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A 1;-dimensional version of Hopf’s Theorem on the number of ends
of a group

ROBERT BIERI

1. Introduction

If G is a finitely generated group then the first cohomology group with group
ring coefficients H'(G; ZG) is known to be free-Abelian. H. Hopf [7] has shown
that its Z-rank, tk H'(G;ZG), attains only the values 0,1 or o, and the
celebrated structure theorem of Hopf-Stallings [7], [12], classifies these three
cases in terms of the group theoretic structure of G.

Of course the cohomology group H'(G;ZG) carries much more information
than just its Abelian group structure. As the coefficient module ZG is a bi-module
‘H'(G; ZG) inherits the structure of a (right) G-module; and by functoriality one
can consider the restriction maps

res: H\(G;2G)—[][ H\S,; ZG) (1.1)

where ¥ ={S,, S,, ..., S,.} is a finite family of finitely generated subgroups of G.
The relative versions of Stalling’s structure theorem by Swan [13] and Swarup
[14] show that the kernel K of (1.1) is free-Abelian of rank 0, 1 or «, and classify
these three cases in terms of the structure of the pair (G, ¥).

In this paper we consider the cokernel C(G, &) of the restriction map (1.1),
under the assumption that G is accessible. (For a discussion of accessibility refer
to [4], but we recall that every finitely generated torsion-free group is accessible
by Grusko’s Theorem and that it is unknown whether finitely generated non-
accessible groups exist). We observe that Heinz Miiller’s result [9] on the freeness
of the cokernel of the restriction map carries readily over to the case of a finite
family of subgroups, so that C(G, ¥) is always free-Abelian in our situation. Our
main result asserts that the rank m of C(G, &) is equal to 0,1 or © except in the
very special situation when G contains an infinite cyclic subgroup of finite index, in
which case m can attain every value 0<m <x. Then we classify the three cases
m=0, 1, in terms of the structure of (G, ¥). The fact that, in view of the long

_exact cohomology sequence for the pair (G, ¥), the cokernel of (1.1) “lies
between HYG;ZG) and H*(G;ZG)” justifies our title.
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26 ROBERT BIERI

2. The results
2.1. Our main result is

THEOREM A. Let G be a finitely generated accessible group and ¥ =
{S1, S,, ..., S,.} a finite non-empty family of finitely generated infinite subgroups of
G, and let 1k C(G, &¥) denote the rank of the (free-Abelian) cokernel of the
restriction map (1.1). If G contains an infinite cyclic subgroup of finite index then

rk C(G, .9’)=i |G :S;|—-1;

i=1
otherwise tk C(G, &) is equal to 0 or 1, or o~.

Note that finite groups in the family & have no influence whatsoever on the
cokernel of (1.1) and so we lose no generality by assuming that all groups in &
are infinite.

Next we classify the three cases rk C(G, ¥)=0, 1, © by exhibiting necessary
and sufficient conditions for rk C(G, %) to be 0 or 1, respectively, The case
rk C(G, ¥) =0 is then, of course, given by exclusion.

2.2. tk C(G, &)= 1. In order to state the result when C(G, &) is infinite cyclic
we introduce the following notation. Let (G, &) be a pair consisting of a group G
and a family & ={S; | i € I'} of subgroups (possibly with repetitions!), and let F<G
be an auxiliary subgroup. For each index i eI we choose a system X; of double
coset representatives of F\G/S; and consider the family

' ={FNx;Sx;'|x,eX,iel}

Up to cojugacy within F, &' is independent of the choice of X, i € I. We call (F, ')
the full subpair of (G, &) given by F<G.

We define the group pair (G, ¥#) to be a virtual Poincaré duality pair if G
contains a subgroup of finite index F< G such that the full subpair of (G, ¥) given
by F is a Poincaré duality pair in the sense of [2]. Note that F is necessarily

torsion-free and that the definition of a virtual Poincaré duality pair is indepen-
dant of the patricular choice of F by [2], Theorem 7.6.

THEOREM B.* Let (G, &) be as in Theorem A. Then rtk C(G, ¥)=1 if and
only if (G, &) is a virtual Poincaré duality pair of dimension 2.

