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Une variété de dimension 4 avec forme d’intersection paire et
signature—8

NATHAN HABEGGER

Quelles sont les formes bilinéaires symétriques unimodulaires qui peuvent étre
la forme d’intersection d’une variété close de dimension 4? Il résulte du théoréme
de Rochlin [1] que la signature d’une variété close simplement connexe de
dimension 4 et dont la forme d’intersection est paire est divisible par 16. Dans
cette note, nous présentons un exemple qui montre que I’hypothese de simple
connectivité est indispensable dans 1’énoncé ci-dessus.

Le théoréme de Rochlin dit que la signature d’une variété close de dimension
4 et presque parallélisable est divisible par 16. D’autre part une variété orientable
M de dimension 4 est presque parallélisable si et seulement si sa deuxieme classe
de Stiefel-Whitney w,(M)e H*(M; Z,) est nulle. Cette condition peut encore
s’exprimer a I’aide de la forme d’intersection mod 2 comme suit: Soit u, =
u,(M)eH*(M;Z,), la deuxiéme classe de Wu définie par la formule
{uy * x, [M])=(Sq* (x), [M]) pour tout x e H*"*(M; Z,). On rappelle la formule de
Wu, w=Sq (u),out w=1+w;+wy+--- et u=1+u;+u,+- - sont respective-
ment les classes totales de Stiefel-Whitney et de Wu. Pour la suite, M désigne
maintenant une variété close orientable de dimension 4. On a alors w,(M)=0 et
la formule de Wu donne w,(M) = u,(M). On a donc la formule w, - x =Sq” (x) = x>
pour tout x e H*(M;Z,). Ainsi pour M close orientable de dimension 4, on a
w, =0 si et seulement si x*>=0 pour tout x e H*(M; Z,).

Soit T?=T?*(M;Z) le sous-groupe de torsion de H>*=H?*(M;Z) et soit
p :H*(M;Z)—H?*(M;Z,) la réduction mod 2. Les sous-espaces p(T?) et p(H?)
sont mutuellement orthogonaux (pour le produit mod 2). En fait, pour des
raisons de dimension (cf. [2]) chacun est le complément orthogonal de I’ autre. 1l
s’ensuit que

(i) wa(M)ep(H?)

(i) wo(M)e p(T?) &1a forme d’intersection sur H?/T? est paire.
Ainsi pour M* simplement connexe (T?=0) les conditions

(a) M a forme d’intersection paire (w, € p(T?))

(b) M est presque parallélisable (w, =0)
sont équivalentes.

On trouve ainsi comme corollaire du théoréme de Rochlin I’énoncé du début.
Si M de dimension 4 est simplement connexe et possede une forme d’intersection
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paire, alors sa signature est divisible par 16. Mais en général, la condition (a)
ci-dessus est plus faible que (b) comme on peut voir sur ’exemple suivant:

Soit M=S82xS? et M=MJZ, ou Z, agit sur M par (x, y)— (—x,~y). On a
rang H2(M)+2 = x(M)=3x(M)=2 donc rang H*(M) =0, c’est-a-dire H*(M) =
T?(M). D’autre part, a partir du plongement diagonal S> & S?Xx S? on obtient par
passage aux quotients un plongement RP?< M avec self-intersection 1. Si
x € H*(M; Z,) est la duale de Poincaré de ig[RP*]e H,(M;Z,),0on a wy - x =x%=
1 et donc w, #0.

La variété ci-dessus a signature zéro, puisque H?*/T?>=0. Cependant, sa
construction nous a donné I’espoir qu’il puisse exister une variété avec forme
d’intersection paire et signature =8 mod 16. Voici un tel exemple: Soit M
I’hypersurface de degré 4 dans CP> donnée par I’équation Z¢+Z31+Z3+Z5=0.
On définit une involution sur CP? par (Zy, Z1, Z», Z3)—>(Z,, —Zo, Zs, —Z,). On
vérifie aisément que c’est une involution sans points fixes qui laisse M invariant.
Par passage aux quotients on obtient un plongement M = M/Z,-> Q =CP(3)/Z,.
On vérifie aisément que M est orientable avec fibré normal v(i) non-orientable.

Nous allons vérifier que la forme d’intersection de M est paire, signature(M)
=—8, rang H*(M:Z)=10. D’aprés la classification des formes symétriques
unimodulaires paires indéfinies (cf [4]), on obtient la

PROPOSITION. Toute forme bilinéaire symétrique unimodulaire paire telle que
|signature| <4/5 rang est la forme d’intersection d’une variété close de dimension 4.

La variété M a les propriétés suivantes (cf. [3]). M est simplement connexe,
rang H?(M;Z)=22, signature (M)=-16. On a -—16=signature (M)=
(p(M)/3, [M])={(p,(M)/3, 2[M]y=2 signature (M), donc signature M =-—8.
D’autre part rang H2(M)+2 = x(M) =3x(M)=2% (rang H*(M)+2)=12 et donc
rang H*(M) = 10.

Il reste & voir que la forme d’intersection de M est paire. D’aprés ce qui
précede, il suffit de voir que w,o(M) € p(T*(M, Z)). De I’équation fibré Ty, +v(i) =
i*Ty, déduit de linclusion M->Q on tire wy(M)+wy(v(i))=i*w,(Q). Nous
allons montrer que H*(Q,Z,)=p(T*(Q,Z)) et w,(v(i))=0. Il s’ensuit que
wo(M) = i*w,(Q) € i*p(T*(Q, Z) = p(T*(M, Z)).

Soit CP(1) & CP(3) donné par Z,=Z,=0. Par passage aux quotients, on
obtient RP?>=CP(1)/Z, < Q. Rappelons que pour X — X un revétement a deux
feuilles, on a la suite exacte courte de complexes de chaines: 0— C(X) ® Z,—
CX)® Z,— C(X) ® Z, —0. On obtient donc le diagramme

H,(CP(1); Z,) > H,(RP*Z,)—H,(RP* Z;)—> HI(C.P(l); Z,)=0

[ |

H,(CP(3); Z,).— Hy(Q; Z,) —H,(Q; Z,) —H,(CP(3);Z,)=0
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I s’ensuit que H,(RP?*Z,)—>H,(Q;Z,) est un isomorphisme. Par
dualité, H*(Q;Z,)—H*(RP? Z,) est un isomorphisme. Le diagramme com-
mutatif

Ext (H,(Q;Z),Z) —H*Q;Z) 3HXQ;Z,

S i
Ext (H,(RP?; Z), Z) > H*RP?; Z)) > H(RP*; Z,)

établit que p(T*(Q;Z))=H*Q;Z,).

Comme j.JRP?] engendre H,(Q;Z,) et que I'intersection de RP? et M est
zéro (M est de degré 4), il s’ensuit que i«[M]=0 dans H,(Q;Z,). La classe
d’Euler du fibré normal v (i) est donc aussi triviale, ce qui montre que w,(v(i)) =
0.

Je voudrais remercier M. Michel Kervaire pour l'intérét qu’il a pris pendant
I’élaboration de ce travail.
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