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Le caractère additif des déviations des anneaux locaux

Michel André

A un anneau commutatif, local et noethérien C, on associe classiquement des

nombres positifs en(C), appelés les déviations de l&apos;anneau. La première de ces

déviations (n 1) est simplement la dimension de plongement. Il est équivalent de

connaître les déviations ou les nombres de Betti de C. En fait la n-ème déviation
en(C) est la dimension d&apos;un espace vectoriel Vn(C) défini de manière fonctorielle.

Soit maintenant un homomorphisme local et plat A —» B, de fibre B et de

corps résiduels K et L. D&apos;après T. Gulliksen et L. Avramov, il existe alors une
suite exacte liant les espaces vectoriels

Vn(A)®KL, Vn(B), Vn(B).

D&apos;après L. Avramov, cette suite exacte se décompose en une infinité de suites

exactes à six termes. Il est conjecturé que la décomposition se fait avec des suites

exactes à trois termes, sauf une fois.

Conjecture. L&apos;égalité suivante est satisfaite:

pout tout entier n, au moins égal à 3.
J&apos;ai démontré que la conjecture est vraie lorsque les corps résiduels ont la

caractéristique 2. Je démontre ici que la conjecture est vraie sauf pour un nombre
fini d&apos;entiers n dépendant de la fibre seulement, sans hypothèse sur la

caractéristique. C&apos;est une lecture attentive du travail de L. Avramov qui m&apos;a

permis de démontrer ce résultat partiel. En outre j&apos;utilise deux résultats
fondamentaux dus à T. Gulliksen. La technique que j&apos;utilise est celle des adjonctions
de variables à la manière de J. Tate.

Les algèbres différentielles graduées seront toujours supposées munies de

puissances divisées. On ne fait pas cette supposition pour les algèbres graduées
considérées (qui sont des algèbres d&apos;homologie).
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I Variables spéciales. Avec une algèbre différentielle graduée Y considérons
une adjonction à la Tate d&apos;une variable S de degré pair k 2n

Z Y(S;dS=-s)

s étant un cycle de Y de degré impair lc-1. Onade manière plus explicite une
somme directe

Z £ YS(l)
13=0

l&apos;élément S(0 étant la i-ème puissance divisée de l&apos;élément S(1) égal à S. On
suppose être dans le &quot;cas local&quot;: il existe un anneau local A d&apos;idéal maximal M et
de corps résiduel K avec des isomorphismes

Y0 A et

l&apos;image de la différentielle en degré nul correspondant à l&apos;idéal maximal.

DÉFINITION 1. On dit que S est une variable spéciale et que s est un cycle
spécial, s&apos;il existe une dérivation de degré 1 — k

;:Y-&gt;y avec j(s) l.

Rappelons que par définition jd et dj sont égaux, que l&apos;égalité

a lieu si y est un élément de Yq et que l&apos;égalité

a lieu si z est un élément de degré pair non-nul.

LEMME 2. La propriété d&apos;être spécial ne dépend que de la classe d&apos;homologie

du cycle considéré.

Démonstration. Considérons un cycle spécial 5 de Y et démontrons qu&apos;un

cycle homologue est spécial
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On remarque que l&apos;élément l + d/(0 a un inverse c dans Yo et on considère la
dérivation suivante

On a alors les égalités suivantes

j&apos;(s&apos;) cj(s&apos;) cj(s + dt) c(j(s) + jd(t)) c(l + d/(f - 1

qui permettent de conclure.

EXEMPLE 3. Considérons une algèbre différentielle graduée X et
considérons une adjonction à la Tate d&apos;une variable R de degré impair k -1 et de

nature triviale

Y X(R;dR=0)

Alors s R est un cycle spécial de Y grâce à la dérivation

qui envoie a + bR sur b + OR Pour la suite on remarque que le carré de / est nul
et que le noyau de / vaut X.

LEMME 4. Pour la double adjonction suivante

Y X(R;dR 0) et Z

Vinclusion naturelle de X dans Z donne un isomorphisme en homologie.

Démonstration. Pour cela considérons Fhomomorphisme d&apos;algèbres différentielles

graduées

p:Z-»X

qui envoie l&apos;élément z de Z
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sur l&apos;élément a0 de X et considérons aussi la différentielle de degré +1

8.Z-+Z

qui envoie le même élément z de Z sur l&apos;élément

ô(z) (-l)degz £ btSilJhl\
13*0

On vérifie alors l&apos;égalité suivante

p - id dô + ôd

qui donne l&apos;isomorphisme naturel de H[X] et de H[Z].
Il s&apos;agit de vérifier maintenant que l&apos;exemple donné ci-dessus est générique (en

ce qui concerne les algèbres, mais pas en ce qui concerne les dérivations): voir la
proposition 6 ci-dessous pour un énoncé précis.

REMARQUE 5. La dérivation / de la Définition 1 peut toujours être remplacée
par une dérivation / de carré nul. On considère pour cela l&apos;application

qui envoie encore s sur 1 et qui est aussi une dérivation, de manière élémentaire.
La dérivation / est de carré nul, puisque /(/(y)), s est toujours nul.

PROPOSITION 6. Soit s un cycle spécial d&apos;une algèbre différentielle graduée
Y. Alors il existe une algèbre différentielle graduée X donnant lieu à un isomor-
phisme d&apos;algèbres différentielles graduées

qui envoie R sur s.

