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Nilpotent completions and Lie rings associated to link groups

SADAYOSHI Kojmma™*

§1. Introduction

The nilpotent completion and the Lie ring associated to a group with finitely
generated abelianization are nilpotent invariants derived from its lower central
series. In classical link theory, several authors have studied those for a link group,
the fundamental group of the complement of a link, since it is much more
practical rather than studying a group itself.

On the other hand, Sullivan gave a cohomological and infinitesimal method to
compute these invariants when the group is the fundamental group of a polyhed-
ron. Thus as he suggested in [17], Problem 5, it seems interesting to apply his
theory to the link theory. In this paper, we are concerned with this vague
question. Of course it is hopeless to expect complete algebraic characterization of
these invariants for link groups, however it is possible to obtain some general
results from infinitesimally computable cases. Such computations are attained in
§4 and §5.

In § 4, we construct a minimal model for a polyhedron which is cohomologically
equivalent to a bouquet of circles. We establish, as Corollary 6.3, the equivalence
between the freeness of the nilpotent completion of its fundamental group and
the vanishing of every Massey product on H'. Now, a link complement can never
be cohomologically equivalent to a bouquet of circles since H? is non trivial. How-
ever, to apply this construction, we do not need trivial H?, but we do need just
non-existence of decomposable elements in H?, and it still has some significance
in the link theory. Actually, Milnor [10] proved that the nilpotent completion of a
link group is isomorphic to that of a free group iff all the g-invariants vanish, and
Porter [15] succeeded in expressing the g@-invariant in terms of the Massey
product. In particular, we get the equivalence which is eventually a special case of
Corollary 6.3.

* Partially supported by Sakkokai Foundation
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116 SADAYOSHI KOJIMA

In § 5, we explicitly construct a family of minimal models for polyhedra which
are cohomologically equivalent to the product of a bouquet of circles with a circle.
In the special case where the polyhedron is the complement of a link, this
cohomological condition is a condition on the linking numbers. Our construction
asserts that the structure of the Lie ring associated to the fundamental group of
such a polyhedron is very simple while the nilpotent completion is not. Corollary
6.4, which has been conjectured by K. Murasugi, came up as an application of the
construction.

Besides these, several corollaries of the constructions are established in § 6.
We review nilpotent completions and Lie rings associated to groups in § 2, and
Sullivan’s theory in § 3.

The content of § 4 is from my thesis supervised by Professor John Morgan. I
would like to express my great appreciation for his constant encouragement.

§ 2. Nilpotent completions and Lie rings

Let G be a group and let G =G¢> G, > G,>- - - be the lower central series
of G where G, =[G, G,_,] for p=1. Here are two invariants of G which come
from the lower central series. The first one is the nilpotent completion of G. It is
the tower of nilpotent groups:

co o> G/G,— GG, — {e}.

We will simply denote it by Nil(G). Nil(G) is said to be isomorphic to Nil(H) of a
group H up to the pth stage if there is an isomorphism: G/G, — H/H,. Then it
induces an isomorphism: G/G, — H/H, for each q=<p and we get isomorphic
towers up to the pth stage. We might say that Nil(G) is isomorphic to Nil(H) if
these are isomorphic up to any stage.

Now, each G/G, is a nilpotent group of index p and a central extension of
G/G,-; by the abelian group G,_;/G,. The second invariant is formed by these
abelian groups. Let %,(G)=G,-,/G, and Z£(G)=@,»: Z,(G). Then, the
commutator operation determines a well defined bilinear mapping, [ , ]: £,(G)®
£,(G)—> £,.,(G) such that

(1) [a, B]=—[B, @] and

(2) [[e, Bl¥]+IIB, vla]l+[[v, «]B1=0.

Hence £(G) admits a graded Lie ring structure generated by £,(G). See [7].

Both concepts have rational versions. Say, the rational nilpotent completion of
G, which will be denoted by Q-nil(G), is the tower of Q-nilpotent groups:

. ._.)G/GZ®Q~—> G/Gl ®Q—"{e}a
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where each G/G, @ Q stands for the Malcev completion [8] of the nilpotent
group G/G,. Also taking tensor product by Q in usual sense, we get a graded Lie
algebra £(G) ® Q associated to G.

The first important result concerning the structure of £(G) may be one for a
free group by Witt [18]. See also [7].

PROPOSITION 2.1 (Witt). Let F, be a free group of rank n. Then £(F,) is a
free Lie ring generated by n elements. Here, free means that there are no relations
except those generated by (1) and (2). Furthermore, £,(F,) is a free abelian group
of rank

W(n, p)= 1 Y u(d)ne,

P dip

where u(d) is the Mobius function.

W(n, p) is called the Witt number.

In general, the nilpotent completion is a stronger invariant than the associated
Lie ring, however,

LEMMA 2.2. For any p=1, if £(G) is isomorphic to ¥(F,) up to the pth
stage, then Nil(G) is isomorphic to Nil(F,) up to the pth stage.

