
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 57 (1982)

Artikel: Caractères unipotents de 3D4(Fq).

Autor: Spaltenstein, N.

DOI: https://doi.org/10.5169/seals-43905

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-43905
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Comment. Math. Helvetici 57 (1982) 676-691 0010-2571/82/004676-16$01.50+0.20/0

© 1982 Birkhàuser Verlag, Basel

Caractères unipotents de 3D4(Fq)

N. Spaltenstein

On calcule les 8 caractères unipotents et les fonctions de Green du groupe fini 3D4(Fq) (q pe,p
premier).

Les autres caractères irréductibles complexes de 3D4(Fq) s&apos;obtiennent tous en prenant des
combinaisons linéaires convenables des caractères des représentations virtuelles R£ de Deligne et Lusztig
[3], et ceux-ci peuvent être évalués à l&apos;aide des fonctions de Green. On peut donc calculer tous les
caractères irréductibles de 3D4(Fq).

L&apos;auteur tient à remercier le Science and Engineering Research Council pour son soutien.

0. Notations et rappels

0.1. k est une clôture algébrique d&apos;un corps fini Fq, q=pe,p premier.
0.2. G est un groupe algébrique sur k, simple de type D4, défini sur Fq,

déployé sur Fq3 mais non sur Fq. On note F l&apos;endomorphisme de Frobenius de G.

Le groupe qui nous intéresse est GF {g e G \ F(g) g}.
0.3. On peut considérer G comme un sous-groupe d&apos;un groupe simple G&apos; de

type F4 défini sur Fq. Deux tores maximaux F-stables de G sont GF-conjugués si

et seulement s&apos;ils sont G&apos;F-conjugués. Les classes de F-conjugaison dans le

groupe de Weyl W de G [3] correspondent à certaines classes de conjugaison
dans le groupe de Weyl de G&apos;. Pour ces dernières on utilise les notations de [1].
On note Tw un tore maximal F-stable de G correspondant à w g W, et €(w) est la

longueur de w dans W. Soit encore Cw&gt;F(w)={xe W\ xwF(x)~1== w}. Il y a 7

classes de F-conjugaison dans W:

F-classe de w |CWjF(w)| \TW\ (_;iy(w&gt;

Â2 12 (q — I)(q3-1) 1

4 (q + l)(q3— 1) -1
4 (q — I)(q3+1) —1

12 (q + l)(q3+l) 1

24 (q2 + q + l)2 1

24 (q2-q + l)2 1

4 q4-q2 + l 1

676
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0.4. Le groupe W* est diédral d&apos;ordre 12 et il est engendré comme groupe de
Coxeter par deux éléments si9 s2 avec £{sx) 1, €(s2) 3. Soient 1, eu e2 et e ses
quatre représentations de degré 1, où U est la représentation triviale, e est le
signe. e1(s1) e2(s2) -l et Si(s2) e2(si) l. On note px la représentation
standard et on pose p2 p\®£\.

0.5. On note °U la variété unipotente de G. Il y a 6 G-classes F-stables dans
°U qu&apos;on note 0, Au 3AU A2, D^aJ, D4. A l&apos;exception de A2, et de D4 si p 2,
chacune de ces classes donne une seule orbite dans GF. Les ordres des
centralisateurs sont les suivants.

|CG(w)F|

q6

q4

(^2) iv
Après extension des scalaires à Fqz, on a l&apos;interprétation suivante pour les

classes A2 et A2 (et pour D4 et D4 si p 2). On a un espace vectoriel V sur Fqs
de dimension 8, muni d&apos;une forme quadratique déployée O et un élément u du

groupe orthogonal. Si u appartient à la classe A2 (ou D4 si p 2) on peut trouver
des sous-espaces orthogonaux w-stables Vu V2 tels que V= V\®V2, dim V1

2, dim V2 6. Alors u appartient à A2 (ou D4 si p 2) si et seulement si la
restriction de Q à Vx (ou V2) est déployée.

0.6. On suppose que G est adjoint. Si G est simplement connexe de type D4,
défini sur Fq, et tt:G-&gt;G est une isogénie définie sur Fq, GF-&gt;GF est un

isomorphisme. Il s&apos;ensuit par exemple que si C&lt;=G est une classe semi-simple
F-stable, alors CF est une classe de conjugaison dans GF.