Démonstration. D&apos;après la remarque précédente, on a une dérivation / de Y
dont le carré est nul et qui envoie s sur 1. Le noyau X de / est une sous-algèbre
différentielle graduée de Y. Prolongeons l&apos;inclusion de X dans Y en un
homomorphisme d&apos;algèbres différentielles graduées

T:X&lt;JR;dK=0&gt;-&gt;Y
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qui envoie jR sur s. Il va s&apos;agir d&apos;un isomorphisme. Avec un élément y de Y, on
peut considérer deux éléments y ~j(y)s et /(y) de X. Considérons alors l&apos;application

&lt;r:Y-&gt;X(R;dR=0)

qui envoie y sur l&apos;élément suivant

Les applications a et t sont inverses l&apos;une de l&apos;autre; ce qui démontre la

proposition.

COROLLAIRE 7. Avec une adjonction à la Tate d&apos;une variable spéciale S de

degré pair k

Z=Y(S;dS s)

il existe un isomorphisme d&apos;algèbres graduées

où W est une variable de degré impair k -1.

Démonstration. L&apos;isomorphisme de la Proposition 6

donne un isomorphisme en homologie

où W a le degré k — 1 de la variable JR. Ensuite on remplace H[X] par H[Z]
comme le permet le Lemme 4.

Nous allons voir maintenant que l&apos;introduction d&apos;une variable spéciale peut
être retardée à volonté dans une procédure d&apos;adjonction de variables à la Tate.

REMARQUE 8. Les algèbres différentielles graduées
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sont isomorphes si les cycles t1 et t2 de Y (avec un degré quelconque) sont
homologues

On peut choisir un isomorphisme qui est l&apos;identité sur Y et qui envoie 7\ sur
T + À

PROPOSITION 9. Soit une double inclusion d&apos;algèbres différentielles graduées

^Z, la première étant due à Vadjonction d&apos;une variable spéciale S pour tuer
un cycle spécial s de Y et la seconde étant due à Vadjonction d&apos;une variable
quelconque T pour tuer un cycle quelconque t de U. Quitte à remplacer le cycle t par
un cycle homologue t\ on peut toujours supposer qu&apos;il s&apos;agit d&apos;un cycle non
seulement de U mais encore de Y. Alors on a une nouvelle inclusion double
d&apos;algèbres différentielles graduées Y&lt;= V&lt;=Z, la première étant due à l&apos;adjonction

d&apos;une variable T pour tuer le cycle t&apos; de Y et la seconde étant due à l&apos;adjonction

d&apos;une variable S&apos; pour tuer le cycle s&apos; s de V.

Démonstration. Grâce à la Proposition 6, on peut présenter Y de la manière
suivante

On utilise alors les applications de la démonstration du Lemme 4

p:U-+X et 8.U-+U

pour définir les éléments

t&apos; p(t)eX et k 8(t)eU.

On peut donc remplacer le cycle t de U par le cycle t&apos; de U pour décrire Z.
Maintenant s&apos; et tr sont deux cycles de Y, donc l&apos;adjonction des deux variables

peut se faire dans un ordre quelconque, ce qui constitue l&apos;énoncé de la proposition.

REMARQUE 10. Il est clair qu&apos;il existe une dérivation de V qui est nulle sur
X, qui envoie s&apos; sur 1 et qui envoie T sur 0. Par conséquent S&apos; est encore une
variable spéciale pour l&apos;inclusion de V dans Z. Par ailleurs si T est une variable
spéciale pour l&apos;inclusion de U dans Z, alors T est une variable spéciale pour
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l&apos;inclusion de Y dans V. En effet une dérivation

j:U-*U avec j(t)=l

donne une dérivation

j&apos;:Y-&gt;Y avec /&apos;(*&apos;) =1.

Pour cela on considère dans Yo l&apos;inverse c de l&apos;élément

l + dp/8(r)

et on utilise la définition suivante

j&apos;(a + bs) c[pj(a)~pj(b) - s]

pour a et &amp; quelconques dans X.

REMARQUE 11. D&apos;après le Corollaire 7, on a les isomorphismes suivants

(avec Wt W et s de même degré impair) pour Fhomologie des deux algèbres
différentielles graduées intermédiaires U et V de la Proposition 9.

Bien entendu, la, Proposition 9 et les remarques qui la complètent restent
vraies si on remplace T par une famille finie de variables se succédant. Il en va de

même avec une famille dénombrable de variables. Précisons cela sous la forme
d&apos;une nouvelle remarque.

REMARQUE 12. Soit une double inclusion d&apos;algèbres différentielles graduées

Yc 1/czZ, la première étant due à l&apos;adjonction d&apos;une variable spéciale S pour
tuer un cycle spécial s de Y et la seconde étant due à l&apos;adjonction d&apos;une infinité
de variables T, pour tuer une infinité de cycles *,. En fait on a une infinité
d&apos;inclusions

(où *, est un cycle de C/t_i) en commençant avec l/0=l/, la réunion des Ut
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donnant Z. On construit alors une infinité de nouvelles inclusions

(où t[ est un cycle de V^) en commençant avec V0=Y, la réunion des V,

donnant V. Voici cette construction décrite de manière précise.
On identifie une fois pour toutes Y à X+Xs. On commence alors la construction

avec les inclusions

X0 XcV0=Yc[/0=[/

qui sont liées par les égalités suivantes

V0 X0 + sX0 et U0=V0(S;dS s).

