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Ueber das Spektrum des Laplace-Operators
auf kompakten Riemannschen Flàchen

Heinz Huber

1. Einleitung

Wir betrachten kompakte Riemannsche Flachen 9 vom Geschlecht g(9) ^ 2,
versehen mit ihrer Poincaré-Metrik konstanter Krûmmung -1. Es sei A(t, 9) die
Anzahl der Eigenwerte =^f des zugehôrigen Laplace-Operators — A9. Nach H.
Weyl gilt

Ait, 9)1g(9)-l~t fur t~+ 4-00.

Wir interessieren uns fur das Verhalten dièses Quotienten, wenn die Lange 1(9)
der kûrzesten geschlossenen Geodâtischen auf 9 sehr gross wird. Wegen der
negativen Kriimmung ist es nicht selbstverstândlich, dass es Flachen mit beliebig
grosser Lange 1(9) gibt. Solche Flachen kônnen aber konstruiert werden als

Quotienten der Poincaréschen Halbebene nach gewissen arithmetisch definierten
nichteuklidischen Bewegungsgruppen [4]. P. Buser [1] hat sogar gezeigt, dass es

Flâchen mit beliebig vorgegebener Lange 1(9) und vorgeschriebenem Geschlecht
g(3P)&gt;exp(I2/4) gibt.

In der vorliegenden Arbeit soll nun das folgende Theorem bewiesen werden:
Fur jede Folge {9k}~ mit l(9k)-*&lt;*&gt; gilt

limA(t,9k)/g(9k)-l {l(t) J*

(Das Intégral strebt fur t -» oo gegen tt2/12).
Wir werden sogar etwas mehr beweisen: Definieren wir fur jul&gt;0,

t) inf {A(t, 9)1g(9) -111(9) ^ jul}

r) sup{A(l, 9)lg(9)~\ 11(9)2* il),

627



628 HEINZ HUBER

so gilt gleichmâssig in jedem kompakten Intervall

hm q(fx, t) lim O(/ll, t) \ t^^oo ^-?oo lF{t) fur r&gt;^.

Dies folgt fur das Intervall [0, |] aus der Abschâtzung

&apos;os i(^)/4)~3,

welche in [4] hergeleitet wurde.(1) Der Beweis fur das Intervall Q, T] stiitzt sich
einerseits auf die Selbergschç Spurformel [5], andererseits aber auf das folgende

LEMMA. Fur aile Flâchen &amp; mit f(^)^M&apos;&gt;0 gilt

s&gt;0.

Schliesslich môchte der Verfasser dankbar die Anregung erwâhnen, die ihm aus
dem Studium einer Arbeit von G. H. Hardy und J. E. Littlewood [2] erwachsen ist.

2. Beweis des Lemmas

1. Es sei I(^)^jx&gt;0 und

die Folge aller Eigenwerte von —A9y wobei jeder Eigenwert seiner Multiplizitàt
entsprechend oft auftrete. Dann gilt fur jede im Intervall [1, Cos ja/2] quadratisch
integrierbare Funktion /:

2(g(f)-1) fit) * I f(t)FKi(t) dt) (1)
h j=o ^h i

Dabei ist FK eine Legendre-Funktion:

1 Die hyperbolischen Funktionen werden im folgenden mit Cos, Sin, Tg bezeichnet.
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2. Beweis. Wir versehen den Einheitskreis E {z e C | \z\ &lt; 1} mit der hyper-
bolischen Metrik

welche die Krummung -1 besitzt, und bezeichnen mit p(z, w) die hyperbolische
Distanz der Punkte z,weE. Fùhren wir geodàtische Polarkoordinaten

p p(z, 0), # arg z

ein, so wird ds2 dp2+ Sin2 pdp2. Somit ist

d&lt;o Sin p dp diï (3)

das Flâchenelement dieser Metrik.
Wegen g(9) ^ 2 gibt es eine konforme Ueberlagerungsabbildung y : E -» ^,

welche den Nullpunkt in einen beliebig vorgegebenen Punkt qe!F uberfûhrt:

7(0) q. (4)

Da jede Decktransformation von y eine Isometrie der Diflferentialgeometrie (2)

ist, kônnen wir dièse Géométrie mit y von E auf 9 verpflanzen und erhalten so

die Poincaré-Metrik von 9, i.e. die einzige Metrik konstanter Krummung — 1,

welche mit der konformen Struktur von 9 vertrâglich ist. Wir bezeichnen ihr
Flâchenelement mit da)&amp; und ihren Laplaceoperator mit A9.