Proof. Since G/G, is a nilpotent group for any p=1, it is generated by n
elements (see [7], Lemma 5.9) and hence we have an epimorphism ¢: F, — G/G,
which induces an isomorphism: £(F,) — £(G/G,) up to the pth stage. Looking at
the commutative diagram for q <p,

1> £,(F,) = F,/(Fy)q = FoJ(F,)q-1 — 1

L

1— £.(G/G,)— G/G, —> GIG,_;— 1,

we notice that ¢ induces an isomorphism: F,/(F,), — G/G, until q becomes p by
the five lemma and the induction on q.

LEMMA 2.3. For any p=1, if £(G) ® Q is isomorphic to £(F,) ® Q up to
the pth stage, then Q-nil(G) is isomorphic to Q-nil(F,) up to the pth stage.

Proof. Since for any p=1, there is a homomorphism ¢:F, — G/G, which
induces an isomorphism: £(F,) @ Q — £(G/G,) ® Q up to the pth stage, the
same argument can be applied.
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The next lemma will be used in § 5.

LEMMA 2.4. Suppose that £,(G) is generated by g, ..., g.., such that

(1) [g, 81#0 in £,(G) for alli,j<n and

(2) [8; 8+i]1=0 in £(G) for all i,j=1.
Then £,(G) is generated by at most W(n, p) elements. If £,(G) is a free abelian
group of rank W(n, p) for all p=2, then £(G) is isomorphic to £(F, XZ"), where
Z" is a free abelian group of rank r

Proof. Let hy,...,h, be a basis of ¥,(F,) and define the homomorphism
&:L(F,)— £,(G) by ¢(h;)=g. Then ¢ naturally induces a homomorphism
¢,: £, (F,) — £,(G) for each p. What we want to show then is that ¢, is onto for
p=2.

Now, any element of £,(G) can be written down as a linear combination of
simple p-fold brackets of g, ..., g+, like [[- - ‘[[g,g,]g.] - 18, ]. Let us simply
denote it by (g;, - - - g ). Suppose that iy, ..., i,<n, then this is the image of
(hi,- -+ h) by ¢, If i;>n for some q<p, then (g, ---g )=0 by induction
hypothesis and therefore (g;, - - - g ) =0. When i, >n, We have the Jacobi iden-
tity,

(g, --8)=—0g,_8)g - 8.)—g (g 8.8 )

The both terms of the right side are zero in £,(G), and we get (g, --- g )=0.
Hence ¢, is an epimorphism for p=2. If £,(G) is a free abelian group of rank
W(n, p) for all p=2, ¢, must be an isomorphism and we are done.

The rational version of this is also established.

LEMMA 2.5. Suppose that £,(G) @ Q is generated by g, . . ., g, such that
(1) [g, g]1#0 in £,(G)®Q foralli,j<n and
(2) [g, g.+i1=0 in £L,(G)R®Q for all i,j=1.
Then £,(G) ® Q is generated by at most W(n, p) elements. If dim £,(G) ® Q=
W(n, p) for all p=2, then £(G) ® Q is isomorphic to £(F,xZ") & Q.

§ 3. Differential graded algebras

A differential graded algebra o is a graded vector space A =€P »=0 AP over a
field (always Q in this paper) with differential d: A® — A" and associative
multiplication A: AP @ A9 — AP™ so that

(1) d*=0,
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(2) dixay)=dxAy+(—1)***x Ady and

(3) x Ay =(—1)deexdeeyy A x,
A d.g.a. is minimal if d is decomposable. This means that the image of any
element by d can be written down as a sum of decomposable elements. A Hirsch
extension of a d.g.a. & is an inclusion & — % of a d.g.a.’s which, when we ignore
the differentials, is isomorphic to & — o ® A(V)? and where the differential of
A sends V — AP*! The integer p is the degree of the extension. From now on,
we consider a series of Hirsch extensions:

Qcd,cA,c---c Ulﬂl,:d
p=
of degree 1. We should point out here that a d.g.a. generated by elements of
degree 1 is always minimal, so is &. The series is called canonical if & is
generated by all closed 1-forms of & and &, ., is generated by &, and all 1-forms
x such that dx e o, for each p. The following lemma, which is an immediate
consequence of the definition, characterizes a canonical series.

LEMMA 3.1. If 4:Qc A< A, < is canonical, then

(1) H'(«,) > H'(A,,,) is an isomorphism for all p and hence H'(A)=
H'(s4,), and

(2) H¥(A,) > H*(A,.,) is a monomorphism if we restrict it to the image of
H(sd, ).