On a aussi l&apos;homomorphisme et la différentielle du Lemme 4

Po:Uo-*Xo et 80:U0-*U0

qui sont liés par l&apos;égalité suivante

p0 ~~ id dÔ0

On peut alors aborder le premier pas de la construction en définissant le cycle
suivant

et en constatant l&apos;égalité suivante

On a alors les inclusions suivantes

X1cV1cl/1

qui sont liées par les égalités suivantes

V1 Xl+X1s et ^ ¥^8-^8
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en posant les deux définitions suivantes

Ensuite on prolonge p0 en un homomorphisme

qui envoie l&apos;élément T\ sur lui-même (de même pour ses puissances divisées s&apos;il y
a lieu) et ô0 en une différentielle

qui envoie l&apos;élément T\ sur 0 (de même pour ses puissances divisées s&apos;il y a lieu).
On a finalement l&apos;égalité suivante

On peut alors aborder le deuxième pas de la construction. Etc. Cela étant, à la

limite, on a l&apos;inclusion suivante

qui donne lieu à une égalité attendue

Z=V(S;dS s).

On constate que s est encore un cycle spécial dans V grâce à l&apos;égalité suivante

avec O \JXl.

Les Remarques 10 et 11 sont évidemment encore valables.
En répétant l&apos;opération pour un nombre fini de variables spéciales on a

finalement le résultat suivant.

THÉORÈME 13. Soit Y a Z une inclusion d&apos;algèbres différentielles graduées
due à une adjonction à la Tate d&apos;une infinité dénombrable de variables Tt (i ^ 1)

tuant successivement des cycles t,. Distinguons n de ces variables dans un ordre
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quelconque

et supposons-les spéciales. Alors quitte à remplacer les cycles par des cycles
homologues et à modifier les variables en conséquence, il est possible d&apos;introduite

une algèbre différentielle graduée intermédiaire

YcVcZ

avec les propriétés suivantes. L&apos;inclusion de Y dans V est due à l&apos;adjonction de

toutes les variables Tt sauf les variables Sp sans en modifier Vordre. L&apos;inclusion de

V dans Z est due à l&apos;adjonction de toutes les variables S,, dans l&apos;ordre donné par j
croissant. En outre il existe un isomorphisme d&apos;algèbres graduées

où l&apos;élément W, a le même degré impair que l&apos;élément sJ égal à dSr

Démonstration. Bien entendu, on applique n fois la Remarque 12 dans des

circonstances variables pour voir apparaître successivement les situations
suivantes données de manière schématique

Tu T2,..., Tm,... sans exception;

Tl9..., Tm,... sauf Sn Tk(n); puis Sn;

Tu Tm,... sauf Sn, Sn-ù puis Sn-l9 Sn;

etc, les variables étant à modifier à chaque pas.

COROLLAIRE 14. L&apos;algèbre différentielle graduée intermédiaire V du
théorème précédent a une algèbre graduée d&apos;homologie H[V] qui a un n-produit
non-trivial et même un (n + \)-produit non-trivial si Z n&apos;est pas acyclique.

Démonstration. Ils&apos;agit de l&apos;élément

si Z est acyclique et de l&apos;élément a. w si a est un élément non nul de degré

strictement positif de H[Z].
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Bien entendu si les variables sont en nombre fini, le théorème et son corollaire
restent vrais.

Le Corollaire 14 est important pour la suite (voir le Corollaire 22 et la

Proposition 27). C&apos;est grâce à lui que la propriété de finitude s&apos;introduit dans les

considérations.

II Relèvements. Pour bien utiliser la technique des variables spéciales, la notion
suivante est fort utile.

DÉFINITION 15. Soit X une algèbre différentielle graduée. Alors un
relèvement est un homomorphisme

tt:X-»X
d&apos;algèbres différentielles graduées qui est surjectif et qui donne un isomorphisme
en homologie.

REMARQUE 16. Considérons un relèvement et une adjonction à la Tate d&apos;une

variable

&lt;ir:X^&gt;X et X(T;dT=t).

Alors le cycle t de X est l&apos;image d&apos;un cycle t de X, cycle qui est défini à un bord
près de X (appartenant au noyau de ir). On peut alors prolonger tt

Tr:X(î;dî=t)-*X(T;dT=t)

en envoyant la variable T sur la variable T. Il s&apos;agit encore d&apos;un relèvement. La
démonstration classique de l&apos;isomorphisme en homologie distingue le cas d&apos;une

variable de degré pair et le cas d&apos;une variable de degré impair.
Considérons une inclusion l/oc £/«&gt; d&apos;algèbres différentielles graduées due à

des adjonctions à la Tate d&apos;une infinité de variables T,

commençant avec l/0, aboutissant à (/œ, la réunion des {/„ avec un nombre fini de

variables en chaque degré et avec le degré de T, non-décroissant pour i croissant.

On désigne par U(n) l&apos;algèbre différentielle graduée que les éléments de Uo

et les variables de degrés au plus égaux à n engendrent dans !/«&gt;. C&apos;est le n-ème
squelette de l&apos;inclusion donnée
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h(n) étant le nombre des variables T, dont le degré est borné par n. Il n&apos;est pas
inutile de faire la remarque triviale que voici.

REMARQUE 17. Pour une variable T, de degré n +1 on a une inclusion
naturelle

avec les mêmes cycles de degré n, plus facilement homologues les uns aux autres à

droite qu&apos;à gauche. Il faut donc prendre garde au fait suivant. Si on remplace le

cycle tx par un cycle homologue dans Ux-X (et si on modifie la variable T, en
conséquence) *&gt;n risque le modifier de manière gênante la classe du cycle dans

U(n)

Il est donc important de savoir dans quel ordre les variables de degré fixé sont
utilisées.

Bien entendu la Remarque 16 peut s&apos;utiliser pour faire une construction par
induction qui démontre le résultat suivant.

LEMME 18. Un relèvement tto:Ûo-* Uo permet de relever une inclusion

Uocz Uoo donnée par des variables Tt en une inclusion ÛQ&lt;=- [/«, donnée par des

variables fx

Plus précisément, il existe des relèvements qui se prolongent les uns les autres

7T, : Ûx -&gt; Ut

avec la propriété d&apos;envoyer la variable fx sur la variable Tx.

