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Le caractere additif des déviations des anneaux locaux

MICHEL ANDRE

A un anneau commutatif, local et noethérien C, on associe classiquement des
nombres positifs €,(C), appelés les déviations de I'anneau. La premiere de ces
déviations (n = 1) est simplement la dimension de plongement. Il est équivalent de
connaitre les déviations ou les nombres de Betti de C. En fait la n-éme déviation
£,(C) est la dimension d’un espace vectoriel V,,(C) défini de maniére fonctorielle.

Soit maintenant un homomorphisme local et plat A — B, de fibre B et de
corps résiduels K et L. D’apres T. Gulliksen et L. Avramov, il existe alors une
suite exacte liant les espaces vectoriels

Vi(A)®kL,  V.(B), V.(B).

D’apres L. Avramov, cette suite exacte se décompose en une infinité de suites
exactes a six termes. Il est conjecturé que la décomposition se fait avec des suites
exactes a trois termes, sauf une fois.

Conjecture. L’égalité suivante est satisfaite:
&n(B) = £,(A) + £,(B)

pout tout entier n, au moins égal a 3.

J’ai démontré que la conjecture est vraie lorsque les corps résiduels ont la
caractéristique 2. Je démontre ici que la conjecture est vraie sauf pour un nombre
fini d’entiers n dépendant de la fibre seulement, sans hypothése sur la
caractéristique. C’est une lecture attentive du travail de L. Avramov qui m’a
permis de démontrer ce résultat partiel. En outre j’utilise deux résultats fon-
damentaux dus a T. Gulliksen. La technique que j’utilise est celle des adjonctions
de variables a la maniere de J. Tate.

Les algebres différentielles graduées seront toujours supposées munies de
puissances divisées. On ne fait pas cette supposition pour les algebres graduées
considérées (qui sont des algébres d’homologie).

648
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I Variables spéciales. Avec une algebre différentielle graduée Y considérons
une adjonction a la Tate d’une variable S de degré pair k =2n

Z=Y(S;dS=s)

s étant un cycle de Y de degré impair k —1. On a de maniére plus explicite une
somme directe

Z=13 YS®

i=0
I'élément S étant la i-€éme puissance divisée de I’élément S égal a S. On

suppose €étre dans le “cas local’: il existe un anneau local A d’idéal maximal M et
de corps résiduel K avec des isomorphismes

Yo=A et HJ[Y]=K

I'image de la différentielle en degré nul correspondant a 'idéal maximal.

DEFINITION 1. On dit que S est une variable spéciale et que s est un cycle
spécial, s’il existe une dérivation de degré 1—k

j: Y=Y avec j(s)=1.

Rappelons que par définition jd et dj sont égaux, que I'égalité
j(xy) = (=1)%(x)y +xj(y)

a lieu si y est un élément de Y, et que I’égalité

]'(z(i)) — ]-(Z)z(i—l)

a lieu si z est un élément de degré pair non-nul.

LEMME 2. La propriété d’étre spécial ne dépend que de la classe d’homologie
du cycle considéré.

Démonstration. Considérons un cycle spécial s de Y et démontrons qu’un
cycle homologue est spécial

s'=s+dt.
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On remarque que I’élément 1+dj(t) a un inverse ¢ dans Y, et on considére la
dérivation suivante

i'ty) = cj(y).
On a alors les égalités suivantes

i'(s) = cj(s) = cj(s +dt) = c(j(s) +jd(t)) = c(1+dj(1)) = 1
qui permettent de conclure.

EXEMPLE 3. Considérons une algebre différentielle graduée X et
considérons une adjonction a la Tate d’une variable R de degré impair k —1 et de

nature triviale
Y=X(R;dR=0)=X+XR.

Alors s =R est un cyclé spécial de Y grace a la dérivation

j:X+XR— X+XR

qui envoie a +bR sur b+O0R. Pour la suite on remarque que le carré de j est nul
et que le noyau de j vaut X.

LEMME 4. Pour la double adjonction suivante
Y=X(R;dR=0) et Z=Y(S;dS=R)
Pinclusion naturelle de X dans Z donne un isomorphisme en homologie.

Démonstration. Pour cela considérons I’homomorphisme d’algébres différen-
tielles graduées

p:Z—X
qui envoie I’élément z de Z

z=). (a+bR)S?

i=0
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sur ’élément a, de X et considérons aussi la différentielle de degré +1

6:Z—->27

qui envoie le méme élément z de Z sur I'élément

8(2) — (_1)degz Z b,-S(H-l)-

i=0
On vérifie alors 1’égalité suivante
p—id=dé+&d

qui donne l'isomorphisme naturel de H[X] et de H[Z].

Il s’agit de vérifier maintenant que I’exemple donné ci-dessus est générique (en
ce qui concerne les algébres, mais pas en ce qui concerne les dérivations): voir la
proposition 6 ci-dessous pour un énoncé précis.

REMARQUES. Ladérivation j de la Définition 1 peut toujours étre remplacée
par une dérivation j de carré nul. On considére pour cela I’application

i) =iGi(y)s) =j(y)—j*(y)s

qui envoie encore s sur 1 et qui est aussi une dérivation, de maniére élémentaire.
La dérivation j est de carré nul, puisque j(j(y)). s est toujours nul.

PROPOSITION 6. Soit s un cycle spécial d’une algebre différentielle graduée
Y. Alors il existe une algébre différentielle graduée X donnant lieu a un isomor-

phisme d’algébres différentielles graduées

X(R;dR=0)=Y
qui envoie R sur s.