Let us now consider the 1-minimal model of Sullivan. Let X be a polyhedron
and let £(X) be Q-polynomial forms on X. The 1-minimal model for X is a
minimal d.g.a. Mx with a mapping p:Mx — e(X) of d.g.a’s such that
p*: HMx) — H(e(X)) is an isomorphism in degree 1 and injective in degree 2.
We can find for instance in [11] § 5 how to construct #x and its several
properties. It turns out to be generated by elements of degree 1 and to have a
canonical series:

J“X:@C./ttlc-/“zc' .
Dualizing the part of degree 1, we get a tower of Q-Lie algebras:

0@, 6,

Each of the Lie algebras &,; is nilpotent and hence the Campbell-Hausdorff
formula defines a group structure C.H.(®;) on each &,.

THEOREM (Sullivan). If X is arcwise connected and H'(e(X)) is finite
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dimensional, then the tower of nilpotent groups:

{e} — CH.(®,) < CH.(®,) « - - -
is isomorphic to Q-nil(,(X)).

Thus knowing the rational nilpotent completion of 7,(X) is equivalent to
knowing the 1-minimal model for X. The proof of this theorem can be found in
[2].

Let Mx:Qc My M, <" be the 1-minimal model for a polyhedron X and
suppose that #, is isomorphic to #,_; ® A(V,) as a vector space. Sullivan’s
theorem implies

dim V, =rank £, ((X)).

When dim H'(g¢(X))=n, the number above is bounded by the Witt number
W(n, p). Since L(m(X))®Q is free up to the pth stage if and only if
dim £, (m(X)) @ Q= W(n, q) for all q=<p, we have by Lemma 2.3 that

LEMMA 3.2. If dim V,=W(n,q) for all q<p, then Q-nil(m(X)) is
isomorphic to Q-nil(F,) up to the pth stage.

This can be also proved by constructing isomorphisms for extensions of each
stage.

LEMMA 3.3. If £,(7(X)) is a free abelian group of rank n, then dim V, =
W(n, q) for all q=<p iff Nil(w,(X)) is isomorphic to Nil(F,) up to the pth stage.

Proof. Since £,(m(X)) is generated by n elements, £, (7;(X)) is generated by
at most W(n, q) elements by Proposition 2.1. Thus if dim V, = W(n, q) for each
q<p and hence dim £, (7(X)) ® Q= W(n, q), then £, (7(X)) must be a free
abelian group of rank W(n, q), which means that £(#;(X)) is isomorphic to £(F,)
up to the pth stage. The result follows from Lemma 2.2.

The next lemma will be used in § 5.

LEMMA 3.4. Suppose that £,(w(X)) admits a system of generators as in
Lemma 2.5. Then if dim V, = W(n, p) for all p=2, then £(G) ® Q is isomorphic
to $(F,xZ") @ Q.

Proof. Since dim V, =dim £,(7(X)) ® Q, this is a corollary of Lemma 2.5.
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LEMMA 3.5. Suppose that £,(m,(X)) is a free abelian group of rank n+r and
admits a system of generators as in Lemma 2.4. Then if dim V, = W(n, p) for all
p=2, then £(m (X)) is isomorphic to £(F, XZ").

Proof. Since dim V, = W(n, p) means that £, (m,(X)) is a free abelian group of
rank W(n, p) in this case, this is a corollary of Lemma 2.4.

§ 4. The 1-minimal model for S'v---vS'

Our goal of this section is to construct the 1-minimal model for a cohomology
bouquet of n circles.

Let Ap be the vector space over Q generated by the n” elements, x;..;’s
where i, - - - i, ranges over all sequences of integers of length p such that 1<, <n
for all 1=<j=p. Consider the exterior algebra of the direct sum A = @pal A,. We
define the differential d by

dx,l,_p = kgl Xiy iy /\xik+1-..ips

on a basis of A and extend it linearly to all of A and then extend it to all of A(A)
by the Leibnitz rule. Then

LEMMA 4.1. d>=0

Proof. It suffices to check this for a generator.

p—1
d(dx,-l.._ip) = d< Z Xij ooy /\xik+1...ip)
k=1

p—1 k-1
== Z Z xil...im /\xim“...ik /\xikﬂ...ip
k=1m=1
p—1 p—1
- Z Z Xiy---iy /\xik+l..,im/\xim+l...ip
k=1m=k+1

p 1 m-l p—1 p-1
( - Z Z ) X, i AN lk+1"'im/\xim+1"‘ip

mlkl k=1m=k+1

=0.

Let I, be the subspace of A, (p=2) inductively defined by {ue A,; du =0 in
2(A1®A2/1269 @ A,_/I,_,)}, denote A,/I, by A, and also denote A;®
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AB---DA, by Kp. Then, M, = A(Zp) with the induced differential (we use the
same symbol d) produces a series of Hirsch extensions of minimal d.g.a.’s:

QcMycMyc---c U M=M

p=1

of degree 1. Our first claim is

LEMMA 4.2. The inclusion induces an isomorphism: H'(M,_,) — H'(M,) for
all p>1.

