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A Stiefel complex for the orthogonal group oi a field

K. VOGTMANN*

In this paper we show that the poset of orthogonal frames in (F&quot;, n(l)) with at
most k éléments is (k - l)-spherical if n is sufficiently large. Hère n(l) is the
identity form, and F may be any field with finite pythagoras number, e.g., a local
or global field, finite field or real-closed field. We then use this poset to show that
for n large with respect to m, the inclusion On~* On+1 induces an isomorphism
#m(On)—» Hm(On+1), where homology is taken with intégral coefficients.

§0. Introduction

It is often useful, in studying the homology of a group, to hâve a &quot;combinator-

ial représentation&quot; of the group, i.e., a simplicial complex with a natural group
action. If this complex has little or no homology, the spectral séquence arising
from the group action will relate the homology of stabilizers of simplices with the
homology of the group in a relatively uncomplicated way. This fact has been used,
for example, to compute the cohomology of spécial linear groups [1], [3] and to
prove homology stability theorems for the basic groups in algebraic K-theory [4],
[6], [7].

In this paper we discuss a simplicial complex which can be used to study the
orthogonal group of a quadratic form. This is the &quot;Stiefel complex,&quot; i.e., the
géométrie realization of a partially ordered set of orthonormal frames in the
underlying vector space of the form. The first part of the paper proves connected-
ness theorems for the complex associated to the identity form n(l) and some of its
subforms. The proof easily generalizes to gênerai forms over a field of characteris-
tic not equal to two, but for large Witt index the degree of connectivity goes
down. As an application, we then use thèse complexes to prove a homology
stability theorem for the orthogonal group On.

* Supported by National Science Foundation Grant MCS 77-18723 (A03).
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§1. Stiefel complexes

In this section we construct some simplicial complexes (Stiefel complexes)
associated to a quadratic module over a ring, and discuss their homotopy
properties in spécial cases.

Let R be a commutative ring with unit, and let V be a quadratic R-module,
i.e., a free JR-module equipped with a bilinear symmetric form q.

DEFINITION. An orthonormal k-frame [vl9..., vk] in V is an (unordered)
set of fc éléments vu vk of V with q(vl9 u,) 8ir

The set of orthonormal fc-frames in V is partially ordered by inclusion:
[vu •, vk]&lt;[ul9..., mJ if {vl9..., vk}cz{Ul,..., ty}.

DEFINITION. The realization of a partially ordered set X, denoted |X|, is the

simplicial complex whose i-simplices are totally ordered chains of i +1 éléments
of X; the simplices are glued together via the natural identifications.

An exposition of notations, définitions and basic techniques pertaining to
partially ordered sets (posets) and their realizations may be found in [5]. We will
use the notions of link, suspension and join (denoted lk, susp and * respectively)
from simplicial complexes, as well as the following facts:

LEMMA 1.1. If X and Y are two subposets of a poset Z, and x&lt;y for ail

xeX,yeY, then |XU Y| |X| * \Y\.

LEMMA 1.2. If f:X—&gt;X is an inclusion preserving (or inclusion reversing)

map from a poset X to itself, then \X\ is homotopy équivalent to |im (f)\.

We can now define and study Stiefel complexes.

DEFINITION. The fc-th Stiefel complex of a quadratic R -module V (denoted
Xfc(V)) is the realization of the poset of orthonormal frames in V with at most fc

éléments.

We first consider the case where R is the ring of integers in a totally real
number field X, V is a free JR-module with basis {el9..., en} and the matrix of the

quadratic form in this basis is the identity matrix In.

LEMMA 1.3. For R and V as above, the only éléments in V of length 1 are
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Proof. Let v r1e1 + • • • + rnen be an élément of V with v • v £r=i i? 1. The
norm from K to Q is a multiplicative homomorphism taking JR-{0} to Z-{0};
thus for each i we hâve either r, 0 or N(rf) lia &lt;n? ^ h where the product runs
over ail distinct embeddings of K into R which fix Q. But for each such

embedding a,

so orf &lt; 1 for each î. Thus, for each i, either r, 0 or or? 1 for ail cj, which
implies that r, ±1. Since £r=i rf 1, we must hâve u ±e, for some j. ¦

PROPOSITION 1.4. Ler JR and V Rn be as above. Then the Stiefel complex
Xn(V) is homotopy équivalent to the (n-l)-sphere Sn~\

Proof. The proof proceeds by induction on n. For n 1, Lemma 1.3 says that
the only orthonormal frames are [ed and [—ej; thus Xx(V) consists of two points,
i.e.XjCJ/^S0.