Démonstration. D’aprés la remarque précédente, on a une dérivation j de Y
dont le carré est nul et qui envoie s sur 1. Le noyau X de j est une sous-algebre
différentielle graduée de Y. Prolongeons linclusion de X dans Y en un

homomorphisme d’algébres différentielles graduées

7:X(R;dR=0)—>Y
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qui envoie R sur s. Il va s’agir d’'un isomorphisme. Avec un élément y de Y, on
peut considérer deux éléments y —j(y)s et j(y) de X. Considérons alors I’applica-
tion

g:Y— X(R;dR =0)
qui envoie y sur I’élément suivant

o(y)=(y—j(y)s)+j(y)R.

Les applications o et 7 sont inverses I'une de l'autre; ce qui démontre la
proposition.

COROLLAIRE 7. Avec une adjonction a la Tate d’une variable spéciale S de
degré pair k

Z=Y(S;dS=s)

il existe un isomorphisme d’algebres graduées
H[Y]=H[Z](W;dW =0)

ou W est une variable de degré impair k — 1.
Démonstration. L’isomorphisme de la Proposition 6

Y=X(R:dR =0)

donne un isomorphisme en homologie
H[Y]=H[X](W;dW =0)

ou W a le degré k—1 de la variable R. Ensuite on remplace H[X] par H[Z]
comme le permet le Lemme 4.

Nous allons voir maintenant que l'introduction d’une variable spéciale peut
étre retardée a volonté dans une procédure d’adjonction de variables a la Tate.

REMARQUE 8. Les algebres différentielles graduées

Z=Y(T;;dT;=t) i=12
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sont isomorphes si les cycles t;, et t, de Y (avec un degré quelconque) sont
homologues

tl = t2+ dA.

On peut choisir un isomorphisme qui est 'identité sur Y et qui envoie T, sur
To+A.

PROPOSITION 9. Soit une double inclusion d’algebres différentielles graduées
Y c U< Z, la premiére étant due a I’adjonction d’une variable spéciale S pour tuer
un cycle spécial s de Y et la seconde étant due a I’adjonction d’une variable
quelconque T pour tuer un cycle quelconque t de U. Quitte a remplacer le cycle t par
un cycle homologue t', on peut toujours supposer qu’il s’agit d’un cycle non
seulement de U mais encore de Y. Alors on a une nouvelle inclusion double
d’algebres différentielles graduées Y =V < Z, la premiére étant due a I’ adjonction
d’une variable T’ pour tuer le cycle t' de Y et la seconde étant due a I’adjonction
d’une variable S' pour tuer le cycle s'=s de V.

Démonstration. Grace a la Proposition 6, on peut présenter Y de la maniére
suivante

Y=X+Xs.

On utilise alors les applications de la démonstration du Lemme 4
p:U-X et 86:U—->U

pour définir les éléments
t'=p(t)eX et A=86(t)eU.

On peut donc remplacer le cycle t de U par le cycle t' de U pour décrire Z.
Maintenant s’ et t' sont deux cycles de Y, donc I’adjonction des deux variables
peut se faire dans un ordre quelconque, ce qui constitue I’énoncé de la proposi-
tion.

REMARQUE 10. 1l est clair qu’il existe une dérivation de V qui est nulle sur
X, qui envoie s’ sur 1 et qui envoie T' sur 0. Par conséquent S’ est encore une
variable spéciale pour l'inclusion de V dans Z. Par ailleurs si T est une variable
spéciale pour linclusion de U dans Z, alors T’ est une variable spéciale pour
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I'inclusion de Y dans V. En effet une dérivation
j:U—->U avec j(t)=1
donne une dérivation
i'"" Y=Y avec j(t)=1.
Pour cela on considére dans Y, 'inverse ¢ de I’élément
1+ dpjé(t)
et on utilise la définition suivante
j'(a+bs) = c[pj(a)—pj(b) - 5]
pour a et b quelconques dans X.
REMARQUE 11. D’aprés le Corollaire 7, on a les isomorphismes suivants

H[Y]=H[UJ}(W;dW=0)
H[V]=H[Z](W'; dW'=0)

(avec W, W' et s de méme degré impair) pour ’homologie des deux algebres
différentielles graduées intermédiaires U et V de la Proposition 9.

Bien entendu, la, Proposition 9 et les remarques qui la completent restent
vraies si on remplace T par une famille finie de variables se succédant. Il en va de
méme avec une famille dénombrable de variables. Précisons cela sous la forme
d’une nouvelle remarque.

REMARQUE 12. Soit une double inclusion d’algebres différentielles graduées
Yc UcZ, la premiére étant due a ’adjonction d’'une variable spéciale S pour
tuer un cycle spécial s de Y et la seconde étant due a I’adjonction d’une infinité
de variables T; pour tuer une infinité de cycles . En fait on a une infinité
d’inclusions

U=U_(T;;dTi=8) i=1

(ou ¢ est un cycle de U,_,) en commengant avec Uy= U, la réunion des U,
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donnant Z. On construit alors une infinité de nouvelles inclusions

Vi=V, (T dTi=t)  i=1
(ou t; est un cycle de V,_;) en commengant avec V,=Y, la réunion des V;
donnant V. Voici cette construction décrite de maniere précise.

On identifie une fois pour toutes Y a X+ Xs. On commence alors la construc-
tion avec les inclusions

Xo"—-XC V0= ifc U0= U
qui sont liées par les égalités suivantes

VO:X0+SXO et UO:VO<S,dS=S>.

On a aussi ’homomorphisme et la différentielle du Lemme 4
po:Up—> X, et 85:Uy— U,

qui sont liés par I’égalité suivante
Po—id = dby+ 6,d.

On peut alors aborder le premier pas de la construction en définissant le cycle
suivant

t1=po(ty) € Xo

et en constatant I’égalité suivante
U, =Uo(T}; dTi =t).