Die Ueberlagerungsabbildung y ist injektiv auf

K {zeE\p(z,0)&lt;iil2}

(Siehe z.B. [4] 3.2). Daher wird durch

p(z,0)), zeK
h=Q auf SF-y(K)

eine auf ganz 9 eindeutige Funktion h definiert. Wegen (3) wird

f h2 do)*? f h2do&gt;&amp;=\ /2(Cos p(z, 0)) da&gt;

/»Cosm,/2

J fi.t)dt. (5)
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Nun sei {&lt;p,}o ein zur Eigenwertfolge {Ajo gehôriges orthonormalsystem reeller
Eigenfunktionen: A^+kfà 0. Setzen wir

&lt;Pj(y(z)) #,(p&gt; #), p p(z,O) # argz,

so wird wegen (4) nach [4] 3.3

J &lt;P, (p, ti) dû 2™p, (q)FKi (Cos p).

Somit wird

JtKpjdcùg,— I hipjdù)^^ I h(y(z))(pj(y(z)) do)
3F Jv(K) Jk

Çm/2

27T9,(q) J /(Cos p)FXj(Cos p) Sin p dp

/•C0SM-/2

2TT&lt;Pj(q) f(t)Fki(t) dt. (6)

Da das Orthonormalsystem {&lt;pj vollstândig ist, folgt aus (5), (6) nach der
Besselschen Gleichung

I |»Cosjjl/2 00 / çCostx/2 \2
— f(t) dt X &lt;pf(q) /(0Fx,(t) df

Das gilt fur aile qe^. Daraus ergibt sich die Behauptung (1) durch Intégration
ûber 3F, wenn noch berûcksichtigt wird, dass nach dem Theorem von Gauss-
Bonnet

f

3. Es sei jetzt T^Sin&quot;2 jul/4, also 1 +2/t^Cos /ul/2. Wir betrachten die Funk-
tion

Fr(t) fÛr

O fur
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Dann folgt aus (1)

•1+2/t oo / f 1+2/t
J&apos;1+2/t

oo / ç 1+2/t \ 2

Fl(t)dt=Z\\ FT(t)Fkl(t) dt)
1 j-=O \Jl /

s*I (J FT(OFXi(r)drj. (7)

Nach [3] pag. 258-259 gilt

FT(t)^ l-^(f-l)2*0 in [1, 1 + 2/t]. (8)

Daraus folgt nach [4] Lemma 4 pag. 221

Fx(t)^FT(r)^0 in [1, 1 + 2/t] fur A=^t.

Somit wird

Ç 1+2/t /• 1+2/t
J FT(OFX](t)dr^J f?(r)A fur A,^t

und es ergibt sich aus (7)

1+2/t
(9)

/•1+2/t

Jl

Aus (8) folgt aber

/•1+2/t Ç 1+2/t / t \2

Jt
T ^^12 /

Somit ergibt sich aus (9)

A(t, ^)^3(g(^)-l)T fur T^fe Sin

Daraus folgt nun fur s&gt;0:

/•oo /»b

Jo Jo

2/3.

&quot;V4.

3(g-l) re~srdr
h

Damit ist unser Lemma bewiesen.
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3. &quot;Heine&quot; HUfssàtze

1. Das Polynom

PB(u) u&quot;(l-u)&quot; ï (-l)fc(&quot;V+k, n&amp;l, (1)

ist monoton wachsend in [0,5] und fallend in [|, 1]. Das Polynom

Qn{u)= Pn(«)dt&gt;=i(-l)k( (2)
Jo k =0 \fc / n + fc +1

ist monoton wachsend in [0,1] und es gilt

l-K), (3)

also insbesondere

Q»© Q»(l)/2. (4)

Qn(l) ist ein Eulersches Beta-Integral:

Qn(l) B(n +1, n +1) T(n + l)r(n + l)/r(2(n +1)). (5)

Daraus folgt wegen

r(2(n + D) 22&quot;+1r(n + l)r(n
On(l) 2~2&quot;-lr(n + l)r(|)/r(n +|) 2-2n-xB(n +1, |). (6)

Nun ist

B(n + l,|)= f (&quot;(1 - tTm dt 2 f (l-u2)ndu^2Ï (l-u)n du 2/n

Daher folgt aus (4) und (6)