If n&gt;\, consider the subposet Yo= {orthonormal frames m Rn~l (=span of
{e1?..., en_i})}. Then by induction, \Y0\^Sn~2.

Let Y^! Yo U {orthonormal frames which strictly contain en or —en}. Then the

map Yx-^Yq which is the identity on Yo and sends [±en, vu..., vk] to
[i?!,..., vk] gives a retraction lY^ — |Y0| by Lemma 1.2.

By Lemma 1.3 again, the only orthonormal frames in V which are not in Yt are
[en] and [-en]. The inclusions lk[±en] —&gt; Yx induce homotopy équivalences, so

Xn(V)-susp| Y^-S&quot;-1:

}lkten]

}|YohS&quot;-2

}lk[-en]

Now let F be a field of characteristic ^=2.

DEFINITION. The pythagoras number of F is the smallest integer p p(F)
such that every sum of squares in F can be written as a sum of p squares. If there
is no such number, we say p(F) o°.
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EXAMPLES. (See [2]). If F is real-closed or pythagorean, p(F) 1. If F is a

global field or a local field with finite residue field, p(F)&lt;4. If F is a function field
of transcendence degree n over a real-closed field, then p(F)^2n. If F
R(xl5 x2,...), then p(F) °°. If F is not formally real, then p(F) &lt;oo.

NOTATION. We will use (dl9 d^) to dénote the diagonal quadratic form
on Fn with diagonal entries dl9..., dn. If &lt;dx,..., d*) and (e^ en) are
isometric, we write (dl9..., dn&gt; &lt;61,..., en).

PROPOSITION 1.5. Let F be a field with p(F) p&lt;c°. LetV Fn with the

identity form n(l), and W&quot;~l c V a codimension l nondegenerate subspace. Then if
n&gt;pl, W contains a unit vector.

Proof. Let (dl9..., 4i-i) be a diagonalization of the restriction of the identity
form to W. Since W is nondegenerate, we can extend this diagonalization to ail of
V: n&lt;l&gt; &lt;di,..., dn^x, xl9..., x{).

Since xx is a sum of at most p squares, we hâve p^l)^^, ytl,..., yip_i) for
some yir Hence if n &gt; pi,

\xl9..., xl9 yn,..., yt,p-i, 1,..., 1)

sn(l&gt;

&lt;x1?... ,xb dl9... .dn^x).

By Witt cancellation, this gives

so (du dn-x) represents 1; i.e., W contains a unit vector. ¦
COROLLARY 1.6. Let F and V be as above, and let E [el9..., em] and

F [/i&gt; • • • » fil be two orthonormal frames with l &lt; m. Then E1- H F&quot;1 contains a unit
vector if n&gt;2pl + m. If F is formally real, E±C\F-L contains a unit vector if
n&gt;pl + m.

Proof. If F is formally real, E±nF-L is a nondegenerate subspace of
(P&quot;m, (n — m)(l)), so the resuit follows immediately from the proposition.

If F is not formally real, the largest possible dimension of a totally isotropic
subspace of E±HF± is i. Therefore, there is a nondegenerate subspace of
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dimension at least n — m-2l in E, and the resuit follows again from the
proposition. ¦

D. Shapiro has pointed out to me that a field which has the property stated in
the corollary must hâve finite pythagoras number:

PROPOSITION (Shapiro). Let F be a field. Suppose there is a number n such

that given any two unit vectors e, /e(Fn, n(l», eJLnf± contains a unit vector. Then

p(F)&lt;n-2.

Proof. Let c be a sum of squares in F. We must show it can be written as a

sum of n— 2 squares. It suffices to assume c is the sum of n-1 squares.
We can write c x2-y2, with x, y g F. Replacing c by c/x2, we may assume

c 1 - a2, with aeF.
Let W (F&quot;&quot;1, (n -1)&lt;1», and let w e W be a vector with w • w c 1 - a2.

