tices ordered as (0, 0), (1,0), (0,1), (1, 1), and define f.(a, b) = h(a)g(b) where
h(0) = g(0) =id. Then (K, f) is a 2-chain in B%. Its boundary is the union of the
two 1-chains b+> g(b) and b+>h(1)g(b)h(1)™?, since the chains corresponding to
b=0, 1 cancel. Thus (K, f) is a 2-cycle if h(1) commutes with the g(b).

Now consider the case ¥=%,, and let (K, f) be a d-chain as above. The support
supp f. of a cube k in K is defined to be the closure in W; of the set
{xe W,:f.(a)(x)# x for some a € k}. Clearly

supp f, <supp f. whenever Ack.

We define supp (K, f) to be the union of supp f,. over all k € K. Observe that (K, f)
is a relative cycle in (B%,, B%,) if and only if supp o(K, f)<Int W,. Thus, in
Example 2.3, (K, f) is a relative 2-cycle if g(b) and h(1)g(b)h(1)~! have supports
in Int W, for all b.

We aim to show that any relative d-cycle (K,f) in (B9, BY,) is null-
homologous. To keep control on the boundary, it is convenient to consider cycles
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for which there is no need to make cancellations when passing to their bound-
aries. Therefore, we say that a complex K is reduced if it may be obtained from a
union of disjoint d-cubes by identifying pairs of oppositely oriented (d—1)-
dimensional faces. Its boundary oK is then the subcomplex of K which is spanned
by the (d —1)-cubes which lie in only one d-cube. Further, we define a reduced
relative d-cycle to be a d-chain (K, f) where K is reduced and where supp f. <
Int W, for all k =9K. Thus supp (0K, f) = Int W,, so that we can consider the
boundary of (K, f) to be (9K, f). For example, suppose that in (2.3) above the
edges a =0, 1 have support in Int W, while b=0,1 do not. Then (K, ) is a
relative cycle, but it is not reduced since one must cancel the edges b=0,1 to
obtain (K, f). However it may be reduced by identifying the edge b =0 with the
edge b =1 and then subdividing k into two embedded cubes by the line b = const.
Note also that every homology class in Hy(B%,;, B%,) may be represented by a
reduced relative d-cycle (K, f). This holds because every class is represented by a
relative simplicial cycle, which may be reduced by changing the identifications of
its (d —1)-dimensional faces and then subdividing. One then takes K to be a
cubical subdivision of this simplicial cycle.

Now let V'={V,:ie A} be any open cover of W;. The chain (K, f) will be said
to be supported by V' if there is a function « which assigns to every cube k =K a
set a(k)< A in such a way that

(2.4) () |a(k)|<dim k,
(ii) supp f. = U {V;:iek(x)}, and
(1) a(AM) < a(k) if A k.

Further, let V' be a subfamily {V;:ie A’} of V' and put W' =J{V;:ieA'}. f K’
is a subcomplex of K, then we will say that the triple (K, K', f) is supported by
(V, V") if there is a function a which in addition to the above three conditions
satisfies

(iv) a(k)c A" for all k<K'

This condition clearly implies that supp (K', f)< W'. A reduced relative d-cycle
(K, f) will be said to be supported by (V, V') if the triple (K,dK,f) is so
supported.

In §4 we will prove:

LEMMA 2.5 (Deformation Lemma). Let (K, f) by any chain in B9, and let
K’ be a subcomplex of K such that supp (K', f)c W'. Then there is a chain
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(KXI, F) such that:

() (Kx0,F)=(K,f),
(i) supp (K'XI, F)c W', and
(iii) the triple (K X1, K’ X 1, F) has a subdivision which is supported by (V, V"),

COROLLARY 2.6. Suppose that (K, f) is a reduced relative d-cycle such that
supp (0K, f) = W' cInt W,. Then (K, f) is homologous in (B%,, B%,) to a reduced
relative cycle which is supported by (V, V).

Notice that if a relative cycle (K, f) is supported by (¥, 7”) then the support of
each cube in the cycle is small. However the support of the cycle (K, f) might still
be almost the whole of Int W,. In the next section we describe a d-fold
conjugation process which at each step takes a little more of the support of (K, f)
into W,.

§3. The conjugation lemma

Throughout this section we assume that (K, f) is a reduced relative d-cycle.
Our first task is to construct a suitable cover V.

(3.1) The cover V'

Let N>2d?+2. We will assume that vol (W, — W,)<1/N vol W, as in Lemma
2.2. The cover V" will consist of sets V,,..., Vx as in Fig. 2. Thus we require:
@ VinV,=gif i-j|>1;

(i) the sets V,, ..., Vn_y and V,NV,, ..., Vy_1N Vy are diffeomorphic to
D" 1x I where D" ! is the closed (n— 1)-disc;

(iii) each set V(;;,,=V,U---UV, i<N, is diffeomorphic to an open disc
neighbourhood of x;

(v) if Vi =V,=(V,,;U V.,y), then

vol V,<vol V; for 2<i<N.
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We will assume the sets V; NV, ., and V have very small volume so that the ‘O/i,
1=<i<N, fill out almost all of W,.

If ac{l,...,N} we write V,, for |J {V;:i€a}. Similarly V, = {V,:ica).
Recall also the notation V;;,=V;U---UYV, used in (ii) above.

Since supp (9K, f) is a compact subset of Int W,, we may choose V, and V, so
that

(v) supp 0K, f)c W,— V, = W, -V, Int W.,.

This is compatible with (iv) above because vol (W;— W,)<1/Nvol W,. If V'=
{V;:2<i=<N}, the cycle (K, f) will then satisfy the conditions of Corollary 2.6
with respect to (¥, V"), and so will be homologous to a cycle which is supported
by (V, V'). Therefore, it will suffice to prove:

LEMMA 3.2 (Conjugation Lemma). Suppose that (K, f) is a reduced relative
d-cycle in (B%,, BY,) which is supported by the cover (V, V') of (3.1) above. Then
(K, f) is null-homologous.