0.7. Soient B0&lt;^G un sous-groupe de Borel et T0&lt;=:B0 un tore maximal
F-stables. On note Uo le radical unipotent de J30. Soient \u A12 les racines

positives, et pour 1 ^i ^ 12 soit xt :Ga -&gt; Uo un homomorphisme adapté à A£. Cela

peut être fait de telle sorte que \t a, A2 )3, A3 7, A4 ô soient les racines

A12 a + j3 + 7 -h 28, F(xi(l)) x2(l), F(x2(l))

x3d)l x9(l) [x5d), x3d)]
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On écrit les éléments de Uo sous la forme u z=Y[i^l^
xt(ci) • • • x12(c12). On pose Xt xl(Ga), l^i=^12.

0.8. Supposons p impair. Soit seTF l&apos;élément tel que a(s) /3(s) y(s)
—ô(s) l. Le centralisateur de s n&apos;est pas connexe mais C%(s) est la seule

composante F-stable. Il y a dans Cg(s)f deux classes unipotentes régulières qu&apos;on

note 4A[ et AA&apos;[ et qui sont respectivement contenues dans les classes A2 et A2
de GF. Ces classes ont pour représentants u/ x1(l)x2(l)x3(l)x12(l) et u&quot;

x1{l)x2(l)x3{l)xl2{0 où £eFq n&apos;est pas un carré.
0.9. Soient T un tore maximal F-stable de G et S : TF -&gt; C* un caractère.

Deligne et Lusztig [3] ont construit une représentation virtuelle R% de GF. C&apos;est

ici le caractère de cette représentation qu&apos;on note R? (en fait Deligne et Lusztig
ne travaillent pas avec C mais au niveau des caractères cela n&apos;a pas d&apos;importance).

La restriction de JR£ à %F ne dépend pas de 6. C&apos;est la fonction de Green QTtG-

Si g su est la décomposition de Jordan de g€ GF, on a

gTg *as

0.10. Si H est un groupe algébrique défini sur Fq, on pose e(H) (-l)r, où r
est la dimension d&apos;un tore déployé maximal de H.

0.11. On note &lt;f&gt;t la valeur à q du ie polynôme cyclotomique (par exemple
&lt;t&gt;6 q2-q + l).

0.12. Supposons p impair. On choisit un caractère i/r :Fq3-»C* dont la restriction

à Fq n&apos;est pas triviale. Soit x*F*3-*C* l&apos;homomorphisme tel que xM 1 si

et seulement si x est un carré dans Fq3. Si g £aeF* *(a)&lt;Ka), on a |g| q1/2 [6, p.
197].

0.13. Si p 2, soit L:Fq3—&gt;Fq3 l&apos;homomorphisme de groupes additifs x&gt;-»x +
x2. Le noyau de L est {0,1} et on définit i^:Fq3—»C* par la condition Ker(t/r)
Im(L). On considère l&apos;extension Fq3/Fq, avec Tr(x) x + xq +xq2 et N(x)
^î+q+q* nous aurons besoin de quelques résultats concernant &amp;. Soit E
Ker (Tr). Remarquons tout d&apos;abord que Tr (x) 3x x si x eFq, et donc E HFq
0. En particulier E H Ker (L) 0, et comme Tr (x2) Tr (x)2 on voit que L induit
un automorphisme de E, d&apos;où i^(E) 0. Soit xeE,x^0, et soit T34-aT+b€
^q[T] son polynôme minimal. On a E Fqx©Fqx2, et si y ax + |3x2€E
(a, |3€Fq), alors xy /3fe + 0ax+ax2, d&apos;où |{z€Fq3|z€E et z^eE}]^

(-!)*). D&apos;autre part tout yeFq^ est de la forme a+|3x + YX2
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(a,ft?eFq) et *lr(y) $(&lt;*). Donc E {y eFq31 Fqy c Ker (i/r)}. En particulier E
est le plus grand Fq-sous-espace de Fq3 contenu dans Ker ($). Remarquons encore
que pour a e Fq3, aE c E&lt;$ a € Fq.

i) £ i
b e Fj3,c € Fa3

T(b)O

LEMME.
j

Tr(bc)=O

ii)
&apos; I

iii)
beFq3

iv) Si A g Fq, I i/r(Aa + b + —) (-l)&gt;(A)q2.
aeFj,beFq3 ^ û /

Dans chaque cas on note S la somme considérée.

