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Caracteres unipotents de *D,(F,)

N. SPALTENSTEIN

On calcule les 8 caracteres unipotents et les fonctions de Green du groupe fini 3D4(qu) (@=p5%p
premier).

Les autres caracteres irréductibles complexes de 3D4({Fq) s’obtiennent tous en prenant des com-
binaisons linéaires convenables des caractéres des représentations virtuelles R% de Deligne et Lusztig
[3], et ceux-ci peuvent étre évalués a 'aide des fonctions de Green. On peut donc calculer tous les
caractéres irréductibles de *D,(F,).

L’auteur tient a remercier le Science and Engineering Research Council pour son soutien.

0. Notations et rappels

0.1. k est une cloture algébrique d’un corps fini F,, q =p®, p premier.

0.2. G est un groupe algébrique sur k, simple de type D,, défini sur [,
déployé sur [ s mais non sur [F,. On note F I’endomorphisme de Frobenius de G.
Le groupe qui nous intéresse est GF ={ge G | F(g) = g}.

0.3. On peut considérer G comme un sous-groupe d’un groupe simple G’ de
type F, défini sur [F,. Deux tores maximaux F-stables de G sont GF-conjugués si
et seulement s’ils sont G'F-conjugués. Les classes de F-conjugaison dans le
groupe de Weyl W de G [3] correspondent a certaines classes de conjugaison
dans le groupe de Weyl de G'. Pour ces derniéres on utilise les notations de [1].
On note T,, un tore maximal F-stable de G correspondant 2 we W, et €(w) est la
longueur de w dans W. Soit encore Cyr(W)={xe W |xwF(x) '=w}. 1y a7
classes de F-conjugaison dans W:

F-classe de w |Cw.r(w)| | T, | (=)™
A, 12 (@—1(g>-1) 1
A,+ A, 4 (q+1D(g>-1) -1
C; 4 (@a—-1(g>+1) -1
C;+ A, 12 (q+1(g>+1) 1
A,+A, 24 (q*+q+1)? 1
Fy(a,) 24 (q*—q+1)° 1
F, 4 q*—q*+1 1

676
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0.4. Le groupe W* est diédral d’ordre 12 et il est engendré comme groupe de
Coxeter par deux €léments s,, s, avec €(s;) = 1, €(s,) = 3. Soient 1, €1, £ €t € Ses
quatre représentations de degré 1, ot 1 est la représentation triviale, £ est le
signe, &1(s1) =£5(s;) =—1 et &(s;)=¢,(s))=1. On note p, la représentation
standard et on pose p,=p;®¢;.

0.5. On note U la variété unipotente de G. Il y a 6 G-classes F-stables dans
U qu’'on note &, A, 3A,, A,, Dy(a,), D,. A I'exception de A, et de D,sip=2,
chacune de ces classes donne une seule orbite dans GF. Les ordres des cen-
tralisateurs sont les suivants.

GF-classe |Cs(u)F|

@ (qz*l)(q6~1)(q8+q4+1)q12
A, (q6— 1)q12

3A; (g>—1)q'°

A} 2(q*+q+1)q*

A3 2(q*~q+1)q*

D,(a,) q6

D, r#2) q*

D, . 2q*

D! (p=2) {2(]4

Apres extension des scalaires a [,3, on a l'interprétation suivante pour les
classes A; et A (et pour D, et Dy si p=2). On a un espace vectoriel V sur F,-,
de dimension 8, muni d’une forme quadratique déployée Q et un élément u du
groupe orthogonal. Si u appartient a la classe A, (ou D, si p =2) on peut trouver
des sous-espaces orthogonaux u-stables V,, V, tels que V=V, @®V,,dim V,=
2,dim V,=6. Alors u appartient a A, (ou D} si p=2) si et seulement si la
restriction de Q a V; (ou V,) est déployée~.