Proof. We use the induction on p. Suppose that this is true for p—1, which
means that any closed 1-form of #,_, is contained in .#,. Now, M, =
M, 1 ® A(A,) as a vector space and since I, is nothing but the kernel of
dla,: A, — A*(A,_,), the induced differential dIA A, —>A2(A _1) is injective.
The image of this is contained in @;,;-, A; A A,, however the image of A‘(Ap 1)
by d is contained in ®,,;_, A; A A, and they have no common points except zero.
In other words, the Hirsch extension #,_; <, does not produce new closed
1-forms.

Let W, be the image of A, by d in Az(Ap 1. That is to say, W, is a subspace
of A%(A,-,) generated by the closed 2-forms, Y2} ;.. A% . ;,’s. Since the
subspace of exact forms in Az(Ap 1) is contained in @, A /\A W, can be
identified with a subspace of H 2(./ttp_1), and also since W, is the image of A, by d,
it is mapped to 0 in H*(#,) by the inclusion.

LEMMA 4.3. dim A, = W(n, p).

Proof. Define the multiplication - on A by
x,-i.‘.,-p * le...iq = x,-l...in,-l...,-q.

Then, A becomes an associative but not commutative graded algebra. The usual
bracket operation on A:

[x,y]=x-y—y-x

defines a graded Lie algebra structure on A. Let L be the graded Lie subalgebra
of A generated by x4, ..., x,. Then, L, the intersection of L and A, is the set of
Lie elements of degree p.

The symmetric group ©,, which consists of the permutations of integers
1,..., p, naturally acts on A, by ox;..; =X, ..., for 0 €S, This extends to the
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action of the group ring Q[&,] on A, We now define a specific element
0, €Q[S,]in terms of the cyclic permutations o; =(12-- - j)for j=2,..., p, by

2,=(1-0)(1-03) - (1-0b™).

(2, then determines a linear mapping: A, — A,.
It is known that £,(F,) is generated by simple brackets (g;,...g; ), where
g4, ...,8, are generators of F,, and the mapping:

£,(F)®Q—>L,cA,

(gil te g‘v) .pril...ip

is an isomorphism. See for instance [7], Theorem 5.12. In particular the linear
mapping (2, maps A, onto L, and we have

(1) rank 2, =dim L, = W(n, p).

Take an element u =Y, .., a">x, . of A, where the summation ranges over
all sequences of length p, and let us compute a necessary condition for du =0 in
A*(A,_,), i.e. uel, Suppose that du =0 there. Then since

du= Z ai""i" dx,'l...ip

iy

= Z alt " (X AXiyg T X AX)

il'"ip

=Z( Y ((1—ag‘l)a‘f"‘v)xi,--‘i,,_,)/\X«'.,

ip Mpoip—y

+ (the terms contained in @ A, /\A,-),

i,j=2

if we let

w = Y (1-o5 Na ), .

il"'ip—-l

w; must be an element of I,_; for all 1=<i,<n. Repeating the same procedure
p—1 times, we eventually obtain the condition that 2,a% %=
(1-o)(1-03) - - (1—0a8 Ha""" =0 for all sequences i; - - * i,

We now think of the conjugate element £, of 2, eQ[&,] by the conjugation
o< o', Again ﬂp determines a linear mapping: A, — A, which can be iden-
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tified with the induced mapping of (2, on the dual space A} =Hom (A,, Q), and
we have

~ ___ ii A
qu— Z a: v px,-l...ip

iy

= Z (20" ")x;, ... .
Suppose that dQ,u =0 in Az(Zp_l), then recalling the formula 22 = pQ, in Q[S, ]
(see [7], p. 365) and the necessary condition above, we get

ﬂp(ﬂpail"'iv) — pﬂpail...ip — 0

for all sequences i, - - - i,. This means nothing but .(2 u being zero itself and hence
the restriction of d to the image of 0, dlgay: .(lp(A )= W, < AZ(Ap 1), is injec-
tive. In particular we have

(2) dim A, =dim W, =dim Q,(A,).
On the other hand, we have
(3) dim 2,(A,) =rank , =rank £,

Combining (1), (2) and (3), we complete the proof.
The main result of this section is

THEOREM 4.4. Let X be a polyhedron whose cohomology ring with rational
coefficients is isomorphic to H*(S'v-:-vS';Q). Then M:Qc M, M,< is
isomorphic to the canonical series of the 1-minimal model Mx for X.

Proof. We prove this by induction on the length of a series. Suppose that
Qc My My<- - - = M,_, is isomorphic to the p — Ist stage of the canonical series
of Mx. Then we have a d.g.a. mapping p,—; : #M,—; = &(X) such that p,_,(x;,..; )=
w;,..;, for g<p—1, and H?*(M,_,) > H*(M,_,) is a zero map by the property of a
canonical series, Lemma 3.1, (2). Also since dim H(#,)=n and H?*(#,_,) is
generated by decomposable elements, Sullivan’s theorem implicitly says that
dim H*(#,_,) cannot exceed dim £,(F,) ® Q= W(n, p), that is

(1) W(n, p)=dim Hz(ﬂp_l).

