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Ueber das Spektrum des Laplace-Operators
auf kompakten Riemannschen Flichen

Heinz HUBER

1. Einleitung

Wir betrachten kompakte Riemannsche Flichen & vom Geschlecht g(F)=2,
versehen mit ihrer Poincaré-Metrik konstanter Kriimmung —1. Es sei A(t, %) die
Anzahl der Eigenwerte =<t des zugehorigen Laplace-Operators —Ag. Nach H.
Weyl gilt

Alt, F)|g(F)—1~t fur t— 4o

Wir interessieren uns fiir das Verhalten dieses Quotienten, wenn die Lange (%)
der kiirzesten geschlossenen Geoditischen auf & sehr gross wird. Wegen der
negativen Kriimmung ist es nicht selbstverstandlich, dass es Flichen mit beliebig
grosser Lange I(%) gibt. Solche Flachen kOnnen aber konstruiert werden als
Quotienten der Poincaréschen Halbebene nach gewissen arithmetisch definierten
nichteuklidischen Bewegungsgruppen [4]. P. Buser [1] hat sogar gezeigt, dass es
Fliachen mit beliebig vorgegebener Linge [(¥) und vorgeschriebenem Geschlecht
g(F)>exp (1/4) gibt.

In der vorliegenden Arbeit soll nun das folgende Theorem bewiesen werden:

Fiir jede Folge {%,}7 mit (%) — « gilt

0 fir 0t<j

33130A(t,97k)/g(3‘k)"1={p(t) fir t=}

l a(t)

ye
F(t =t—l———j

dy, a(t)=2m(t—3"

(Das Integral strebt fiir t — o gegen 72/12).
Wir werden sogar etwas mehr beweisen: Definieren wir fiir u >0, t=0

a(p, 1) =inf {A(t, F)/g(F) - 1| {(F) > u}

Qp, 1) = sup {A@t, F)Ig(F) - 1| (F)=pn},
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628 HEINZ HUBER

so gilt gleichmdssig in jedem kompakten Intervall

0 fir O<t<}

l- 7t = l. ’t ={
Jim alw 0=lim Q. 0=1r\) fir (>1

Dies folgt fiir das Intervall [0, 3] aus der Abschiitzung
AG, F)/g(F)—1=<3n*(log Cos l(F)/4)~>,

welche in [4] hergeleitet wurde.’ Der Beweis fiir das Intervall [, T] stiitzt sich
einerseits auf die Selbergsche Spurformel [5], andererseits aber auf das folgende

LEMMA. Fiir alle Flichen  mit [(F)=p >0 gilt

sI A\, Fle ™ dA s3(g(9’)—1){—:-+8in_2 u/4}, $>0.
0

Schliesslich mochte der Verfasser dankbar die Anregung erwiahnen, die ihm aus
dem Studium einer Arbeit von G. H. Hardy und J. E. Littlewood [2] erwachsen ist.
2. Beweis des Lemmas

1. Es sei (%)= w >0 und

A=0<A A=
die Folge aller Eigenwerte von —Ag, wobei jeder Eigenwert seiner Multiplizitit

entsprechend oft auftrete. Dann gilt fiir jede im Intervall [1, Cos /2] quadratisch
integrierbare Funktion f:

2w@-0[  roa-3 ([ fomoa) (1)

1 j=0

Dabei ist F, eine Legendre-Funktion:

FE.(t)=P,(1), v(rv+1)=—-A<0, t=1.

! Die hyperbolischen Funktionen werden im folgenden mit Cos, Sin, Tg bezeichnet.
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2. Beweis. Wir versehen den Einheitskreis E ={z € C||z| <1} mit der hyper-
bolischen Metrik

|dz|
1-|z|*

ds =2 (2)

welche die Krimmung —1 besitzt, und bezeichnen mit p(z, w) die hyperbolische
Distanz der Punkte z, w € E. Fithren wir geodatische Polarkoordinaten

p=p(z,0), 9 =argz
ein, so wird ds*= dp?+Sin? p dp>. Somit ist
dw = Sin p dp d§ (3)

das Flachenelement dieser Metrik.
Wegen g(%)=2 gibt es eine konforme Ueberlagerungsabbildung y:E — &,
welche den Nullpunkt in einen beliebig vorgegebenen Punkt g € & iiberfiihrt:

v(0)=q. (4)

Da jede Decktransformation von y eine Isometrie der Differentialgeometrie (2)
ist, konnen wir diese Geometrie mit y von E auf ¥ verpflanzen und erhalten so
die Poincaré-Metrik von %, i.e. die einzige Metrik konstanter Krimmung —1,
welche mit der konformen Struktur von & vertriglich ist. Wir bezeichnen ihr
Flichenelement mit dwg und ihren Laplaceoperator mit Ag.