Thus in view of [2] Theorem 9.3 we have rk C(G, ¥)=1 if and only if G

! Eckmann and Miiller have recently obtained a different proof of Theorem B and a direct
description of all virtual Poincaré duality pairs of dimension 2. See ‘“Plane motion groups and virtual
Poincaré duality of dimension 2”. Preprint, Forschungsinstitut fiir Mathematik 1981, ETH, Ziirich.
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contains a free subgroup of finite index, each S; contains an infinite cyclic
subgroup of finite index, and the relative cohomology group H*(G, ¥; ZG) is =Z7.
It was shown by Eckmann and Miiller [5] that the 2-dimensional Poincaré
duality pairs are geometric, that is, given by the fundamental group and the
peripheral subgroup system of a compact surface-with-boundary. This yields the

COROLLARY.?® Let (G, ¥) be as in Theorem A and assume G is torsion-
free. Then tk C(G,S)=1 if and only if G is a free group having a basis
{ti, oy ..y tm1> X1,...,Xn}, Such that the subgroups S, ¥ are conjugate to the
infinite cyclic subgroups gp(ty), ..., gp(tn—_1), gp(t;* * *t,_17), where

r=[xy, x,l[x3, X4]* - * [X.—1, X, ], n even=0
if C(G, &) has trivial G-action, and

r=xix3---x2 n=0

2.3. tk C(G, ¥)=0. In order to exhibit the structure of (G,¥) when the
restriction map (1.1) is surjective we have to consider simultanous decompositions
of G and the subgroups S; as fundamental groups of graphs of groups. In order to
handle the family & it is convenient to consider graphs of groups (&, X) where the
underlying graph X is not necessarily connected and define its ‘“‘fundamental
group” m(®, X) to be the family of fundamental groups of the connected
components.

In more detail: Let X(i), i€ I, denote the connected components of the
(oriented) graph X, with vertices V(X(i)) and (positive) edges E(X(i)), and let
®(i) be the corresponding system of vertex groups G,, ve V(X(i)) and edge
groups G, =G,(.), G;: = Gy, € € E(X(i)). Then 7,(®, X) stands for the family of
groups G(i) = m,(®&(i), X(i)), ie L. Recall that G(i) is generated by the vertex
groups G,, v € V(X(i)) and stable letters p,, e € E(X(i)), subject to the following
defining relations.

p. ' Gep. =G: e € E(X(i))

p. =1 for all edges e in a maximal tree of X(i).

So let G =m,(®, X), with X connected, and ¥ = (S, Y) with Y arbitrary,
and let V(X), V(Y) be the set of vertices and E(X), E(Y) the set of (positive)
edges of X resp. Y.

DEFINITION. We say that the decompositions of G and ¥ are compatible
(via an orientation preserving graph map f: Y — X) if there are elements c, € G,
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v € V(X), such that the following holds

c;'S,co =Gy, for every vertex ve V(Y) (2.1)
Co(e)Dfe) = PeCeey fOr every edge ee E(Y), (2.2)

where p, and py, stand for the stable letters corresponding to the (positive) edges
e resp. f(e).

Note that if G and ¥ have compatible decompositions via f, G = (8, X),
¥ = 7,(S, Y), then the same holds for any family & ={S}|i e I} with S!=g;'S.g,
g € G. Indeed, let (S, Y;), i€ I, be the connected components of (S, Y). Then
conjugating each ¥, = 7,(&;, Y;) =G by g yields a decomposition ¥’ = 7,(&', Y)
satisfying (2.1), and (2.2), where for each ve V(Y;) and e E(Y;) c, is to be
replaced by g;'c, and p, by g 'p.g:.

Now we are in a position to state

THEOREM C. Let (G, %) be as in Theorem A. Then C(G, ¥)=0 if and only
if G and & have compatible decompositions G = m,(®, X), ¥ = 7,(S, Y) given by a
graph map f: Y — X which is bejective on the edges, such that the following holds:
(i) all edge groups of G are finite and coincide with the corresponding (conju-
gate) edge groups of &
(ii) all vertex groups of ¥ have =<1 end.

As a special case Theorem 3 contains a splitting result which is related to those
of Swan [13], Lemma 7.1, and Wall [15].