To see that #,_, = M, is isomorphic to the pth stage of the canonical series of
My, we need to construct a d.g.a. mapping p,:#, — £(X) and to show that the
restriction of H*(#,) — H*(e(X)) to the image of H*(#,_,) is injective. First of
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all, since p,_1(XRZ] Xiyoojy AXi,1oi)) = 20 ) @i, A®, .. IS @ closed 2-form of
£(X) and H*(s(X)) =0, there exists a 1-form o, .., of £(X) so that

ll..‘ip
W, ..., Z @;,-jy N Wiy yoeie

We define p,: M, — £(X) as an extension of p,_; by mapping x;,...,, 10 w;,.. i,- Since
dla, A — W, is an isomorphism and W, can be identified with a subspace of
Hz(Jup._l) by Lemma 4.3 we have

dim H*(#,_,)=dim W, =dim A, = W(n, p).

These inequalities become equalities by (1) and W, can be identified with
H*(M,_,) itself. Since W, was the image of A, by d, H*(M,_,) — H?*(M,) turns
out a zero mapping, and we are done by induction.

Remark. Since dim Ap = W(n, p), Q-nil(7;(X)) turns out to be isomorphic to
Q-nil(F,)) by Lemma 3.2. This consequence also follows from the result of [16].

§ 5. The 1-minimal model for (S'v---vSH)xS!

In this section, we consider a family of minimal models for polyhedra which
are cohomologically equivalent to the product of a bouquet of n circles with a
circle.

We define the vector space B; over Q by adding one more generator, x,,,, to
A; and let B, be equal to A, for p=2. The specific basis, x;,...’s, of A,
determines a homomorphism: A, — A¥ =Hom(A,, Q) and let I} be the image of
I, by this mapping. Consider the subset 4, ={xe€ A,; f(x)=0 for all fe I:‘}.
Choose n elements from A, for each p=3 to form a set § which will be called a
system of twisting coefficients. Let us denote by 6} the coefficient of the
X;,...,-component of the jth element of degree p in 6. The system of twisting
coefficients with @}"%»=0 for all 1<j<n, 1<i;---i,<n and p=3, will be
denoted by 0. We now define the differential dy by

deil-- “ip Z :, zk tkﬂwi,,

n —_ —
—_ ‘k em
I e TS

i=1m=2 k=1

on a basis of B= @ ., B, first of all and extend it to all of the exterior algebra
A(B) by linearity and the Leibnitz rule. Notice that d, is the same as d in § 4 for
p=2.
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LEMMA 5.1. d5=0

Proof. It suffices to show this for a generator
3-"1',---1;, = de(deil---ip)

)

i=1m=2k=1

p—1 p—m
i e eolf
0," -t de(xil"‘ik—1iik+m+1"'ip /\xn+1).

Since dj=0 by Lemma 4.1, the first term of the right side becomes
de (dei )

s=

= ((de do)xu ig N X iy — Xy -i,/\(de do)x;,;+l )
1

p—1 s—1 s—m

n

[ S
Z (Z Z OF X iy sitermagerris A Bipagerety
_'=

s=1j =2 k=1
—s—1 p—m

p
i, oosi
+ Z Z Gfk k+mxi1“'i;Axis+1"'ik—11'ik+m+1"'ip)/\x"+1’
m=2 k=s+1

On the other hand, since

de (xil"'ik—tfik+m+1"'ip N x"“’l)

- 1fik+m+1"'ip A x""'l

(zx.

p—1

x‘ sl —1fikame1T Ax’x-ﬂ )Axn+1’
s=k+m

s+1 lk—lfik+m+l"'ip

+

the second term of the first identity becomes

55

=2 k

L

m

O;k"'ik+mde (xt
=1

lMi

sl Jlcem1 A x”"’l)
'k i Z .. .
Z +m< x‘ s+1 sl tflkrma1 i

+

§=

Mv iMI

xl i i s is PN Xigy g )Axn+1
+m

F‘

Thus since

L3X-3E %

k=1 m=2 k=1 s=k+m
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both are cancelled each other and we are done.

Let J, be the subspace of B, (p=2) inductively defined by {u € B, ; dgu =0 in
A* B ®B,/J,®---®B,_,/J,_,)}. We simply denote it without 8 because J,
actually does not depend on 6 as we will see in Lemma 5.3. Again denote B,/J,
by B, and B,®B,®- - -® B, by B,. Then M’ = A(B,) with the induced differential
(we use the same symbol d,) produces a series of Hirsch extensions of d.g.a.’s:

QcMic M< - - -
of degree 1. Let us denote |J,~, M by #°. Then

LEMMA 5.2. The inclusion induces an isomorphism: H'(My_,) — H'(#M3) for
all p=2.

