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Lifting idempotents and Clifford theory

JACQUES THEVENAZ

Let N be a normal subgroup of a finite group G and let R be a noetherian
complete local commutative ring. Clifford theory deals with the relationship
between RG-modules and RN-modules, using induction from N to G or restric-
tion from G to N. Since Clifford’s 1937 paper [1], the theory is well understood
for irreducible representations (see also [2, §11C]). For an indecomposable RN-
module W, several authors have proved a going-up theorem describing how
Indg W decomposes (see [2, §19C)).

One purpose of this paper is to prove (in Section 2) a going-down theorem for
indecomposable modules (analogous to Clifford’s theorem), based on a refinement
of the lifting idempotents theorem, presented in Section 1. The going-up and
going-down theorems are actually equivalent in the sense that each can be derived
as a corollary to the other one. One main assumption is necessary for the
going-down theorem: the RG-module we start from must be projective relative to
H. The whole procedure is presented in the more general context of Clifford
systems. The paper concludes in Section 3 with another application of the lifting
idempotents theorem, concerning the behaviour of indecomposable modules
under ground ring extensions.

1. Lifting idempotents

THEOREM 1. Let A be a ring and J a two-sided ideal contained in Rad A.
Assume that A is complete in the J-adic topology (that is the natural map A —
E_rg A/J" is an isomorphism). Let II be a finite group acting on A by automorphisms
leaving J globally invariant. Let {é,, ..., é,} be a set of orthogonal idempotents of
A = A/J satisfying Y, & =1. Assume the following three conditions:

a) The induced action of IT on A permutes the idempotents &; transitively.

b) There exists uc A such that Tro(u) =1 where (2 is the stabilizer of &, and
Tra(u) =Y, cq 0u.

C) Ui commutes with each é,.

Then {é,,...,é&,} lifts to a set {e,,...,e,} of orthogonal idempotents of A which
are permuted by II transitively and such that }!_, ¢ =1.
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Remarks. 1) If A is the ring of endomorphisms of a representation V, we shall
see that the condition b) corresponds to a condition of relative projectivity for V.

2) There are two situations where c) is always satisfied: either the idempotents
¢, are central or the order || of £ is invertible in A in which case one can choose
u to be the central element ||

3) When II acts regularly on the idempotents &, that is when (2 is trivial, one
can take u =1 so that b) and c) are trivially satisfied. This special case appears
already in [3].

Proof. 1t suffices to prove the theorem when J is nilpotent because, since
A El(jr_n_A/J", the lifted idempotents are constructed as limits of idempotents of
A/J" for n — oo,

For o e Il, write &, = o€, so that &, = e, if and only if o2 = 7. Since II acts
transitively, every idempotent €, can be written in that form.

We proceed by induction on the nilpotent index n of J. There is nothing to
prove if n=1.If n=2, let I=J""! and write d for the image of a € A modulo I.
By induction, there exist idempotents é, of A/l such that ¢é, =é, and
Yoema € = 1. First lift arbitrarily the idempotents &, to get orthogonal idempo-
tents e, of A satisfying Y ..o €, =1. This is well known to be possible (see
[2, §6A]). Of course the notation implies that we keep the convention:

e, =e, if and only if o =7.

Since ¢é, = é,,, we have:
ge.=e,. +r,, forsome r,. el

We list several properties of the elements r, ,:
1) fwelr, =1,

This follows from e, =e, for all nell
(2) Yremalo.=0.

This follows when o is applied to 1=),crq €.
3) Mer=rnor—Tnor

This is a consequence of (no)e, = n(oe,).

(4) rO’,T = eo—rro;'r + ro*,'rea—r-
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This follows from the equality ae, = (oe,)” using also I> =0. Multiplying (4) by e,
on the right or e, on the left (or both in the first case below), we get:

0 if A2#ord# 0
forln if A =o01Q# 10
exto, if A2#o1) =n(
0 if A2=o010=n0

(5) eA ro','ren =

(6) If AQ# 0, epr, + T2, =0.
This is a consequence of (ue,) - (ue,) =0 using again I>=0.