Die Ueberlagerungsabbildung vy ist injektiv auf

K={z€E|p(z,0)0<p/2}
(Siehe z.B. [4] 3.2). Daher wird durch

h(y(z))=f(Cos p(z,0)), zeK
h=0 auf F—vy(K)

eine auf ganz % eindeutige Funktion h definiert. Wegen (3) wird

L h? dwg = J;(K) h? dog = J f*(Cos p(z, 0)) dw

K
Cos /2

w/2
=2 J f*(Cos p) Sin pdp = 217] f2(¢) dt. (5)
0 1 '
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Nun sei {¢;}; ein zur Eigenwertfolge {A;}; gehoriges orthonormalsystem reeller
Eigenfunktionen: Age; + A;; =0. Setzen wir

¢i(v(2))=DPi(p,9), p=p(z,0) IJ=argz,

so wird wegen (4) nach [4] 3.3

2
J D;(p, 9) d¥ =2me;(q)F, (Cos p).

0

Somit wird

[ heidos= [ hoydus = [ hix@)e(v() do
F v (K) K

w/2

=2me,(@)[ f(Cos p)F,,(Cos p) Sin p dp

0
Cos /2

= 2mp,-(q)j f(OF, (1) dt. (6)

1

Da das Orthonormalsystem {¢;} vollstindig ist, folgt aus (5), (6) nach der
Besselschen Gleichung

Cos w/2

- fm mfz(t) dt = ; ®7(q) ( L

- f(O)F, (1) dt) .

Das gilt fiir alle q € %. Daraus ergibt sich die Behauptung (1) durch Integration
iber &, wenn noch beriicksichtigt wird, dass nach dem Theorem von Gauss-

Bonnet

I dowg =4w(g(F)—1).
¥

3. Es sei jetzt 7=Sin"2 w/4, also 1+2/7<Cos w/2. Wir betrachten die Funk-
tion

E.(t) fir 1st<1+2/7

f(t)-—-{ :
0 fir 14+2/r<t<Cos /2
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Dann folgt aus (1)

2(g(F) - I)J;H%Ff(t) dt = i (LHZ/TF,(t)FM(t) dt)2

i=0

Y (LH%F,(t)FM(t) dt)z.

AsT

\

Nach [3] pag. 258-259 gilt
F,(t)zl—%(t—-l)zo in [1,1+2/7].

Daraus folgt nach [4] Lemma 4 pag. 221
F(t)=F,(t)=0 in [1,14+2/7] fir A<~

Somit wird

1+2/7

1+2/r
I F.(t)F, () dtBJ FX(t)dt fir A <7
1 1

und es ergibt sich aus (7)

1+2/r

2(8(F)-1)=A(r, "f)] F2(t) dt.
1

Aus (8) folgt aber

1+2/7r
j F2(t) dt zj
1

1

1+2/+ T 2
(z~§(t— 1)) dt =23t

Somit ergibt sich aus (9)
A(r, F)<3(g(F)-1r fir 7=b=Sin"? /4.

Daraus folgt nun fiir s >0:

£

e dr+3(g— 1)‘[ e " dr

b

b

IwA('r, Fle "dr<3(g— 1)b[
0 0
=3(g— 1)(?4—;15 e"”)SB(g— 1)(?+;1—2~).

Damit ist unser Lemma bewiesen.