LEMMA 5.3. J, is equal to I, In other words, dou=0 in A2(§p_1) for some

ue B, iff dgu =0 in A*(B,_,). In particular, dim B, =dim A, = W(n, p) for p =2.

Both lemmas are obvious when p = 2. We prove these by mixed induction on p.
Let us assume that both are true for p—1.

Proof of Lemma 5.3. Suppose that u is an element of B, so that dou =0 in
A*(B,_,). By the definition of do, we can decompose dou as

deu = dou + V/\ Xn+1
where V is an element of A1(§p_1). Since d5=0 and dyu =0, we have

0=dau=dy(VAXys1) = dgVAXps1=doVAXps1,

which implies that d,V=0. Because V was in AY(B,_;), we get dyV=0 by
induction hypothesis. Since we also assumed that Lemma 5.2 is true for p—1, any
closed 1-form of M#J_, is contained in 3, in particular so is V. Therefore if we let
07 =Y., 03 "bx;,...., then V=37 u*(6))x. However since u*e I¥ and 67c A,
u*(6%) must be zero for all 1<j=<n, which means that V=0 itself. The converse
is obvious and we are done
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Proof of Lemma 5.2. Let U< A%(B,_,) be the image of B, by d,. W, of the
last section can be naturally identified with a subspace of EB,+, _, B; AB;, and we
have the commutative diagram:

d, =
B,—> U%c A%(B,_))

\¢
W c'?l’

where the vertical line is the projection to the direct summand. Then since J, is
the kernel of d|g : B, = A*(B,_,) and J, is equal to I, by Lemma 5.3,

B "‘“—" Uec A2(Bp 1)

\ !
W, D B
i+j=p
becomes the commutative diagram of isomorphisms. In particular, U? and
@,+,<,,B AB; have no common points except zero. And since Mo=M>_; @
A(B ) and the image of AI(Bp 1) by dy is contained in @,+,<p /\B,, the lesch
extension #;_, < M, produces no new closed 1-forms.

LEMMA 5.4. The image of H*(M3)— H*(M5) is injectively mapped to
H*(u°).

Proof. U8 and @D, .-, B, A B; have no common points except zero, and hence
the new exact 2-forms of ﬂp have no common points with &, ;_, B; A B; except
zero for p=3. Since the image of H*(#?) — H?*(MY) is actually generated by
X; AXn+1’s by the definition of d,, these do not become exact in M) for any p=3
and hence in #M° =, M3

The main theorem of this section is

THEOREM 5.5. Let X be a polyhedron whose cohomology ring with rational

n

oy
coefficients is isomorphic to H*((S'v - - - vS') X S'; Q). Then there exists a system of
twisting coefficients 6 so that M°:Q< M < ME< - - - is isomorphic to the canonical
series of the 1-minimal model Mx for X.

Proof. By the assumption, there are 1-forms wq,...,®,+; of £(X) which
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generate H'(g(X)) such that

() [w; Aw;]=0 for all i,j<n and

(i) [w; Aw,.,]’s form a basis of H*(e(X)).

The dual basis g, . .., g.+1 of £,(m(X)) with respect to w4, . .., w, ., satisfies the
conditions of Lemma 2.5. We then prove this theorem by induction on the length
of a series.

Suppose that Qc #Mic---< M), is isomorphic to the p — 1st stage of the
canonical series of My for some 6. Notice that since A _, =A(I§p~1), we only
need a system of twisting coeflicients up to degree p—1. Then we have a d.g.a.
mapping p,_;: My — &€(X) so that p,_,(x,...;.)=@,., for q<p—1, and the
image of H>(M_,) — H*(MS_,) is equal to the image of H*(M]) — H* (MY _,) by
the inclusions because of Lemma 3.1, (2), Lemma 5.4 and the structure of
H?(e(X)). Also by Lemma 2.5 and Sullivan’s theorem, we have

(1) W(n, p)=dim H* (M, _)—n

where n means the dimension of H?*(e(X)).

To see that M) ;<M for some 6 is isomorphic to the pth stage of the
canonical series of #x, we need to find appropriate n elements of 4, for 6, to
construct a d.g.a. mapping p,:#,— €(X) and to show that the restriction of
H*(M%) — H*(e(X)) to the image of H*(M,_,) is injective. First of all, since

p—1
pp—l( Z Xi-ooie N Xig o yovi,
k=1

n p—1 p—m == d 4 )
- Z ( Z Z - (k 1 an ))0;"‘”.l"*"‘xil...ik_lﬁk”"“...ip/\xn+1)

i=1 ‘'m=2k=1 m=p-—1
p—1
= wil...ik /\wik+l...ip
k=1
oo rl et (=1 and\) . ..
—_ Z ( Z Z s ( ))6;“"""“"wix"'ik~1fik+m+x”'ip AWy, 41
=1 \m=2k=1 \m=p-—1