Proof when d = 1. Because B%, has only one vertex, every 1-chain (K, f) is an
(absolute) 1-cycle. In particular, since (K, f) is supported by 7, it is a sum of
1-cycles each supported by some V,. Therefore we just have to show that any
1-cycle with support in V; is homologous to a cycle with support in Int W,. Since
N>2, vol V;<vol (V;NV,)U \°/2<vol W,. Therefore, given any compact subset
S of V;NInt W,, there is a path h, 0<t<1, in ¥, with hy=id and such that
h,(S) < Int W,. (See Remark (3.3) below.) Thus the proof may be completed by
constructing a 2-chain as in Example 2.3. [

Remark 3.3. In general, the only obstructions to constructing a volume-
preserving isotopy which moves sets around in a prescribed way are the obvious
ones involving volume. See [6]. One can ensure that h, has zero flux by making its
support lie in a contractible subset of W;. When n =2, one can also ensure that h,
lies in the kernel of p by replacing it by hk,, where p(k,)+ p(h,) =0 and where k,
has support in a tiny disc which is disjoint from supp h,. Then we will have h, € ¥,
in all cases.

The case d =1 is so simple that one does not need the special properties of the
cover V. These will be useful later on, but first we must homotop (K, f) to a cycle
(K, F) which is easier to manipulate.

(3.4) The cycle (K, F)

Let K* be the first barycentric subdivision of K. It is an ordered cubical
complex with one g-cube D(A, ) for each pair of cubes A, k in K with A ck,
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where q =dim k —dim A. One can easily check that it is reduced. Let D()A) be the
subcomplex |J {D(A, k):k 2A} of K*. Now consider the subcomplex

KleU AXD(A, k)=J AXD()

<k A

of K X K*. This is an ordered d-dimensional cubical complex whose d-cubes have
the form A X D(A, k) where dim k = d. See Fig. 3.

We will write w(A) for the subcomplex AXD(A) of K;. If A ck then
rw(A) N (k) = A X D(k). It is not hard to check that K, is homeomorphic to K and
so may be considered as a subdivision of K. Thus it is reduced and has boundary
(K1) = (8K);.

There is a natural map 7 : K; — K which projects each w(A)=A XD(X) onto
the first factor A. The maps F, ., =f, o7 are clearly compatible. They fit together
to form a reduced relative d-cycle (K;, F) which is homologous to (K f).

(3.5) The conjugating map h

We wish to define a map h:K; x I — %; which will conjugate the support of
(K;, F) into Int W,. Let Z be a set of the form W, — (open collar nbhd of dW,)
which contains supp (K, f), and let T< V(4 4,1y= VU +-U V,,, be a thin tube

which intersects the sets \71, ..., V4., in turn and which lies outside Z. See Fig. 4.
T/Z | 4D, /A4 T
—7 7
2 Z
4 Z
2 % 7
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Further, Let U be a neighbourhood of ZN V, in ‘71 whose closure does not meet
oW, or T. Then vol U <vol \7,~, 2=<i<N, by (3.1)(iv). Therefore, one can find a
path m, 0<t<1, in ¥, with support in V;UTUV, such that my,=id and
my(U)cInt W,. See Remark (3.3). Observe that if suppgcZ—V, then
supp (m,gm7") = m,(supp g) < Int W,.

Now recall from (2.4) that because (K, f) is supported by V there is a function
a :(cubes of K)— (subsets of {1,..., N}) such that

la(x)|<dim «; a(M)ca(k) if Ack;
and
SUpp fi © Voo = U {Viziea(k)}.
Choose a number B(k) in {1,...,d+1}—a(k) for each d-cube k. In general, set

B(A)=U {B(k): A =k, dim k = d}. Then supp f, is disjoint from ‘O/Bm for all A.
We are now ready to define the conjugating map h.

LEMMA 3.6. There is a map h: K, XI— %, such that

(1) h(@K;xITUK,;x0)=id;
(if) for each cube k in K the restriction of h to k X D(k) X I is a composite

K xD(K)xIﬂ)D(K)xI—ﬁ“——»%;
(iii) for each k and b€ D(k)
supp h. (b, 1)< V,UT U Vg,
where B(k) is as above;
(iv) for each k < K, k¢ 3K and b e D(k)

h. (b, 1)(U) s Int W, NV 449y

Proof. We define the h, first for cubes of dimension d, then for those of
dimension d —1 and so on. If dim x = d, then |B(x)| =1 and D(«) is a single point,
b, say. Therefore, we may choose the path h,(b,, t) to be a suitable conjugate of
the path m, defined in (3.5) above. In general, if dimk =q, and h, has been
defined for all A of dimension >q, then h, is determined on dD(x)X I Since
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B(x)< B(A) whenever A < k, the support of h, |dD(k)x I satisfies (ii) and (iv). It
is not hard to see that one can extend h, to the whole of D(k) X L. If k 3K, one
must take care to satisfy (i) also. Further details will be left to the reader. [

(3.7) The basic conjugation process

We define a (d + 1)-chain (K, X I, H) as follows:

if u=kXD(K)XI<cK;XI,
then
H,(a, b, t) = h,(b, t)f.(a).

Observe that H, (ay, by, 0) = id by (3.6)(1) if (ao, by) is the first vertex of « X D(k).
Hence H, is properly normalized. Since h is globally defined on K, X I and the f,
are compatible, the H, are also compatible, and so fit together to form the chain
(KX I, H). The boundary of (K;X I, H) has three parts:

(K1><0, H), (lel, H) and (8K1><I, H).

By Lemma 3.6(i) we have (K;%x0, H)=(K,, F). Also supp (0K, XI, H) < Int W,.
Hence (K, f) is homologous to (K; X1, H).