On a alors les inclusions suivantes
X,cV,clU,

qui sont liées par les égalités suivantes

Vi=X;+X;s et U;=V,(S5;dS=s)
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en posant les deux définitions suivantes

X1=Xo(T}; dTy=1t})
V= Vo(Ty; dTy =1t)).

Ensuite on prolonge p, en un homomorphisme
p1: U — X,

qui envoie I’élément T sur lui-méme (de mé&me pour ses puissances divisées s’il y
a lieu) et 8, en une différentielle

81:U1_) Ul

qui envoie I’élément T sur 0 (de méme pour ses puissances divisées s’il y a lieu).
On a finalement I’égalité suivante
g

P1— id= d61 + 61d.

On peut alors aborder le deuxieme pas de la construction. Etc. Cela étant, a la
limite, on a I’'inclusion suivante

V=UV,cZ=UU;

qui donne lieu a une égalité attendue
Z= V(S;dS=s)’.

On constate que s est encore un cycle spécial dans V griace a I’égalité suivante
V=0+s avec N=UX.

Les Remarques 10 et 11 sont évidlemment encore valables.

En répétant I'opération pour un nombre fini de variables spéciales on a
finalement le résultat suivant.

THEOREME 13. Soit Y = Z une inclusion d’algebres différentielles graduées
due a une adjonction a la Tate d’une infinité dénombrable de variables T, (i =1)
tuant successivement des cycles t. Distinguons n de ces variables dans un ordre
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quelconque
Sj = Tk(i): 1$1Sn

et supposons-les spéciales. Alors quitte a remplacer les cycles par des cycles
homologues et a modifier les variables en conséquence, il est possible d’introduite
une algebre différentielle graduée intermédiaire

YcVcZ

avec les propriétés suivantes. L’inclusion de Y dans V est due a I’adjonction de
toutes les variables T, sauf les variables S,, sans en modifier I’ordre. L’inclusion de
V dans Z est due a I’adjonction de toutes les variables S;, dans I’ordre donné par j
croissant. En outre il existe un isomorphisme d’algébres graduées

H[V]=H[Z](W;; dW,;=0;1<j<n)
ou I’élément W; a le méme degré impair que I’élément s; égal a dS;.

Démonstration. Bien entendu, on applique n fois la Remarque 12 dans des
circonstances variables pour voir apparaitre successivement les situations
suivantes données de maniere schématique

T,,T,,...,T,,...sans exception;
T,,...,T,,...sauf S, =Tg); puis S,;
Ty ..., T, ...sauf S,, S,_q; puis S,,_;, S,;

etc, les variables étant a modifier a2 chaque pas.
COROLLAIRE 14. L’algebre différentielle graduée intermédiaire V du
théoréme précédent a une algébre graduée d’homologie H[V] qui a un n-produit

non-trivial et méme un (n+ 1)-produit non-trivial si Z n’est pas acyclique.

Démonstration. Ils’agit de I’élément

si Z est acyclique et de I’élément a. @ si a est un €lément non nul de degré
strictement positif de H[Z].
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Bien entendu si les variables sont en nombre fini, le théoréme et son corollaire
restent vrais.

Le Corollaire 14 est important pour la suite (voir le Corollaire 22 et la
Proposition 27). C’est grace a lui que la propriété de finitude s’introduit dans les
considérations.

II Relévements. Pour bien utiliser la technique des variables spéciales, la notion
suivante est fort utile.

DEFINITION 15. Soit X une algebre différentielle graduée. Alors un
relevement est un homomorphisme

m:X—>X

d’algebres differentielles graduées qui est surjectif et qui donne un isomorphisme
en homologie.

REMARQUE 16. Considérons unrelévement et une adjonction ala Tate d’une
variable

m:X—>X et X(T;dT=t).

Alors le cycle t de X est 'image d’un cycle ¢ de X, cycle qui est défini 2 un bord
prés de X (appartenant au noyau de ). On peut alors prolonger =

m: X(T;dT=t)— X(T;dT =1)

en envoyant la variable T sur la variable T. Il s’agit encore d’un relévement. La
démonstration classique de I'isomorphisme en homologie distingue le cas d’une
variable de degré pair et le cas d’une variable de degré impair.

Considérons une inclusion U,< U, d’algebres différentielles graduées due a
des adjonctions a la Tate d’une infinité de variables T;

Ui = Ui (T;; dT; = t)

commencant avec U,, aboutissant a U, la réunion des U,, avec un nombre fini de
variables en chaque degré et avec le degré de T; non-décroissant pour i crois-
sant. On désigne par U(n) I’algébre différentielle graduée que les éléments de U,
et les variables de degrés au plus égaux a n engendrent dans U,. C’est le n-éme
squelette de ’inclusion donnée

U(n) = Uh(n)
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h(n) étant le nombre des variables T; dont le degré est borné par n. Il n’est pas
inutile de faire la remarque triviale que voici.

REMARQUE 17. Pour une variable T, de degré n+1 on a une inclusion
naturelle

Un)c U,

avec les mémes cycles de degré n, plus facilement homologues les uns aux autres a
droite qu’a gauche. Il faut donc prendre garde au fait suivant. Si on remplace le
cycle t; par un cycle homologue dans U;_, (et si on modifie la variable T; en
conséquence) ©on risque le modifier de maniére génante la classe du cycle dans
U(n)

7. =[t]e H,[U(n)].

Il est donc important de savoir dans quel ordre les variables de degré fixé sont
utilisées.

Bien entendu la Remarque 16 peut s’utiliser pour faire une construction par
induction qui démontre le résultat suivant.

LEMME 18. Un relévement m,: Uy,— U, permet de relever une inclusion
Uy,< U, donnée par des variables T; en une inclusion Uy< U, donnée par des
variables T,

~

U, = U, (T;; dT; = 1,).

