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Poincaré duality groups of dimension two, II

Beno Eckmann and Peter Linnell

1. Introduction

A Poincaré duality group of dimension n, in short a PDn-group, is a group G
acting on Z such that one has natural isomorphisms

for ail integers k and ail ZG-modules A (where Z®A is the tensor product over
Z with diagonal G-action). G is called orientable or not according to whether or
not Z is trivial as a ZG-module. Ail &quot;surface groups&quot;, i.e., fundamental groups of
closed surfaces of genus ^1 are well-known to be PD2-groups. In Eckmann-
Mùller [4] it was proved that a PD2-group with positive first Betti number fix is

isomorphic to a surface group. The purpose of the présent paper is to show that the
condition on px is automatically fulfilled:

THEOREM 1. The first Betti number px of a PD2-group is positive.

As a conséquence we thus hâve a complète classification of PD2-groups.

THEOREM 2. A group G is a PD2-group if and only if it is isomorphic to a

surface group.

For notations and properties concerning PDn -groups, not explicitly mentioned
hère, we refer to [4] where also several (algebraic and topological) conséquences
are discussed.

2. Finhely generated projective ZG-modules

For the proof of Theorem 1 we need the following fact, which may be of
interest in connection with the conjectures of Bass (4.4 and 4.5 of [2]).

111



112 BENO ECKMANN AND PETER LINNELL

If B is an abelian group, we let rank B dénote the dimension of the Q-vector
space B&lt;8&gt;Q.

PROPOSITION 3. LetGbea PD2-group, M± 0 a finitely generated projective
ZG-module9 and Z the trivial ZG-module. Then rank (Z&lt;g)GM) + 0.

Proof. Let rM dénote the Hattori-Stallings trace of the identity endomorphism
of M as defined, e.g., in [1] and [2]. It is a finite linear combination with intégral
coefficients of the conjugacy classes t in G,

For x e G let rM(x) be the coefficient of the conjugacy class of x. Suppose that
rivf(*) ¥&quot; 0 for an élément x e G, x^ 1. Then there exists, by Proposition 6.2 of [2],
a prime p and an integer n&gt;0 such that x is conjugate to xpn. It follows (see the
remark on p. 12 of [2]) that x is contained in a subgroup H Z[l/p] of G. By
StrebeFs theorem [5] ail subgroups of infinité index in G are of cohomological
dimension 1 and thus free. Therefore H has finite index in G; since G is finitely
generated so is H and we hâve a contradiction. Hence rM(x) — 0 for ail x € G \ 1

and it follows that rM(l) rank(Z&lt;g)GM).

We now consider the nonzero finitely generated projective CG -module
M®C. We hâve rM(l) rM(g)C(l) which is positive by Kaplansky&apos;s theorem (see

[1], Theorem 8.9), and the resuit follows.

3. Proof of Theorem 1. Euler characteristk

The completion of the proôf is now in the same spirit as [3]. We first note that
we can restrict attention to orientable PD2-groups. Indeed (see [4], p. 511), if G
is non-orientable and Gt the orientable subgroup of index 2 in G then j3i(Gi)&gt;0

implies fit(G)&gt;0.
So let G be an orientable PD2-group, and

0-*P-»ZGd-&gt;ZG-L» z (1)

a projective resolution of the trivial ZG-module Z. Since PDn-groups are of type
(JFP), the module P is finitely generated projective. Since H°(G;ZG)
H1(G;ZG) 0 and H2(G;ZG) Z with trivial G-action for any orientable
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PD2-group, applying HomG (-, ZG) to (1) yields an exact séquence

Z «Z-p*+-ZGd«-ZG*-0 (2)

where P* HomG (P, ZG) is finitely generated projective. Let IG be the kernel
of e (the augmentation idéal) and L the kernel of 7. Applying Schanuel&apos;s lemma
to (1) and (2) gives

There is a surjection ZGa -» L, and we obtain a surjection ZGd+1-» P*(BIG
and hence a surjection ZGd+1 -» P*, with kernel K^ 0. Obviously K is a finitely
generated projective ZG-module, and we see from Proposition 3 that
rank (Z®GK)^0. It follows that rank (Z®GP*)^d.

The Euler characteristic x(G) oî G can be obtained by applying Z®G- to the
resolution (2) and taking the alternating sum of the ranks:

On the other hand x(G) p0 - p1 + 02 2 - jSj since the Betti numbers |30 and /32

of an orientable PD2-group are- 1. Thus 2-0^1, Le., 0i&gt;O.

4. Poincaré 2-compIexes

As a corollary of the above group-theoretic results the topological application
mentioned in [4], Section 2 can be given an improved version.

We recall that a Poincaré n-complex is a CW-complex dominated by a finite
complex and fulfilling Poincaré duality of formai dimension n for arbitrary local
coefficients. By results of Wall [6] a Poincaré 2-complex X with finite fundamen-
tal group tti(X) is homotopy équivalent to the 2-sphere or to the real projective
plane; if 7TX{X) is infinité, then X is aspherical, Le., an Eilenberg-MacLane
complex K(G, 1) for G TTt(X). In the latter case G is a PD2-group, and thus by
our Theorem 2 isomorphic to tti(Y) where Y is a closed surface of genus 2*1. The

isomorphism 7r1(X) &apos;7r1(Y) yields a homotopy équivalence between X and Y. In
summary we hâve

THEOREM 4. A CW-complex is a Poincaré 2-complex if and only if it is

homotopy équivalent to a closed surface of genus 5*0.
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