i) S= I I X 22
puisque b~lEcz Ker W»6 € F*

ceb^E b e¥*

*

b#0

Mais

x2et

La seconde somme vaut donc q-l si b~leE, -1 si b~x£E, et

iii) Pour aeF,, ^(b + a + (b + a)1+q) ^(fe + fc1+q). Donc

iv) Posons a a2 a1+q, K fi2,b ap. Alors

S=
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La seconde somme vaut q — 1 si /m + j3 g JE, — 1 sinon. Comme |3&gt;-»|3x^q est une
permutation deTq3, on trouve

1. Fonctions de Green et caractères unipotents

Soit Te G un tore maximal F-stable. La fonction de Green QTG définie par
Deligne et Lusztig [3] est une application de °llF dans Z, constante sur les
GF-classes. Il est pratique parfois de la considérer comme une fonction sur GF
nulle en dehors de %F. Soient fî^Tun sous-groupe de Borel de G et wg W la
position relative de B et FB. On sait que QTG ne dépend que de la classe de

F-conjugaison de w dans W.

THÉORÈME 1. Les fonctions de Green de G sont données par la Table 1.

Si s g GF est semi-simple, 5^1, les fonctions de Green de CG(s) sont connues.
On peut donc calculer explicitement les caractères jRt. En prenant des
combinaisons linéaires convenables de ces caractères (les coefficients en sont explicitement

connus) on trouve tous les caractères irréductibles de GF à l&apos;exception de

quelques caractères unipotents. Il y a 8 caractères unipotents et nous n&apos;avons que
7 fonctions de la forme Kj«

Les 6 représentations unipotentes qui apparaissent dans R\o sont en
correspondance avec les représentations de WF. Avec les notations de [5] on a:

caractère de WF

t
€2

s

Pi
P2

caractère de G

L^2J

[e] St

[pi]

degré
1

q12

k3(&lt;?

|q3(q

II reste 2 représentations unipotentes paraboliques:

3D4[-1], de degré kV-D2,
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et

3D4[1], de degré k3(&lt;?-l)V-q2+D.

Les caractères RT se décomposent comme suit:

-23D4[-1]-23D4[1]
+ 33D4[1]

F4(aa):i + St + 2[e1] + 2|&gt;2] -3[p2]-23D4[-l] + 3D4[1]
F4:l+St -[Pl]

Rappelons brièvement comment on obtient ces résultats. La décomposition de
RTo et le degré de ses constituants irréductibles sont connus par la théorie des
algèbres de Hecke (voir par exemple [2]). On obtient de manière similaire la
décomposition de RT pour les classes Â2 + Aj et C3. Le cas où T est un tore de
Coxeter (c&apos;est-à-dire correspond à la classe F4) est traité en détail dans [4]. En
utilisant les relations d&apos;orthogonalité et les degrés on peut décomposer RT pour
les classes restantes. Pour les détails, voir [5].

Remarque. La restriction sur q donnée par [5] n&apos;est en fait nécessaire, mais les
calculs sont un peu plus longs.

La fonction / [pi]~[p2] + 3£*4[~l]~~3£*4[l] es* orthogonale à tous les RT.
Les fonctions RT et / forment donc une base orthogonale de l&apos;espace engendré
par les caractères unipotents, et il est facile d&apos;écrire chacun de ces caractères en
fonction de / et des RT. En particulier, les caractères unipotents qui peuvent
s&apos;écrire comme combinaisons linéaires des RT sont ceux qui n&apos;interviennent pas
dans /.

Il est facile de décrire /, au signe près. Si p 2 les caractères RT ne séparent

pas les deux classes unipotentes régulières puisqu&apos;ils prennent tous la valeur 1 sur
ces deux classes. Soit /0: GF-*C la fonction définie par

0 si x n&apos;est pas unipotent régulier
2q2 si x est unipotent régulier déployé

-2q2 si x est unipotent régulier tordu.

Il est clair que / ±/0. Si p/ 2, soit s l&apos;élément de T£ tel que a(s) P(s) y(s)

~8(s) 1 et soit H CG(s). Il y a dans HF deux classes unipotentes régulières qui
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correspondent à A2 et A2 (0.8). Si u&apos;, u&quot; appartiennent à ces classes, su&apos; et su&quot; ne
sont pas séparés par les Rt- Soit /0:GF-»C la fonction définie par

fo(x)

2q2 si x est GF-conjugué à su&apos;

—2q2 si x est GF-conjugué à su&quot;

0 dans les autres cas.

Il est clair ici aussi que / ±/0.

PROPOSITION. / /o.

THÉORÈME 2. Les caractères unipotents de GF sont donnés par la Table 2.