Let us write H for the restriction of H to K; X 1=K,. Then on the subcomp-
lex w(x)=«k XD(k) of K; the map H, when normalized at the vertex (ao, bo),
takes the form:

I:-Iu.(x)(aa b) = hx(ba 1)fx (a)hx(bOa 1)—1
=L (b)g.(a),

where [ (b)=h.(b, 1)h.(by, 1)~' and g.(a)=h.(by, Df.(a)h.(by, 1)"'. Observe
that

supp l.(b) = Vi 441

by (3.6)(iii). Also, because supp f, = ZN V), and because T U XO/B(K) is disjoint
from Z N V,., conditions (iii) and (iv) of (3.6) imply that supp g, <Int W, when
k¢ dK. This holds also when k <dK because h,(b,t) commutes with f, (a) by
(3.1)(v). One may also take (a,, bg) € 0K, so that h,(by, 1) =id by (3.6)(ii). Note
further that

supp I (b)g. (a)l . (b) ' =Int W N (V441U Vi)
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for all be D(«). In particular, if dim k = d, then supp H, ., < Int W,, so that the
cubes w(k), dim k = d, contribute nothing to (K, H).

Proof of Lemma 3.2
We prove this by induction, using the following inductive hypothesis:

IH(k): There is a function
a :(cubes in K)— (subsets of {1,2kd+2,..., N}

such that

() la(k)|<d-k,
(1) a(pu)<a(k) if p<k; and
(iii) supp f, < \ (Int W,N V(1,2kd+1))-

Any reduced relative d-cycle which is supported by (V, V') satisfies IH(0). Also,
if (K, f) satisfies IH(d) then each a(kx) must be empty. Therefore (iii) implies that
supp (K, f) < Int W,. Hence it remains to prove:

LEMMA 3.8. Any reduced cycle for which IH(k) holds for some k<d is
homologous to a reduced cycle for which IH(k +1) holds.

We begin with the following result.

LEMMA 3.9. Suppose that (K, f) satisfies IH(k) for some k <d. Then (K, f) is
homologous to a reduced cycle (K, f) which has a function a satisfying the
conditions of IH(k) as well as:

(iv) 1€ a(k) if and only if k¢ oK.

Proof. Because (K, f) is a relative cycle, supp f, <Int W, for all k <dK.
therefore if we define

a;(k)=a(k) for k%K,
and
a(k)=a(k)—{1} for k<K,

the function «, satisfies IH(k). Hence we may suppose that 1¢ a(x) for all
Kk < oK.
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Now consider the cycle (K;, F) constructed in (3.4). Define a; for K; by
setting

ai(t)= () alx), for all cubes 7 in K|,
To(k)

where w(k) =« XD(k)< Kj;. It is not hard to check that this satisfies TH(k). Let
C={keK:1¢a(x)} and put

K,=K,-Int ( U p,(K)).

xkeC

Since supp F, ., =supp f. =Int W, for all ke C, (K;, F) is a (reduced) relative
cycle homologous to (K, f). We claim that the function «a, when restricted to K,
satisfies (iv) above. For, by construction, 8K < C. It follows that T <9K, if and
only if the set {k : 7 < w(k)} intersects C (but is not entirely contained in C.). Also,
if 7¢ 0K, then the set {k : 7 < u(k)} is disjoint from C. Condition (iv) now follows
easily. O

Proof of Lemma 3.8

We will suppose as we may that the function « on (K, f) satisfies condition
(3.9)(iv). Choose a function

B :(cubes in K)— (subsets of {2kd +2,...,2kd+d+1})
so that

Bk)Na(k)=Q, BkNAr)=BIUBQ),
and

BU)|=1 if |a(x)|=d-k.

We now want to define a map h:K; X I — %, as in Lemma 3.6 with respect to this
B. We will choose Z and U as before, and will take T to be a tube in V(3 sxa+a+1
which is disjoint from Z. Since (K, f) is a relative cycle there is a compact subset
A of (Int W,)NV,; such that supp (0K, f)= AUV, n). Then we require h to
satisfy conditions (i) and (ii) of Lemma 3.6 as well as:

(ii1)’ for each k< K

supp h, < (‘71 —A)UTU ‘73(.() < Vi 2kd+d+1)s
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(iv)’ for each k < K, k¢ 0K and b € D(k)

h (b, 1)(U)=Int W, N\ V(4 sxdva+1y-

Now observe that if |a(k)|=d —k then a(x) = a(A) for all A D k. Also, if S is a
subset {1, 2kd +2, ..., N} with |S|=d —k, the subcomplex

Ki(S)= U {n(x): a(x) = S}

does not intersect K;(S’) unless S = S’. Therefore we may define 8 and h so that:

(v) on each set K;(S)X I, h depends only on t€ I,
and then extend h to the rest of K; X I.

Consider the cycle (K;, H) constructed from h as in (3.7). For each x € K we
have

I-—Ip.(x)(a9 b) = lx (b)gx(a)
where [ (b)=h, (b, 1)h (by, 1)"! and where

supp g.(a) <= Int W, N (Vazkda+d+nY Vo) (*)

(When « < 9K, this holds by (iii)’ above.) In particular, I (b) =id for all « such that
w (k) < K{(S), by (v), so that the chain (K,(S), H) has support in Int W,. There-
fore, if

K,=K;— U Int K((S),
s

then (K,, H) is a cycle homologous to (K;, H) and hence to (K, f).
This cycle nearly satisfies IH(k +1). To see this, let

pnK)= U {u(x): k =K}
and define a, on K, by
a,()={1}U ({2(k +1d+2,...,NIN ﬂ( )a(K))) if
T w(@K) and 7¢ 0K,

={1,2(k+1d+2,...,N}n| N a(x)) otherwise.

<)
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It follows from condition (3.9)(iv) that 1€ a,(7) for all 7¢#0K,. Now, (*) together
with conditions (iii)’ and (iv)’ above imply that

supp H, (., < Va2ak+1d+1nY V)

Therefore, if 7¢0K;,
supp H 1) S Vo, UInt WoN Vi sacinasn)-

On the other hand, if r <dK;, then the function h is constant on 7 by Lemma
3.6(i). Hence I.(b) =id, which implies that

supp H,cInt W,N (Vazw+1da+1Y Vaeo)

for all k with 7 < u(x). Thus the function «; satisfies condition (iii) of IH(k +1)
for all r < K. It clearly also satisfies (ii). As for (i), observe that if 7¢ u(9K) then
la,(7)|=d —k only if the sets a(k), T< u(k), are all the same and all have d —k
elements. But this implies that 7 < Int K,(S) for some S, so that 7 is not in K.
Observe also that because 1€ a(x) for all k£ 0K, we must have |a(x)|<d—k—1
for k <9K. Thus u(0K)< K, and |ay(7)|<d—k for 1< u(dK). Therefore all we
have to do now is cut out from K, the cubes in w(9K) with |a,(7)|=d —k.