631
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3. “Kleine” Hilfssatze

1. Das Polynom

P,(u)=u"(1—u)*= i (—1)"(:)u"”‘, n=1,

k=0

ist monoton wachsend in [0, 1] und fallend in [3, 1]. Das Polynom

3 u 3 n B y n un+k+1
Q"(“)“J:, P (v) dv—k};)( 2 (k>n+k+1

ist monoton wachsend in [0, 1] und es gilt

Qn(l) = Qn(u) + Qn(l - u),
also insbesondere

Q.3 = Q.(1)/2.
Q, (1) ist ein Eulersches Beta-Integral:
Q.()=Bn+1,n+1)=I'(n+1DHI'(n+1)/'2(n+1)).
Daraus folgt wegen

ren+1))=2""r(n+1)(n+3)/rQ)
Q,(1)=2""""I(n+DI'E)/T(n+3)=2"2""'B(n+1,3).

Nun ist

1

1 1
B(n+1,%)=J t"(1—¢)'? dt=2J' (1—u2)"du?2j (1-u)"du=2/n+1.
0 0

0

Dabher folgt aus (4) und (6)

1/Q,3)=2(n+1)2%"

(1)

2

3)

(4)

(5)

(6)

(7)
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2. Das Polynom

_ [ R Y A U T
Tn(u)“L Qn(v) dv/v_kgo( 1) (k)(n+k+1)2

wichst monoton in [0, 1] und es gilt

T.(w)=R,(w)—Q,(u)logu™*

R,(u)= IuPn(v) log v™! dv.

0

R, (u) ist wieder monoton wachsend in [0, 1]. Wir zeigen:
a,=R,(1)/Q,(1)log2—1 fir n-—>x

In der Tat: Fiir 0<n <} gilt

n 1
a,Q,()log2= J P,(v)logv~ ' dv+ J P, (v)log v~ dv
0 n

1

1
sn"(l—n)"I logv™! dv+logn”lj P,.(v) dv
0 n

<n"(1-7m)"+Q,(1)logn"
und somit wegen (4), (7)

a,<n"(1-1)"Q,.(1)log 2+log n '/log 2
<(n+1)@n(1—n))"log2+log n '/log 2.

Wegen 4n(1—n)<1 folgt daraus

lim sup a, <log n"'/log 2.

Daraus ergibt sich fiir n — 3:

lim sup o, =< 1.

n—»oo

633
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Andererseits gilt

(e, —1)Qn(1) log 2

172 1/2

1/2
=j P.(v)logv 'dv+ P,(v)log(1—v) 'dv—log 4-[ P,(v) dv
0 (0] 0

1/2
= j P,(v)log (4v(1—v)) ' dv
0

und daher «, > 1. Somit folgt aus (12) die Behauptung (11).
3. Wir definieren

cn(m) =R, (1)/Q,(n) log 2
und zeigen:

lim ¢c,(n)=1 fir 3<n<l1.

In der Tat: Wegen (11) und (3) gilt

cn(n) = a,Q,(1)/Q,(m) = a,,(1+ Q. (1 —m)/Q,(m))

Nun ist aber wegen 3<n <1 und (7)
0<Q,(1-1)/Q.(M)<"(1-1)"Q.@<(n+1)4n(1—n))".

Daraus und aus (11), (15) folgt aber die Behauptung (14).
4. Nun zeigen wir:

c,(m)<6/log2 fir 3<n<1, n=1.
In der Tat: Fir O<u<1 gilt

1
v"(1—-v)"dv= uJ' " '(1-v)"dv=uB(n,n+1)

0

u

Q,(u)= j

0

Somit ist wegen (8), (9)

R.(1) -—~j Qu(u) du/u<B(n, n+1).
(¢]

(13)

(14)

(15)

(16)
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Daher folgt aus (13) und (4), (5)

¢(M)<B(n,n+1)/Q,(3)log2=2B(n,n+1)/B(n+1,n+1)log?2

1
= 2(2+—};)/log 2=<6/log 2.

5. Wir definieren

1 a(t) —y
J ye dy, a(t)=2mw(t—H"?

T
F=1-2 )y 1+e™

und zeigen

(t—1/4)1/2 r2 +%
wj dr =tTgm(t—3)'? - F(t)

b Cos? nr
r" r’+31 p 1
r:
b Cos” nr 3

e -y
0

Beweis. Setzen wir

p
J(p)= J x? dx/Cos? x,
0

so wird
(t—1/4)1/2 2,1
ret+g 1
‘”J = dr=— J(w(t—5") +4Tegn(t—H"~.
o Cos*® mrr T

Aus (21) ergibt sich durch zweimalige partielle Integration
I
J(p)=p*Tgp—2p log Cos p + ZJ log Cos x dx.
0

Wegen

2logCos x =2x—2log2+2log(1+e>)

635
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636 HEINZ HUBER

wird

] 2p
ZJ log Cos x dx = p*—2p 10g2+J log (1+e7) dy. (25

0 0

Aus (23)—(25) ergibt sich

2

o
J(p)=p>*Tgp—p>—2plog(1+e %)+ j log (1+e7) dy.