(7)
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2. Das Polynom

wàchst monoton in [0,1] und es gilt

anOn(l)log2= I Pn(v)\ogv-1dv+\ Pn(v)logi;&quot;1 dv

^T]n(l-T))n logU&apos;^U+logTj&quot;1 Pn(v

und somit wegen (4), (7)

^ (n + l)(4r,(l - T]))71og 2+ log

Wegen 4tî(1-tO&lt;1 folgt daraus

lim sup an ^ log rjV
n*oo

(8)

Qn(u) log W1 (9)

Rn(u)=^Pn(v)logv-1dv. (10)

Rn(u) ist wieder monoton wachsend in [0,1]. Wir zeigen:

an Rn(ï)/Qn(l)log2^1 fur n-&gt;oo. (11)

In der Tat: Fur 0&lt;tï&lt;| gilt

Daraus ergibt sich fur tj -» |:

n^l. (12)
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Andererseits gilt

(«n-l)Qn(l)log2
f1/2 r 1/2

il/2 f 1/2 ç 1/2

Pn(v)\ogv-1dv + j Pn(v)\og(l-v)-1 dv-log4j Pn(v)dv

1/2

v))~x dv

und daher ctn&gt;l. Somit folgt aus (12) die Behauptung (11).
3. Wir definieren

(13)

und zeigen:

limcn(r0=l fur \&lt;r\&lt;\. (14)
n-*°°

In der Tat: Wegen (11) und (3) gilt

C(ti) anQn(l)/Qn(ti) cfed + QH(1 - t,)/Qb(t|)) (15)

Nun ist aber wegen \ &lt; t\ &lt; 1 und (7)

Daraus und aus (11), (15) folgt aber die Behauptung (14).
4. Nun zeigen wir:

(16)

In der Tat: Fur 0 ^ u ^ 1 gilt

Qn(u) Çvn(l-v)ndv^ui vn-\l-v)ndv

Somit ist wegen (8), (9)
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Daher folgt aus (13) und (4), (5)

5. Wir definieren

a(01 fa(0 ve~y
*-*-— ^—;dy, a(t) 27r(t-l)l/2 (17)

und zeigen

le

fi

-1/4)1/2 r2_j_l

Cos2 irr
r2 + \ 1

:os2ot r 3ir

Beweis. Setzen wir

J(p)

so wird

fPx2dx/Cos2x,

-l/4)i« r2-fl

(18)

(19)

(20)

(21)

|)I/2. (22)

Aus (21) ergibt sich durch zweimalige partielle Intégration

/(p) p2Tgp-2plogCosp + 2j logCosxdx. (23)

Wegen

2 log Cos x 2x - 2 log 2 + 2 log (1 + &lt;T2x) (24)
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wird

iP
(2p

log Cos x dx p2-2p log 2+ I log (1 + e~y) dy. (25)

Aus (23)-(25) ergibt sich

r2p
J(p) p2Tgp-p2-2p log (1

Daraus folgt durch partielle Intégration:

i2p
ve~y/ _v dy. (26)

1 + e

Nun folgt die Behauptung (18) aus (22) und (26). Daraus ergibt sich ferner

Jo CoîJ 17T 7T2

Nun ist aber

Somit sind auch (19) und (20) bewiesen.

4. &quot;Grosse&quot; Hilfssàtze

SATZ 1. Es sei

Dann gilt fur aile Flàchen 9 mit 1(9)^ jm&gt;0:

)- îr1 J A(r log i;-Vlog ri&quot;1, y)Pn(v) dv

TTt

logrj&quot;

&quot;| Tn(|) Cos&quot;
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mit

IGJ^^TÏ. (« 160).
fX TJ

Beweis. Der Beweis stûtzt sich auf die Selbergsche Spurformel (3.2) in [5].
Wâhlt man in jener Formel

(-sr2), s&gt;0,

so ergibt sich fur s&gt;0:

2es/4 £ e~s^=— (g(9)-\)\ e-sr2Cos-27rrdr + D(s)/27r1/251/2 (1)
k=0 S Jo

mit

I&gt;(s) Ë I 4 Sin&quot;1 (fct/2) exp (-k2/2/4s). (2)
i l k l

Dabei sind die lt die Làngen der primitiven geschlossenen Geodàtischen auf 9.
Wegen \x ^ 1(9) ^ fx wird

exp (-k2lf/4s)^exp (-jlc2/85) exp (-fc2/2/8s), /c ^ 1, s &gt; 0.