Plus précisément, il existe des relévements qui se prolongent les uns les autres

-~

m U, — U
avec la propriété d’envoyer la variable T, sur la variable T..

Il est bon de faire une fois pour toutes les remarques suivantes. Un change-
ment de variables dans la description de U, produit un changement de variables
dans la description de U.,,. Par ailleurs on a des isomorphismes naturels

H[QJEH[Ui]
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qui donnent en particulier des isomorphismes concernant les squelettes
H[U(n)]=H[U(n)]

Ce dernier isomorphisme, pris en degré n, met en correspondance 7; et 7; si on a
h(n)<is<h(n+1).

Avant d’utiliser la technique des variables spéciales, il est nécessaire de
préciser le point suivant concernant les bas degrés.

REMARQUE 19. Toutes les algebres différentielles graduées considérées sont
des anneaux (noethériens) en degré 0. Tous les homomorphismes considérés entre
elles sont des homomorphismes locaux en degré 0, c’est en particulier le cas des
reléevements de la Définition 15. De plus les inclusions considérées U,< U, sont
supposées avoir suffisamment de variables de degré 1 pour que U(1) soit local
dans le sens strict: les bords de degré 0 de U(1) forment I'idéal maximal de
I’anneau local du degré 0, autrement dit les éléments

7, € H){ U(0)] 1=<si<h(1)

engendrent 'idéal maximal de cet anneau local.

REMARQUE 20. Avec les notations du Lemme 18, supposons que T, est
une variable spéciale. Sans modifier les variables T}, T,, ..., T,, mais en modifiant
les variables suivantes, on peut obtenir la présentation suivante de l'inclusion

ﬁocﬁm
U,c U*c U,

en utilisant les variables T, sauf T,, pour la premiére inclusion et pour la seconde
la variable T,,, avec en outre un isomorphisme

H[UX¥]=H[U.]{W; dW = 0)

le degré de W égalant celui de T,, diminué d’une unité. En général T,, n’est pas
une variable spéciale. Par contre ’homomorphisme naturel de U, sur U,, permet
de redescendre les autres propriétés. On a donc le résultat suivant. S’il existe un
relevement de U, qui permet de relever la variable T,, en une variable spéciale,
alors I'inclusion de U, dans U, peut étre présentée de la maniere suivante. Les m
premieres variables T; ne sont pas modifiées, les suivantes le sont si nécessaire, de
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plus on a une double inclusion
Upc Uic U.

la premiere est due a toutes les variables T; sauf T, et la seconde est due i la
variable T,,. De plus on obtient un isomorphisme

H[UZ]=H[U.]{W; dW =0)

la variable W ayant le méme degré impair que le cycle t,,.

On peut maintenant répéter 1’opération décrite ci-dessus pour la nouvelle
inclusion de U, dans UZ¥ en utilisant une autre variable T,, avec n <m, pour étre
stir de la retrouver non-modifiée, et en utilisant un autre relévement de U, si cela
est nécessaire. Plus tard nous verrons pourquoi il est utile d’utiliser des variables
non-modifiées (voir pour le moment la Remarque 17). La répétition de la
Remarque 20 démontre donc le théoréme suivant.

THEOREME 21. Soit Y < Z une inclusion d’algébres différentielles graduées
due a une adjonction a la Tate d’une infinité dénombrable de variables T, (i=1)
tuant successivement des cycles t. Distinguons n de ces variables dans un ordre
croissant

szTk(j) k(1)<k(2)<' . ‘<k(n)

et supposons que chacune d’elles peut étre relevée en une variable spéciale grice a
un relévement bien choisi de Y, dépendant de j. Alors quitte a remplacer les cycles
par des cycles homologues et a modifier les variables en conséquence, il est possible
d’introduire une algebre différentielle graduée intermédiaire.

YcVcZ

avec les propriétés suivantes. L’inclusion de Y dans V est due a I’adjonction de
toutes les variables T; sauf les variables S;, sans en modifier I’ordre. L’inclusion de
V dans Z est due a I’adjonction de toutes les variables S;, sans en modifier I’ ordre.
En outre il existe un isomorphisme d’algebres graduées

H[V]=H[Z](W,; dW,;=0;1=<j=<n).

COROLLAIRE 22. L’algébre graduée H[ V] a un n-produit non-trivial si Z
est acyclique et un (n+ 1)-produit non-trivial si Z n’est pas acyclique, sous les

hypothéses et avec les notations du théoréme précédent.
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REMARQUE 23. Ilfautbien remarquer que la démonstration du Théoréme 21
se fait en traitant les variables S; I'une aprés ’autre dans 'ordre suivant

Sm Sn—l, seey 827 sl'

Cela a la conséquence suivante. La variable S; n’a pas besoin d’étre modifiée
avant d’étre retardée. Par conséquent on peut utiliser une hypothése sur cette
variable S; égale a T, qui dépend explicitement de cette variable et non pas
seulement de la classe du cycle s; égal a t, dans I’homologie de I’algebre
différentielle graduée que Y et T, pour-1=<i=<k(j)—1 engendrent.

Considérons toujours une inclusion d’algébres différentielles graduées U,<
U. due a des adjonctions a la Tate de variables T,. Soit K le corps résiduel de
I’anneau local que 'on rencontre en degré nul.

DEFINITION 24. Une pression de degré n=1 est un homomorphisme non
nul

A:H,[U(n)]—K

qui peut étre réalisé de la maniere suivante. Il existe un relevement U, de U, et
une dérivation de degré —n

j:U(m)— On)

dont ’homomorphisme associé
X:H,[U(n)]— H[U(n)]

correspond a I’lhomomorphisme considére A par les deux isomorphismes naturels
H,[U(n)]=H,[U®n)] et HJ[U®n]=K.

