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An algebro-geometric interpretation of the Bicklund-
transformation for the Korteweg-de Vries equation

Frirz EHLERS and HORST KNORRER

1. Introduction

In 1882 G. Darboux has developed a method that associates to any one-
dimensional Schrédinger-operator Z = —d?/dx*+ u(x) infinitely many other such
operators the spectra of which are intimately related to the spectrum of Z itself
(cf. [4] §408). This transformation is defined in the following way:

Let ¢ be a constant, let y(x) be a solution of the differential equation Z « ¢ = cyfs
with ¢# 0 and put v := ¢ /. One easily verifies that u = v?+v, +c, and we put

a:=v>—v, +c=u—2v,.
The differential operator

- d?
L = et
axz "

is called the Darboux-Backlund-transform of Z. It depends on the choice of ¢ and
¥, a change of ¢ by a constant factor does not effect the transformation.
It is well known that Korteweg—de Vries-equation

Uy = 3Uthy, — Uy

is equivalent to the Lax-equation

oZ
2k z
o [ 1
with
g & d 3
-—2;-2-+u, Teae Vix 2

(For a discussion of the properties of the KdV-equation cf. [10]).
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2 FRITZ EHLERS AND HORST KNORRER

The transformation of Z described above is compatible with this Lax-
equation, so it yields a transformation that produces new solutions of the
KdV-equation out of given ones. Transformations of this type are called
Backlund-transformations after A. Backlund who developed such a transforma-
tion for the sine-Gordon-equation in the last century (cf. [8]). For the KdV-
equation the transformation described above has been worked out by R. Miura
[13].

Successive application of the Backlund-transformation with diminishing values
of ceR, ¢ <0, produces out of the solution u =0 of the KdV-equation the multi-
soliton-solutions of this equation.

In 1976 1. M. Krichever developed a method for constructing one-dimensional
Schrodinger operators starting with certain line bundles on hyperelliptic curves
(cf. [12], [14]; parts of this construction will be described in chapter 2). Since
Krichever’s construction is purely formal we work with differential operators with
coefficients in the ring C[[x]] of complex formal power series in x (i.e. with
elements of C[[x]][d/dx]). The object of this paper is to describe how the
Darboux-Backlund-transformation, applied to such a Schrodinger operator,
changes the hyperelliptic curve and the line bundle on it. The precise result will be
given in Chapter 3; its essential content is the following:

Let Z be a Schrodinger-operator constructed by Krichever’s method from a line
bundle on the hyperelliptic curve y>+F(z) =0 (F a polynomial of odd degree),
and let Z be a Bicklund-transform of Z as described above. If ¢ was chosen
generically™ in the c-eigenspace of the linear map Z:C[[x]]— C[[x]] then Z
corresponds to a line bundle on the curve y?+(z —¢)?*F(z) =0, whereas for some
special choices of ¢ the operator Z can be obtained from a line bundle on the
curve y2+F(z)=0 or y2+(z—c)2F(z)=0.

Our work on this problem was motivated by discussions in a seminar on
geometrical methods in mathematical physics, run by members and guests of the_
SFB 40 in Bonn in 1979 and 1980. We would like to thank all its participants,
especially M. Adler, for many helpful and interesting suggestions.

2. Krichever’s construction, as described by Mumford

Krichever’s construction provides a relation between certain line bundles on
hyperelliptic curves (see the end of this chapter) and certain Schrodinger

! The notion “generically” has the meaning used in algebraic geometry. As the eigenspaces of Z
are two-dimensional it means that ¢ has to avoid some finite number of one-dimensional subspaces.



The Backlund-transformation for the Korteweg—de Vries equation 3

operators. These Schrodinger operators have the property that they commute
with some other differential operator Y of odd degree.® Conversely, any
Schrodinger operator with this property can be obtained from a line bundle on
some hyperelliptic curve. In this chapter we will describe how the hyperelliptic
curve and the line bundle on it can be reconstructed from the operator Z. In the
exposition of these results we follow the approach of Mumford [14], §2.

Let Y be a differential operator of odd degree commuting with Z, and assume
further that its degree r is minimal with respect to this property. It follows from
the commutativity that its leading coefficient is constant and thus we may assume
that it equals one. Y and Z generate the ring R = C[[x]][d/dx] of all differential
operators commuting with Z. As in [14], p. 133 one sees that there are polyno-
mials F,(z), F,(z) € C[z] such that Y?+2F;(Z) - Y+F,(Z)=0, deg F,<(r—1)/2,
deg F,=r. Replacing Y by Y+F,(Z) one obtains Y?*+F(Z)=0 where
F(z):=F,(z)— F,(z)? has leading coefficient one. It can be shown that

Clz, yl(y*+F(z)) >R, z—>Z, y—Y

is an isomorphism.