is a closed 2-form of &(X) for each i,---i, and H*(e(X)) is generated by
w; Aw,,1’s, it is cohomologous to

n
Z 0i" rw; AW, 11
i=1

for some {0} %}"_,. For each j, Y, .., 0j" "x,..; € A, must be contained in 4,
because p,_, is a d.g.a. mapping. Adding 6;"%’s to 6, we get a system of twisting
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coefficients up to degree p. Then

p—1
Z Wy, AW i,
k=1
n p—1 p—-m
. i
Z Z Z 05 Wi iy AN Opr
j=1m=2 k=1

becomes an exact form and there exists a 1-form w;,...;, of £(X) such that de;,...; is
equal to it, where d is the differential of £(X). Mapping x;,...; t0 w;,...;, we define
Pp: My —> €(X) as an extension of p,_;.

We finally show that the image of H*(#5_,) — H*(#) is equal to the image of
H?*(M3) — H?(My) because if so, the proof is completed by Lemma 5.4. Since U?
can be identified with a subspace of H*(#?_,) and has no common points with the
image of H*(#?) except zero, we have by Lemma 5.3 that

dim H2(M’_,)— n =dim U®=dim B, = W(n, p).

Thus by (1), the inequality becomes an equality and H*(#’_,) can be identified
with the direct sum of the image of H*(#3) and US. Since U is the image of B,
by ds, the image of H*(MS_,)— H?*(M?) turns out the image of H*(M$)— H*(MY),
and we are done.

Here are corollaries of Theorem 5.5, Lemma 3.4 and Lemma 3.5.

COROLLARY 5.6. Let X be a polyhedron such that H*(X; Q) is isomorphic to
H*(S'v---vSHYxS, Q) as a ring. Then £(w (X)) ®Q is isomorphic to
Z(F,x7) @ Q.

COROLLARY 5.7. Let X be a polyhedron as in Corollary 5.6. If £,(7(X))
is free abelian for p=1 and 2, then £(m,(X)) is isomorphic to ¥(F, XZ).

Proof. Since £,(m(X)) is free abelian, we can choose a set of generators of
£,(m(X)) as in Lemma 2.5. Furthermore since £,(m,(X)) is also free abelian, it
satisfies the conditions in Lemma 2.4. Thus this is an corollary of Theorem 5.5
and Lemma 3.5."

Remark. The condition of this corollary seems equivalent to saying that X is
an integral cohomology (S*v---vS')x 8! while I have no proof for this.
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§ 6. Applications

To state corollaries of Theorem 4.4, following Kraines [6], let us define the
Massey product on the first cohomology group. Given elements vy,,...,y,€
H'(e(X)), suppose that a collection of 1-forms S={w;ce(X); 1<i<j<p,
j—i<p— 1} satisfies the conditions

(1) @y is a closed form representing v; for 1<i<p, and

(2) dwy; =Yi2 o Ay if i<
Then the Q-polynomial 2-form Y-} wyx A1, turns out to be closed. We call S
a defining system. The Massey product (yy,...,7,) is defined as a subset of
H?*(e(X)) consisting of all elements produced by such systems. When p =2, it is
nothing but the wedge (cup) product. The Massey product (v, ..., 7y, will be
understood as a cohomology class if it contains a single element. It is known that
if any (p —1)-tuple Massey product on H'(e(X)) vanishes, that is, contains only
the zero element, then every p-tuple Massey product contains a single element.
See [9], Proposition 2.4 for the proof. We now have equivalent conditions for the
vanishing of every p-tuple Massey products.

LEMMA 6.1. Every p-tuple Massey product vanishes iff every q-tuple Massey
product for any 1<q <p vanishes.

Proof. If every p-tuple Massey product vanishes, then for each 1 <q =<p, every
q-tuple Massey product must contain the zero element. Thus any binary Massey
product vanishes because it has no indeterminacy. Assume by induction that every
(q—1)-tuple Massey product on H'(e(X)) vanishes, then every q-tuple Massey
product contains a single element which is zero and we are done.

Here are corollaries of Theorem 4.4.

COROLLARY 6.2. Let X be a polyhedron of dim H'(e(X)) = n. Then, every
p-tuple Massey product on H'(e(X)) vanishes iff Q-nil(w (X)) is isomorphic to
Q-nil(F,) up to the pth stage.

Proof. To construct the 1-minimal model for X, we can use the vanishing of
Massey products instead of the vanishing of H?(e(X)). Actually, the closed
2-forms in M, were generated by YiZ)X.. AX,,,..i’s for g<p which are
mapped to Y2} w;,...;, of e(X) by p,. This is nothing but the Massey
product {(w;, ..., @ ).