Il est bon de faire une fois pour toutes les remarques suivantes. Un changement

de variables dans la description de LL produit un changement de variables

dans la description de Uœ. Par ailleurs on a des isomorphismes naturels
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qui donnent en particulier des isomorphismes concernant les squelettes

H[Û(n)]~H[U(n)l

Ce dernier isomorphisme, pris en degré n, met en correspondance tx et t, si on a

Avant d&apos;utiliser la technique des variables spéciales, il est nécessaire de

préciser le point suivant concernant les bas degrés.

REMARQUE 19. Toutes les algèbres différentielles graduées considérées sont
des anneaux (noethériens) en degré 0. Tous les homomorphismes considérés entre
elles sont des homomorphismes locaux en degré 0, c&apos;est en particulier le cas des

relèvements de la Définition 15. De plus les inclusions considérées Uo&lt;^ £/«, sont
supposées avoir suffisamment de variables de degré 1 pour que 1/(1) soit local
dans le sens strict: les bords de degré 0 de (7(1) forment l&apos;idéal maximal de

l&apos;anneau local du degré 0, autrement dit les éléments

T,€Ho[t/(O)] l^i^h(l)

engendrent l&apos;idéal maximal de cet anneau local.

REMARQUE 20. Avec les notations du Lemme 18, supposons que Tm est

une variable spéciale. Sans modifier les variables fl9 T2,..., Tm, mais en modifiant
les variables suivantes, on peut obtenir la présentation suivante de l&apos;inclusion

en utilisant les variables T, sauf Tm pour la première inclusion et pour la seconde

la variable Tm, avec en outre un isomorphisme

le degré de W égalant celui de Tm diminué d&apos;une unité. En général Tm n&apos;est pas

une variable spéciale. Par contre l&apos;homomorphisme naturel de CL sur Uœ permet
de redescendre les autres propriétés. On a donc le résultat suivant. S&apos;il existe un
relèvement de Uo qui permet de relever la variable Tm en une variable spéciale,
alors l&apos;inclusion de Uo dans [/«&gt; peut être présentée de la manière suivante. Les m

premières variables Tx ne sont pas modifiées, les suivantes le sont si nécessaire, de
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plus on a une double inclusion

la première est due à toutes les variables T, sauf Tm et la seconde est due à la
variable Tm. De plus on obtient un isomorphisme

la variable W ayant le même degré impair que le cycle tm.

On peut maintenant répéter l&apos;opération décrite ci-dessus pour la nouvelle
inclusion de Uo dans Ut en utilisant une autre variable Tm avec n&lt;m, pour être
sûr de la retrouver non-modifiée, et en utilisant un autre relèvement de Uo si cela
est nécessaire. Plus tard nous verrons pourquoi il est utile d&apos;utiliser des variables
non-modifiées (voir pour le moment la Remarque 17). La répétition de la
Remarque 20 démontre donc le théorème suivant.

THÉORÈME 21. Soir Y^Z une inclusion d&apos;algèbres différentielles graduées
due à une adjonction à la Tate d&apos;une infinité dénombrable de variables Tt (is*l)
tuant successivement des cycles t,. Distinguons n de ces variables dans un ordre
croissant

S, Tki]) fc(l)&lt;fc(2)&lt;-••&lt;*(*)

et supposons que chacune d&apos;elles peut être relevée en une variable spéciale grâce à

un relèvement bien choisi de Y, dépendant de j. Alors quitte à remplacer les cycles

par des cycles homologues et à modifier les variables en conséquence, il est possible
d&apos;introduire une algèbre différentielle graduée intermédiaire.

avec les propriétés suivantes. L&apos;inclusion de Y dans V est due à l&apos;adjonction de

toutes les variables Tt sauf les variables Sp sans en modifier l&apos;ordre. L&apos;inclusion de

V dans Z est due à l&apos;adjonction de toutes les variables S,, sans en modifier l&apos;ordre.

En outre il existe un isomorphisme d&apos;algèbres graduées

COROLLAIRE 22. L&apos;algèbre graduée H[V] a un n-produit non-trivial si Z
est acyclique et un (n + 1)-produit non-trivial si Z n&apos;est pas acyclique, sous les

hypothèses et avec les notations du théorème précédent.
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REMARQUE 23. Il faut bien remarquer que la démonstration du Théorème 21

se fait en traitant les variables S, l&apos;une après l&apos;autre dans l&apos;ordre suivant

Cela a la conséquence suivante. La variable S, n&apos;a pas besoin d&apos;être modifiée
avant d&apos;être retardée. Par conséquent on peut utiliser une hypothèse sur cette
variable S, égale à Tk(j) qui dépend explicitement de cette variable et non pas
seulement de la classe du cycle s, égal à tkij) dans l&apos;homologie de l&apos;algèbre

différentielle graduée que Y et Tt pour l^i^k(j)~l engendrent.
Considérons toujours une inclusion d&apos;algèbres différentielles graduées l/oc

I/o» due à des adjonctions à la Tate de variables Tr Soit K le corps résiduel de
l&apos;anneau local que Ton rencontre en degré nul.

DEFINITION 24. Une pression de degré n ^ 1 est un homomorphisme non
nul

À:Hn[LT(n)]-»K

qui peut être réalisé de la manière suivante. Il existe un relèvement Ûo de Uo et

une dérivation de degré —n

j:Û(n)-*Û(n)

dont l&apos;homomorphisme associé

k:Hn[Û(n)]-+HQ[Û(n)]

correspond à l&apos;homomorphisme considère À par les deux isomorphismes naturels

] et

Voir la Remarque 19 concernant le caractère local des algèbres différentielles
graduées utilisées.