0.6. On suppose que G est adjoint. Si G est simplement connexe de type D,
défini sur F,, et w:G — G est une isogénie définie sur F, GF— GF est un
isomorphisme. Il s’ensuit par exemple que si C< G est une classe semi-simple
F-stable, alors CF est une classe de conjugaison dans GF.

0.7. Soient Bo<= G un sous-groupe de Borel et To< B, un tore maximal
F-stables. On note U, le radical unipotent de B,. Soient A4, ..., A, les racines
positives, et pour 1=<i=<12 soit x; :G, — U, un homomorphisme adapté a A;. Cela
peut étre fait de telle sorte que A;=a, A, =, A3=1v, A, =38 soient les racines
simples, As=a+8, A\(=B+6, Ay=vy+0, Ag=B+v+8, Ag=a+y+d, A=
a+B+8, Ap=a+B+y+8, Ap=a+B+y+28, F(x;(1))=x(1), F(x(1))=
x3(1), F(x3(1)) = x1(1), F(x,4(1)) = xd,(l), xs(1) =[x4(1), x1(1)], x6(1) =[x4(1), x5(1)],
x7(1) = [x4(1), x3(1)], x5(1) =[x5(1), x2(D]=[x6(1), x3(1)], x5(1) = [x5(1), x5(1)]=
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[x5(1), x1(1)], x10(1) = [x6(1), x1(1)]=[x5(1), x2(1)], x4,(1) =[x10(1), x5(1)]=[x4(1),
x(D]=[x5(1), x1(1)], x12(1)=[x1;(1), x,(D]=[x5(1), xs(1)]=[x6(1), x9(1)]=
[x+(1), x10(1)].

On écrit les éléments de U, sous la forme u=[[;ci<p2x(c)=
x1(cy) -+ - x12(€12). On pose X, =x,(G,), 1 <i<12.

0.8. Supposons p impair. Soit s€ T§ I’élément tel que a(s)=B(s)=vy(s)=
—8(s)=1. Le centralisateur de s n’est pas connexe mais CZ&(s) est la seule
composante F-stable. I1 y a dans C2(s)F deux classes unipotentes réguliéres qu’on
note 4A{ et 4A1 et qui sont respectivement contenues dans les classes Aj et A)
de GF. Ces classes ont pour représentants u’'=x,(1)x,(1)x5(1)x;,(1) et u”=
x1(1)x,(1)x3(1)x1,({) ou €, n’est pas un carré.

0.9. Soient T un tore maximal F-stable de G et 6:TF — C* un caractére.
Deligne et Lusztig [3] ont construit une représentation virtuelle R% de GF. C’est
ici le caractére de cette représentation qu’on note R% (en fait Deligne et Lusztig
ne travaillent pas avec C mais au niveau des caractéres cela n’a pas d’importance).
La restriction de R% 4 UF ne dépend pas de 6. C’est la fonction de Green Qrc.
Si g =su est la décomposition de Jordan de g€ G, on a

1 -—
m gEZGF QzTg“,Cgm(u)o(g sg)

gTg 'as

R1(g)=

0.10. Si H est un groupe algébrique défini sur F,, on pose e(H)=(—1)", ou r
est la dimension d’un tore déployé maximal de H.

0.11. On note ¢; la valeur a q du i polynome cyclotomique (par exemple
ds=q°—q+1).

0.12. Supposons p impair. On choisit un caractére ¢ :[F,: — C* dont la restric-
tion a [F, n’est pas triviale. Soit x :F%* — C* 'homomorphisme tel que x(x)=1 si
et seulement si x est un carré dans Fgs. Si g =Y,.r; x(a)¢(a), on a |g|=q" [6, p.
197].