Daher folgt aus (2)

D(s)^exp(-jui2/8s)D(2s), s&gt;0. (3)

Wegen

k=Q

kônnen wir die Spurformel (1) in der folgenden Gestalt schreiben:

(g(9)-iy1i A(A,^)e&quot;sXdA=4j exP (-(r2+%)s) Cos&quot;2 &lt;rrrdr + E(s) (4)

E(s) s-3/2e-s/4D(5)/47r1/2(g -1). (5)
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Daraus folgt zunàchst

¦¦-H0&lt;E(s)&lt;(g-ir1J A(\)e~skd\

und somit nach unserem Lemma:

E(s)*£~ (b+-)9 b SiiT2
s \ s/

Daraus folgt nach (5):

Somit folgt aus (3)

D(s)/47rl/2(g-1)^3x/2 «

Daher ergibt sich wieder aus (5):

(6)

Nun ist aber

(b +—) exp (-^x2/8s)^ 6 +Max ^- exp
\ 2s/ «&gt;o 2s

Somit folgt aus (6):

&quot;je&quot;4, (a 160). (7)
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Aus (4) und 3.(1), 3.(8) ergibt sich

(g-l)&quot;1] AU)Pn(c-sX)e-sXdA=

Tl)Vf
l)s)J

4 f Tn(exp(-(r2 + |)s)Cos-2wrdr+ £ (-lW^Wn + fc + Ds).
S J(j k-Q \KJ

Machen wir im ersten Intégral die Variabelnsubstitution v e~sK, so ergibt sich

(g -îr1^ A(s-1log v-l)Pn(v) dv

mit

(8)

Wegen 3.(7) und E&gt;0 folgt daraus

|Gn|^2s(n4-l)22n t (^Wn + fc + Ds). (9)

Nach (7) gilt aber

E((n + k + l)s)^- ,a ^ 2 e(n+k+1)s/4^-—^—-= e(2&quot;+1)s/4.

2(n + k + Dsjut2 2(n + l)s/x2

Somit folgt aus (9)

|GJ^-^23ne(2n+1)s/4. (10)

Nun folgt Satz 1 aus (8) und (10) fiir

s t&quot;1 log tT1 =^4 log tj&quot;1.
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SATZ 2. Fur \&lt;t\&lt;\, t^\ gilt

Cos&quot;

2f
lOgT}

isf S(tj, t) srcrig in [|, |]x[i, oo) und S(i t) 0 /iir t ^i
Js. Wegen ^(r) exp(-(r2 + l)r1logT|&quot;1) ist nach 3.(9)

Somit wird

I —rî__ços-2 mât /1 — ^t&quot;1 log tj&quot;1 (11)
Jo Qui7!)

mit

Qn(r|) Cos2

On(îj) Cos2

Im Intégral Bx wird

_

(siehe 3.(10) und 3.(7)). Daraus ergibt sich

)(,(Tj)r. (14)
&apos;fi¬

lm Intégral B2 wird

Qn(n)
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(siehe 3.(13)). Somit wird

B2 ^ cn (rj log 2 Cos~2 irr dr cn (r? log 2 [ Cos2 tït dr

cn(&lt;n)Tgirw (15)

Aus (11)-(15) ergibt sich nun wegen 3.(18)

Iï-—Cos 2 trrdr
lOg T)

&apos;

J0 On

„ log 2

^Jq CO!

mit

à r^lr cn(T,)Tg7rw - Tg7r(t -|)1/2
lOgTî

wTg7r(t|)) +r^(log 2 Mog

Definieren wir jetzt

logT,-1
&quot;V&quot; * Jo Cos27rr&apos;

t?))&quot;. (17)

lOg T]

Somit wird wegen 3.(16)

6 / Ina? \
cn(î))-l. (18)

(Tg7rwTg^^)+r(
r\ log 2 M
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so folgt aus (17) und (18)

nKÇ; Cos~27rrdr
&apos;Jo On(î|)

Wegen (16) ist S(r}, r) in der Tat stetig in Q, |] x [|, &lt;x&gt;) und es gilt S(i t) 0. Damit
ist Satz 2 bewiesen.