Considérons maintenant pour chaque variable T, de degré n + 1 la classe

d&apos;homologie t, dans Hn[U(n)] du cycle t, égal à l&apos;élément dTt.

LEMME 25. Soit Tm une des variables de degré n +1 et soit A une pression de

degré n. Alors si r, est dans le noyau de À pour i&lt;met si rm n&apos;est pas dans le noyau
de À, la variable Tm peut être relevée en une variable spéciale dans un relèvement

bien choisi.
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Démonstration. Le relèvement bien choisi est évidemment celui de la
Définition 24. La pression À est réalisée grâce à une dérivation du n-ème
squelette du relèvement

On peut prolonger en une dérivation du type suivant

/:tfm-i^l/m-i.

En effet l&apos;hypothèse

A(rl) 0 pour h(n)&lt;i&lt;m.

signifie que / envoie tx égal à dft sur un bord du n-ème squelette. Il existe donc
des éléments /mt de degré 1 dans ÛMn) avec des égalités

j(tt) dfLt pour h(n) &lt;i&lt;m.

On prolonge alors j en envoyant la variable ft sur /ut,. Le fait d&apos;avoir À(Tm) non
nul démontre que / envoie tm sur un élément inversible de Ûh(n) de degré 0,
autrement dit sur un élément inversible de Ûm-i de degré 0. Quitte à multiplier /
par l&apos;inverse de cet élément, on a donc une dérivation de l/m_i qui envoie le cycle
tm sur 1 et le variable Tm est bien spéciale, d&apos;où la conclusion du lemme.

REMARQUE 26. Soient k pressions de degré n

Dénotons par At le noyau de la restriction de À, au sous-espace vectoriel de

Hn[l/(n)] que les éléments t, de degré n engendrent. Supposons avoir des
inclusions strictes dans le sens suivant

Quitte à faire un changement de variables concernant celles de degré n + 1, on
peut obtenir la situation suivante pour les variables de degré n +1 au nombre de

K (rh(nw î 0 pour

Al(Th(n)+J) 0 pour
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avec l^i^fc et 1^/^/ bien entendu. Mais alors on voit apparaître k variables
sujettes au Lemme 25. On peut donc les soumettre au Théorème 21, en modifiant
les variables de degrés supérieurs et sans modifier les variables de degrés
inférieurs (voir la Remarque 23). On a ainsi le résultat suivant qui sera utilisé plus
loin et qui définit les nombres sn.

PROPOSITION 27. Soit Y&lt;^Zune inclusion d&apos;algèbres différentielles graduées
due à une adjonction à la Tate d&apos;une infinité dénombrable de varaibles Tt tuant
successivement des cycles t,. Pour tout n impair, soit Qn le sous-espace vectoriel de

H[Y(n)] engendré par les classes de tous les cycles t, de degré n et soit Pn le

sous-espace vectoriel de Qn formé des éléments de Qn annulés par toutes les

pressions de degré n. Alors quitte à faire un changement de toutes les variables de

degré n +1, on peut avoir des variables de degré n +1 se relevant à tour de rôle en

une variable spéciale dans un relèvement bien choisi, en nombre suffisant pour
égaler au moins la codimension sn+1 de Pn dans Qn.

On peut utiliser la proposition pour plusieurs degrés en même temps et obtenir
ainsi le corollaire que voici.

COROLLAIRE 28. Soit Y&lt;^Z une inclusion d&apos;algèbres différentielles graduées
due à une adjonction à la Tate d&apos;une infinité dénombrable de variables Tr
Supposons qu&apos;il n&apos;existe pas de produits non-triviaux dem + 1 éléments dans toutes
les algèbres différentielles graduées &quot;intermédiaires&quot; entre Y et Z. Alors presque
toutes les codimensions sn sont nulles, avec une inégalité simple

Z sn ^ m.

Cette inégalité est même stricte

Iésn&lt;m

lorsque ou bien Z n&apos;est pas acyclique ou bien Z est acyclique avec une infinité de

squelettes qui ne sont pas acycliques.

Démonstration. Le Corollaire 22 et la Proposition 27 démontrent la finitude,
l&apos;inégalité simple et le premier cas de l&apos;inégalité stricte. On démontre alors le

second cas de l&apos;inégalité stricte en considérant non pas l&apos;inclusion de Y dans Z
mais l&apos;inclusion de Y dans Z(q) en soumettant q aux deux conditions suivantes:

en premier lieu sn est nul pour tout n dépassant q et en second lieu Z(q) n&apos;est pas

acyclique.
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DÉFINITION 29. Il reste à préciser la notion d&apos;algèbre différentielle graduée
intermédiaire. C&apos;est évidemment celle donnée par le Théorème 21. On a donc une
inclusion double à considérer dans la définition

En outre il doit exister une première famille de variables Rt qui décrit la première
inclusion et une seconde famille de variables S} qui décrit la seconde inclusion, ces

deux familles réunies redonnant la famile initiale de variables décrivant l&apos;inclusion

de Y dans Z, à un changement de variables près, comme toujours.

III Anneaus locaux. Soit C un anneau local noethérien d&apos;idéal maximal N et de

corps résiduel L. Il y a lieu de distinguer deux cas. Dans le cas dégénéré, l&apos;anneau

C est une intersection complète, dans le sens large, autrement dit son complété
est une intersection complète dans le sens strict; on dira simplement que dans le

cas dégénéré il s&apos;agit d&apos;une intersection complète et que dans le cas non-dégénéré
il ne s&apos;agit pas d&apos;une intersection complète.