0.13. Si p=2, soit L:[F;; — ;s ’Thomomorphisme de groupes additifs x+>x +
x2. Le noyau de L est {0, 1} et on définit ¢ :[F,: — C* par la condition Ker () =
Im(L). On considére l’extension [F,s/F, avec Tr(x)=x+x? +x7 et N(x)=
x'*1*%* Nous aurons besoin de quelques résultats concernant ¢. Soit E =
Ker (Tr). Remarquons tout d’abord que Tr (x) =3x =x si xe[F,, et donc ENF, =
0. En particulier E NKer (L) =0, et comme Tr (x?) =Tr (x)* on voit que L induit
un automorphisme de E, d’ou (E)=0. Soit x€ E, x#0, et soit T>+aT+be
F,[T] son polynome minimal. On a E=Fx®F,x? et si y=ax+px’cE
(a,BeF,), alors xy=gb+Bax+ax?, dou [zeF,:|zeE et z 'eE}=
(@q—1)(1+(-1)°). D’autre part tout yefF,» est de la forme a+pBx+yx?
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(a, B, yeF,) et Y(y)=y(a). Donc E={yeF, |F,y < Ker (¢)}. En particulier E
est le plus grand [, -sous-espace de s contenu dans Ker (¢). Remarquons encore
que pour a€lf;, aE<cE&ack,

LEMME. i) )  ¢(b+c)=—¢q>

be IFq*s,c efF3
Tr(bc)=0

i) "~ )Y (b =(-1)q
beF 3, Tr(b)=0

i) Y ¢(b+b')=(-1)q>
bqua

q+q?

" )= 0ne
a

iv) SiaeF, ) ¢(Aa+b+

acFXbeF,s

Dans chaque cas on note S la somme considérée.

)S=Y ¢b) Y v)=Y wbg>=-q>

beF}s ceb™'E beFy
puisque b 'E < Ker ()b el
.. . N (b)) _ 1 (N (xb))
ll) S = 1+ z lll("———qu = 1+"q':1" Z Z (I/ (xb)qz

beE beE xeF:‘
b#0 b#0

Mais

N (xb) N (b) - _
(xb)“zz - x2et b e ESb 'eE.

La seconde somme vaut donc q—1si b€ E, —1si b™'¢E, et S =(-1)q.
iii) Pour a efF,, ¢(b+a+(b+a)'*)=y¢(b+b'"). Donc

S=q ) ¢(b+b")=q ) v =(-1)¢"

beE beE

. 1 _ 2 _
iv) Posons a =a’=a'*%, A =p? b=ap. Alors

S= Y  ypla®+aB+B)= Y d(pa+aB+B'I)

acF¥peF, acFrBeF,3

= Y w(B") X dla(n+B)

BeF,s aeF:
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La seconde somme vaut q—1 si w+ B € E, —1 sinon. Comme B+>£'" est une
permutation de [ 3, on trouve

S= Y ¢(B"Nq=q ) s(y+u)y*+p)

BE‘FQJ ‘YEE
Tr(n+p)=0
=qp(\) Y Yy +udyt+yF ) =gp(A) Y ¢y =(=1)P(A)q>
vyeE vyeE

1. Fonctions de Green et caractéres unipotents

Soit T < G un tore maximal F-stable. La fonction de Green Qr définie par
Deligne et Lusztig [3] est une application de UF dans Z, constante sur les
GF-classes. Il est pratique parfois de la considérer comme une fonction sur GF
nulle en dehors de UF. Soient B> T un sous-groupe de Borel de G et we W la
position relative de B et FB. On sait que Qrg ne dépend que de la classe de
F-conjugaison de w dans W.

THEOREME 1. Les fonctions de Green de G sont données par la Table 1.