Now define: f,=e,+Y e r-c* € AU Wwhere ue A satisfies hypoth-
eses b) and ¢). By (1), we have:

(7 fou=f, if e

(8) Zaeﬂ/n fo=1

For
Z fcr: Z e0'+ z Zr:\,)\"o'eA'Au

oell/) oell/Q) oecll/f2 Aell
=1+Z( Y r,\,rxa)e,‘-/\u=l by (2).
Aell Noell/2

9) f.f.=0 if c# Q.

fafv = Z €aT A n"1:€x ° Au+ Z Fax-1a€) ° Au - €;s
Aell rell

By hypothesis ¢), Aii - &, =A(ii - €,-1,) = A(€,-1,* U)=¢€, - Aii. Hence Au commutes
with e, modulo J. Since I - J=J""1-J=0, we have r-Au-e.=r-e, - Au for all
rel and so we can permute Au and e, in the second sum. Therefore, the only
non-zero terms appear for A €. By (5), the same holds for the first sum.
Consequently:

faff = Z (ecrr'rw,m" + r‘rw,w“'r“ae‘rw)e'rw * TWU.
wel)

Now apply (6) with n=1, u =70 and A =@ "7~ !0, using also (1). The condition
AQ # nQ2 is equivalent to o2 # 7. We get f f. =0, as required.

Clearly (8) and (9) imply that f, is idempotent. There remains to prove the
additional property we are looking for:

(10) 7f, = fro-
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By (3), we have:

Tfo = e'rcr + r'r,o + Z (r‘r)x,)\“lcr— r-r,a') ' (e'r)\ + r’r,)\) * T/\u~
Aell

Since I°=0, we get:

Tfa. =€y + Z Faa—to " €m” TAU + r'r,o'(]' - Z €\’ TAU)

Aell Aell

=€, T+ Z r“,uﬂw-eu-uu%—rw(l—- Z €, " Z uwu)

well well/Q wel)

~fotro(l= T e uTra@)=f.,

well/Q2

using Tro(u)=1and },.gne.=1. W

2. Clifford theory

Let N be a normal subgroup of a finite group G and S = G/N. Throughout this
section, R denotes a noetherian local commutative ring which is complete in its
natural topology of local ring. These assumptions are made in order to have the
following properties:

(i) Every finitely generated RG-module is a direct sum of indecomposable
submodules.

(i) If M is an indecomposable RG-module, then Endgs M is a local ring.
Hence Krull-Schmidt theorem holds for RG-modules.

In order to study the restriction to N of an indecomposable RG-module, we
consider the more general case of an S-graded Clifford system A =€, 5 A, over
R, in the sense of [2, §11C]. The case of group algebras corresponds to A = RG
and A, = RN. Recall that there exist units a, € A; such that A; =a,A;= A;a;.
Also a,a,a;'c A, because AA, = A,,.

For the rest of this paper, all modules will be finitely generated left modules.
For an A;-module W, denote by W* the induced module Indi, W=A®, W,
while for an A-module V, we denote by V,, the restriction Resy V. If V is an
A-module, then S acts on End,, V by sf= ajfa;' and the set of fixed points is
exactly End, V.

DEFINITIONS. 1) An A-module V is said to be projective relative to A, if V
is a direct summand of a module induced from A; which actually can be chosen to
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be (Va,)?. This is equivalent to the existence of an endomorphism ue€End, V
such that Trg(u) =1 where Trs(u) =Yg su. The equivalence of these definitions
is well known in the case of group algebras [2, §19A], but the proof can be carried
over without change to the case of Clifford systems.

2) If W is an A;-module, then a, ® W has a natural structure of A;-module
and is called a conjugate of W.

3) Let M=@,; M;; be a decomposition of a module M into indecomposable
summands such that M;; =M, for all i, j, k and M;#M,,, if i# k. Then M, =
@, M, is called a homogeneous component of M. Contrary to the case of semi-
simple modules, note that in general M; is not uniquely determined by M.

Now we can state the going-down theorem analogous to Clifford’s theorem:

THEOREM 2. Let A be an S-graded Clifford system over R and V an
indecomposable A-module. Assume that V is projective relative to A,, that is there
exists an indecomposable summand W of V 4. such that V is a direct summand of
WA, Let T={te S |a, ® W= W} be the inertial subgroup of W and let {s,, ..., s,}
be a set of coset representatives of T in S. Finally let B=€B,.r A, be the T-graded
subalgebra of A. Then:

(i) V4, is isomorphic to a direct sum of conjugates of W.

(i) {a, ® W |i=1,..., n} is a complete set of non-isomorphic conjugates of W
and each appears with the same multiplicity in a decomposition of V ..