Voir la Remarque 19 concernant le caractére local des algebres différentielles
graduées utilisées. ]

Considérons maintenant pour chaque variable T, de degré n+1 la classe
d’homologie 7; dans H,[U(n)] du cycle ¢, égal a I’élément dT,.

LEMME 25. Soit T,, une des variables de degré n+1 et soit A une pression de
degré n. Alors si 7; est dans le noyau de A pour i <m et si t,, n’est pas dans le noyau
de A, la variable T,, peut étre relevée en une variable spéciale dans un reléevement
bien choisi.
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Démonstration. Le relévement bien choisi est évidemment celui de la
Définition 24. La pression A est réalisée grice A une dérivation du n-&me
squelette du relévement

i Uhiny = Uniy-

On peut prolonger en une dérivation du type suivant
jiUn-1—> U, ;.

En effet I’hypothése
A(1;)=0 pour h(n)<i<m.

signifie que j envoie t; égal 4 dT; sur un bord du n-&me squelette. Il existe donc
des éléments u; de degré 1 dans U,(,, avec des égalités

j(t)=du; pour h(n)<i<m.

On prolonge alors j en envoyant la variable T, sur ;. Le fait d’avoir A(r,,) non
nul démontre que j envoie t,, sur un élément inversible de Uh(n) de degré O,
autrement dit sur un élément inversible de U,,_, de degre 0. Quitte a multiplier j
par I'inverse de cet élément, on a donc une dérivation de U,,_; qui envoie le cycle
t.. sur 1 et le variable T, est bien spéciale, d’ot1 la conclusion du lemme.

REMARQUE 26. Soient k pressions de degré n
AcH,[U@)]— K

Dénotons par A; le noyau de la restriction de A; au sous-espace vectoriel de
H,[U(n)] que les éléments 7; de degré n engendrent. Supposons avoir des
inclusions strictes dans le sens suivant

Al#AlnAz%" '#Alﬂ/\zn'”ﬂ/\k.

Quitte a faire un changement de variables concernant celles de degré n+1, on
peut obtenir la situation suivante pour les variables de degré n+1 au nombre de

f=h(n+1)—h(n)

A(Thy+i) 70 pour 1<i<k
Ai(Thny+j) =0 pour i<j
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avec 1<i=<k et 1<j=<f bien entendu. Mais alors on voit apparaitre k variables
sujettes au Lemme 25. On peut donc les soumettre au Théoréme 21, en modifiant
les variables de degrés supérieurs et sans modifier les variables de degrés
inférieurs (voir la Remarque 23). On a ainsi le résultat suivant qui sera utilisé plus
loin et qui définit les nombres s,,.

PROPOSITION 27. Soit Y < Z une inclusion d’algebres différentielles graduées
due a une adjonction a la Tate d’une infinité dénombrable de varaibles T; tuant
successivement des cycles t,. Pour tout n impair, soit Q, le sous-espace vectoriel de
H[Y(n)] engendré par les classes de tous les cycles t; de degré n et soit P, le
sous-espace vectoriel de Q, formé des éléments de Q, annulés par toutes les
pressions de degré n. Alors quitte a faire un changement de toutes les variables de
degré n+1, on peut avoir des variables de degré n+1 se relevant a tour de réle en
une variable spéciale dans un relévement bien choisi, en nombre suffisant pour
égaler au moins la codimension s,,., de P, dans Q,.

On peut utiliser la proposition pour plusieurs degrés en méme temps et obtenir
ainsi le corollaire que voici.

COROLLAIRE 28. Soit Y < Z une inclusion d’algebres différentielles graduées
due a une adjonction a la Tate d’une infinit¢é dénombrable de variables T,
Supposons qu’il n’existe pas de produits non-triviaux de m + 1 éléments dans toutes
les algebres différentielles graduées ‘intermédiaires™ entre Y et Z. Alors presque
toutes les codimensions s, sont nulles, avec une inégalité simple

Zs,,sm. :

Cette inégalité est méme stricte

an<m

lorsque ou bien Z n’est pas acyclique ou bien Z est acyclique avec une infinité de
squelettes qui ne sont pas acycliques.

Démonstration. Le Corollaire 22 et la Proposition 27 démontrent la finitude,
'inégalité simple et le premier cas de 'inégalité stricte. On démontre alors le
second cas de I’inégalité stricte en considérant non pas l'inclusion de Y dans Z
mais l’inclusion de Y dans Z(q) en soumettant q aux deux conditions suivantes:
en premier lieu s, est nul pour tout n dépassant q et en second lieu Z(q) n’est pas
acyclique.
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DEFINITION 29. 1l reste & préciser la notion d’algebre différentielle graduée
intermédiaire. C’est évidemment celle donnée par le Théoréme 21. On a donc une
inclusion double a considérer dans la définition

YecVcZ

En outre il doit exister une premiere famille de variables R; qui décrit la premiére
inclusion et une seconde famille de variables S; qui décrit la seconde inclusion, ces
deux familles réunies redonnant la famile initiale de variables décrivant I’inclusion
de Y dans Z, a un changement de variables preés, comme toujours.

III Anneaus locaux. Soit C un anneau local noethérien d’idéal maximal N et de
corps résiduel L. Il y a lieu de distinguer deux cas. Dans le cas dégénéré, I’anneau
C est une intersection complete, dans le sens large, autrement dit son complété
est une intersection compléte dans le sens strict; on dira simplement que dans le
cas dégénéré il s’agit d’une intersection complete et que dans le cas non-dégénéré
il ne s’agit pas d’une intersection complete.