Let C, be the affine curve {(x, y) € C?| y2+ F(X) =0}. This is the spectrum Spec R
of the commutative ring R in the sense of algebraic geometry. There is a unique
compact curve C 2 C,, such that the points of C— C, are nonsingular on C. Since
deg F is odd, C— C, consists only of one point, P.

In some neighbourhood of P, {:=y 2z *"? is a local parameter of C. If
D e R is considered as a rational function on C then its pole order at P is its order
as a differential operator.

In order to construct the line bundle on C we notice that for every z € C the
operator Y maps the two-dimensional space ker (Z—z -id) to itself. Its eigen-
values on this space are the values yeC with y?>+F(z)=0. So for each point
Q e C, the “eigenspace of R corresponding to Q”

Eqy:=ker(Z—z -id)Nker (Y—y -id)

has dimension =1.
Remark. dim Eq =1 for all Q € C,.

Proof. Let Q =(z, y) be a point of C,. If E, were not one-dimensional then

2 The existence of such an operator Y implies that u is a so called finite gap potential.
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the two-dimensional space ker (Z —z - id) would be contained in ker (Y —y - id).
This implies that (Y—y-id)=Y'. (Z—z -id) with some operator Y’ of degree
r—2 (cf.[9], 5.4). Since Y—vy -id and Z — z - id commute with Z the same is true
for Y’, in contradiction to the assumption that the degree of Y was minimal.

The spaces E, can be glued to a line bundle on the affine curve C,. In order to
describe its extension to C we use the following construction indicated by
Mumford [14]:

Consider M :=C[d/dx] as a right R-module with multiplication

i i
X : D =(XoD),, XeM, DeR, (Zaj(x)-ij—):=2a,-(0)——.
dx’ /, dx’

M is finitely generated, so it is the space of sections of some coherent sheaf 7’y on
C,, unique up to isomorphism. ¥, extends to a sheaf £ on C in such a way that
the space of sections of £L®O(nP) corresponds to the space of differential
operators of order at most n.

Mumford shows that the pairing

MXE,—C
X, p (X)(0) Q€

induces an isomorphism
Homg (8o/MmaLq, C)=E,

where mg denotes the maximal ideal of Q € C,.

Since E, is one-dimensional for all Q € C, this implies that £ is locally free of
rank 1, hence £ is the sheaf of sections of a line bundle L on C. (Obviously Ll.co )
is the dual of the line bundle obtained by glueing the Ey’s.) By construction we
have that dim H°(C, L(nP)) =dim M,,_, =n for all n eN, by Riemann-Roch this
is equivalent to dim H%(C, L)=dim H(C, L)=0. Hence L is a line bundle of
degree g—1, where g =(r—1)/2 is the arithmetic genus of C.

We have thus obtained the following algebraic-geometric data:

(i) a hyperelliptic curve C in normal form y%>+F(z)=0®, where F is a
polynomial of odd degree with leading coefficient one.

(i) a line bundle L on C with dim H%(C, L) =dim H}(C, L)=0.

3i.e. a hyperelliptic curve C together with two rational functions y,z on C that generate the
function field of C and that fulfil the identity y2>+F(z)=0.
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As we mentioned in the beginning one can recover the operator Z from these
data. Furthermore it can be shown that the time-variation of the operator

2

d
2 s s ot
Z, e u(x, t)

according to the KdV-equation induces a linear variation of L in the Jacobian of
line bundles of degree g—1 on C.

3. The Biicklund-transformation in the algebraic-geometric picture

Let Z = —(d?/dx* + u(x) be a formal Schrodinger operator, and let R be the
ring of all differential operators commuting with Z.

ASSUMPTION. R contains a differential operator of odd order.

As in the introduction let Z = —(d?/dx?) +ii(x) be Darboux-Béicklunﬂ-transform
of Z with parameters c e C,  eker (Z—c - id), ¢(0) # 0. Denote by R the ring of
differential operators commuting with Z.

ASSERTION. R also contains a differential operator of odd order.

As in Chapter 2 we associate to R resp. R hyperelliptic curves C and € with normal
forms y2+ F(z) =0 resp. y>+F(z)=0 and line bundles L and L on C. resp. C.
Let & resp. £ be the sheaf of sections of L resp. L, and let P resp. P be the point
at infinity of C resp. C. We call E:=|Jgcc-pEo the set of common eigenfunc-
tions of R.

THEOREM.

() If w¢E then C is the hyperelliptic curve in the normal form y%+
(z=¢)?+ F(z)=0 (i.e. F(z)=(z—c¢)?* F(2)). If w:C— C denotes the map induced
by (z,y)=>(z, (z—c)y) then £ is naturally isomorphic to the subsheaf of me¥ ®
O(P) of sections s with (sq, ¥)=0. )

(i) If ¢ € E, for some smooth point Q € C then the curves C and C coincide (i.e.
F=F) and L =L ® 6(P)® 6(—Q).