COROLLARY. Let G be a torsion-free finitely generated group and & a finite
family of finitely generated free subgroups of G. Then C(G, ¥)=0 if and only if G
is the free product G=S, %+ - - * S’ * K where S| <G is a subgroup conjugate to S;
1=i=m, and K=G is an auxiliary subgroup.

Proof. If res is surjective G and ¥ have decompositions G = m,(®, X), ¥ =
7, (S, Y) satisfying the properties (i), (ii) of Proposition 7.2. Hence all edge
groups are trivial and all vertex groups S, of & have <1 end. Since S, is free this
means that S, =1, and ¥ =7,(S, Y)is the family of fundamental groups (in the
topological sense) of the connected components Y; of Y. Since X =f(Y;) the
fundamental group of X is free product of m,(f(Y;)) and an auxiliary group Kj,
and clearly G = m(X)* K, where K, is the tree product along a maximal tree of
X. Finally =,(f(Y;))=m,(Y;)* K;; because f identifies certain vertices; note that
one has to choose base points and use conjugation to adapt the elements c, € G so
that the last isomorphism involves conjugation.
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3. Two preliminary lemmas

3.1. Let G be a group and K a commutative ring with nontrivial unity. Recall
that a KG-module M is said to be of type (FP),, where n is an integer =0 or
n =, if M has a projective resolution which is finitely generated in all dimensions
=n. If M is of type (FP),, and of finite projective dimension then M is said to be
of type (FP). If the trivial G-module K is of type (FP), (resp. of type (FP)) then
we say that the group G is of type (FP), over K (resp. of type (FP) over K).

LEMMA 3.1 (Stallings [12]). Let K be a field and assume that G has no
K-torsion. Let V be a non-trivial KG-module of finite K-dimension. then we have

(a) The KG-module V is of type (FP), if and only if the group G is of type
(FP),, over K.

(b) The projective dimension of the KG-module V is equal to the chomology
dimension c¢cdxG of G over K.

Proof. Let P— K be a projective resolution of the KG-module K. Then
P®x V is a projective resolution of V. And if P is finitely generated (resp. of
finite length) so is P®x V.

Conversely: Assume first that V is of type (FP),. By induction one may
assume that Py, P,,..., P,_; are finitely generated, hence so are P,®xV, i=
1,2,...,n—1.

Let R =ker (P,_, — P,_,). Since V is of type (FP),, R®kV is finitely gener-
ated over KG; hence so is R, and therefore G is of type (FP), over K.

Now assume V is of projective dimension <n. Then R®¢V is a projective
KG-module. Let F be a free KG-module and f: F — R an epimorphism. There is
a KG-homomorphism g: RQx V — F @ V which splits f® 1. Stallings defines to
such a map g the “transfer trace” g¥%:R — V as follows: for every re R and a
fixed basis {v,, v,,...,0,} of V one has

gr®u) = ) g;(N®y,
i=1
and we can put
gi(r) = Z g:(r)
i=1

It is easy to check that g¥:R— F is a KG-homomorphism which does not
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depend upon the choice of the basis {v,, v,, ..., v,}, and that the composite map
f-g¥:F— R is multiplication by n=dimg V. Since G has no K-torsion
1 : .
- g¥:R — F splits f, and R is projective.

3.2. There is an immediate Corollary which improves Lemma 3.2(b) provided
the cohomology dimension cdg G is known to be finite.

COROLLARY 3.2. Let K be a field, G a group of finite cohomology dimension
over K, and M a KG-module containing a non-trivial submodule V <M of finite
K-dimension. Then cdg G is equal to the projective dimension of M.

Proof. Let A be a KG-module such that Extgs (V, A) #0, where m =cdg G.
Since the projective dimension of any KG-module is =m we obtain from the long
exact Ext-sequence

Extls (M, A) = Ext%; (V, A) = Extzt(M/V, A)
=0

that Extgs (M, A) # 0. Hence the projective dimension of M is =m and hence =
m = CdK G.