0

Daraus folgt durch partielle Integration:

2p

-y
— R - 2+J ye .
J(p)=p“Tgp—p | Tre dy (26)

Nun folgt die Behauptung (18) aus (22) und (26). Daraus ergibt sich ferner

oo 2 1 -] —
re+g 1 j ye ¥ .
dr=—; dy+3
ﬂJ:) Cos? nr ), 1+e™ yTa

Nun ist aber

o]

I -3 (—Dkrye“"‘“” dy=3
o 1+e™” k=0 0 K=o (k+1)° .

Somit sind auch (19) und (20) bewiesen.

4. “Grosse” Hilfssitze
SATZ 1. Es sei
1 0<n<l, E=¢(r)=exp (=@ +Pt " logm ™).

t=2

Dann gilt fiir alle Flichen & mit I(¥)=u >0:

& # -1 [ Altlogo™log n™!, PIP,(v) do

= m_l J T.(¢) Cos™? mrdr+Q,(3)G,
logm™ J
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mit

Qa 23n

|Gn|$;;2';"'2m, (a =160).

Beweis. Der Beweis stiitzt sich auf die Selbergsche Spurformel (3.2) in [5].
Wahlt man in jener Formel

h(r)=exp (—sr?), s>0,

so ergibt sich fir s>0:

2e* Y e's"k=%7—r(g(9*)—l)‘( e " Cos 2 rdr+ D(s)/27?s'? (1)
k=0 0
mit
D(s)= Y. Y I Sin~" (kl/2) exp (—k>1?/4s). (2)
i=1k=1

Dabei sind die [; die Langen der primitiven geschlossenen Geoditischen auf %.
Wegen [, = l(F)= p wird

exp (—k?12/4s)<exp (—u?/8s) exp (—k?17/8s), k=1, s>0.
Daher folgt aus (2)
D(s)<exp (—n?/8s)D(2s), s>0. (3)

Wegen

Y e N=gs I A, Fe ™ dA
k=0

0

konnen wir die Spurformel (1) in der folgenden Gestalt schreiben:

J.wexp (—(r*+3)s) Cos™2 @wrdr+ E(s) (4)

)

(g(F) -1 JmA()\, Fe M dA = =

0 s

E(s)=s3?e*D(s)/4m*(g—1). (5)
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Daraus folgt zunachst
0<E(s)<(g—1)7! LwA (A)e ™ da
und somit nach unserem Lemma:
Bo<>(b+1),  b=Sin?u/a,
Daraus folgt nach (5):
D(s)/4n'*(g—1)< 3sl"2(b +-Sl-)es’4
Somit folgt aus (3)
D(s)/4mw"*(g—1)<3V2 sl’z(b +—2};)e”2 exp (—pn?/8s).

Daher ergibt sich wieder aus (5):

s

.2
2s)exP( 1.°/8s).

E(s)<3V2 s"‘e"“(b +

Nun ist aber

___1__ - __}_ .2 — -1, -2
(b+28)exp( u/8s)€b+hs/[>aoxzsexp( n’/8s)=b+4e

2
:(16( ui4 ) +4e“1)u’2$(16+4e"‘)u“2.

Sin w/4

Somit folgt aus (6):

E(s)< 2;2 e, (a=160).