Soit en outre Vn(C) l&apos;espace vectoriel des éléments indécomposables de degré
n de l&apos;algèbre graduée à puissances divisées Torc (L, L). La n-ème déviation
en(C) est la dimension de l&apos;espace vectoriel Vn(C). En particulier e^C) est égale
à la dimension de plongement de C, autrement dit au nombre minimal de

générateurs de l&apos;idéal N.
Soit maintenant G une résolution minimale de la C-algèbre L, résolution

minimale qui existe sous la forme d&apos;une algèbre différentielle graduée à la Tate
d&apos;après T. Gulliksen. Le passage de C à G se fait par l&apos;adjonction de variables Tr
II y en a exactement en(C) en degré n. On retrouve encore le nombre en(C) comme
dimension de l&apos;espace vectoriel sur L

G(q) désignant le q-ème squelette de la résolution minimale. Bien entendu
l&apos;anneau C détermine G(q) à un isomorphisme près.

Dans le cas dégénéré, le squelette G(2) est acyclique. Par conséquent les

variables Tt sont en nombre fini et n&apos;apparaissent qu&apos;en degrés 1 et 2. Dans le cas

non-dégénéré, d&apos;après T. Gulliksen, le nombre de déviations non-nulles est infini.
Par conséquent les variables T, forment une famille infinie denombrable et le

squelette G(q) n&apos;est jamais acyclique.
Par ailleurs tout cycle G de degré non-nul est un élément de NG. Considérons

en outre une algèbre différentielle graduée intermédiaire (voir Définition 29)

G(l)cVcG.
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Grâce aux relations liant les variables décrivant les trois inclusions, on a une
égalité

VCiNG NV.

Les éléments de N sont des bords dans G(l) déjà. Donc tout cycle de V de degré
non nul est homologue dans V à un cycle appartenant au produit W • V dans V,
avec W désignant la partie homogène de degré 1 de G(l), autrement dit de G
Comme G(l) est l&apos;algèbre extérieure du C-module libre W de rang ei(C), le
produit de £i(C) +1 éléments de W • V est toujours nul dans V. Par conséquent il
n&apos;existe pas de produit non-trivial à 8i(C) + l éléments dans H[V].

On peut donc appliquer le Corollaire 28 en utilisant l&apos;inclusion suivatte

Y=G(l)c:Z G

et aussi l&apos;entier suivant

m et(C).

On a donc besoin de la Définition 24, dans un cas particulier.

DÉFINITION 30. Une algèbre différentielle graduée T constituée d&apos;un

anneau local nœthérien Fo en degré nul, ayant une homologie nulle en chaque
degré positif et accompagnée d&apos;un isomorphisme d&apos;anneaux

est une couverture de l&apos;anneau local nœthérien G

REMARQUE 31. En présence d&apos;une couverture F de C, on peut relever les

variables T, décrivant une résolution minimale G de C en des variables T, et
obtenir à isomorphisme près un diagramme commutatif du type suivant

U(0) t(l&gt; \y(q)

G(0)c: G(l)c • • •

les homomorphismes d&apos;algèbres différentielles graduées y(q) donnant lieu à des

isomorphismes en homologie. A la limite, on remarque que les deux algèbres
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différentielles graduées

T(oo) u F(q) et G(oo) U G(q) G

sont acycliques et donnent le corps résiduel L de l&apos;anneau local C en
homologie de degré nul.

DEFINITION 32. Considérons le diagramme commutatif de la remarque
précédente et supposons avoir en outre une dérivation de degré -q impair

Il en découle un homomorphisme d&apos;espaces vectoriels

Hq[r(q)]-*H0[r(q)]

autrement dit un homomorphisme d&apos;espaces vectoriels

Un homomorphisme d&apos;espaces vectoriels

\:Hq[G(q)]-»L

pour lequel il existe une couverture F et une dérivation / permettant de retrouver
À sous la forme À / est appelé une pression de degré q de l&apos;anneau nœthérien
C

DÉFINITION 33. Avec l&apos;espace vectoriel Hq[G(q)] de dimension eq+i(C)
considérons le sous-espace vectoriel Pq formé des éléments annulés par toutes les

pressions de degré q. Soit sq+x(C) la codimension de Pq dans Hq[G(q)l On a alors

une nouvelle famille d&apos;entiers positifs ou nuls attachés à l&apos;anneau local nœthérien
considéré C

Cela étant, il est possible maintenant d&apos;exprimer simplement ce que donne le
Corollaire 28.

PROPOSITION 34. Pour un anneau local nœthérien C qui n&apos;est pas une
intersection complète, les nombres s2fc(C) sont presque tous nuls et Vinégalité
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suivante

Is2k(O&lt;e1(O

est toujours satisfaite.

REMARQUE 35. Dans le cas d&apos;une intersection complète, les trois nombres qui
peuvent ne pas être nuls apparaissent dans une double inégalité

Il n&apos;est pas exclu d&apos;avoir des égalités. On a par ailleurs le complément suivant.

REMARQUE 36. Un anneau local noethérien C donnant une égalité

est forcément une intersection complète artinienne. En effet on a non seulement

une intersection complète par la Proposition 34, mais encore un anneau artinien

par la Remarque 35, puisqu&apos;alors la différence entre e^C) et e2(C) est égale à la
dimension de Krull de C.

Avec C L[t]l(t2) on a un anneau apparaissant trois fois avec le nombre 1

dans le Remarque 35.