Soit en outre V, (C) I’espace vectoriel des éléments indécomposables de degré
n de l'algébre graduée a puissances divisées Tor“ (L, L). La n-éme déviation
£,(C) est la dimension de 'espace vectoriel V,(C). En particulier £,(C) est égale
a la dimension de plongement de C, autrement dit au nombre minimal de
générateurs de I'idéal N.

Soit maintenant G une résolution minimale de la C-algebre L, résolution
minimale qui existe sous la forme d’une algebre différentielle graduée a la Tate
d’aprés T. Gulliksen. Le passage de C a G se fait par I’adjonction de variables T..
Il y en a exactement &, (C) en degré n. On retrouve encore le nombre ¢, (C) comme
dimension de ’espace vectoriel sur L

H, {[{G(n-1)] n=2

G(q) désignant le g-éme squelette de la résolution minimale. Bien entendu
’anneau C détermine G(q) a un isomorphisme pres.

Dans le cas dégénéré, le squelette G(2) est acyclique. Par conséquent les
variables T, sont en nombre fini et n’apparaissent qu’en degrés 1 et 2. Dans le cas
non-dégénéré, d’aprés T. Gulliksen, le nombre de déviations non-nulles est infini.
Par conséquent les variables T; forment une famille infinie denombrable et le
squelette G(q) n’est jamais acyclique.

Par ailleurs tout cycle G de degré non-nul est un élément de NG. Considérons
en outre une algébre différentielle graduée intermédiaire (voir Définition 29)

G()c VG
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Grace aux relations liant les variables décrivant les trois inclusions, on a une
égalité

VNANG =NV.

Les éléments de N sont des bords dans G(1) déja. Donc tout cycle de V de degré
non nul est homologue dans V a un cycle appartenant au produit W-V dans V,
avec W désignant la partie homogene de degré 1 de G(1), autrement dit de G.
Comme G(1) est ’algebre extérieure du C-module libre W de rang €,(C), le
produit de £,(C)+1 éléments de W - V est toujours nul dans V. Par conséquent il
n’existe pas de produit non-trivial a &,(C)+1 éléments dans H[V].

On peut donc appliquer le Corollaire 28 en utilisant I'inclusion suivatte

Y=G(Q)cZ=G
et aussi I’entier suivant
m= EI(C).

On a donc besoin de la Définition 24, dans un cas particulier.

DEFINITION 30. Une algébre différentielle graduée I' constituée d’un an-
neau local noethérien I'y en degré nul, ayant une homologie nulle en chaque
degré positif et accompagnée d’un isomorphisme d’anneaux

v:HJ[I']—>C

est une couverture de ’anneau local noethérien C.

REMARQUE 31. En présence d’une couverture I" de C, on peut relever les
variables T; décrivant une résolution minimale G de C en des variables T; et
obtenir 3 isomorphisme prés un diagramme commutatif du type suivant

r=r@@ecr(\c---cr@e<---
0 [y Y@

C_—_-_G(O)CG(l)C. . .cG(q)c. .

les homomorphismes d’algébres différentielles graduées y(q) donnant lieu a des
isomorphismes en homologie. A la limite, on remarque que les deux algebres
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différentielles graduées

F(x)=UI(q) et G(®)=UG(q)=G

sont acycliques et donnent le corps résiduel L de I’anneau local C en
homologie de degré nul.

DEFINITION 32. Considérons le diagramme commutatif de la remarque
précédente et supposons avoir en outre une dérivation de degré—q impair

j:I'(q)—I'(q).

I1 en découle un homomorphisme d’espaces vectoriels

H,[I'(q)]— H[I'(q)]

autrement dit un homomorphisme d’espaces vectoriels
j:H[G(@)]— L.

Un homomorphisme d’espaces vectoriels

A:H[G(@)]—L

pour lequel il existe une couverture I" et une dérivation j permettant de retrouver
A sous la forme A =] est appelé une pression de degré q de ’anneau noethérien
C.

DEFINITION 33. Avec l’espace vectoriel H,[G(q)] de dimension g4.;(C)
considérons le sous-espace vectoriel P, formé des éléments annulés par toutes les
pressions de degré q. Soit s,.,(C) la codimension de P, dans H,[G(q)]. On a alors
une nouvelle famille d’entiers positifs ou nuls attachés a I’anneau local noethérien

considéré C
Szk(C)QEZk(C) k=1.

Cela étant, il est possible maintenant d’exprimer simplement ce que donne le
Corollaire 28.

PROPOSITION 34. Pour un anneau local noethérien C qui n’est pas une
intersection compléte, les nombres s, (C) sont presque tous nuls et I’inégalité
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suivante
Z $21 (C) < &4(C)

est toujours satisfaite.

REMARQUE 35. Dans le cas d’une intersection compléte, les trois nombres qui
peuvent ne pas €étre nuls apparaissent dans une double inégalité

52(C) < &5(C) < &,(C).

Il n’est pas exclu d’avoir des égalités. On a par ailleurs le complément suivant.

REMARQUE 36. Un anneau local noethérien C donnant une égalité

Z $2k(C) = &,(O)

est forcément une intersection compléte artinienne. En effet on a non seulement
une intersection compléte par la Proposition 34, mais encore un anneau artinien
par la Remarque 35, puisqu’alors la différence entre £,(C) et £,(C) est égale a la
dimension de Krull de C.

Avec C=L[t]/(t?) on a un anneau apparaissant trois fois avec le nombre 1
dans le Remarque 35.

DEFINITION 37. Une fibration ¢:A — B est un homomorphisme local et
plat entre deux anneaux locaux et noethériens. Les idéaux maximaux sont
respectivement M et N et les corps résiduels sont respectivement K et L. La fibre de
la fibration est ’anneau local et noethérien B égal 3 B/MB d’idéal maximal N
égal 2 N/MB et de corps résiduel L égal a L.