Conversely, suppose that, for some q <p, some q-tuple Massey product does
not vanish while every r-tuple Massey product does vanish for all 1<r<gq. Then

A\ W;

Kk+1"" i
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p¥.H*(MU,) — H*(e(X)) is not a zero map and rank £, (m(X))=dim Ker p¥ is
strictly less than dim H*(#,) = W(n, q). Thus Q-nil(7{(X)) cannot be isomorphic
to Q-nil(F,) at the qth stage. :

By virtue of Lemma 3.3, we have

COROLLARY 6.3. Let X be a polyhedron such that £,(w(X)) is a free
abelian group of rank n, then every p-tuple Massey product on H'(e(X)) vanishes
iff Nil(7,(X)) is isomorphic to Nil(F,) up to the pth stage.

Remark. If we start with the Massey product on H'(r;(X)), this has been
known by Dwyer [4], Corollary 4.5. I would like to thank the referee for pointing
out this reference. For the link complement, there are much more detailed studies
by Milnor [10] and Porter [15].

Remark. In [14] and [5], some higher intersectional properties of compact
4-manifolds have beg¢n detected by the nilpotent completion and the Massey
product respectively. This corollary shows that these results are equivalent.

Let L=K,U---UK, be a link of n components in S3. Then H(S>-L;Q) is
generated by the Alexander duals & to the component K; for i=1,...,n, and
H?*(S>—L;Q) is generated by the Lefshetz duals +y; to the path which connects K,
with K. These are subject to the relations in H*:

&ENng = k(K Kj)’Yij
and
Yi t Yik = Yik-

The next corollary has been conjectured by Murasugi.

COROLLARY 6.4. Let G be a link group, w,(S>*—L). If Ik(K,, K;)=1 for all
i#]j, then £(G) is isomorphic to %£(F,_,XZ). In particular, rank £,(G)=
W(n—1, p) for all p=2.

Proof. Let ;=& —§, for i=1,...,n—1 in this case. Then w; Aw; =0 for all
,j<sn—1and w; A&,’s form a basis of H*(S®—L: Q), and hence S*—L is clearly
a rational cohomology (S*v - - - vS") X S'. Also £,(m7(X)) and £,(mr,(X)) are free
abelian because of Alexander duality and Chen’s computations [3], Corollary 2,
respectively. Thus we can apply Corollary 5.7 to this case.
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COROLLARY 6.5. Let L be a link of 3 component such that linking numbers
of any two components are zero. Then £(G) ® Q is isomorphic to £(F,xX7) ® Q.

Proof. Let w; = lk(K,, K3)é —lk(K,, K,)é&; and w,=lk(K;, K3)&,—
Ik(K,, K5)é;5. Then w;Aw,=0 and w,A&;, wyAE; form a basis of HA(S*—~L; Q)
and hence S*— L is a rational cohomology (S'v S')x S'. Applying Corollary 5.6,
we are done.

Z£(G) is nilpotent if £,(G)=0 for some p. This is equivalent to G/G,, being
nilpotent, where G, =(,=; G,.

COROLLARY 6.6. Let G be the link group of a link L. Then

(1) £(G) is nilpotent iff either L is a knot or L is of 2 components whose mutual
linking number is equal to *1.

(2) £(G) ® Q is nilpotent iff either L is a knot or L is of 2 components whose
mutual linking number is not zero.

Proof. When L is a knot, £(G) is nilpotent of index 1 since S*—L is a
homology circle. If L has two components, then “if”’ part is obvious for both
cases, (1), (2), because £,(G) is isomorphic to a cyclic group of order=
|lk(K,, K,)|. To see “only if”’ part, recall Murasugi’s explicit computation [12] of
the Chen groups. That is, roughly speaking, the Chen group Ch,(G)=
G,-1[G1, G11/G,[G4, G,] of a 2 component link group G is infinite for all p=1 if
lk(K,, K,)=0, and is nontrivially finite for all p=2 if lk(k,, K;)#0, £1. Since
there is an epimorphism of £,(G) to Ch,(G) for each p, £(G) cannot be
nilpotent except when [k(K;, K;)==1. Also £(G)® Q cannot be nilpotent
except when lk(K,, K;) #0.

Let us think of the case where L has more than 3 components. When L
contains two components whose mutual linking number is zero, then by forgetting
the other components, we get a homomorphism of G onto the group of a link of 2
components whose mutual linking number is zero. When the linking numbers of
any 2 gomponents of L are not zero, then by forgetting some components, we get
a homomorphism of G onto the group of a link of 3 components as in Corollary
6.5. Thus £(G) ®Q cannot be nilpotent in either case. Of course neither does
Z(G) and we are done.

Remark. This remark was pointed out by Murasugi. It can be known by [1]
and [12] that a link group itself is nilpotent iff it is abelian. Such a link must be
either a trivial knot or a Hopf link by Dehn’s lemma and Neuwirth’s theorem
[13].
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