Si s € GF est semi-simple, s# 1, les fonctions de Green de Cs;(s) sont connues.
On peut donc calculer explicitement les caractéres R¥. En prenant des com-
binaisons linéaires convenables de ces caracteres (les coefficients en sont explicite-
ment connus) on trouve tous les caractéres irréductibles de GF a I’exception de
quelques caracteres unipotents. Il y a 8 caractéres unipotents et nous n’avons que
7 fonctions de la forme R

Les 6 représentations unipotentes qui apparaissent dans R}, sont en corres-
pondance avec les représentations de WF. Avec les notations de [5] on a:

caractére de WF caractere de GF degré
1 [1]=1 1
€1 [e4] a(q*—q*+1)
&2 [e2] q’(q*—q*+1)
£ [¢]=St q*
P [p1] 34°(q>+1)°
P2 [p.] 3q°(@+1)%(q*—q>+1)

Il reste 2 représentations unipotentes paraboliques:

>D,[—1], de degré 3q°(q>—1)?,
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et
’D,[1], de degré 3q°(q —1)%(q*—q*+1).
Les caractéres Rt se décomposent comme suit:
/§2 (1 +St+[e ]+ [e:]+2[p]+ 2 p,]

A2+A1:ﬂ_ "St“[81]+[82]
C3:IL “‘St+[81]""[82]

Cs+A,:1+St—[g,]-[2,] -2°D,[-1]-23D,[1]
A+ Ay +St—2[e,]-2[e,]+2[p,]1-[p,] +3°D,[1]
Fu(ay):1 +St+2[e,]+2[e,] —3[p,]1-2°D,[-1] +’D,[1]
F,:1+St —[p4] +°D,[-1].

Rappelons brievement comment on obtient ces résultats. La décomposition de
R7, et le degré de ses constituants irréductibles sont connus par la théorie des
algebres de Hecke (voir par exemple [2]). On obtient de maniere similaire la
décomposition de R1 pour les classes A,+ A, et Cs. Le cas ot T est un tore de
Coxeter (c’est-a-dire correspond a la classe F,) est traité en détail dans [4]. En
utilisant les relations d’orthogonalité et les degrés on peut décomposer Rt pour
les classes restantes. Pour les détails, voir [5].

Remarque. La restriction sur q donnée par [5] n’est en fait nécessaire, mais les
calculs sont un peu plus longs.

La fonction f=[p,;]—[p,]+>D4—1]->D,[1] est orthogonale a tous les R¥.
Les fonctions Ry et f forment donc une base orthogonale de I’espace engendré
par les caractéres unipotents, et il est facile d’écrire chacun de ces caractéres en
fonction de f et des Ry. En particulier, les caractéres unipotents qui peuvent
s’écrire comme combinaisons linéaires des R} sont ceux qui n’interviennent pas
dans f.

11 est facile de décrire f, au signe pres. Si p =2 les caractéres R% ne séparent
pas les deux classes unipotentes régulieres puisqu’ils prennent tous la valeur 1 sur
ces deux classes. Soit fo: GF — C la fonction définie par

0 si x n’est pas unipotent regulier
fo(x)=42q*> si x est unipotent régulier déployé
—2q* si x est unipotent régulier tordu.

Il est clair que f = %f,. Si p# 2, soit s I’élément de T tel que a(s) = B(s) = y(s) =
—8(s)=1 et soit H= Cg(s). Il y a dans HF deux classes unipotentes réguliéres qui
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correspondent a A; et Aj (0.8). Si u’, u” appartiennent a ces classes, su' et su” ne
sont pas séparés par les RY. Soit fo: GF — C la fonction définie par

2q>  si x est GF-conjugué a su’
fo(x)={ —2q* si x est GF-conjugué a su”
0 dans les autres cas.

Il est clair ici aussi que f = =%f,.
PROPOSITION. f=f,.

THEOREME 2. Les caractéres unipotents de GF sont donnés par la Table 2.

2. Preuve du Théoréeme 1

On numérote les F-classes dans W dans I’ordre opposé a celui utilisé dans la
Table 1, on note Q,, ..., Q5 les fonctions de Green et Py, ..., P, les fonctions
données par la Table 1 (de sorte que P,, Q, correspondent a F, et P;, Q; a2 A,).
On utilise les propriétés suivantes des fonctions de Green [3]:

1) Qrgu)=1si ueUF est régulier.

|G™|
|TF||Ug|

3) (Orthogonalité) Si T, T' sont des tores maximaux F-stables de G et
N(T, T)={ge G| Tg=gT'"}, alors

2) Qrc(1)=¢e(T)e(G)

|IN(T, T")F|
: == |GF
2 Ora)Or.c(W) = gy 1G]
Ces propriétés sont vérifiées par les fonctions Py, ..., P;.