Define v W JL Fe, withe-e l. Then V^iF&quot;, n&lt;l». Set/ ae + w; then/-/
1.

By hypothesis, e±nw±r\f± contains a unit vector v. Now diagonalize the form
on V, using e, v and w as the first three basis vectors; you get n(l)
&lt;1,1, c, dl9..., dn-s). By Witt cancellation, (n -2)&lt;l) &lt;c, dl9..., &lt;k_3&gt;, so c is

the sum of n-2 squares. ¦
We will now use Corollary 1.6 to prove connectivity results for certain Stiefel

complexes.

THEOREM 1.7. Let F be a field with pythagoras number p p(F) &lt;oo. Let
[eu em] and [fl9..., ft] be two orthonormal frames in (F&quot;, n(l)), with l &lt; m,
and let V [el9..., em]n[/l5... ,/JczF1. Then for n&gt;2p(f + k-l) + (m + k-l)
(or, i/ F is formally real, for rc&gt;p(Z + fc-l) + (m + fc-l)), Xk(V) is homotopy

équivalent to a wedge of (k — ï)-spheres.

COROLLARY 1.8. Let V (Fn, n&lt;l». Then for n &gt; (2p 4- l)(fc -1) (or
n&gt;(p + l)(fc-1) /or F/ormally rcai), Xk(V)s V Sk&quot;1.

Proo/ o/ Theorem 1.7. The proof proceeds by induction on fc. For fc 1,

Corollary 1.6 says that X^V) is non-empty and hence contains at least two
1-frames; therefore, Xt(V)^\/ S0.

Now assume fc&gt;2. Choose a unit vector g in V and let H giflV
Uu • • .,fiVn[el9..., cm, g]x. We check that n&gt;2p(/ + fc-2) + (m + fc-l), so by
induction, Xk_x(H)= V Sk~2.
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Let

U{[±g, K,..., KV-ihu MeXfc

Then, as in the proof of Proposition 1.4, we hâve

Let Yi=YSU{[h1,...A,±g,u1,...,t;s]=O&lt;r+l+s&lt;fc and [hu...A,±g]e
n&gt;.

Then the map Yo—» Yq which is the identity on Y&apos;ô and sends [hu hr,

±g, vl9..., vs] to [hx,..., h» ±g] induces a homotopy équivalence \Yq\ — | YJ|.

Let Yo= YoU{k-frames [hl5..., hk] in H}. If [h1?..., hk]e Yo- Y^, we hâve

lk [hl9..., hk] H | Yo| lk [hx,..., hk] |{proper subframes of [hu hk]}|. The
set of proper subsets of a finite set with k éléments can be identified with the

barycentric subdivision of the boundary of a (fc-l)-simplex; thus

lk[hl5..., hk]C\\Yo\ — Sk~2, which implies that \Y0\ is the wedge product

V

v s*
t, ,hk]eYo-Yo

V

For 1 &lt;i&lt; fc, define Y, Y^U{[vu uj: vr - g^0 for some 1 &lt;r&lt;î}. Then

given [vu vt]s Yx - Y^, we hâve

lk [«!,..., ^
|{subframes of [vu u,i+/&lt;fc and x,. g H for some l&lt;r&lt;/}|

and x^eH for ail r}|

We now check our induction hypothesis for Xk_I(Hn[t&gt;1,..., ^D-il
[vx, ...,vjx [/i, ...,/i, gY~ri[el9 ...,em,vu ...,t;lJL, and we hâve n&gt;2p(i +
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1 + k — i -1) + (m 4- i + k - i -1), so the hypothesis is satisfied. Thus

-VSk~2, so lYj-VS*-1.

Since |Yk| Xfc(V), this proves the theorem. ¦
An inspection of the proof shows that the essential problem is to show the

existence of a unit vector in a given subspace. For many fields this can be done
more efficiently than was done above. Suppose there is a number mF such that
every non-degenerate form dl9..., dmp with dl a sum of squares, represents 1.

(This is the case for pythagorean and real-closed fields (mF 1), finite fields
(mF 2), global and local fields (mF^4). It is not the case for C(xl5 x2,...
though this field has pythagoras number 2 (see [2])). If we use the number mF to
ensure the existence of unit vectors in the proof of Theorem 1.7, we obtain the
foliowing theorem.