(iii) There exists a decomposition V , = D[, U, into homogeneous components
which are permuted transitively by {a, | s € S} and such that {a, |te T} stabilizes
U,. '

(iv) U, is an indecomposable B-module and V is isomorphic to U?.

Beside Theorem 1, the main ingredient for the proof of Theorem 2 is the
following:

PROPOSITION 3. Let A be an R-algebra, finitely generated as R-module,
and M an A-module. Denote by a bar the reduction modulo the radical of End, M.
Let M=®_; M, (respectively M =®_, M!) be any decomposition of M corres-
ponding to idempotents e, . .., e, € End, M (respectively e, ..., e}).

(i) The modules M; are homogeneous components of M if and only if é,, ..., e,
are the primitive central idempotents of End, M.

(ii) Assume the modules M; and M! are homogeneous components of M, labelled
in order to have M, = M for all i. Then there exists f € Aut, M such that f(M;) = M/
for all i and f=1.

(iii) Assume the modules M; and M. are homogeneous components of M. Then
M, =M if and only if &, = é!.
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Proof. (i) If the modules M, are homogeneous components of M, write
M, =m;N; with N, indecomposable. Let E,=Ends N; and D, =End, N, By
Fitting’s theorem [2, §19C, lemma], there is a commutative diagram

E=End, M

End, M=[] M,.(D)

T N
/ i=1

[I M, (E)=]]End, M,
=1 i=1

Since ¢; is the unit matrix of M,, (E;) (with zeros in all other components), ¢; is the
unit matrix of M, (D;), i.e. & is a primitive central idempotent of End, M.

If conversely e; is primitive central, decompose it into primitive idempotents
e =¢e,+- - -+é&, andlift them to get e, =¢;; +: - - +e;,,. Now ¢;E = ¢, E because
e,E = ¢, E. Therefore:

ei,-M = eil'E ®EM = e,-kE ®EM = eikM

SoeM =@, e;M is a homogeneous decomposition of ¢;M into indecomposable
summands. If some indecomposable summand of e,M was isomorphic to a
summand of e, M for k # i, there would be less than n homogeneous components
in M and so, by the first part of the proof, less than n primitive central idempotents
in E.
(if) Consider again the commutative diagram
End, M

q
,T 4 End, M

" A

H End, M,
i=1

We emphasize that not only g but also p is surjective. Choose an isomorphism
g :M; — M for each i and define an automorphism g of M by g |, = g:. Since g is
invertible, so is q(g) and since p is onto, there exists h e[["., End, M; such that
p(h)=q(g)™". Clearly f=g - j(h) satisfies f(M;) =M, and f =1.

(iii) By (i), if M;=M]j, there exists fe Aut, M such that f(M;)=M;,
f@r, M) =@, M, and f=1. It follows easily that e, =fe,f~' and therefore
e1=éa,.

Conversely suppose é; = €,. By Krull-Schmidt theorem, M| = M, for some i. By
the first part of this proof, é;=¢. Hence ¢, =¢, and so i=1. W

Proof of Theorem 2. (i) Write V, =@[_; W, with the W, indecomposable.
Since V is a direct summand of W4, V, is a summand of (W*), =®,.sa, @ W.
By Krull-Schmidt theorem, each W, is isomorphic to some a, ® W.
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(ii) Changing notations write V, = &@/_; m;W, where m;W; denotes the direct
sum of m; copies of W, and W;# W, if i#j. By (i), W,=a, ® W for some s.
Applying a, to V, we get:

@ mW, =V, =(a;V)a, = A m;(a, @ W)).

Comparing the multiplicities of W, in both decompositions, we get m; = m,. The
same argument applied with an arbitrary a, shows that a, ® W must be isomor-
phic to some W, Therefore, by definition of T, {a, @ W|i=1,...,n} is a
complete set of non-isomorphic conjugates of W.

(iii) Let E=End,, V and E =E/rad (E). The group S acts on E via sf=
afa;! and induces an action on E which necessarily permutes the primitive
central idempotents of E.

Let V,, =@, U, be a decomposition of V, into homogeneous compo-
nents, corresponding to idempotents e, ..., e, Assume W is a summand of U,.
For se S, VA]=G9{‘=1 a,U; is also a decomposition of V,, into homogeneous
components, corresponding to idempotents asea;’=se. By Proposition 3(i),
{é,,...,é,} are the primitive central idempotents of E. Since a,U,=a, @ U,=U,
for some i, we have sé; = ¢; by Proposition 3(iii). Moreover each U, is isomorphic
to some a,U,; by part (i) and (ii). This implies that S acts transitively on the set
{és,...,&,}. Since W is a summand of U,, T is the stabilizer of &, (again by
Proposition 3(iii)).