On utilise aussi:
4) Soient P> T un sous-groupe parabolique F-stable de G, L > T un facteur
de Levi de P et  la projection de PF sur LF. Alors

Qrg = Indg’: (QL,T °1r).

On utilise (4) pour vérifier que Q, = P,, 5<i=<7. Le calcul est assez facile sauf
pour A; et A, mais en tenant compte de (3) on obtient le résultat désiré.
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Soit a’e M;(R) la matrice telle que Q, =Y ,<;<7 a;P, (1<i<7) et soient

¢ O 0 0 1 -
~g ’ -2
d= 0 64, 0—2 0 N = 1 e oy
0 0 663 0 1 632
L0 0 0 3¢50 1 b2 b

On déduit de (1), (2) et (3) que a’ est de la forme ((C)l ?), a € M,(R), et que
ad'a=d, ax' =x’, ax"=x".

En particulier a appartient au groupe K ={ge M,[R)|gd'g=d, gx' = gx’,
gx" = x"} isomorphe & O,(R). Soit V ={ve M, ;([R) | ‘'vx’="vx" = 0}. Les réflections
contenues dans K sont les matrices de la forme I—2b ou b=dv'v/(v,v),ve
V,v#0 et (v, v) ="vdv. Les vecteurs

¢12(¢§_¢%¢6) ¢12(¢g—¢%¢6)
_ 0 _| ¢i(d3ds— 1)
" #3306 1) et s= 0

¢%¢6(¢12—¢§) ‘b%‘f’s(d’n“‘bg)

forment une base de V.

Soit H = (XX X;0X1:X12)F et soit ¢ : H— C* le caractére défini par ¢(h) =
Y(cy) si h =[lgei<1 X:(c;). Sous I’action de Ng-(H), ¢ a q°—q> conjugués, et il
s’ensuit que pour le caractére unipotent p =[g,] de degré q°>—q>+q on doit avoir
(b, p)ir €40, 1}. On va utiliser cela pour montrer qu’il n’y a qu’un tout petit
nombre de possibilités pour a, puis en utilisant le fait que les fonctions de Green
sont & valeurs dans Z on verra que a =1 Remarquons que si I'on utilise les
fonctions données dans la Table 1 on a {p, d)y = 1.

Soient c =715(0 1 —1 —1)e M, 4(R) et

(Py, du q’ - 4q
Py i | _[ a7+2¢°-4a*-4a>+3a+2| 0
Py, & | T\ q7-2q5+4q* 4> +3q-2)
(P, d)u q’ -q°—q*+2q° -1

On a cdr =6q>, cds = 1842, 'ry = —2q°+ 29>, 'sy = —6q" +64q>.
On a cay =cy si {p, &)y =1, cay = cy —1 si {p, ¢)u = 0. On va voir qu’en fait
cay —cy =0.
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Cas I. det(a)=1,a# L On prend a=(I—2by)(I—-2b) ou

dr'r dv'v

f=n T

et v=Ar+s.

Comme

dr'rdv'v _ (r,v)dr'v

(r,r)(v,v) (r,r)(v,v)’

bob =

on a
(r, r)(v, v)(cay —cy) = —2(v, v)cdr'ry — 2(r, r)cdv'vy + 4(r, v)cdr'vy

=-2(6¢%)(—2q%+2g%) (v, v) + (r, (A +3)*>=2(r, v)
X (A +3))

=24q*(q®— 1w —A+3)r,v—(A +3)r)>0.

On a donc cay —cy >0, une contradiction.