4. Resolutions of end groups by permutation modules

4.1. Let G be an infinite finitely generated accessible group and ¥ ={S; | i e I}
a finite family of finitely generated subgroups of G. In this section we deduce a
finite resolution of the relative cohomology group HY(G, ¥; ZG) regarded as a
right G-module. For definitions and notation concerning the cohomology of a pair
(G, &) we refer to [2]. Thus we consider the short exact sequence

Ay IG|S =17 (4.1)

where Z(G/¥) is an abbreviation for the direct sum of all permutation modules
2GS, i€, and ¢ is the obvious augmentation. Then

H*(G;ZG), if ¥=0

H*G, ¥; ZG) ={ ,
Ext'(c;“l (AG/.Y’, ZG) if y# (%)

Note that H%(G, ¥; A)=0 for ¥# J; and replacing the subgroups S,€¥ by
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conjugates leads to an isomorphic relative group. Finally, we shall use the
abbreviation H"(¥; ZG) for the direct product of the groups H"(S;; ZG), ie L

4.2. Let I, (resp. L) denote the set of all i e I with S; finite (resp. infinite),
and put

Fan={Si I i€lg,), Pint = 1S l i€ L.

From ZG/¥ =7G/%4,D ZG/¥;s One easily obtains a short exact sequence of left
G-modules.

ZG/yﬁn > Ag/y —» AG/me

and the corresponding Ext-Sequence yields the short exact sequence of right
G-modules.

0— HYS4.; ZG)— HYG, ¥;ZG) — HYG, ¥,.4; ZG) — 0. (4.2)

Now, H%(%g.;ZG) is the direct product of the (right) permutation modules
Z(S\G), i€ Is,.

4.3. It remains to consider the cohomology group H'(G, ¥;.¢; ZG), which — by
the long exact sequence for the pair (G, %) — is isomorphic to the kernel of the
restriction map H'(G; ZG) — H'(%;,¢; ZG). If the kernel is =0 then, by Swarup’s
relative version of Stalling’s Structure Theorem [14] one can replace the groups in
Zint by suitable conjugates in such a way that G can be written as the fundamental
group of a graph of groups (&, X) with finite edge groups and with every group of
¥ins contained in one of the vertex groups. Let V be the set of vertices and E the
set of positive edges of X. ¥;,; can be written as a disjoint union of families &%, of
subgroups of the edge groups, G,, ve V. If H(G,, %,;ZG)#0 for some ve V
one can repeat the decomposition procedure. But as G is accessible the decom-
position stops after a finite number of steps. Hence we can assume that
H'(G,,¥,;ZG)=0 for all ve V.

The relative Mayer—Vietoris sequence (cf. [2], Theorems 3.2 and 3.3, which
can be generalized to arbitrary graphs of groups) now yields a short exact
sequence of right G-modules.

0—[] HG,, #,;2G)— [] HYG.; ZG) » HY(G, Pns; ZG) — 0. (4.3)
A\ E

Of course HG,, #,;ZG)=0 if either ¥, # & or G" is infinite. If G, is finite
then ¥, = & and HXG,, ¥,;2ZG)=7(G,\G), and similarly for H%G.;ZG). Thus
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(4.3) can be written as

0—[]zG, \G)—>HZ(G \G) > HY(G, %;s; ZG) — 0, (4.4)

Vﬁn

where Vg, < V is the set of all vertices v with G, finite.

4.4. From the short exact sequence (4.2) and (4.4) we deduce three things.
Firstly, the permutation modules Z(U\G) for a finite subgroup U =G are of type
(FP)... Since the index sets Vg, E and I, are finite it follows that the G-module
HY(G, ¢;ZG) is of type (FP)... Secondly, when tensored with Q, a permutation
module Z(U\G), U finite, becomes a projective QG-module. Hence using (4.4)
and (4.2) one can construct a finite projective resolution of H'(G, ¢¥; QG). This
yields a bound for the projective dimension and the Euler characteristic of this
QG-module. Using the notation of [3] (in fact extending it slightly) we write x (M)
for the Hattori-Stallings-rank of a QG-module of type (FP) —recall that x(M) is a
finite Q-linear combination of conjugacy classes in G —and w(M)eQ for its
coefficient of 1€ G.