DÉFINITION 37. Une fibration &lt;p:A^&gt;B est un homomorphisme local et
plat entre deux anneaux locaux et noethériens. Les idéaux maximaux sont
respectivement M et N et les corps résiduels sont respectivement K et L. La fibre de

la fibration est l&apos;anneau local et noethérien B égal à B/MB d&apos;idéal maximal N
égal à NIMB et de corps résiduel L égal à L.

REMARQUE 38. D&apos;après T. Gulliksen et L.Avramov, à une fibration on peut
associer une suite exacte longue

Les deux homomorphismes an et /3n pour n^l sont dus aux deux carrés

commutatifs suivants

A-*B B-+B

K -* L L-»L.
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La définition de l&apos;homomorphisme yn pour n^2 est rappelée ci-dessous. D&apos;après

L. Avramov, l&apos;homomorphisme yn est toujours nul lorsque n est impair. En
général y2 n&apos;est pas nul pour une fibration, puisque la dimension de plongement
de B n&apos;est pas forcément égale à la somme des dimensions de plongement de A
et de B. D&apos;après M. André, l&apos;homomorphisme yn est nul lorsque n est pair,
différent de 2 dans le cas particulier où les corps résiduels ont la caractéristique 2.

On a donc la conjecture suivante.

CONJECTURE 39. Pour une fibration quelconque, l&apos;homomorphisme yn estnul

pour tout entier n ^ 2. Autrement dit la formule d&apos;addition suivante est

toujours valable

+ (Ë) si n^3.

On va démontrer que cette formule est presque toujours vraie, les entiers n pouvant

faire exception ne dépendant que de la fibre B. On démontre même un peu plus.

DÉFINITION 40. Le sous-espace vectoriel Wn(C) de l&apos;espace vectoriel

Vn(C) associé à un anneau local et noethérien C est formé de tous les éléments

annulés par les homomorphismes du type suivant

7n(&lt;p)° VnM : Vn(O -&gt; Vn_x(A) ®k L

dû à une fibration (p et à un isomorphisme (o

&lt;p:A-&gt;B et (o:C-+B

On considère alors la codimension wn(C) de Wn(C) dans Vn(C).

Dans la définition ci-dessus, on traite comme un tout, toutes les fibrations ayant
la même fibre à isomorphisme près. Bien entendu, on peut s&apos;intéresser à une seule

fibration à la fois.

REMARQUE 41. Pour une fibration &lt;p:A-*B de fibre B, la dimension de

l&apos;image de 7n

yn:Vn(B)-^Vn.1(A)®KL

est majorée non seulement par la déviation en-i{A), mais encore par le nombre

On va démontrer que les entiers sn(C) de la Définition 33 majorent les entiers

wn(C) de la Définition 40. La Proposition 34, la Remarque 35 et la Remarque
36 donnent alors le résultat suivant.
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THÉORÈME 42. Pour un anneau local noethérien C, les nombres w2fc(C) sont

presque tous nuls et Vinégalité suivante est toujouts satisfaite

En cas d&apos;égalité, Vanneau C est forcément une intersection complète artinienne.

Il est clair que le résultat demeure si on diminue encore les entiers w2k(C), par
exemple si on ne considère qu&apos;une seule fibration à la fois.

THÉORÈME 43. Soit (piA-^B un homomorphisme local et plat entre deux

anneaux locaux et noethériens. Alors il existe un nombre fini d&apos;entiers ne dépendant

que de la fibre B

n1&lt;n2&lt;- -&lt;nk

tels que V homomorphisme

est nul pour tous les entiers n différents des entiers nv De plus la somme des

dimensions des images des homomorphismes yn est majorée par la dimension de

plongement de la fibre B. En cas d&apos;égalité, la fibre B est forcément une intersection

complète artinienne.

Il reste donc à démontrer le lemme suivant.

LEMME 44. L&apos;inégalité wn(C)^sn(C) a lieu pour tout entier n et pour tout
anneau local et noethérien C.

Démonstration. Il suffit de considérer une fibration quelconque et de
démontrer que le noyau de l&apos;homomorphisme 7n correspond à l&apos;intersection des

noyaux d&apos;un certain nombre de pressions de la fibre de degré n -1. La notion de

pression est celle de la Définition 32. Ce résultat est démontré plus loin, une fois
rappelée la construction de l&apos;homomorphisme yn.

Considérons une fibration A -&gt; B de fibre B. Soit F&apos; une résolution minimale
de la A-algèbre K, décrite à l&apos;aide des variables S[. Soit G une résolution
minimale de la B-algèbre L, décrite à l&apos;aide des variables Tr Considérons alors le

produit tensoriel
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Par platitude il s&apos;agit d&apos;une résolution minimale de la B-algèbre B. On peut la
décrire à l&apos;aide des variables S, valant S;&lt;8&gt; 1. Avec F on a une couverture de B
dans le sens de la Définition 30, couverture dont la partie homogène de degré nul
est la suivante

Cela étant, on peut utiliser la Remarque 31 et en particulier relever pas-à-pas les

variables T, en des variables tr
Fixons maintenant un entier n. Les variables S[ de degré n — 1 sont à

distinguer

avec

et les variables T} de degré n aussi

avec

On a alors une égalité utile pour la suite.

REMARQUE 45. Avec les notations introduites ci-dessus, on a toujours une
égalité explicite

avec fc3ot dans B, la description explicite de p3 ne faisant intervenir que des

éléments de B, des variables S, en degrés au plus n-2 et des variables f} en
degrés au plus n^-1.