SATZ 3. Zu8&gt;l werde r)oe(0,ï) so gewâhlt, dass

Dann gilt /ur tj g (tî0, |) wnd r ^ S:

&apos;Jo On(l-
Cos

îî)

Dabei ist R(r\, t) stetig in [t|0, è]xfà °°) &quot;^ i?(i t) 0 fur

Beweis. Wegen ^(r) exp(-(r2+|)r1log&apos;n~1) ist nach 3.(9)

f °° T f^
4 C?nU-

(19)

mit

f +f

Aus (20) ergibt sich

1,5s I
_

.&quot; Cos&quot;2 irr drî*
&quot;

¦ I Cos&quot;2 irr drLi-, au-*») Ond-Tj)^»!-^

(22)

&gt;0. (23)



Ueber das Spektrum des Laplace-Operators auf kompakten Riemannschen Flàchen 643

Nun ist aber

-r)) ] Pn(v)\ogv-1 dD^logd-T))-1] Pn(v)dv

Somit folgt aus (22)

TPrw. (24)
7T

Im Intégral Bx ist

0,(1-ti) Q»(è) 2Qn©

Daher Wird

B1&lt;(n + l)(4T,(l-Tf))&quot;|

&quot; +
-&lt;fr (25)

7rr

&apos;(t-l/4)1/2

Im Intégral B2 ist wegen 3.(3)

Qn(è) ^ Qn(l) On

QL(l-ii) a(l-»i) Qn(l--n)

Somit wird

Aus (21), (25) und (26) ergibt sich wegen 3.(19):

rit-1/4) 1/2 2_

Jo Cos

1

irr 3tt

(26)

dr+— (n + l)(4n(l-n))&quot; (27)
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Aus (19), (24) und (27) ergibt sich wegen 3.(18):

-Cos ^ Ttràr

V.OS

(28)

mit

R(n, V-

Wegen (23) ist JR(r|, r) stetig in [r]0, è] x [Ô, oo) und es gilt
Daher ist mit (28) Satz 3 bewiesen.

(è,f) O fur

5. Beweis des Theorems

1. Wir zeigen: Zu e&gt;0, T&gt;\ gibt es ein ^(e, T)&gt;0 derart, dass

sobald l(&amp;)&gt;y.x und te[i T].

2. Beweis. Es seï

Wegen

J A(t log t;-

folgt aus Satz 1:

A(r) A(r)Qn(T,)

^2T,2n + 1

(1)
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Somit folgt aus Satz 2:

S(tj, t) ist gleichmâssig stetig in [i|]x[|, T] und S&amp; f) 0. Daher kônnen wir
tj rî(e, T)e(ï,l) so wâhlen, dass S(r), t)&lt;e/3 Vre[i T]. Dann folgt aus (2) flir

rrî(n ^, 44tï

Wegen 4t|(1 -17)&lt; 1 und 3.(14) kônnen wir alsdann n n(r], T, e) so wâhlen, dass

und haben nun

44^
sobald 1(&amp;)^ijl und ^€[5, T]. Damit ist 1. bewiesen.

3. Jetzt zeigen wir: Zu e &gt;0, T&gt;| gibt es ein /bt2(^ T)&gt;0 derart, dass

l + £ (3)

soblad i(^)&gt;jLt2 und f e[i T].

4. Beweis. Wegen F(|) 0 kônnen wir zunâchst 8 8(e)&gt;l so wâhlen, dass

Dann gilt die Ungleichung (3) fur t e [|, ô] und aile Flâchen 9*. Es sei nun

(4)
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,2) werde so gewâhlt, dass

Fur Tj € (tïo, è)

I

A(t logv^/log ri&apos;1) dv+Ait^ Pn(v)dv. (6)

Nach 3.(3) ist aber #, Pn(v) dv Qn(l-T)) und aus unserem Lemma ergibt sich

J A(rlogD&quot;1/logTj-1)dt; r1logTî-1J A(A)exp(-Ar1logTj-1)dA

^ 3(g -1) (—%— + Sin&quot;2 ^

Sommit folgt aus (6):

|))4,g-1

(wegen On(l--n)^On(|) und 3.(7)). Daher folgt aus Satz 1:

g-*1

a
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Somit folgt aus Satz 3*

(7)

R(tj, r) ist gleichmâssig stegig m [r\0, %]x[ô, T] und R(&amp;, t) 0. Daher kônnen wir
tî T|(e, T) g (t|0, 5) so wâhlen, dass

Dann folgt aus (7) fur t e [S, T]:

23&quot;

g-1 V lOgT)

Wegen 4tï(1 —7])&lt;1 kônnen wir endlich n m(tî, T, e) so wâhlen, dass der dritte
Term kleiner als e/3 ausfàllt und haben dann

4irT
sobald /(^)^/ll&gt;4 und te[ô, T]. Damit ist 3. bewiesen und folglich auch unser
Theorem.
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