(iii) If ¢ € Eq for a singular point Q of C t~hen C is the hyperelliptic curve with
the normal form y*>+(z—c) 2F(z)=0. If 7:C— C denotes the map induced by
(2, y)=>(z, (z—c)y) then L=7*L ® O(-P).
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Remarks. ‘
1. For almost all choices of ¢ e ker (Z —c - id), ¢ is not contained in E. In this
case L is a line bundle on C with #*(L)®O(—P)=L. By [15], V.12 the

Jacobian® of € is a central extension of the Jacobian of C:
e—>G—-Jac(C)—Jac(C)—0, L—oa*(L)RO(-P)

with G =C* or G =C, e the neutral element of G. Given a line bundle L on C
with H°(L)=HYL)=0 we have an isomorphism between G and the set of
elements [¢]eP(ker (Z—c - id)) such that ¢¢ E. The condition (0)# 0 corres-
ponds to the condition H*(L)=HY(L)=0.

2. If Y€ E, for a singular point Q € C (which then has the coordinates (c, 0))
the Bicklund transformation from Z to Z is the inverse of a Bicklund transfor-
mation from Z to Z as described in part (i) of the theorem and in the remark
above.

3. The “transference” in Jac (C) caused by the Backlund transformation with
¢ € Eg for a smooth point Qe C has been considered in greater generality by
Burchnall and Chaundy [3], §VI, VIL

4. J. Drach noticed in 1912 that the Darboux—Backfund transformation does
not increase the effective genus of the associated hyperelliptic curve (see [6]).”

5. In [1] it is shown that iterated application of the Backlund transformation
with ¢ =0 to the solution u=0 of the KdV-equation leads to the rational
solutions discovered by Airdult-McKean-Moser [2]. So the theorem shows that
these solutions belong to curves of the form y2+z?"*1=0.

Similarly one can construct the multi-soliton-solutions by repeated application
of the Béacklund-transformation with diminishing values of ¢ (cf. [5]). This gives a
simple proof that these solutions belong to curves of the form y?+
(z=c1)* -+ (z—¢,)*z =0 (see also [11]).

6. For a real valued Schwartz function u(x) the effect of the Backlund-
transformation on the spectral data has been described in [7].

4. Proofs

Replacing u by u—c we may assume that ¢ =0.
4.1. The interpretation of the Bécklund-transformation given in [1], [5] shows

4 By abuse of notation we denote by Jac (C) the moduli space of line bundles of degree g—1 on C.
As base point we take the point at infinity.

3 This reference was shown to us by D. V. and G. V. Chudnovsky during the 1980 Arbeitstagung
of the SFB 40 in Bonn.
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that Z is obtained from Z by conjugation in the ring PsD[[x]] of pseudo-
differential operators. (For the definition of PsD [[x]] see [14], p. 140.)

LEMMA 1. Z=AoZo>A™! where A is the differential operator

O I . S
A=y dx Cdx ¢ dx o

Proof. Since Zy=—4, +up=0 we have u=y_ /¢ and hence Z=A*- A
where A*= —(d/dx)—v=—y¢ ' od/dx ¢ denotes the adjoint of A. Then one
easily verifies that Z= A o A*, which proves the lemma.

The ring R is generated by Z and some operator Y with Y>+F(Z)=0. ¢y € E
if and only if ¢ is an eigenvector of Y.

LEMMA 2. Let k:D—> A DoA™ be the conjugation by A in PsD[[x]].
(i) If y¢E, let R':=C[Z, Y - Z]< R. Then «(R)NC[[x]l[d/dx]=«k(R’).
(i) k(R)<=C[[x]l[d/dx]if and only if Yy € E. In this case, call R'=R.

Proof. Let X e C[[x]l[d/dx] be any formal differential operator. Then

Xoh=Xp+X ot
dx
where X’ is some differential operator. It follows that

A oXoA_l-.:d;o—d—ol{;“lon/o (—4—)—1ol[;—1+|po—g—od;"loX'ol{f‘1.
dx dx dx

Thus A o X o A~'e C[[x]][d/dx] if and only if ¢ " - Xy is a constant function, i.e.
if ¢ is an an eigenfunction of X. This proves (ii) and the “>”-part of (i). Since
dim¢ R/R'<1 the lemma is proved.