To do this, let R be a subset of {2kd+2, ..., N} with d —k —1 elements and
define

L(R)=U {un(x):k < 9K, a(k)= R} < u(8K),
L'(R)=0K;NL(R).

Since |a(k)|<d—k—1 on 3K, the subcomplexes L(R) are disjoint for distinct R.
Let K3=K,— |Jg Int L(R). Then the restriction of a; to Kj; satisfies the condi-
tions of IH(k+1) since we have removed all the cubes for which (i) fails.
However, (K5, H) is no longer a relative cycle. Our aim now is to define chains
(M(R), G) for each R so that (L(R), H)+(M(R), G) is a relative boundary and
so that (K, H)+Yr (M(R), G) is a relative cycle which satisfies IH(k +1).

Note that L(R)=L'(R)Xx[0,1]. If we identify L'(R)X0 with L'(R)<dKj,,
then it follows from (3.9)(iv) that L'(R) X 1< K,(S), where S ={1}U R. We chose
h so that h is constant on each K,(S): see (v) above. Clearly, we may also assume
that on each set L'(R)X[0, 1] the map h depends only on s€[0, 1]. Then, for
each r< L'(R), we will have

ﬁTX[O,l](a, S) = L(S)R,.(a), for (a’ S) eTX [07 1]9
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where F, =f.om for some x <90K as in (3.4). Note also that the [_(s) commute
with the F.(a) because of condition (iii)’ in the definition of h.

Now consider (L(R), H). The pieces (L'(R) x{i}, H), i =0, 1, have support in
Int W,. Therefore 3(L(R), H) is a sum of chains of the form (7 x[0, 1], H), where
7 is a (d—2)-cube in 9K, with a(r)g R. We will write dL'(R) for this set of
(d —2)-cubes. Since |R|<d, we may choose an integer j¢ R such that 2kd +d + 1
<j=2(k+1)d+1. Let m, 0<t<1, be a path in % with support in
(Vi—A)UT' UV, such that m,(U)< W,. Here T’ is a tube in V1 s+ 1ya+1) Which
does not meet supp F, for 1< L'(R). Therefore m, commutes with the F..
Further, because supp I, © V(i sxara+1) by (iii), we may assume that m,l (s)m7!
has support in Int W, for all s. Now define

G.(t,a,s)=ml(s)F.(a) for (t a,s)eIxrX][0,1].

Because [, commutes with F,, the faces (IX7x{i}, G,), i=0,1, of the chain
(IxTx[0, 1], G,) cancel. Further ({1} x7x[0, 1], G,) has support in Int W,, and
{0y x 7 %[0, 1], G,)= (r X[0, 1], H). Therefore, if we put

(M(R),G)= Y. (Ixrx[0,1],G,),

T<oL’'(R)

then (L(R), H)+(M(R), G) is a relative boundary. Thus the cycle (K5, H)+
Y= (M(R), G) is homologous to (K;, H) and hence to (K, f). This cycle is not
reduced since in the calculation of its boundary one must cancel the face
(IxTx{1}, G,) with (IX7x{0}, G,) and must cancel ({0}x7Xx[0, 1], G,) with
(rx[0,1], H) in K;. However, it is homologous to a reduced relative cycle
(K4, G), where K, is formed from K; and the M(R) by making the identifications
which correspond to the above cancellations and then subdividing, and where G is
induced by G and H in the obvious way.

We claim that (K,, G) satisfies IH(k +1). To see this, define the function a,
on K, by

az(A) = a;(A) if AcK;
=a;(P)U{1} if AcIxTx[0,1]e M(R),A¢ K.

Since |a,(7)|<d—k—1 for 1<dL'(R), the function a, satisfies condition (i) of
IH(k+1). It is easy to check that the other conditions hold. This completes the
proof of Lemma 3.8, and hence of Lemma 3.2. []
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§4. The deformation lemma

This section is concerned with the proof of Lemma 2.5. In [11] Thurston gave
a very brief outline of a proof in the case of a 1-chain on a manifold of dimension
=3. His method was later fully worked out in the symplectic case by Banyaga,
both for 1-chains and 2-chains. The argument for d >2 is essentially the same:
one just has to be very systematic, so that one can keep track of what is going on.
We will begin by making some definitions and will describe the strategy of the
proof in (4.3). Throughout we consider a triple (K, K’, f) such that supp (K’, f) <
X< W', for some compact submanifold X of W'.

(4.1) Coverings associated to a triangulation

Put a Riemannian metric on W,; and choose £>0 so that e-balls are
geodesically convex and so that the e-neighbourhood X, of X is contained in W'.
Then choose a smooth convex triangulation T={A¥:ie I, 0<k <n} of W, which
restricts to a triangulation T’ of X and is such that the e-neighbourhood of any
simplex in T, resp. T, is contained in a set of ¥, resp. ¥'. As in [1] ChIIL.2, we
associate to such a triangulation an open cover U ={Ur:iel,,0<k<n} of W,
with the following properties:

(a) each U¥ is an v-neighbourhood of a deformation retract of A¥ for some
n<eg,

(b) UrNU}= D if either k=1 and i#j or k<l and Af is not a face of A}.

(c) For each k, the sets Ul:0<j=<k, i I, cover the k-skeleton of T.

One should construct the U¥ in order of increasing k. See Fig. 5. Note that U is a
refinement of V. Also %' ={U¥:A¥e T'} refines V".