We summarize:

THEOREM 4.1. Let G be a finitely generated infinite accessible group and
P ={S;|iel} a finite family of finitely generated subgroups of G. Then the right
G-module H'(G, ¢;ZG) is of type (FP).. The QG-module H (G, ¥; QG) is of
type (FP) and of projective dimension <2; and its Euler characteristic is given by

6T e L )

Proof. If K is a finite group then the trivial QK-module Q is projective and
has Euler characteristic u(Q) = 1/|U|. If U is a subgroup of G then QG is free as
a QU-module, hence Q®quZG=Q(U\G) is QG-projective; and by the
covariance property of x (and p) we get w(Q(U\G)) = n(Q). Using the behaviour
of x (and ) with respect to exact sequence yields formula (4.5).

4.5. Remark. For the proof of the main result we shall actually only need the
case = of Theorem 4.1. In this case (4.2) is irrelevant and hence the
projective dimension of H(G; QG) is even <1.

5. The cokernel C(G, S) of res is free-Abelian

5.1. Next we observe that H. Miiller’s result [9] on the cokernel of the
restriction map extends to the case of a family of subgroups:
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THEOREM 5.1 (H. Miiller). Let G be a finitely generated accessible group and
P ={81,S5,...,S.} a finite family of finitely generated subgroups. Then the
cokernel C(G, &) of the restriction map H'(G; ZG) — H(¥;ZG) is free-Abelian.

Proof. Following the proof of [9]1 Corollary 1.9 one can embedded S, into a
certain accessible group S; with C(S;, S;) free-Abelian and such that there is a
short exact sequence

C(G, P)»> C(G, ¥)®sZG —» C(S,, S)) ®s,ZG,

where G stands for the amalgamated free product G =Gy S, and & for the
family #=1{S,,S,, ..., S..} of subgroups of G. Hence it suffices to prove that
C(G, &) is free-Abelian. Repeating the argument shows that we may assume that
all subgroups S;,...,S,. are accessible. The proof of [9], Corollary 1.4 now
carries over.

6. The case when 0 <rk C(G, ¥)<»

6.1. Throughout this section we assume G to be a finitely generated accessible
group and ¥ ={S,, ..., S,.} a finite non-empty family of finitely generated infinite
subgroups such that the cokernel C(G, &) of (1.1) is of finite Z-rank>0.

LEMMA 6.1. Under these assumptions the restriction map (1.1) is injective, so
that one has the short exact sequence of G-modules.

HY(G;ZG) »» H'(¥;ZG) > C(G, 9). (6.1)

Proof. If not, then by Swarup’s relative version of Stalling’s structure theorem
[14], after replacing the groups S; by suitable conjugates, the pair (G, &¥) decom-
poses non-trivially as an amalgamated product of two pairs (G, ¥;), i=1,2 or as
an HNN-extension over a pair (G,, ¥,), where in either case the amalgamated
(associated) subgroup is finite. Writing C; for the cokernel C(G;, ¥;) we obtain the
following commutative diagram with exact rows.

HYG;ZG) — HY¥;ZG) — C(G,¥) —0

a <] Y

M1 H'G:;z6)— [ H'+:;26) ~>[] €.®6,2G =0

a is the restriction which occurs in the Mayer—Vietoris sequence for G; hence, as
the amalgamated subgroup is finite, a is epimorphic. ¥ is the disjoint union of ¥,
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and ¥,; hence B is the identity. It follows by the S5-Lemma that y is an
isomorphism. Therefore one of the G-modules C;®s ZG is of finite Z-rank >0.
But this implies that G; is of finite index in G which is impossible.

6.2. Dunwoody’s accessibility criterion [4] asserts that a group G is accessible
if and only if the cohomology group H'(G; ZG) is finitely generated as a right
G-module. From our assumption that G is acessible and C(G, &) free-Abelian of
finite rank it thus follows that HY¥;ZG) and hence each H'(S;;ZG)=
H'(S;; ZS;)) ®s ZG is finitely generated over ZG. As ZG is a free ZS;-module we
can infer that H'(S;; ZS;) is finitely generated over ZS;. Hence all groups S;, 1<
i<m, are accessible by the criterion again.