Cas II. det(a)=—1. On prend a=I-2b ou b=dvv/(v,v),v=Ar+use
V,v#0. On a (v, v)(cay —cy) = —2cdv'vy =24q*(q®*—1)(A +3w)?, d’ou A +3p =
0. Pour démontrer le Théoreme 1 il suffit de montrer que cela n’est pas possible.
Si ueUF est sous-régulier,

2¢°(q°+q+1)?
2q%+6q’+11q°+14q°+15q* +14q> +11q*+6q +2

Oz(U)=2q+l— ¢Z,

une contradiction.

3. Preuve du théoreme 2 et de la proposition

Comme on I’a remarqué plus haut, les caractéres unipotents de G* sont des
combinaisons  linéaires des caractéres virtuels R} et de f=
[p:1]—-[p.]+3D,[—1]-3D,[1]. On peut calculer les R} a I’aide de (0.9) puisque les
fonctions de Green de G et des centralisateurs des éléments semi-simples de G*
sont connues. On sait aussi que f=¢f, ou f, est comme au paragraphe 1 et
e =+x1. On peut donc calculer les caractéres unipotents a I’exception de
[p1], [p2], 2D4[1]3>D,[—1] sur les deux classes qui forment le support de f,.

Supposons p impair. On utilise les notations de (0.8). Soient H,=
(X1 X5X5X,,)F et H=HyUsH,. Soit 0 le caractére linéaire de H défini par
0(s)=1 et 8(xi(a)xx(a")x3(a™)x15(b)) = Y(a+b) (ack,s, beF,).
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Soient g; =}, x(a)yP(a), 82 = Lpers, X(D)Y(b) et a =g g,q7>. On sait que
lg1l=q%?,1g2l=q"?, donc |a]=1. Un calcul facile montre que {[p,], 0)y =
g’ +q°+al(q+¢€)). Donc acR, a==+1 et

q°+q°+al@+e)=0  (mod 4).
Comme q+e¢ est pair, a(q+&)=q+¢e (mod 4). Donc
°+q°+q+e=0  (mod 4),

d’ou £ =1 (mod 4), et finalement € =1.

Si p=2 on prend Hy= (ls<i<12 X;)F et H=HyU x,;(1)x,(1)x5(1)H,. Soit 9 le
caractere lin€aire de H tel que 0(u)=y(cs+cg) et O(x;(x,(1)x5(1))=1, ou
C1, - - -, C12 SOnt comme en (0.7). On calcule {[p,], 8)y aI’aide du lemme (0.13).

On écrit ue H comme en (0.7) et on pose a=c e, b=cselF, c=cge
Fgs, d=cy, €, e=cel,

L’élément u de H est régulier si et seulement si ¢; =1 et a# 0, et il appartient
a D} si de plus y(c/a+b'*a?*)=1. On a donc

b1+q
(fos 0>H=q_7 Z w(b+c+£+ 2 )
a,b,c,d,e a a
a#0

En sommant sur ¢ on trouve 0 sauf si a=1. Donc

(for 0 =q 2 Y Y(b+b"") =(-1)".
b

Si c;=1et a=0, u appartient a la classe A, si belF, et Tr(b+c)#0,eta A,
si de plus

(e +bd+b%*+(b +c)1+“2) =1
Tr (b+c¢)? ’

On est ainsi amené a calculer

Y  yb+o)=q> )Y ¢x)=-q°

b,c.d.e x€lF,3
belF,, Tr (b+c)¥#0 Tr(x)¥*0
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et

e+bd+b%+(b +c)1+‘*’)
) d’(b+c+ Tr (b +c)?

b,c.d.e
beF,, Tr(b+c)¥*0

comme on le voit en sommant d’abord sur e.
Considérons maintenant quelques éléments de H,. Si a =0, u appartient a la
classe A, si Tr(bc)#0, et 2 Aj si de plus