{{
T

[ |
Z(,:‘H) Z(ﬂ;}

Fig. 5.
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It will be convenient to renumber the sets U¥. Let M, =|I,|+- - - +|I.| for each
O0<k=<n and put M=M,. We may assume that I, ={1,..., M, —M;_,}. Then
U¥ will be called U, where m =M,_;+i. In particular U, = U®, for m<M,.
(Our M, slightly differ from Banyaga’s N, but the renumbering is the same as
his.) We now choose a nested sequence of open covers 7 ={Z®:1<sm <M},
—Q=<r=Q+2d+1, each of which is a slightly smaller version of %, where
Q =2Md. Thus, for all r, s, m, | we have

Z,(.,:)C Z"f’r‘)C Zf;*'l)c ZSr?+2d+1)c Um)

zZoNZP=0,NU.

A typical pair of such covers is shown in Fig. 5. We will often write Z for a
union of sets from ™ and Z for the corresponding union of sets from Z©.
Further, we will write J' for the subset of {1,..., M} which corresponds to
elements of T'. Thus je J' if and only if U; = Uf where Afe T'. We write Z'® for
{Z{":jeT'}. It is a refinement of A’ and of V.

(4.2) Neighbourhoods of the identity in %,

Let ¥ be any neighbourhood of the identity in %;. Then a k-simplex o < B%,
will be called ¥-small if

0,(v)6,(w) teN

for all v, w in the standard simplex A*. Similarly, the chain (K, f) will be called
N-small if

f(@f(b)eN

for all a, b in k and all cubes k = K. Clearly, one may subdivide K to get a chain
(K*, f*) which is #-small and is homotopic to (K, f). Therefore, we may assume
that our original triple (K, K, f) is #-small for any given A

Let . be the set of all elements g €%, such that both g and g ! take Z% into
Z&D for all m, r. Let &, 0<<i=<2d+1, be an increasing sequence of contractible
C'-neighbourhoods of the identity in %; such that for each i we have:

(@) ¥;=WN;'cM; and
(b) for every union Z@*" of sets from Z@*Y  every compact subset of the

space {geWN;No:supp g< Z©@*D} contracts inside {geN;. :suppgc
Z(Q+i+1)}.
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Finally & will be a very small neighbourhood of the identity which is contained in
No. Other conditions on N will be given later. We will assume from now on that
(K, K', f) is N-small.

(4.3) The main construction

For each p we identify the standard p-cube C? with
{xeRP:0<xy,...,x,<M}

by a linear transformation. Then the hyperplanes x; € Z divide C” into a collection
of little cubes whose set of vertices is the integer lattice A in CP. Since the
hyperplanes x;€Z are preserved by the face inclusions C?— CP, the cubical
complex K has a corresponding subdivision K*. Thus each p-cube « in K is
divided into MP little cubes ¢ in K™ whose vertices lie on the integer lattice A,.
We will identify A, with A. In particular, the first vertex v, of k is identified with
0,...,0)eA.

Most of the effort involved in the proof of the deformation lemma is taken up
in establishing the following result. It will be proved in (4.7)-(4.14) below.

LEMMA 4.4. There is a family of maps ¢, : A, — Ny, k < K, with the follow-
ing properties.

(a) (compatibility) If v€ A, and k < u then

P ()=, (), (v)

(b) (agreement with f,) For each « and all vertices v of «

¢, (v) =f(v).

(c) For each p-cube k we have

Supp (!l’x(jb o .. ,jb LR ’jp)°¢x(j1’ c e ’jl_17 ww ’jp)_l)czj(]o)’

(d) If ke K', then

UelGs oo -sdoeeesdp) =Wl .o i—1,..., ) unless jel.

Condition (c) implies that for every little cube ¢ in k there are p integers
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j1> - - - » J, such that
() supp ¢ (VY () ' Z{PU---UZ,

where ¢, ' are any vertices of c. By (a), the diffeomorphism ¢, (¢)y (2/)7" is
independent of the choice of cube k containing c¢. Therefore if «, is the first vertex
of ¢ we may put

e (V) = Y (VP (e0) ™

where ¢ < k. Clearly, this defines a compatible family of maps on the vertices of
the subdivision K* of K. Using (d) and (e), one can easily find a function « from
the little cubes in K* to the subsets of {1,..., M} which has the properties:
la(c)|<sdimc; a(c)calc) if cec’; alc)el if c< K'™;

supp¥. (1)< ZQ)= U Z{?.

jeal(c)

Therefore the triple (K*, K'*, ¢) is supported by (Z‘?, Z'“?’) and hence also by
(V, V). It remains to extend the ¢, to the whole of K* and to show that the
resulting triple (K*, K'*, ¢) is homotopic to (K, K’,f). This will be the case
because the ¢, are close to the f. by (b).

(4.5) Extending the . to .

We extend the y, to a compatible family of maps ¢, :c — N » where p =dim c,
in such a way that

supp ¥, =« ZZ3P  for all c.

This may be done inductively over the skeleta of K*. When dim ¢ =1, the values
of ¢, at the two points of dc lie in N, and one can extend ¢, to the rest of ¢ by
(4.2)(b). Now suppose inductively that ¢, has been defined for all ¢ of dimension
<p. If ¢ has dimension p, then the compatibility conditions imply that g, is
already defined on dc. In fact, if ¢’ is a face of ¢ with first vertex ¢, we must have

¥.(a)= ¢ A(a)y (), forall aec'
Hence ¢.(a)eN, N, for all aedc by the inductive hypothesis. Also

supp ¢, |dc = Z{ZP~Y. Therefore one can extend ¢, to the whole of ¢ by
condition (4.2)(b).
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Thus we have a triple (K*, K'*, ) which is supported by (Z©@*¥, Z/Q@+dy and
hence also by (7, V).