Thus the absolute version of Theorem 4.1 applies for both G and §;, 1 =i=m.
Hence the G-modules H(G; ZG) and HY(¥; ZG) are of type (FP).., and in view
of the short exact sequence (6.1) so is C(G, ¥). Moreover the QG-modules
H'(G;QG) and H(¥;QG) are of type (FP) and of projective dimension =<1.
Hence the short exact sequence (6.1), when tensored with @, shows that
Ca(G, ¥)=C(G, ¥)®;Q is a QG-module of type (FP) and of projective dimen-
sion =<2.

By Lemma 3.1 we can now infer that the group G is of type (FP)., over Z and
of type (FP) with cdg G =2 over Q.

6.3. Our next aim is to show that the kernel A =A445,, of the augmentation
map €£:2G/¥—»> 7 (4.1) is a G-module of type (FP),. To that end take an
arbitrary direct power [[ZG of copies of ZG, and apply TorZ¢ (I] ZG, —) to the
short exact sequence (4.1). This yields the commutative diagram with exact rows

TorZC (I] ZG, z) — (H ZG) ®cA— (]'[ ZG> RcZ(GIF) — (1'[ ZG) ®cZ—0

l‘-ll le Msl
0 —[] A — [1zG/# — [1z —0

where the vertical arrows stand for the limiting homomorphism (e.g., u, (I A ®
d)=[1Ad, A\€ZG, deA). Since Z is of type (FP), as a G-module
Tori° (12G,Z)=0 and p; is an isomorphism. & is a finite family of finitely
generated subgroups of G, hence ZG/¥ is of type (FP), and u, is an isomorphism.
It follows that w, is an isomorphism, whence A is of type (FP), (see e.g. [1],
chapter I).

6.4. From Section 6.3. we infer that the QG-module Ag=A4 ®Q is of type
(FP);. So let us choose a QG-projective resolution

P2 2>P1 1)Po )AQ (6.2)
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which is finitely generated in dimensions 0 and 1, and which we can use to
compute the relative cohomology groups H" (G, ¥; QG) for n =1 and 2. Also, we
have the long exact sequence for the pair (G, ¥)

res

-+ —= H(¥;QG)— H'(G, ¥;QG) - H(G; QG) —>
HY(¥;QG) - H*G, ¥;QG) —»

where res is injective by Lemma 6.1. Since all groups in & are infinite
H°%¥;QG) =0 and hence HY(G, ¥; QG)=0. This shows that

0 — P¥ — P* — coker (3f) — 0,

with P¥ =Homgg (P, QG) is a short exact sequence. But P¥ and P¥ are finitely
generated projective right QG-modules, hence coker (8F) is a QG-module of
projective dimension <1. Clearly coker (3*) contains ker 8¥/im ¥ = H*(G, #; QG)
which, in turn, contains the submodule Cgq(G, ¥) of finite Q-dimension. By
Corollary 3.2 this implies that the cohomology dimension of G over Q is in fact
=1.” Hence by Dunwoody’s generalization of Stallings’ theorem [4] G contains a
free subgroup of finite index.
We summarize

THEOREM 6.2. Let G be a finitely generated accessible group and & a finite
family of finitely generated subgroups of G. If the cokernel C(G, ¥) of the restriction
map

HYG:;ZG)— H(#;ZG)
is of finite Z-rank >0 then G contains a free subgroup of finite index.

Remark. It follows, in particular, that in the situation of Theorem 6.2 one has
H*(G;ZG)=0. Hence the long exact sequence for (G,¥) shows that
H*G, #;2G)=C(G, 9).

6.5. It remains to examine the situation when G is a finitely generated infinite
free-by-finite group and ¥ a finite family of m infinitely generated, infinite
subgroups. Then G can be thought of as the fundamental group of a finite graph

2 This type of argument was used by Farrell [6]
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(&, X) of finite groups. Let V denote the set of vertices and E the set of positive
edges of X. Then Theorem 4.1 yields the formula

But this is precisely the negative of the formula for the Euler characteristic
n(G) = u(Q) (e.g. [3], Theorem 2). Hence we have

w(HY(G;QG))=—-u(G),
and similar for S,

w(H'(S;; QG)) = n(H'(S;; QS;)®s, ZG)
= n(H'(S;; QS)) = —p(S).