L&apos;espace vectoriel Hn-i[G(n -1)] a une base formée des classes d&apos;homologie

des cycles dF^ de G(n-l). L&apos;isomorphisme naturel

Hn-i[G(n-l)]sVn(JB)

transforme cette base en une base de Vn(B)

Y&amp; avec

On a de même une base utile de l&apos;espace vectoriel Vn_1(A)®KL

Xa avec
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REMARQUE 46. Avec les notations introduites ci-dessus l&apos;homo-

morphisme

est donné par l&apos;égalité suivante

où [fe] désigne la classe dans L de l&apos;élément b de B et où b^a provient de la

Remarque 45 décrivant dF&amp;.

Voici maintenant le lemme annoncé et utilisé dans la démonstration du
Lemme 44. Avec le lemme ci-dessous, les démonstrations des Théorèmes 42 et
43 donc achevées.

LEMME 47. Soit une fibration A-^B de fibre B et de corps résiduels K
et L. Soit G une résolution minimale de la É-algèbre L. Alors pour tout nombre

pair n^2, Visomorphisme

envoie le noyau de Vhomomorphisme

sur Vintersection des noyaux d&apos;un nombre fini de pressions bien choisies de B de

degré n — 1

Àa:Hn_x[G(n-l)]-+L.

Démonstration. D&apos;après T. Gulliksen, il existe une dérivation jfa de F&apos; de

degré 1 — n qui envoie la variable E^ sur 1 et les autres variables de degré au plus

n -1 sur 0. Par produit tensoriel on a donc une dérivation /a de F de degré 1 - n

avec la propriété suivante

ja(Ea&apos;)=l si a=a&apos; et 0 si a^a.

On prolonge cette dérivation ja de F en une dérivation de F(n -1) notée encore

ja et unique avec la propriété suivante

j) 0 si le degré de f) est au plus n — l.
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Donc ja envoie toutes les variables St et T; de degré au plus n -1 sur 0 sauf Ea
qui est envoyée sur 1. On peut alors constater que ja transforme l&apos;égalité de la
Remarque 45 (homogène de degré n -1) en une égalité nouvelle (homogène de
degré 0)

Par conséquent en passant à l&apos;homologie, la dérivation ja donne lieu à un
homomorphisme

qui envoie la classe du cycle dFp sur la classe du cycle b&amp;a. On a donc une
pression

qui envoie la classe du cycle dF3 sur l&apos;élément [b&amp;(X] de L. D&apos;après la Remarque
46, il est alors équivalent de connaître l&apos;homomorphisme yn ou de connaître la
famille des pressions ja. En particulier le noyau de y et l&apos;intersection des noyaux
des ja se correspondent par Fisomorphisme de l&apos;énoncé du lemme. Tous les
résultats énoncés sont donc démontrés maintenant.

REMARQUE 48. La dimension de plongement apparaît comme borne dans les
énoncés pour la seule raison suivante. On considère un anneau local et noethérien
C d&apos;idéal maximal N ainsi qu&apos;une résolution minimale G. Puis on applique le
Corollaire 28 à l&apos;inclusion suivante

Y=G(1)&lt;=Z G.

Il s&apos;agit alors de trouver un entier m avec la propriété suivante: le produit de
m + 1 éléments de H[V] de degrés strictement positifs est toujours nul, pour
toute algèbre différentielle graduée intermédiaire (voir la Définition 29)

G(l)cVcG.

La dimension de plongement de C est un tel entier m. Par ailleurs un cycle de V
de degré strictement positif appartient toujours à NG. Par conséquent le produit de

m +1 cycles de V de degrés strictement positifs est toujours nul si Nm+1 est nul.
On peut alors utiliser cet entier m à la place de la dimension de plongement..
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DÉFINITION 49. Le degré de nilpotence v(C) d&apos;un anneau local et artinien C
est le plus petit entier k donnant l&apos;égalité suivante

pour l&apos;idéal maximal N.

THÉORÈME 50. Pour un anneau local artinien C, l&apos;inégalité suivante est

toujours satisfaite

L&apos;inégalité est même stricte si C n&apos;est pas une intersection complète.

COROLLAIRE 51. La conjecture est vraie pour chaque fibration ayant sa fibre
avec un idéal maximal de carré nul

II est possible de diminuer la borne du Théorème 42 dans le sens suivant.

REMARQUE 52. Avec un anneau local et noethérien C, considérons la
différence entre sa dimension de plongement et sa profondeur

ex(C) -prof (C).

Dénotons par k(C) ce nombre positif ou nul. D&apos;après Auslander-Buchsbaum,
c&apos;est le plus grand entier m pour lequel le complexe de Koszul Y a de Fhomologie
non nulle

Hk[G(l)]^0 si fc K(C)et 0 si fc&gt;ic(C).

Il existe alors un quotient Y de Y qui a la même homologie que ce complexe de

Koszul et qui est nul pour les degrés inutiles

Yfc=0 si k&gt;K(C).

La double inclusion de la Remarque 48



Le caractère additif des déviations des anneaux locaux 675

donne alors une double inclusion par produit tensoriel

avec la même homologie pour les deux algèbres différentielles graduées
intermédiaires (voir la Définition 29)

V et y=V&lt;g)yY.

On s&apos;intéresse alors au produit de k(C) + 1 éléments de H[V] de degrés strictement

positifs et la même démonstration que celle rappelée dans la Remarque 48
démontre que ce produit est nul toujours. On peut donc utiliser la borne k(C)
dans la Proposition 34 et dans le Théorème 42.

THÉORÈME 53. Soit un homomorphisme local et plat entre deux anneaux
locaux et noethériens A et B. Alors la différence entre la dimension de plongement
de la fibre B et la profondeur de la fibre B majore la somme des dimensions des

images des homomorphismes

yn:Vn(B)-&gt;Vn^(A)®KL.

En cas d&apos;égalité, la fibre est forcément une intersection complète.
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