REMARQUE 38. D’apres T. Gulliksen et L. Avramov, a une fibration on peut
associer une suite exacte longue

> Vo(A)®k L =5 Vi (B) 2 Vo (B) 25V, 1(A) @ L — - -

Les deux homomorphismes «, et B, pour n=1 sont dus aux deux carrés
commutatifs suivants

A—B B—>B

Lo Lee | ]

K—L L—L.
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La définition de ’homomorphisme v, pour n=2 est rappelée ci-dessous. D’apres
L. Avramov, ’homomorphisme v, est toujours nul lorsque n est impair. En
général y, n’est pas nul pour une fibration, puisque la dimension de plongement
de B n’est pas forcément égale a la somme des dimensions de plongement de A
et de B. D’aprés M. André, ’homomorphisme v, est nul lorsque n est pair,
différent de 2 dans le cas particulier ou les corps résiduels ont la caractéristique 2.
On a donc la conjecture suivante.

CONJECTURE 39. Pourunefibrationquelconque,’homomorphisme v, estnul
pour tout entier n¥2. Autrement dit la formule d’addition suivante est
toujours valable

g, (B)=¢,(A)+e,(B) si n=3.

On va démontrer que cette formule est presque toujours vraie, les entiers n pou-
vant faire exception ne dépendant que de la fibre B. On démontre méme un peu plus.

DEFINITION 40. Le sous-espace vectoriel W, (C) de lespace vectoriel
V,.(C) associé a un anneau local et noethérien C est formé de tous les éléments
annulés par les homomorphismes du type suivant

‘Yn((P)o Vn(w) : Vn(C) - Vn—l(A) ®K L

di a une fibration ¢ et a un isomorphisme w
¢:A—>B et w:C—B

On considére alors la codimension w,(C) de W, (C) dans V,(C).
Dans la définition ci-dessus, on traite comme un tout, toutes les fibrations ayant

la méme fibre 2 isomorphisme prés. Bien entendu, on peut s’intéresser a une seule
fibration a la fois.

REMARQUE 41. Pour une fibration ¢ : A — B de fibre B, la dimension de
Pimage de v,

Yr: Va (ﬁ) — V,_1(A)®« L

est majorée non seulement par la déviation &,_;(A), mais encore par le nombre
w, (B).

On va démontrer que les entiers s, (C) de la Définition 33 majorent les entiers
w, (C) de la Définition 40. La Proposition 34, la Remarque 35 et la Remarque
36 donnent alors le résultat suivant.
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THEOREME 42. Pour un anneau local noethérien C, les nombres w,, (C) sont
presque tous nuls et I’inégalité suivante est toujouts satisfaite

2 w2 (C)<&,(C).
En cas d’égalité, I’anneau C est forcément une intersection compléte artinienne.

Il est clair que le résultat demeure si on diminue encore les entiers w,, (C), par
exemple si on ne considére qu’une seule fibration a la fois.

THEOREME 43. Soit ¢ : A — B un homomorphisme local et plat entre deux
anneaux locaux et noethériens. Alors il existe un nombre fini d’entiers ne dépendant
que de la fibre B

n1<n2<‘ . '<nk
tels que I’homomorphisme
Yn : Vn(B-) - Vn~1(A) ®K L

est nul pour tous les entiers n différents des entiers n,. De plus la somme des
dimensions des images des homomorphismes v, est majorée par la dimension de
plongement de la fibre B. En cas d’égalité, la fibre B est forcément une intersection
compléte artinienne.

I1 reste donc a démontrer le lemme suivant.

LEMME 44. L’inégalité w,(C)<s,(C) a lieu pour tout entier n et pour tout
anneau local et noethérien C.

Démonstration. 11 suffit de considérer une fibration quelconque et de
démontrer que le noyau de ’homomorphisme v, correspond a I'intersection des
noyaux d’un certain nombre de pressions de la fibre de degré n—1. La notion de
pression est celle de la Définition 32. Ce résultat est démontré plus loin, une fois
rappelée la construction de ’homomorphisme +,.

Considérons une fibration A — B de fibre B. Soit I'" une résolution minimale
de la A-algebre K, décrite a I'aide des variables S;. Soit G une résolution
minimale de la B-algébre L, décrite a I’aide des variables T;. Considérons alors le
produit tensoriel

r=r'e,B.
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Par platitude il s’agit d’'une résolution minimale de la B-algébre B. On peut la
décrire a ’aide des variables S; valant S!® 1. Avec I' on a une couverture de B
dans le sens de la Definition 30, couverture dont la partie homogene de degré nul
est la suivante

Iy=Ir,®,B=A®, B=B.
Cela étant, on peut utiliser la Remarque 31 et en particulier relever pas-a-pas les
variables T; en des variables T;.

Fixons maintenant un entier n. Les variables S; de degré n—1 sont a
distinguer

E! avec 1=sa=seg, 1(A)
et les variables T; de degré n aussi

Fg avec 1=8=< £.(B).

On a alors une égalité utile pour la suite.

REMARQUE 45. Avec les notations introduites ci-dessus, on a toujours une
égalité explicite

dFB = Z bBaEa + pﬂ
avec bg, dans B, la description explicite de pg; ne faisant intervenir que des
€léments de B, des variables S; en degrés au plus n—2 et des variables T; en
degrés au plus n< 1.

L’espace vectoriel H,_;[G(n—1)] a une base formée des classes d’homologie
des cycles dFg de G(n—1). L’isomorphisme naturel

H,_,[G(n-1)]=V,(B)
transforme cette base en une base de V,(B)

Y avec 1=@8=< g, (B).