From the short exact sequence (6.1) we now obtain the formula

w(CalG, 9) = (G) - ¥ w(S) 63)

i=1

On the other hand Cg(G, &) is a QG-module of finite Q-dimension, whence
1(Ca(G, &) =dim Cg(G, &) - u(G) (see e.g. [3], Lemma 8). Together with (6.3)
this yields the equation

w(G)ek C(G, 9)~ 1)+ 3. u(S)=0. 6.49)

i=1

Let F be a free subgroup of finite index in G and n the rank of F. Then
p(F)=1—n=|G:F|- u(G). This shows that u(G) is =0 and u(G) =0 if and only
if G is infinite cyclic-by-finite. Of course the same holds for u(S;); hence we can
deduce from (6.4) that w(S;)=0 for 1=<i=<m and either w(G)=0 or
rk C(G, ¥)=1. In other words: all groups S;, 1 <i=<m, contain an infinite cyclic
subgroup of finite index and either the same holds for G itself or one has
C(G,¥9)=1.

Remark. Instead of using Euler characteristics A. Freudenberger [Diplomar-
beit 1982, University of Freiburg im Breisgau, Germany] obtains formula (6.4) by
computing the Q-dimensions in the long exact homology sequence of G with
coeflicients in (6.1) tensored with Q.
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6.6. The proof of Theorems A and B is now easily completed: If G is infinite
cyclic-by-finite then the index |G:S,| is finite for all 1<=i=m, HYG;ZG)=7Z,
and HY¥%;ZG)=[1 HS;;ZS)®7ZG=7Z(¥\G) is free-Abelian of rank
Y |G :S;|. By the short exact sequence (6.1) we thus have

tk C(G, 9)= ). |G:S)|-1.

1

m
i=

On the other hand, if w(G)#0 and hence C(G, ¥)=Z we consider a free
subgroup F of finite index in G and the full subpair (F, ¥') of (G, ¥) given by F
(c.f. Section 2.2). By [2], Proposition 7.5, we have

H*(F,¥';ZF)=H*G, ¥;ZG)=C(G, &) =1.

Hence (F, #') is a 2-dimensional Poincaré duality pair by the PD?-criterion [2]
Theorem 9.3.

7. The case when C(G, ¥)=0.

7.1. Here we have to consider compatible decompositions of the pair (G, &) as
defined in Section 2.3. That is, both G and ¥ are ‘“fundamental groups of graphs
of groups” G =m(®, X) ¥=u,(S, Y)-where the graph Y is not necessarily
connected — and there is given an orientation preserving graph map f: Y — X and
for each vertex v of Y a group element ¢, € G such that the equations (2.1) and
(2.2) are satisfied.

One feature of compatible decompositions is a natural homomorphism be-
tween the Mayer—Vietories sequences of G and ¥. Indeed one has the commuta-
tive diagram of G-modules.

® 7G/S,—— & ZG/S,—» ZG/S

E(Y) V(YY)
1!‘ 1 lfo le

® 2G/G,—— & 7ZG/G, —* 7L

EX) V(X)

(7.1)

where V(X), V(Y) stand for the set of vertices and E(X), E(Y) for the set of
positive edges of X resp. Y. The rows are the short exact sequences [9], p. 168
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and the vertical maps are given by

f1(8Se) = 8¢0(e)Git e

geG, veV(Y), ecE(Y)
fo(gS,) = ngGf(v) }

Commutativity of the diagram is guaranteed by (2.2). Applying the functor
Extis (—, A), A an arbitrary G-module, and using the Shapiro Lemma thus yields
the commutative ladder

-+« HYG; A)— [] H*G,; A)~ [] H*(G.; A)> H*"(G; A)— - -

V(X) EX)
o |l e

.-+ HY#; A)— [ H*(S,; A) = [] H*(S.; A) > H**(F; A) —> - - -

V(YY) E(Y)
7.2. We are now in a position to prove

PROPOSITION 7.1. Let G be a group and ¥ a family of subgroups. Assume
that G and ¥ have compatible decompositions G = 7,(®, X), ¥=m,(S, Y), via a
graph map f: Y — X which is injective on the edges, and such that the following
two conditions hold

(i) Seow = Gy, for every edge e € E(y)

(ii) all vertex groups S, of ¥ have <1 end.