(6)

(7
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Aus (4) und 3.(1), 3.(8) ergibt sich

@17 [ AP et ar= T (g0 [ awe e an

= zn: (—1)"(:)<(n " k: T I exp (—(r*+3(n+k+1)s) Cos™ > nwrdr
k=0 0
+E((n+k+ 1)s))

= sz' J:Tn(exp (~(r?+1)s) Cos2 rdr+ Y. (—1)k(Z)E((n +k+1)s).

k=0

S

Machen wir im ersten Integral die Variabelnsubstitution v =e ™, so ergibt sich

(g— 1)"J A(s 'log v HP,(v) dv
0

=T [ " Tutexp (-7 +Ds) Cos 2 mrdr + Q,B)G, ®

S Jo

mit
o n
G, =s0Q;'}) ). (-—1)"(k>E((n+k+1)s).
k=0

Wegen 3.(7) und E >0 folgt daraus

n

|G| <2s(n+1)2>" ). (Z)E((n +k+1)s). (9)

k=0

Nach (7) gilt aber

a (n+k+1)s/4 «a (2n+1)s/4
+k+1)s)< L S :
E((n+k-+1)s) 2(n+k+1)su? ¢ 2(n+1)sp? ¢

Somit folgt aus (9)
a 2n+1)s/4
|G, |<— P, (n . (10)
n

Nun folgt Satz 1 aus (8) und (10) fiir

s=t"'logn 's4logn.
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SATZ 2. Fiir i<n <1, t=1 gilt

i * Tn(&) -2
logn“lL Q.(m) O T
< F(0)+S(n, 0+ tep(n) = 1)+ (n + Ddm(1—m))".
og 7

Dabei ist S(m, t) stetig in [3,3]X[3, ©) und SG, t) =0 fiir t=1%.
Beweis. Wegen &£(r) =exp (—(r*+3Ht 'log n™?) ist nach 3.(9)

T.(6)=R,()— Q.()(r*+3)t ' log ™"

Somit wird

1

T8 . -1 -
———Cos “awrdt=1,—I,t " logn
L Qu(m) P

mit

L [ R,(§) dr =J +J =B, +B,.
! Jo Q.(m) Cos® oir E(r)<i-m “E(r)=1-m

I = (" Qu(8) r't3 dr?j r
2 ), Q.(n) Cos® ar e (ry=m COS® 7T

r2+% B ‘[(t——1/4)1/2 r2+%
s Cos? nr

d

Im Integral B, wird

R.(& R,(1-m) n"(1-m) (1 . (=)
< < dp = ———2

Q. Q.(n) Q.3 L“’g” "7 0.0
<2(n+1)(@4n(1—-n)"

(siehe 3.(10) und 3.(7)). Daraus ergibt sich

B;<2(n+1)(4n(1- 1rp))"J.mCos”2 ardr= ;2,_- (n+1D)@n(1-—m)".

0
Im Integral B, wird

R, (§) <R
Q.(n) Q.(m)

=cn(n) log 2,

o

(11)

(12)

(13)

(14)
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(siehe 3.(13)). Somit wird

B,<c,(n)log 2[ Cos 2 7rr dr = c,(n) log ZI Cos 2 mrdr
£(r)=1-n 0
log 2
= =25 ¢, (n) Tgmw (15)
1 1 == -1 1/2
wz(ogl’( I'l) t—%) > (-2, (16)
ogm

Aus (11)-(15) ergibt sich nun wegen 3.(18)

rt r T.(§) 3
— Cos™ “ qrrdr
lOg n ! 0 Qn(n)
log 2 \ J‘“‘mm r’+3 2t
< tTgmw — dr+ + — )"
- Ca(m)tTgmw — X Coszar & Tog 1" (n+1)(4n(1—-n))
2t
=F(t)+td + — (n+1)E4n(1—n))" a7
log m
mit
log 2
d=—F ¢ (m)Tgmw - Tgm(t -1
log
log 2 log 2 .
“logn ¢, ()(Tgmw — Tgm(t —3)'%) + (log e ca(m)—1 |Tgm(t —3)"?
log 2 log 2
Slog e c.(n)(Tgmw — Tgm(t—3)"?) + (log e 1)c,(m)+c.(n)—1.
Somit wird wegen 3.(16)
6 6 log 2
< Tgmw — Tgm(t—2)"?) + ( —1)+ —-1.
d lO{M_l( gmw — Tgm(t—2)"") log 2 Vog 1 (M) (18)

Definieren wir jetzt

6t gz , Bt ( log 2 )
2= = — + -
S(n, t) T (Tgaw—Tgm(t—3)"°) Tog 2 Uog n-1 1),
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so folgt aus (17) und (18)

mwt

logn™

< F(0) +S(n, 0+ tley(m)~ 1)+ — 2t

r T.(§)
! 0 Qn(n)

Cos 2 qrdr

HEINZ HUBER

=1

(n+1)(4n(1—m))".