(4.6) Construction of the homotopy (K X I, F)

Clearly there is a cycle (K, l;) which gives (K*, ) upon the subdivision of K.
In fact

b (@)=Y (a) (e,) for aecc<k

Hence ¢,(a)€N,., for all aek by (4.2)(b). Further, if Z'@=|J {Z":jel}e
W', then for each k € K’ we have

supp ¥, © U Z1QH4+D < Z/@Q+d+D o Wy

cC<K

By repeating the argument of (4.5) one can easily define maps F, :xk XI—
Na+p+1, Where p =dim k, so that the following conditions are satisfied:

(i) F.(a,0)=f.(a) and F,(a, 1) =4, (a) for ac«;
(ii) F. (v, t)={.(v) for each vertex v of «;
(iii) F.(a,t)=F,(a, )f.(v.) if aeAck;
(iv) for each p-cube k in K’

Supp F CZI(Q+d+p+1)c Wl
” .

Note that conditions (i) and (ii) are consistent by (4.4)(b). Also (i) and (iv) are
consistent because supp f, = X < Z"? for all k € K'. By (iii) these F, are compati-
ble and so define a chain (K X I, F) which clearly has all the properties required by
Lemma 2.5. Observe in particular that the restriction of F to K X1 is just (K, ¢).
This holds because, by (ii), no renormalization is needed: compare (3.7).

This completes the proof of the deformation lemma, modulo the proof of
Lemma 4.4.

(4.7) Proof of Lemma 4.4

We prove the lemma first for d =1 and 2. The general case will be proved by
induction in (4.14). When d = 1, the compatibility conditions are irrelevant and it
suffices to define, for each 1-cube « in K, elements ¢, (i), 0<i<M, of ¥, such
that ¢, (0)=id, ¢, (M) =f,.(M) and

supp (¢ (D G — 1)) = Z{.
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Our construction will be based on a very careful choice of these ¢, (j).

If Y is a (compact) submanifold of Int W, and if ge¥; we will say that
supp g < Y if g has support in Int Y and if the flux of g with respect to Y is zero.
The second condition means that the element @y (g) of H* '(Int Y; R) is zero.
Clearly supp g< W, for all ge¥4,i=1,2.

The following lemma is essentially due to Thurston [11]. A complete proof is
given by Ismagilov in [5] 2.4, and in Banyaga [1] II1.3.2 for the case n =2. We
will give a proof here in a form convenient.for our purposes, using Ismagilov’s
method.

LEMMA 4.8 (Fragmentation Lemma). Let s be any integer, 1<s<Q, and let
M, be any neighbourhood of the identity in §,. Then there is a neighbourhood of the
identity My< M, such that every ge M, may be decomposed into a sequence
g(0)=id, g(1), ..., g(M) =g which satisfies the following conditions for each j:

(i) g(j)eMy;
(i) supp (g(Ng(—1)"H<ZP;
(iii) supp (gg())™Hc W, — Ui Z{7°.

Proof. We construct the g(j) by induction on j. Since the construction involves
M steps, it will be clear that there is a C'-neighbourhood #, such that the g(j)
may all be chosen in #,. Moreover, we will assume that #, is so small that any
diffeomorphism which we encounter, for example gg(j—1)"' below, is in the
neighbourhood &, defined in (4.2).

If g(j—1) is already defined, then g(j) must have the form s(j)"'g(j — 1) where

i<j

gi—-g™* on U2Z™
o

id outside Z{*.

Thus, in order to define g(j) we must first extend s(j) over the whole of W,.
Second, we must check that the extension can be chosen so that gg(j)~" has zero
flux in W, — UJ;<; Z{®. We will see that these two questions are related.

Now, s(j) is defined on the complement of

— (—s)
Q§S)_ ngs)___ U Z,- s

isj

and is injective there because of our assumption that gg(j—1)"" is in N, If j
corresponds to a p-simplex in T, that is, if M,_; <j=<M,, then one can easily
check that Q®¥=S§"?"'x D"*!. Thus Q}* is connected when p<n—1, and so
s(j) has an extension in ¥,. (See Remark (3.3).)
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Let us now consider the second conditon. When j<M,_3, the set U;<; Z{™°
retracts onto part of the (n—3)-skeleton of T and so H? '(Int W;— U Z09) =
H? '(Int W;). Therefore, for these values of j we just need @y, (gg(j)™") =0,
which is true since g and g(j) belong to 4,. However, if M, _;<j<M,_,, the
condition is significant. Let us suppose that j = M,_;+m. Then Z{* is a thickening
of the (n—2)-simplex A% 2, and |J;<; Z{® is a thickening of

T; = ((n —3)-skeleton of T)U{A} 2:1<m}.

Let us denote the flux homomorphism relative to W;—T; by &, Then &; is
defined on those ge%; with support in Int W;~T,, and it takes values in
H? '(Int W, — T;). The inductive hypothesis implies that &, ,(gg(j—1)"") =0, and
we want to choose an extension s(j) so that @;(gg(j—1)""s(j)) =0. Consider the
diagram

H"%(A2,04%7%) > H: '(Int W, —T;) L H: '(Int W, —T;_,)

N

H7H(Q5). *)

Note that the top row is exact, and that 8 is either injective or zero. Let s'(j) € 9,
be any extension of s(j). Since it has support in Z{®=Z® ~T,_,, the element
®;_,(s'(j)) is defined. Moreover @,_;(s'(j)) = 0 because Z* is contractible. Hence

i*®;(gg(—D7's'(1)) = P-1(8g( — D™+ D;_1(s'()) = 0.

Therefore, when 8 =0, any extension s'(j) will do. If 6 # 0 the possible choices for
the extension of s(j) have the form s'(j)t(j) where supp t(j) < Q® < Int W; —T..
Let @] be the flux homomorphism relative to Q{®. Then @, =i*®] in the diagram
above. It is not hard to see that @; is surjective. Therefore, because Im & = Im i*,
one can choose t(j) so that

D;(gg(—1)7's'(N() = P;(gg (i — D7's'(N) + &, (¢(7) = 0.

Thus a suitable extension of s(j) can be found when j<M, _,.