Then the restriction map H'(G; ZG)— H(¥; ZG) is surjective.
Proof. The condition (i) implies that the vertical map f; in the diagram (7.1) is
the injection of a direct summand. Hence Homg (f;, ZG) = f¥ is surjective and

(7.2) with A =ZG yields the commutative diagram with exact rows

[1H°G.;2G)—> HY(G;2G) —|] HY(G,; 2G)

{

[1H°GS.; 2G) > HY(¥; 2G) —> [[ H'(S,; ZG)

Now, condition (ii) asserts that H*(S,;ZG)=0 for all ve V(Y); hence & is an
epimorphism and so is res.

7.3. It remains to prove the following converse of Proposition 7.1.
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PROPOSITION 7.2. Let G be a finitely generated group and ¥ ={S;|icI} a
finite family of finitely generated accessible subgroups. If the restriction map
res: H'(G; ZG) — HY(¥; ZG) is surjective then G and ¥ have compatible decom-
positions G=m(®, X), ¥=m(S,Y) via an orientation preserving graph
map f: Y — X which is bijective on the edges and such that

(i) for every edge e € E(Y) the edge group G, is finite and coincides with S,

(ii) all vertex groups S, of ¥ have =<1 end.

Proof. Since & is a finite family of finitely generated accessible groups & can
be written as the “fundamental group” of some finite graph of groups (S, Y) with
all edge groups S, finite and all vertex groups S, having =<1 end. If we arrange
(3, Y) such that all embedlings S, <G, are proper, then the number of edge
pairs of Y is an invariant of ¥ which we call the complexity.

We shall prove Proposition 7.2 by induction on the complexity of ¥. If the
complexity is = O then every S; has =<1 end and the proposition holds with X
consisting of one vertex and no edges and Y consisting of an isolated vertex for
every iel If ¥ has complexity >0 then HY¥;ZG)#0. So assume
H'(S,;ZG)#0, and put J =% —{S,}. Since res is surjective H. Miiller’s first
decomposition Theorem applies ([7], Corollary 3.1.). Thus after replacing the
groups in J by suitable conjugates the pair (G,J) and the subgroup S, have a
proper simultaneous decomposition in the following sense. Either G = G;*¢ G,
and S, =S,;*xS;, where K is finite. S;; =G; (i=1,2), and J is the disjoint of
families J,, 7, of subgroups of G,, resp. G,; or G = G, *k, is an HNN-group
with stable letter p and finite associated subgroups K,pKp~', J consists of
subgroups of Gy, and S, is either =S§;;* ¢ , or =S * xkpSppp~ L, with Sy, S12<Gi.
Note that all these decompositions of G and S, are compatible in the sense of

Section 2.3.
We restrict the discussion to the first case, the other cases being similar. By

(7.2) we have a map between the Mayer—Vietoris sequences for G and S,, and
adding H'(J, ZG) to the latter yields the commutative diagram with exact rows

HY(K;ZG) — H'(G; 2G) — S HY(G;2G) -0

| o

2
H(K;2G)— HY¥;1G) » & H'(51;:ZG)®H'F;2G)—> 0

from which we deduce that the restriction map

res; : H(G,:; ZG;) — H* (gU{Su}; ZG:’)
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is surjective for i =1, 2. Now the complexity of J, U{S;;} is less than that of &.
Hence, by induction, G; and J; U{S;;} have a compatible decomposition satisfying
the assertion of Proposition 7.2. Putting these together yields a compatible
decomposition of G and ¥ with the required properties.

Remark. Instead of assuming that the subgroups in ¥ are accessible in
Proposition 7.2 one could also assume that the group G is accessible. Indeed, by
Dunwoody’s criterion [4] this would mean that H'(G; ZG) is finitely generated as
a right G-module. Since res: H(G; ZG) — H(¥; ZG) is assumed to be surjec-
tive the same holds for &, implying that every S; € ¥ is accessible.
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