N(b)d  (be)'*
ll’(Tr (bc)2+Tr (bc)2) =1

On doit donc calculer

Y wb+c)=q*> Y Ylb+c)=—q> Y (b+c)=q*

b,c.d.e b*0,c b*0,c
Tr(bc)#*0 Tr(bc)*0 Tr(be)=0

et

N(b)d (b)) _
b,c;i,e d’(b T T ey T (bC)") =0

Tr(bc)#*0

comme on le voit en sommant d’abord sur d, puisque N(b)/ Tr(bc)? eIF:.
Si a*#0, soient x=c+b**"/a, y=d+Tr(bc)/a. Alors u appartient a la
classe A, si y#0, et & A} si de plus $(N (x)/ay?) =1. On calcule

Y wb+e)=al@-1) X w(b+c)=0

a,b,c.d.e a,b,c
a¥0,ad#* Tr(bc) a¥*0

et

s= ¥ w(b+c+N§x)) qY wb+e) ¥ w(N("))

a,b,c.e,y a,b,c yeFX
a¥0,yeF¥ ar*0

ou x est défini comme ci-dessus. La derniére somme sur y vaut —1 si x#0, et
q—1 si x=0. Donc

S=—q Y ¢(b+c)+q*> Y, w(b+c)=q° Z w(b+9:-q—) (-1)°q*.

a,b,c a,b,c
a0 x =0 a#O
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Les autres classes sont plus faciles a décrire et tous les calculs peuvent se faire
a l'aide du lemme. On trouve finalement ([p,], )y =3 +3(=1)°(e + 1). Clest aussi

un entier, et comme &£ ==+1, on doit avoir ¢ = 1.

Remarque. Dans le cas o p=2, on peut modifier § comme suit. On peut
prendre 6(x,(1)xx(1)x5(1))=—1. On peut aussi poser 6(u)=(Acy+cs+cg)
(ue Hy), ou X eF,, ¢(A)=—1. On obtient ainsi 4 caractéres non conjugués sous
’action du normalisateur de H. Chacun de ces caractéres apparait dans la
restriction d’exactement un des caractéres [p;], [p.], >D.[—1],3D,[1], et avec
multiplicité 1.

4. Tables

La Table 1 donne les fonctions de Green et la Table 2 les caractéres
unipotents.

Soit g =su la décomposition de Jordan de ge G (s semi-simple, u unipo-
tent). La valeur a g des caractéres unipotents ne dépend que de la classe de
conjugaison de Cg(s) (sous l'action de GF) et de la classe de u dans C%(s)F
Soient T < B un tore maximal et un sous-groupe de Borel F-stables de Ca(s). La
classe de GF-conjugaison de C2(s) est caractérisée par le type de C3(s) et 'ordre
de TF. Lorsque g est semi-simple régulier, 'indication de la classe de u est omise.

Table 1
Fonctions de Green de *D,(F,)
1% A, 3A, A; A3 Dy(a,) D,
- q12+q11+q9+2q8+q7 q7+2q4 2q4+2q3 2q3+q2 2q3_q2
Az s 4, 3 E} q+1 1
+q°+2q%*+q°+q+1 +q’+q+1 +q+1 +q+1 +q+1
. _q12+q11_q9+q7 q7+q3 a1 __qz qz i 1
Azt A, -q*+q*—-q+1 —-q+1 a -q+1 —-q+1 4
. —q2-q''+q°~q’ -q’-q° +1 q? -q* 1 .
G +q°—q*+q+1 +q+1 4 +q+1 +q+1 a
12_ 11_ .9 8 _ 7 7 4 4_n.3 _~N 3__.2 _»n 3_ .2 )
9°-q"'-q"+2q°—q —q’+2q 29°-29° -29°-q° -29°-q° __ ., 1
it -q*+29*-q*>—q+1 -q*—-q+1 -q+1 —-q+1 -q+1 9