Now consider j in the range M,,_, <j<M,_,. Notice that supp (gg(M,._,) ") c
W,—T"2, where T" 2 is the (n—2)-skeleton of T. Using the definition of the
flux homomorphism given in §2 above, one can check that for each j=M, _,+m
the two components of Z{¥—gg(M,,_;) (A% ") have the same volume as the
corresponding components of Z{®— A% "= Q. (This holds because gg(M,_,)™"
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satisfies condition (iii).) Thus s(j) can be extended for each such j. But for these j
condition (iii) is automatically satisfied. Hence the g(j) can be defined for these j.
The g(j) for j>M,_, are now uniquely determined, since Q= in this
case. [J

We will say that the elements g(j), 0<j<M, of Lemma 4.8 form a canonical
decomposition of g with respect to Z>. We will need the following sharpened
version of this lemma.

LEMMA 4.9. Given any neighbourhood M, there is a neighbourhood M,< M,
such that if g€ My and if

supp g = QY =Z.0- U Z{™

i<k

for some k and s then g has a canonical decomposition with respect to Z“*" such
that

(i) g(j)=id for j<M,, where M,_;<k<M,; and
(i) each g(j)e M, and has support in ZE*V.

Proof. This is a straightforward generalization of Lemma 4.8 and is proved in
the same way. Condition (i) is possible because Qf’ is covered by the sets Z**?,
j>M,. Since there are only a finite number of s and k, the neighbourhood .,
clearly exists. [

Remark 4.10. If supp g = Z’ =« W', one can apply Lemmas 4.8 and 4.9 using
the cover &' of W' instead of #¥. Hence one can assume in addition that

g()=g(—1) for j¢ J'.

(4.11) Proof of Lemma 4.4 for d =2

When dim « = 1, the integer points in A, are j, 0=<j=<M, and we define the
¥, (j) to be a canonical decomposition of f. (M) with respect to ZV. If k € K’ we
may by (4.10) assume that ¢, (j) =4 (j—1) if j¢J'. Thus (4.4)(d) is satisfied.

Let us now consider a 2-cube k. Its integer points are (j, k), 0<j, k<M. The
compatibility conditions (4.4)(a) determine ¢, on dx. We will also suppose that ¢,
is defined along the diagonal (j, j), 0<j=<M, to be a canonical decomposition of
¥ (M, M) = f. (M, M) with respect to Z. We will then show how to define the
Y. (j, k) for j=k. The case j <k may be obtained by symmetry.

Let g=f.(M,M). then by (4.8)(ili) both supp (g, (k,k)™") and
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supp (g¥.. (M, k)™?) are contained in W, — |J,<; Z¢P. Hence
@)  supp (Y (M, k) (k, k)™ = Wy — | Z{7P

Let us suppose that the ¢, (j, k) have been defined for all (j, k) where j=k and
k <! in such a way that:

(i) supp (WG, K (=1, k) )= ZP**D,
supp (4. (G, k) (j, k— 1)) = ZZ*,

(iii) supp (¥ (M, k) (j, k) ™) = Wy — U Z{7>7Y,

=
(These conditions are satisfied when [=1.) Put
ho =¥ (L DL I-1)7",  hy=t (M, Dgp(M, 1-1)7".
Then we claim that
(iv) supp (hyho') = QF".
To see this, note first that supp hy; < Z{* by (4.8)(ii). Also,

supp ho, < supp (¢, (L, D (1—1, 1=1)"HY Usupp (¢, (I-1, I - Dy (L, - 17
cZPUZA V=Z2"D by (ii) above.

Further
huho = 4 (M, DY (M, 1= 1) (L, 1= D) (L, D7}

= (M, Db (M, 1= 1) (4, 1= D (M, D) (W (M, D (1L, DY)

=id on ¢ (M, DZT*VNZEY for i<l
by (iii) above and (4.8)(iii). But y,.(M, )ZT**Y > Z{2 since ¢ (M, ) e Ko< M.
Therefore ‘(iv) holds.

When M, _;<I<M, for p#n—2, then HZ (Q{*”)=0. In this case (iv) is
equivalent to

(iv) supp (hyho') < QFY.

Hence Lemma 4.9 imples that h;hg! has a canonical decomposition h(j), j>M,,
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with respect to Z®*? and such that supp h(j)= Z#*? for all j. Now set

™) G D=h(Dhoth(j,1-1) for Isj<M.

It is not hard to check that (ii) and (iii) above hold. For example

U (M, D (j, D7 = (hyha R ()R (Dot (b (M, 1= 1) (j, 1= D)™ Dhg R ()™

is the identity on Z{ 2" PN h(j)ho(Z*V)=Z2Y for all i<j.

It remains to consider the rows (-, ) where M, _;<I<M,_,. We have to
ensure that (iv)’ holds. Consider diagram (*) in Lemma 4.8. If §#0, then i* is
injective and so it suffices to prove that @,(h;ho') =0. If g = 1. (M, M), we know
by (4.8)(iii) that

0=d(gy (M, )™ =D (gp (M, |- 1) hy)
and

0=d(g¢ (I, 1-1)" hg)).

But &,(y, (M, 1—1)¢ (I, 1—1)"")=0 by (iii)) above. Hence ®,(hhg!)=0 as re-
quired.

For those | for which 8 =0, one argues rather differently. Notice that in the
above construction the elements ¢, (j, k) in the triangle M,_; <k <j=<M, depend
only on the diagonal elements ¢, (k, k) and the elements ¢, (j, M,_,) in the M,_;*"
row. (This is true because we chose the h(j) in (v) so that h(j)=id for j<M,.)
Therefore, once the elements ¢, (j, M,_3), M,,_3;<j<M,_, are chosen, the ele-
ments hyhol, M, 3<k<M,_,, are determined. Two different choices of
¢ (I, M,,_,) differ by an element t(I) with support in Q{*". Further, if § =0 for |,
then @j(t(l)) can be arbitrary. It is not hard to check that if one changes
(I, M,_3) by t(l) then hy changes by a conjugate of t(I) and so ®j(hyhg)
changes by ®j(t(l)). Hence one can choose the row ¢, (-, M,_3) so that (iv)’ is
satisfied for all [ with 6 =0. This argument does not make sense when n =2, but
fortunately the map & is never O in this case.