THEOREM 1.9. Let F be a field, mF as above, and V (Fn, n&lt;l». If F is

formally real and n&gt;2fc + mF-2, then Xk(V)^ V Sk&quot;1. If F is not formally real
and n &gt; 3fc + mF - 3, then Xk - V Sk~\

EXAMPLES. Let F F3, the field with three éléments, then X4(F£) is the

disjoint union of three 3-spheres, containing the 1-frames [(1,0,0,0)],
[(1,1,1,1)] and [(-1,1,1,1)] respectively. Thus X2(F^) &lt;= X4(Ft) is not connected,
so n&gt;3-2 + 2-3 5 is necessary to get connectivity. However, X3(F3) is simply
connected; also X2(Et) and X2(F^) are connected, showing that the bound in the
theorem can often be improved.

Let F R. Then X2(R2) is the disjoint union of uncountably many circles, so is

not connected. It can be shown, using an argument which essentially suspends this

case; that irn_2(Xrt(Rn)) is uncountable. A more complicated combinatorial argument

shows X3(R4) is not simply connected, supporting the bound n &gt; 2fc 4-1 - 2.

We will now produce a chain complex which gives the homology of X. We filter
X by subcomplexes X, realization of {/-frames, j &lt; i}. Then 4&gt; a Xx &lt;= • • • c: Xk
X, and Xt ^ V S1&quot;1. The spectral séquence of this filtration shows that the

complex
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gives the homology of X; thus the séquence

0 —» Hk-i(X) —» Hk_1(Xk, Hfc_i) —»•••—&gt; Ht-xCX,, H^x)

-* &gt;HO(X1)-»Z-*O

0-&gt;Ck+1^Ck^ &gt;Q-&gt; » Ca -* Co^ 0

is exact.

§2. Proof of homology stability for On

THEOREM. Let On be the orthogonal group of the standard identity form In

over R, where R ring of integers in a totally real number field, or R= field with
finite pythagoras number. Then for n suffïciently large with respect to

j,H,(On+1,On) 0.

The proof follows what is by now a standard pattern (see, e.g., [7]). We outline
it below.

Let E% be a free Z[On]-resolution of Z, and C* as in the end of §1, where
V Rn with the standard basis and form. Then the double complex
gives a spectral séquence with

We hâve (notation as in §1)

\p-frames

e Hp_1(sp-1)= © z.
p-frames p-frames

LEMMA. On acts transitively on the set of orthonormal p-frames, for any p.

Proof. If p 1, let v and e be any two vectors of length 1. Then either u-eor
v + e is anisotropic, so reflection in the hyperplane perpendicular to this anisot-

ropic vector is an orthogonal transformation taking v to e. By Witt cancellation,
v± is isometric to ex, and we proceed by induction on n. ¦

Thus © Z Z[On] © Z where stab [el9..., ep] is the stabilizer in
p-frames ZCstabfe!, ,ep]]
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On of the frame [el9..., ep]. It is easy to check that

where Xp is the symmetric group on p letters.
Our Ejq term may now be written

Z)

We hâve the following picture of the spectral séquence:

0
1 H,(On)+-^H,

o

&quot;

««fêf

19

The inclusion map On-+ On+1 induces an inclusion of simplicial complexes
Xn —&gt;Xn+1 and thus a natural map of spectral séquences for On and for On+1.

The mapping cône spectral séquence has

fHq(On+1,OJ, p 0

E1

We prove the stability theorem by induction on /; i.e., we assume that for n

sufficiently large with respect to q &lt; j, Hq(On+1, On) 0.

PROPOSITION. For q &lt; /, EJ,q 0.
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Proof. Consider the exact séquences

t t î
1.

The relative Leray-Serre spectral séquence for this diagram has

By our induction hypothesis, E^t 0 for n large and t&lt;j; therefore,

=0 fo&apos; -=

This proposition implies that

in onto (since the spectral séquence converges to 0). Then a diagram chase of the

following diagram proves the theorem.

-«-m
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where the maps / are induced by conjugation by J,

0

g are induced by conjugation by I In_l
0

h are induced by conjugation by
&quot;

1,

i are induced by inclusion.
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