2. Preuve du Théorème 1

On numérote les F-classes dans W dans l&apos;ordre opposé à celui utilisé dans la
Table 1, on note Ql9..., Q7 les fonctions de Green et Pl9..., P7 les fonctions
données par la Table 1 (de sorte que Pl9 Qt correspondent à F4 et P7, Q7 à Â2).
On utilise les propriétés suivantes des fonctions de Green [3]:

1) Qt,g(&quot;)=1 si ue°UF est régulier.

2)
\TF\\UF0\

3) (Orthogonalité) Si T, T&apos; sont des tores maximaux F-stables de G et
N(T, T) {g € G | Tg gT&apos;}, alors

|T

Ces propriétés sont vérifiées par les fonctions Pl5..., P7.

On utilise aussi:

4) Soient P =&gt; T un sous-groupe parabolique F-stable de G, L =&gt; T un facteur
de Levi de P et rr la projection de PF sur LF. Alors

On utilise (4) pour vérifier que Q, P,, 5 ^ i =^7. Le calcul est assez facile sauf

pour A&apos;2 et A2, mais en tenant compte de (3) on obtient le résultat désiré.



Caractères unipotents de 3D4(Fq)

Soit a&apos;eM7(U) la matrice telle que Q =Ii^,^7 a[tPj

On déduit de (1), (2) et (3) que a&apos; est de la forme r Ue M4(U), et que

ax&apos; x\ ax&quot;

En particulier a appartient au groupe K {geM4(U) | gdtg d, gx&apos;= gx\
gx&quot; x&quot;) isomorphe à O2(R). Soit V {ve MA1(U) \ W &apos;vx&quot; 0}. Les réfactions
contenues dans K sont les matrices de la forme I — 2b où b dvtv/(v, u), ve

et (v, v) lvdv. Les vecteurs

r I 9/ 7* x I et s

forment une base de V.

Soit H (X8X9X10X11X12)F et soit 4&gt;:H-h&gt;C* le caractère défini par 0(fi)
i/r(c12) si Ji=ri8^i^i2*i(Ci)- Sous l&apos;action de Ngf(H), 0 aq5-q3 conjugués, et il
s&apos;ensuit que pour le caractère unipotent p [ei] de degré q5-q34-q on doit avoir
(0, p)H€{0,1}. On va utiliser cela pour montrer qu&apos;il n&apos;y a qu&apos;un tout petit
nombre de possibilités pour a, puis en utilisant le fait que les fonctions de Green

sont à valeurs dans Z on verra que a I. Remarquons que si l&apos;on utilise les

fonctions données dans la Table 1 on a (p, 0)H 1.

Soient c=è(0 1 ~1 -l)eM1A(M) et

&lt;P3,0)h

On a cdr 6q2,cds
On a cay cy si &lt;p, 0&gt;H 1, cay cy -1 si &lt;p, 0)H 0. On va voir qu&apos;en fait

cay - cy ^ 0.
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Cas L det (a) 1, a± L On prend a (I-2bo)(I-2b) où

_
drV

L dt/u
(r, r) (v, v)

Comme

dr&apos;rdv&apos;v (r,v)drtv
bob=-— - -— -,(r, r)(v, v) (r, r)(v, v)

on a

(r, r)(v, v)(cay-cy) -2(v, v)cdrtry-2(r, r)cdvlvy +4(r,

r,r)(A + 3)2-2(r,i;)
x(A + 3))

On a donc cay-cy&gt;0, une contradiction.

Cas IL det(a) -l. On prend a=I-2b où b dvtv/(v, v), v
V,t)/O. Ona fe u)(cay-cy) -2cdi;ti;y=24q4(q6-l)(A + 3jLL)2, d&apos;où

0. Pour démontrer le Théorème 1 il suffit de montrer que cela n&apos;est pas possible.
Si ue°UF est sous-régulier,

une contradiction.

3. Preuve du théorème 2 et de la proposition

Comme on l&apos;a remarqué plus haut, les caractères unipotents de GF sont des

combinaisons linéaires des caractères virtuels Rt et de /
[Pi]-[p2] + 3^4[-l]-3Ai[l]. On peut calculer les #| à l&apos;aide de (0.9) puisque les

fonctions de Green de G et des centralisateurs des éléments semi-simples de GF
sont connues. On sait aussi que /=e/0 où /0 est comme au paragraphe 1 et
e=±l. On peut donc calculer les caractères unipotents à l&apos;exception de

[pj, [p2], 3D4[1]3D4[— 1] sur les deux classes qui forment le support de /0.