This completes the construction of the ¢, (j, k), j=k. The ¢,.(j, k), j <k, are
defined symmetrically. It remains to check that the conditions of Lemma 4.4 are
satisfied. Now, conditions (a) and (b) are clear from the construction, (c) follows
from (ii) above, and (d) follows by Remark 4.10. Finally, notice that in the
construction of a particular ¢, (j, k) we apply Lemma 4.8 three times to define ¢,
on the edges of the 2-simplex which contains (j, k) and then apply Lemma 4.9
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exactly k —1 times. It follows easily that one can choose the initial neighbourhood
N which contains the f.(v) to be so small that all the ¢, (j, k) lie in N, This
completes the proof of Lemma 4.4 when d=2. O

In the above proof we constructed the ¢, (j, k) for 0<k<j<M from three
given elements: ¢, (0, 0), ¢.(M, 0) and ¢, (M, M). This may be thought of as a
“two-dimensional” version of Lemma 4.8. In dimension p we want to define
elements ¢, (¢), for all « in the integer lattice of a p-simplex, given the values of ¥,
at the vertices of that simplex. These ¢, (¢) should have certain properties which
are formulated in the following definition.

DEFINITION 4.12. Let o, be the p-simplex {x:0<x,<---<x,; <M} with
set of vertices V, and integer lattice A,, and let ? be a neighbourhood of the
identity in §;. Suppose elements y,, (v), v € V,, are given where ¢, (0, ..., 0)=id.
Then a canonical decomposition of the Y, (v), ve V, in P and with respect to Z9 is
a collection

ll’o-(jla oo ’jp):(jla 9EE 7jp)€Ap’

of elements of &P satisfying the conditions:

() supp WoGins -+ -5t -5 ipWols e - s ii—1,...,5,) NS Z®
(ii) for each I, 1=I=p,

supp (lpcr(M ce vy M M jl+la sy ]p)dlo-(M ) M jb jl+1, ) jp)—l)
cw,-U Z{.

i<j;

This decomposition will be said to be subordinate to Q if, in addition,

(iii) ¥, (1,...,jJp,)=id for j,<---<j, <N, where N,_;<k=<N,
(iv) SUPp Wiy - - -5 jp) < Z& for all (jn, - . ., jp) € A,.

LEMMA 4.13. (a) For any neighbourhood of the identity M, there is a
neighbourhood M, such that, if ¢, (i), v € A, Ndo,, are any elements of My which
satisfy (4.12)(i), (ii) for some s’ wherever this makes sense, then one can define ¥, (1)
for the other v € A, so that the ¢, () form a canonical decomposition of the ,(v) in
M, with respect to £, with r=s"+2M.

(b) If ¢, (v), ve V,, are any elements of M, such that

supp ¢, (V) < QF for all veV,,
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then there is a canonical decomposition of the s, (v) in M, which is subordinate to
Qg(s-rl)'

Proof. Let us suppose that (a) and (b) have been proved for all p’ <p, where
p=3. Further, we will suppose that ¢, (j;,...,J,) has been defined for all
(1> - - -5 Jp) With j, <l in such a way that (4.12)(i), (ii) is satisfied with s =s'+2m
when j, = m. Consider the level j, = . The (p—1)-simplex o, N(j, = I) has vertices
(D), 0<is<p-—1, where

v(HD=WM,...,M,L...,Lj), withi factors of M.

Put hy; =v,(l)v,(1—1)"". For each i, the four elements v,(I), v,(I—1), v,_,(I) and
v,—1(l—1) are contained in a 2-dimensional face of o,. (Here we need p=3.)
Therefore, our assumption that the ¢, (¢) satisty (4.12)(i), (ii) on 90, together with
the calculation of (4.11), shows that

supp hyh;l, < Q" for r=s'+21-1.

Hence
supp hyhol < Q) for O<i<p-1.

Since (b) holds when p’=p—1, one can therefore find a canonical decomposition
h(ji, ..., J,—1) of the hyhg! which is subordinate to Qf”, for r=s'+2l. One now
checks as in (4.11) that the elements

‘Ilcr(jil’ cwmy jp-—la l) = h(jla s vvy fp—1)hoz¢a(f1, ] jp—l:- l__ 1)

satisfy the inductive hypothesis.

The proof of (b) is similar. One should insert an appropriate number of
auxiliary covers in between £ and Z“*", and then should choose the (1),
where p is a q-dimensional face of o, in order of increasing q. [

(4.14) Proof of Lemma 4.4 (general case)

One constructs the i, (¢) inductively over the skeleta of K using Lemma
4.13(a). The argument is just like that used when d =2, and its details will be left
to the reader. [

(4.15) Remark

In the proof of Lemma 2.5 we have used two properties of the group ¥;: first,
that it is locally contractible, so that the neighbourhoods of (4.2) exist, and
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second, that it has an appropriate isotopy extension theorem, so that the fragmen-
tation Lemma 4.8 holds. Fathi shows in [3]§4 that the group of all homeomorph-
isms of a compact manifold which preserve a good measure has these properties.
Hence Lemma 2.5 holds for this group. Indeed all the results of this paper are
valid for this group.

Lemma 2.5 also holds for the group of all homeomorphisms of a compact
manifold by [2]. Using this, one can presumably extend the proof given by Mather
in [8] of the Mather-Thurston theorem to the C°-case. See [8] §6.

Finally, note that Lemma 2.5 holds in the symplectic case. For the group of all
symplectic diffeomorphisms of a symplectic manifold is locally contractible by
[12], and Banyaga proves the equivalent of Lemma 4.8 in [1] IIL.3.2. In fact, let
us say in this case that suppg< Y if supp g<Int Y and if S(g)=0 in H!(Int Y),
where S is the homomorphism defined by Banyaga in [1] II.1. Then Lemma 4.8
holds as stated, and the proof is the same, except that the obstruction to extending
s(j) in the required fashion now occurs for j < M, instead of for M, _;<j<M, _,.
Therefore, just as when n =2 in the volume preserving case, the map 8 in the
diagram corresponding to (*) is never zero. This means that condition (iv)’ in
(4.11) is always satisfied, which slightly simplifies that proof.
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