Now since V is projective relative to A,, there exists ve End,, V such that
Trs(v)=1. Let u=Y", rv where r,...,r, are representatives of the cosets Tr.
Then Tr(u) =Y, tu = Trs(v) = 1. Moreover ii commutes with & for ¢ is central.
Therefore the hypotheses of Theorem 1 are satisfied. It follows that there exist
orthogonal idempotents f,,...,f, of E (lifting é,,..., é,) which are permuted
transitively by S and such that T stabilizes f,.

By Proposition 3(i), the modules f;V , are homogeneous components of V4 .
The equation f; = sf, = af;a;' means exactly that a,(f;Va)=f;Va, This com-
pletes the proof of part (iii).

(iv) Since {a,|te T} stabilizes U;=f;V,,U; is a B-module. Now V=
D, a, U, which is the definition of an induced module. Finally U, is indecom-
posable otherwise V would be decomposable. W

Counter-example. Without the assumption of relative projectivity for V,
Theorem 2 does not hold any more. Take K a field of characteristic 2, G =
C,, N=C, and V=K[X])/(X—1) (the generator of C, acting by multiplication
by X). Then: Resy V=S,® S, where S,=K[Y]/(Y—1)' (the generator of C,
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acting by multiplication by Y). Since S; and S, do not have the same dimension,
they cannot be conjugate. In fact, the two primitive central idempotents of
Endgy V are fixed under the action of S = G/N, and each of them can be lifted in
four ways in Endgy V. But no idempotent of Endgy V is fixed by S.

Now we can recall the going-up theorem, which we shall prove to be
equivalent to Theorem 2.

THEOREM 4 (Conlon, Tucker, Ward [2, §19C]). Let A be an S-graded
Clifford system over R, W an indecomposable A-module, T the inertial subgroup of
W and B=®,.1 A,. If W8 =@®[_, Z, is a decomposition of W? into indecomposa-
ble B-modules, then each Z{ is an indecomposable A-module, that is W =
DL, Z2 gives a decomposition of W into indecomposable A-modules.

Proof. The notation X | Y will mean: X is a direct summand of Y. Let Z be an
indecomposable summand of WZ®. Since T is the inertial subgroup of W,
(WB)A,=|T|- W and so Z,_ is a multiple of W. Since Z | (Z*)g, there exists an
indecomposable summand V of Z* such that Z| V. Then V| W* and W |V, .
By Theorem 2, there exists an indecomposable B-module U such that V=U#*
and U, is a multiple of W. Now U | (Z*)g because V| Z* and U | (U*)g = V.
But Z is the only indecomposable summand of (Z*)g whose restriction to A; is a
multiple of W, for (Z*),, =@, a, ® Z,, (where {s;,...,s,} is a set of coset
representatives of T in S) and a, ® Z, is a proper conjugate of Z,, (a multiple
of a proper conjugate of W). It follows that U=Z and so Z*=U"=V is
indecomposable. W

Equivalence of Theorems 2 and 4. If Theorem 4 is proved independently (e.g.
by the proof of [2, §19C]), then Theorem 2 can be derived as corollary in the
following way: Let V be an indecomposable A-module which is a summand of
W4 for some indecomposable summand W of V,. Let T be the inertial
subgroup of W. By Theorem 4, there exists an indecomposable summand U of
W2 such that V=U". Now U, =mW for some m because (W?), =|T| W.
Then clearly V=@!_,a,® U and V,, =D, m(a, ® W) where s,,...,s, are
coset representatives of T in S. This completes the proof of Theorem 2. W

3. Ground field extensions

Let K be a field and A a finite dimensional K-algebra. Let F be a finite Galois
extension of K, with Galois group IT, and consider the F-algebra F ® A (note that
throughout this section ® will always mean ®x). Every element o € IT induces a
semi-linear automorphism 0:FQ® A ->FQ® A. If W is an F® A-module, one
can define a new F® A-module structure on W by scalar extension via o (or



94 JACQUES THEVENAZ

equivalently restriction via o). Explicitly the new structure is given by a - w =
o Y(a)w,ac F® A, we W. This module is called a Galois conjugate of W.