Supposons p impair. On utilise les notations de (0.8). Soient Ho
(X1X2X3X12)F et H HQUsH0. Soit 0 le caractère linéaire de H défini par
0(s) l et 6(x1(a)x2(a&lt;i)x3(a&lt;*2)x12(b)) il,(a + b) (aeFq3, be¥Q).
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Soient gi=IaeF*3 x(a)&lt;Ka), g2 Ib6F*3 x(b)$(b) et a gvg2q~2. On sait que
\gi\==q3/2Ag2\:=q1/2, donc |a| l. Un calcul facile montre que &lt;[pi], 0)H
\{qs + q2 + a(q + e)). Donc aeU,a ±l et

0 (mod 4).

Comme q + e est pair, a(q + e)^q + E (mod 4). Donc

5 2 (mod 4),

d&apos;où e 1 (mod 4), et finalement e 1.

Si p 2 on prend H0 QJ4^^12Xl)F et H HoUx1(l)x2(l)x3(l)Ho. Soit S le
caractère linéaire de H tel que 0(u) ^(c5 + c8) et 0(x1(l)x2(l)x3(l)) l, où

Ci,..., c12 sont comme en (0.7). On calcule ([pi], 6)H à l&apos;aide du lemme (0.13).
On écrit ueH comme en (0.7) et on pose a=c4efqy b c5eFq^ c c8e

L&apos;élément m de H est régulier si et seulement si cx 1 et af 0, et il appartient
à D4 si de plus i^(c/a + b1+q/a2) 1. On a donc

a,b,c,d,e \ « a

En sommant sur c on trouve 0 sauf si a 1. Donc

Si Ci 1 et a 0, u appartient à la classe A2 si b e ¥q et Tr (b 4- c) ^ 0, et à A2
si de plus

/
H

On est ainsi amené à calculer

b,c,d,e
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beFq,Tr(b+c)#O

comme on le voit en sommant d&apos;abord sur e.

Considérons maintenant quelques éléments de Ho. Si a 0, u appartient à la
classe A2 si Tr(bc)^0, et à A2 si de plus

N(b)d

On doit donc calculer

b,c,d,e b#O,c b#O,c
Tr(bc)=î*0 Tr(bc)=O

et

Tr(bc)#0

comme on le voit en sommant d&apos;abord sur d, puisque N(b)/Tr(fcc)2eFj.
Si a*^0, soient x c + bq+q2/a, y d+Tr(fcc)/a. Alors m appartient à la

classe A2 si y ^0, et à A2 si de plus i^(N(x)/ay2) 1. On calcule

a,b,c,d,c a,b,c
a#0,od#Tr(bc) a#O

et

^ ay /a,b,c,e,y x Uy / a,6,c yeF*
a#O,yeF* a#0

où x est défini comme ci-dessus. La dernière somme sur y vaut —1 si x^O, et

q — 1 si x 0. Donc

a,b,c a,b,c a,b
x=0 a#0
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Les autres classes sont plus faciles à décrire et tous les calculs peuvent se faire
à l&apos;aide du lemme. On trouve finalement &lt;[pj, 0&gt;H =%+l(-l)€(e +1). C&apos;est aussi

un entier, et comme e ±1, on doit avoir e 1.

Remarque, Dans le cas où p 2, on peut modifier 0 comme suit. On peut
prendre 0(x1(l)x2(l)x3(l)) -l. On peut aussi poser 0(m) (àc4 + c5 + c8)

(mgH0), où ÀeFq, i/r(À) —1. On obtient ainsi 4 caractères non conjugués sous
l&apos;action du normalisateur de H. Chacun de ces caractères apparaît dans la
restriction d&apos;exactement un des caractères [pj, [p2], 3D4[-1], 3D4[1], et avec
multiplicité 1.

4. Tables

La Table 1 donne les fonctions de Green et la Table 2 les caractères
unipotents.

Soit g su la décomposition de Jordan de geGF (s semi-simple, u unipo-
tent). La valeur à g des caractères unipotents ne dépend que de la classe de

conjugaison de CG(s) (sous l&apos;action de GF) et de la classe de u dans CG(s)F
Soient TcBun tore maximal et un sous-groupe de Borel F-stables de CG(s). La
classe de GF-conjugaison de CG(s) est caractérisée par le type de CG(s) et l&apos;ordre

de TF. Lorsque g est semi-simple régulier, l&apos;indication de la classe de u est omise.

Table
Fonctions

Â2

Â2+A,
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