Wegen (16) ist S(n, t) in der Tat stetig in [3, 3] X[4, «) und es gilt S, t) = 0. Damit
ist Satz 2 bewiesen.

SATZ 3. Zud>2% werde ny<(0,3) so gewdbhlt, dass

log (1—

n)!

log

et
n

—%>0 V"le[no’ _12_]

Dann gilt fiir n € (ng,3) und t=8:

F(t)s o at j‘“’

Dabei ist R(n, t) stetig in [no,3]1%[8,©) und R(3,t)=0 fiir t=6.
Beweis. Wegen &(r) =exp (—(r*+3)t ' log n ") ist nach 3.(9)

J"” T.(9)

mit

T.(§)

Q.(1- n)

= R,
I= Ioa D

I r’ Q. (&)

b Q.(1—m) Cos? nrr

Q. (

os >ardr=1,

ln)

os~ 2 qrrdr

2

r’+3

Aus (20) ergibt sich

Ilzj
€

(r)=1—m Qn(l - 'ﬂ)

R, (&)

_ (IOg(1~11)“1 )

logm™

1/2 1
)"

Cos™

2 qrdr=

s~ 2 ardr+R(n, t) +i(n+ 1D@n(1—9)".

og(1-n)™!

- Izt—l log n

|

dr = I + J. = Bl + B2.
E(r)<n £&(r)=n

Rn(l—n)
Q (1"’11) E(r)=1—n
_1R(1-m)

Tgnw

'er(l n)

log n

-1

& —

1
4

172
)"0

Cos™

ardr

(19)

(20)

(21)

(22)

(23)
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Nun ist aber

1- 1—

P,(v)logv 'dv=log(1-— n)“j P,(v) dv

0

Rn(l-n)=I

0

=Q,(1-m)log(1—m)™*

Somit folgt aus (22)

R |
zlog (1-m)
™

I Tgmw.

Im Integral B, ist

Q. (&) an(n)s'n"(Pn)"
Q.1-n) Q.G 20Q.3

s(n+1)En(1-n)"

Daher wird

dr

B,<(n+1)(4n(1 »"j rts
1= f 1 E(r)<m COSz wr

dr

(t___l/4)l/2 C:OS2 1 r

Im Integral B, ist wegen 3.(3)

QO _ Q) _
Qn(l—n)\Qn(l—n) 1+

Q.(n) Q.(n)

Q.1-n) Q.3
Somit wird

(t—1/4)12 r2 +1

B,<(1+(n+)@dn(1—m)") L e

Aus (21), (25) und (26) ergibt sich wegen 3.(19):

(t--1/4)12 r2 +% 1
< Y3 gt (n+ D@En(1—n))"
bl g dres (e Ddn(—m)

<l+——r<1+(n+D@n1-n)"

643

(24)

(25)

(26)

27
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Aus (19), (24) und (27) ergibt sich wegen 3.(18):

mt [T T.(&) -
Cos™“ mrrdr
logn”«[) Q.(1—m)
log (1—-7)" I"_”‘”m r’+3 X
> T - —in+ —m))"
log 7! tTgmw ™) Coszmdr 3(n+1)(4n(1—m))
=F(t)—R(n, t)—3(n+1)(dn(1—n))" (28)

mit

log(1—-m)7!
R(m, t)= t(Tg'n'(t D2 Ogl(ig njll) Tgww).

Wegen (23) ist R(m, t) stetig in [, 3]%[8, ©) und es gilt RG,t)=0 fiir t=6.
Daher ist mit (28) Satz 3 bewiesen.

S. Beweis des Theorems
1. Wir zeigen: Zu £ >0, T>] gibt es ein u,(g, T)>0 derart, dass
Alt, F)g(F)—1<F(t)+e¢

sobald I(¥)>u, und te[3, T].