The assertion in Chapter 3 follows from Lemma 1 and 2. We now want to
compare k(R’) = k(R)NC[[x]][d/dx] with the ring R of all operators commuting
with Z. Obviously k(R) NC[[x][[d/dx]< R, and we have

LEMMA 3. If k(R)NC[[x]l[d/dx]# R then Y€ Eg for some singular point
QeC.
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Proof. We put Y:=k(Y°Z) if ¢y¢E and Y':=«k(Y) if ¢€E. In the first
case Y2+ Z?o F(Z)=0, in the second case Y2+ F(Z)=0. In both cases x(R)N
C[[xI[d/dx]=C[Y", Z]. Since R>C[Y’", Z], R=C[Y, Z] with some differential
operator Y fulfilling an equation of the form Y2+ F(Z)=0 with a polynomial F
of odd degree. Then Y'=g(Z)° Y with g(z)e C[z].

First we show that g(z)=az™ for some a€C, neN. Otherwise Y’ splits
Y'=(Z-b)oY” with b#0, Y’e R—R. But this implies that b -« Y(Y")=
kMZ Y-k (Y)=A%oY"o A—k " (Y") is a differential operator in R, thus
Y"eR'.

Put C}:=Spec R’, Cy:=Spec R. Since « :R[Z7 15 k(R[Z']=R[Z'] the
maps 7, 7 in the diagram below are isomorphisms outside of {(z, y)e C}/z =0}

-~

Co
R \Cz,/ R
RI
" From dim R/R’'<1 and the condition x(R')# R it follows that there exists a
regular map , : Cy— C, such that 7 o 7, = 7. Thus «(R) is contained in R and by

Lemma 2, ¢ € Eq for some point Q =(0, y) e C,. If Q were a regular point of C,
then m,: C,— C, were an isomorphism and x(R)= R.

Co

Remark. An application of Lemma 2 (i) shows that in this case Z is obtained
from Z by a Backlund-transformation with parameters 0, ¢ *.

4.2. Let us suppose that k(R)NC[[x])[d/dx]=R, i.e. R=A°R' A7 If y¢E,
then C is given by y2+z2F(z)=0, if ¢y c€E then C=C. Let $:R— R be
the map D+ Ao Do A and 7:C — C the dual map. If ¢¢ E then 7 is the map
induced by (z, y) = (z, zy); if Y € E then it is the identity map of C.

In order to determine the line bundle on C the space M =C[d/dx] will be
considered as a module over various rings (cf. Chapter 2). The ring in question
. will be indicated by an index: Mg, Mg etc. As in Chapter 2 we have the following
natural identifications

F(C_PaL)EMR’ F(C_Psi)ngi$ F(é_ﬁ, 77*2)=%(§).

(By M, %, we denote the R-module M where the scalar-multiplication is given by
X D:=(Xo¢(D))o, XeM,DeR)

LEMMA 4. The map ¢: Mg — My i), X+—>(X o A), is R-linear.
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Proof. Let D e R, X € Mg. Then

CD(X'D)=((X°D)0°A)0:(X°D°A)0=
=(XeAecA o DoA)=((X°A)° (A o Do A))y=D(X) - ¢(D).

(The above identities hold because (X o X"),=(X,° X"), for any two differential
operators X, X' e C[[x]][d/dx].)

LEMMA 5. ®(Mg) ={X € My,/(X)(0) = 0}.

Proof. Since A has order 1 the image ¢(Mjy) has codimension 1 in Myz,. On
the other hand the non-trivial map X+ (Xy)(0) vanishes on ®(Mj) since Ay =0.

Second proof: By an argument as in the proof of Lemma 2 one sees that
(X¢)(0)=0 if and only if (X°A™"), is a differential operator.

Let & be the sheaf of sections s of mxZ with (s, ¥) = 0. Obviously
P(Mg) < I'(C—P,%F) = My g, =T'(C—P, m:%).

Since @(Mgz) has codimension 1 in My, and I'(C—P, %) # ['(C—P, mQ) it
follows that @(Mg)=I'(C— P, %), hence

rC-p,%=rC-pb9%).

l}ecause A has order 1 ® induces a sheaf map £ — w4 wiﬁth a pole of order 1 at
P. Hence £ =%FQ® 0(P), whenever k(R)NC[[x][d/dx]=R. This, together with
Lemma 3, proves part (i) and (ii) of the theorem.

4.3. Now suppose that ¢ € E, for a singular point Q€ C (which then has the
coordinates (0, 0)). If x(R)NC[[x]][d/dx] were equal to R then by the results of
4.2 £ were isomorphic to & ® 6(P). But this sheaf is not invertible at Q, whereas
X is invertible.

So k(R)NC[[x]l[d/dx]< R. In the remark after Lemma 3 we noticed that C
has the normal form y2+1/z2F(z)=0 and that u is obtained by a Bécklund
transformation applied to @& By part (i) of the theorem this implies that L =
(L) ® O(—P), where 7:C— C is the map (z, y)~> (z, yz). Thus also part (iii) of
the theorem is proved.
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