On a de méme une base utile de ’espace vectoriel V,_;(A)®x L

X, avec l=a<eg, 1(A).
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REMARQUE 46. Avec les notations introduites ci-dessus 1’homo-
morphisme

Yn - Vn(B-) — Vn-—l(A) ®K L
est donné par I’égalité suivante

A AEDIN W) &

ou [b] désigne la classe dans L de I’élément b de B et ou bg, provient de la
Remarque 45 décrivant dF.

Voici maintenant le lemme annoncé et utilisé dans la démonstration du
Lemme 44. Avec le lemme ci-dessous, les démonstrations des Théorémes 42 et
43 donc achevées.

LEMME 47. Soit une fibration A — B de fibre B et de corps résiduels K
et L. Soit G une résolution minimale de la B-algébre L. Alors pour tout nombre
pair n =2, Uisomorphisme

Vn (B_) - Hn——l[G(n - 1)]
envoie le noyau de I’homomorphisme
Yn - Vn(B—) - Vn—l(A)®KL

sur Uintersection des noyaux d’un nombre fini de pressions bien choisies de B de
degré n—1

A :H, i [G(n—1)]— L.

Démonstration. D’aprés T. Gulliksen, il existe une dérivation j!, de I de
degré 1—n qui envoie la variable E/, sur 1 et les autres variables de degré au plus
n —1 sur 0. Par produit tensoriel on a donc une dérivation j, de I' de degré 1—n
avec la propriété suivante

j(Be)=1 si a=a" et 0 si a#a'

On prolonge cette dérivation j, de I' en une dérivation de I'(n — 1) notée encore
j. €t unique avec la propriété suivante

j(T;) =0 si le degré de T; est au plus n—1.
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Donc j, envoie toutes les variables S, et ’I~’, de degré au plus n—1 sur 0 sauf E,
qui est envoyée sur 1. On peut alors constater que j, transforme Pégalité de la
Remarque 45 (homogene de degré n—1) en une égalité nouvelle (homogéne de
degré 0)

ja (dFB) = bBa'

Par conséquent en passant a I’homologie, la dérivation j, donne lieu a4 un
homomorphisme

H, [I'(n—-1)]—> H[I'(n—1)]

qui envoie la classe du cycle dF,; sur la classe du cycle bg.. On a donc une
pression

fa : Hn—l[G(n - 1)] — L

qui envoie la classe du cycle dF; sur I'élément [bg, ] de L. D’aprés la Remarque
46, il est alors équivalent de connaitre ’lhomomorphisme v, ou de connaitre la
famille des pressions j,. En particulier le noyau de vy et I'intersection des noyaux
des j, se correspondent par I'isomorphisme de I’énoncé du lemme. Tous les
résultats énoncés sont donc démontrés maintenant.

REMARQUE 48. Ladimension de plongement apparait comme borne dans les
€noncés pour la seule raison suivante. On considére un anneau local et noethérien
C d’idéal maximal N ainsi qu’une résolution minimale G. Puis on applique le
Corollaire 28 a l’inclusion suivante

Y=G(1)cZ=0G.

Il s’agit alors de trouver un entier m avec la propriété suivante: le produit de
m+1 éléments de H[V] de degrés strictement positifs est toujours nul, pour
toute algebre différentielle graduée intermédiaire (voir la Définition 29)

G()cVeaG.

La dimension de plongement de C est un tel entier m. Par ailleurs un cycle de V
de degré strictement positif appartient toujours & NG. Par conséquent le produit de
m+1 cycles de V de degrés strictement positifs est toujours nul si N™*! est nul.
On peut alors utiliser cet entier m a la place de la dimension de plongement..
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DEFINITION 49. Le degré de nilpotence v(C) d’un anneau local et artinien C
est le plus petit entier k donnant I’égalité suivante

Nk+1 — 0
pour P’ideal maximal N.

THEOREME 50. Pour un anneau local artinien C, Iinégalité suivante est
toujours satisfaite

2. wa(C)<w(C).

L’inégalité est méme stricte si C n’est pas une intersection complete.

COROLLAIRE 51. La conjecture est vraie pour chaque fibration ayant sa fibre
avec un idéal maximal de carré nul.

Il est possible de diminuer la borne du Théoreme 42 dans le sens suivant.

REMARQUE 52. Avec un anneau local et noethérien C, considérons la
différence entre sa dimension de plongement et sa profondeur

£,(C)—prof (C).

Dénotons par «(C) ee nombre positif ou nul. D’aprés Auslander-Buchsbaum,
c’est le plus grand entier m pour lequel le complexe de Koszul Y a de ’homologie
non nulle

HJ[G1)]#0 si k=«k(C)et=0 si k>«k(C).

Il existe alors un quotient Y de Y qui a la méme homologie que ce complexe de
Koszul et qui est nul pour les degrés inutiles

Y. =0 si k>k(CO).
La double inclusion de la Remarque 48

YcVcZ
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donne alors une double inclusion par produit tensoriel
Y®Y__YC V®Y _YC Z®Y¥

avec la méme homologie pour les deux algébres différentielles graduées
intermédiaires (voir la Définition 29)

V et Y= V®Y _Y

On s’intéresse alors au produit de «(C)+1 éléments de H[V] de degrés stricte-
ment positifs et la méme démonstration que celle rappelée dans la Remarque 48
démontre que ce produit est nul toujours. On peut donc utiliser la borne k(C)
dans la Proposition 34 et dans le Théoréme 42.

THEOREME 53. Soit un homomorphisme local et plat entre deux anneaux
locaux et noethériens A et B. Alors la différence entre la dimension de plongement
de la fibre B et la profondeur de la fibre B majore la somme des dimensions des
images des homomorphismes

Yn - Vn(-é) - Vn—-l(A) ®K L'

En cas d’égalité, la fibre est forcément une intersection compleéte.
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