Now if V is a finitely generated indecomposable A-module, then F® V has a
natural structure of F ® A-module. Moreover, II acts on FQ V via o(f®v) =
of ®v,o€ll, fe F,ve V. This action is semi-linear with respect to F® A, i.e.
olaw)=o(a)ow),cell,ac FRA,weFQ V. If FRV=B_, W, is a decom-
position of F® V into homogeneous components, then so is FQ® V=&B}_; aW..
One can readily check that oW, is a Galois conjugate of W,. By Krull-Schmidt
theorem, oW, = W, for some j. Moreover, it is easy to see that for given i and J,
there exists o € I such that oW, = W,. The purpose of this section is to derive
from Theorem 1 a stronger result, namely that for a suitable choice of the
submodules W,, one can replace this isomorphism by an equality:

PROPOSITION 5. In the above notations, there exists a decomposition
FQ V=D, W, of F®Q V into homogeneous components such that the modules
W, are permuted transitively under the natural action of Il on FQ V.

Proof. Let E=End, V and E = E/Rad E. Since V is indecomposable, E is a
division algebra containing K in its center. Now F @ E =Endgg (F ® V) and let
F® E=F ® E/Rad (F ® E). Since F/K is separable, FORE=FQ®E.1Let FQV =

i=1 W; be a decomposition of F® V into homogeneous components corres-
ponding to idempotents e, ...,e, e F® E. The decomposition FQ® V=
D!., oW, corresponds to the idempotents oe;07 %, . .., ge, 0! (where g is viewed
as a semi-linear automorphism of F® V).

Now IT actson F®E viaog - (f®e)=0f®e,aell, fcF, ec E. We claim that
ozo '=0-zforallze FRQ E.Indeed,ifz=f®e,fcF,ecE,andifgQuveFQ® YV,
then:

(020 ) (g®v)=0(fQe) o 'g®@v)=0(f-07'g)Rev=0f g®ev
=(of @ e)(g®v)=(0 - 2)(g B ).

It follows that {o-e,,...,0 - e,} are the idempotents corresponding to the
decomposition F@®V=@',ocW,. By Proposition 331), {é&,...,¢.}=
{oc-ey,...,0- €.} is the set of primitive central idempotents of F® E. Now II
acts transitively on {é,, ..., &,} for if {€,,..., &} is a IT-orbit, then €=Y*_; & is

an idempotent, invariant under IT, hence lies in K ® E =E. Since 1 is the only
idempotent of E, we get €=1 and so k =n.

Since F/K is separable, Trg is surjective. Therefore there exists x € F such
that Trgx(x) =Y ,cgox =1. In particular, if £ denotes the stabilizer of &, and
oy, ...,0, are coset representatives of 2 in II, then u=)Y]_, o;x satisfies
Yocawu=1. Also u®1e F®E commutes with every &, Therefore u®1e FRE
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satisfies the hypotheses of Theorem 1. Consequently {é;, ..., &,} lifts to a set of
orthogonal idempotents f,, ..., f, of F® E which are permuted transitively by IT
and such that >, f: =1. By Proposition 3(i), the modules W!=f,(F® V) are
homogeneous components of F® V. Finally, since of;, =f; for some j, we have:

oWi=a(i{(F® V) =(dofoc NFQV)=(c-fIFOV)=f(FOV)=W;. B

Remarks. 1) If one replace homogeneous components of F® V by indecom-
posable summands, then one must consider sets of primitive idempotents
{é,,..., &} of E instead of primitive central idempotents of E. If one can show
that there exists such a set which is stable under the action of II (this happens
quite often), then the whole proof works without change, so that there exists a
decomposition F® V =@;_; W, into indecomposable submodules such that the
modules W, are permuted transitively under the natural action of IT on FQ V.

2) Proposition 5 holds more generally if one replaces the field K by a complete
discrete valuation ring R and the extension F by an unramified Galois extension S
(so that the Galois group of S/R is isomorphic to the Galois group of the residue
field extension). Moreover, A must be an R-algebra which is finitely generated as
R-module.

3) The similarity between restriction to a normal subgroup (Theorem 2) and
ground field Galois extension (Proposition 5) extends a little further. If £2 denotes
the stabilizer of the homogeneous component W, of F® V and if L is the fixed
field of 2, then W, is realizable over L, that is there exists an L ®x A-module U
such that F®, U= W,. Moreover, by analogy with part (iv) of Theorem 2
(replacing group induction by scalar restriction), one can easily show that V=
Resg U.
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