. q12_2q11+4q9_4q8__2q7 __2q7+3q6._4q4 __q4+2q3 5q3_2q2 _q3+2q2
A+ A; +6q°~2q°—4q*+4q°—2q9+1 +4q*-2q+1 —2q+1 -2q+1 -2q+1 —2q+1

q'2+2q" -4q°-4q°+2q"  2q’+3q°-4q* -q*-24° @’+2q4° -54°-24* , .4

Fy(a,) +6q°+2g°—4q*-4q>+2q+1 —4q>+2q+1 +2q+1 +2q+1 +2q+1

F, q?-2q°+1 -q°+1 -g*+1  -¢*+1  g¢*+1 1 1
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0 0 0 0 0 0 0 0 ab 1IS=[3]
0 0 0 0 0 0 0 /b (P+eb—1 b [¢3]
b% e 0 0 0 b (1+b-)cb§ (1+bz- m&%m (T+¢b—-,b)(1-b):bE  [1Ta¢
b$- b% 0 0 ¢b 0 (1 +b—)¢bg (1+¢b—)b¥ (1 —¢b)b¥ [1-Ta:
D% PE- 0 0 b 0 (1+b)b% (1+bg+cb—)eb%  (1+,b—,b),(1+b).bE [%d]
PE— bt 0 0 0 ¢b (1+b)bg (1 +¢b)eb§ (1 +¢b)cb§ ['9]
0 0 0 b b+, b— b+ b b b+ b b+ b—cb ['3]
I 1 1 ! 1 I 1 1 T 1=[1]
¢=d ¢=d #d (‘'o)'a ‘v ty 've 'y %)
: va *a
g fplo ‘g
Ac“eeﬂm ap swjodiun saIjoere)
T 2IqeL
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Table 2-
Caracteres unipotents de *D,(F,) (suite)

4A,, ¢1d; (p#2) 3A,, ¢70; 3A,, 414203 A, b1

% A, 3A, 4A! 4A" > 3A, O  3A, %] A, A,
[1]1=1 1 1 1 1 1 1 1 1 1 1 1 1
[e,] q 0 q 0 0 1 1 -1 -1 q’+q-—1 q-1 -1
[p,] iq*+q*+q+1) Hg*+1) Lq+1) 1q?+1) 1(—q%+1) q3+1 1 0 0 q>+1 1 1
[p,] q*+q*+q+1) ig*+1)  iq+1) g%+ 1q*+1) q>+1 1 0 0 q°+q q 0
3DJ[-1] i—q*+q*+q-1) 3q*>-1) iq-1) 1q*-1) i(—=q*-1) 0 0 q® -1 -1 0 0 0
D1l 3=q*+a’+q-D 3@>-1) 3Hq-1) H-¢*>-1) 3a*-1) 0 0 4¢*-1 -1 g*-q®-q+1 —q+1 1
[e2] qa’ a’ 0 0 0 q’ 0 q’ 0 -a’+q’+q q 0
[e]=St q* 0 0 0 0 q> 0 -q3 0 q3 0 0




N. SPALTENSTEIN

690

1 I I 1 T~ I- I 0 b— 0 b 0 0 ¢P— 1Is=[3]
0 z - I- T- I I - I- 1 1 0 b b+ b— b [%s]
0 1 € - 0 0 0 I- 1-b ¢ 0 0 b b+,b— (1Ta.
I - 0 t- 0 0 0 I- 1-b 0 - 1= I—¢b [1-Ta.
0 ¢~ I- 0 0 0 z 0 0 I I+b - I-b- 1-b-,b+.b [*9]
I- 0 (4 0 0 0 (4 0 0 I 1+ 0 0 0 (‘9]
0 z - 1- I - 1 0 b 0 b I 1+b T+b+ b [*s]
I I I 1 I I I 1 I I I 1 1 I 1=[1]
o 0 o P 9Pl Pl ol 'y @ 'v & v v %]
(s1o1n3o1 so[durls-1was SHUIWY) plplp Ty tploly . ¢l Ty
(wy) ("9’ 3p siuodmn saxoere)
T 2qeL
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