2. Beweis. Es sei

(F)=pn>0, <<, t=1 (1)

Wegen

L A(t log v~ /log 1Y) P, (v) dv > j "> A®) j "Pa(v) dv = A(H)Qu(n)

0 0

folgt aus Satz 1:

Trt * T,.(&) _ a 23"
Alt)/g—1< — J Cos 27Trdr+—-*——::-.
(t)/g logn™Jy Q.(m) p?n?ntt
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Somnit folgt aus Satz 2:

A(t)/g—1<F()+S(n, )+ t(c,(n)— 1)+ logz:f‘ (n+1)@n(1—7)"
23n
+'5_2?}1+—1 : (2)

S(m, t) ist gleichmissig stetig in [3,2]X[4, T] und S@, t)=0. Daher kdnnen wir
n=mn(e, T)e(3,3) so wihlen, dass S(n, t)<e/3Vte[% T]. Dann folgt aus (2) fiir
tels, T]:

2T a 2°"
= (n+DEn(1-)"+—= =553
1 “2 7,,2 1

A)/g—1<F(t)+¢&/3+T(c,(m)—1)+
log n

Wegen 4m(1—n)<1 und 3.(14) kénnen wir alsdann n = n(n, T, £) so wahlen, dass

2T_, (n+DEn(1-m))"<e/3
log n

T(c.(n)—-1)+

und haben nun

23n
A(t, F)/g(F)— 1 <F(t)+2¢/3 +%;m

sobald I(%¥)=pu und te[3, T]. Damit ist 1. bewiesen.
3. Jetzt zeigen wir: Zu £ >0, T>} gibt es ein u,(e, T)>0 derart, dass

Fi<A(t, F)/g(F)—1+e 3)

soblad I(%)>u, und te[3, T].

4. Beweis. Wegen F(3) =0 konnen wir zunichst § = 8(g)>] so wihlen, dass
F(t)<e Vtel[}, 8].
Dann gilt die Ungleichung (3) fiir t €[5, 8] und alle Flichen %. Es sei nun

(F)=u>4, t=6. 4)
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no€ (0, 3) werde so gewihlt, dass

log(1—m)!
g 8420 Vaelno 4] (5)

Fiir m € (no,2) gilt

1
J. A(tlog v log n YHP,(v) dv
0

n 1 1 1
= I + J =n"(1- n)"L A(tlogv logm™) dv +A(t)j P, (v) dv. (6)

0

Nach 3.(3) ist aber f; P,(v) dv=0Q,(1—mn) und aus unserem Lemma ergibt sich

1 e =]
I A(tlogv logn™ ) dv=t""log n‘lj A exp(—At 'log ™) dA
0 0

<3(g— 1)(10g tn_l +Sin2 u/4)

t
<3(g— 1)(log n_ﬁ—l).

Sommit folgt aus (6):

1
Q. '(1—-m)(g— 1)“I A(tlogv'/logn YHP,(v) dv
0

_ t n"(1-n)" A1)
\3(log n”lﬂ) Q.(1—m) +g~l

A

t n_ Z°\
sé(log n"1+ 1)(n +1)(4n(1—-mn)) +g 1’

(wegen Q,(1—m)=Q,(3) und 3.(7)). Daher folgt aus Satz 1:

Tt > Tn(g) -2
Cos™“ qmrrdr=
log n“‘J; Q.(1-7)

Alt) t n
e—1 + 6(10g e + 1)(n +1)4n(1—mn))
a 23n

+‘_“-5 n2n+1
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Somit folgt aus Satz 3:

o 23n

A1) 6t
F(t)<—-——+R(n, t)+(7+l‘—g%—j)(n+l)(4n(1—n))"+;§?ﬁf (7)

R(m, t) ist gleichmissig stegig in [ng, 3]1%X[8, T] und R, t) =0. Daher kdnnen wir
n=n(e, T) € (no, 3) so wihlen, dass

R(m, t)<eg/3 Yte[d, T
Dann folgt aus (7) fir t€[8, T]:

a 23n

A(D) 6T ) n, &
+8/3+(7+""—*-'10gn (n+Dldn(-m) +5 .

Ft)<
0=

Wegen 4m(1—m)<1 koénnen wir endlich n =n(n, T, €) so wihlen, dass der dritte
Term kleiner als ¢/3 ausfillt und haben dann

3n
Fiy<A(t, F)/g(F)— 1+28/3+u~ ;'-25;;;

sobald I(¥)=u >4 und t€[§, T]. Damit ist 3. bewiesen und folglich auch unser
Theorem.
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