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Bases for quadratic differentials*

IrwIN KRA and BERNARD MASKIT

Let G be a non-elementary finitely generated Kleinian group and g be an
integer bigger than one. It is well known (see, for example, Bers [7]) that every
cusp form of weight —2q is the Poincaré series of a rational function with poles
only on the limit set of G. There are at least three interesting problems all related,
but somewhat independent, associated with the spaces of cusp forms for the group
G and the Poincaré series operator.

(I) Find necessary and sufficient conditions for the Poincaré series of a rational
function to vanish identically.

(II) Construct bases for the spaces of cusp forms that vary holomorphically
with moduli.

(IIT) Construct (finite dimensional) spaces of rational functions that vary
holomorphically with moduli so that the Poincaré series operator establishes an
isomorphism between these spaces and the spaces of cusp forms for the Kleinian
groups.

The first problem is probably the hardest. There are many formal reasons that
force a Poincaré series to vanish (see, for example, [19]). A computational
algorithm for determining whether or not a Poincaré series vanishes is more
difficult to obtain. Deep and interesting work of Hejhal [11], [12], [13] has
resulted in one solution to problem (I) for Schottky and Fuchsian groups.

Bers [5] has obtained bases for cusp forms (supported on a single component)
for quasi-fuchsian groups. Earle (private communication) has observed that a set
of global coordinates for Teichmiiller space always leads to bases for quadratic
differentials (the case q=2) that vary holomorphically with moduli. These are
partial solutions to problem (II).

In this paper we are mainly concerned with problem (III). In the first part of
the paper, we give an algorithm for determining spaces of rational functions that
solve problem (III) for geometrically finite function groups and for q =2. These
spaces are constructed via the stratifications we have introduced in [18], and
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604 IRWIN KRA AND BERNARD MASKIT

exploit techniques involving the tangent bundle to the deformation spaces of a
Kleinian group.

As a by-product we exhibit large families of rational functions with non-
vanishing Poincaré series, and we obtain global holomorphic trivializations of the
cotangent bundle of the space of deformations of a finitely generated function
group.

Similar (but by no means identical) bases for spaces of quadratic differentials
were obtained previously by Bers [8] and Hejhal [11] for Schottky groups.
Wolpert [27], [28] has shown that lengths of certain finite sets of geodesics are
local coordinates on Teichmiiller space. As a consequence he obtains bases for
spaces of quadratic differentials for Fuchsian groups. The work of Earle [9] on
coordinates for Teichmiiller space can also be used to obtain such bases for
certain Kleinian groups. Similar constructions enter the unpublished work of Bers
and of Earle and Marden on coordinates for the spaces of Riemann surfaces with
nodes.

The second part of our paper is an investigation of the simplest geometrically
finite Kleinian groups which are not function groups; these are the groups with
two components, neither invariant. Special cases of such groups appear in [9]. We
show that every such group is a quasiconformal deformation of a Z,-extension of
a Fuchsian group, and we stratify all such groups.

§1. Deformation spaces and fiber spaces

1.1. Let G be a finitely generated non-elementary Kleinian group (that is, G,
is a discrete group of Mobius transformations which operates discontinuously at
some point of the extended complex plane é). As usual, we denote the limit set of
G by A =A(G) and the region of discontinuity of G by 2 =0(G). Let A be a
G -invariant union of (connected) components of (.

The Banach space L™(G, A) is the space of L™ functions with support in A,
which satisfy

(wog)g'=png' forall geG. (1)

In general, a bounded function on € satisfying (1) is called a Beltrami
differential (for G).

In the special case that A =, we set L™(G)=L"(G, ).

A point in the open unit ball M(G, A)< L*(G, A) is called a Beltrami
coefficient (for G).

Now let x;, x,, x3 be three distinct points of C,andlet wbe a quasiconformal
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homeomorphism of C. We say that w is normalized at (x, X,, X3) if w(x;)=x,
i =1, 2, 3. Every quasiconformal homeomorphism w has a well defined Beltrami
coefficient w = w;/w, (we say that w is w-conformal), and conversely, given a
Beltrami coefficient w; there is a unique p-conformal homeomorphism w*
normalized at (x,, X,, x3) (see Ahlfors—Bers [2]).

A quasiconformal homeomorphism w is said to be compatible with G provided
that for all g€ G, wo go w™! is a Mobius transformation. In this case, w induces an
isomorphism 6,, defined by

1

0,(g) =wogow™, geqG,

of G onto another Kleinian group.

For any normalization, w is compatible with G if and only if w=a-w" for
some Beltrami coefficient w for the group G and some Mdobius transformation a.

If w and w* are compatible with G and induce the same isomorphism up to
conjugation (that is, there is a Mobius transformation a so that 6,, = 0,,.,,+) then we
say that w and w™ are equivalent.

The deformation space T(G, A) is defined to be the set of equivalence classes
of compatible quasiconformal homeomorphisms which are conformal off A.
Equivalently, it is M(G, A) factored by the relation: p ~ u™ if w* is equivalent to
w*”. The map

D:M(G,A) - T(G, A)

endows T(G, A) with a topology and complex structure.
It is well known that T(G, 4) is a complex manifold (see [6], [15], [21]).
For the case (the primary one that concerns us here) that 4 = (2, we set

d =d(G)=dim T(G, ).

A finitely generated Kleinian group is called stratifiable if there are d+3
distinct points x;, X5, X3, ¥1, - - . , Y4 €C so that if we use (x;, X, X3) to normalize
each w*, then the mapping

T(wh) =(w*(yy), w*(y2), ..., w*(¥a))

defines a biholomorphic embedding of T(G) onto an open subset of ¢

The set x;, X5, X3, ¥1,. .., Yq is called a stratification of G; we also say that
X1, - . ., Yq Stratify G.

The starting point in this paper is the main result of our preceding paper.
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THEOREM (Kra-Maskit) [18]). Every non-elementary geometrically finite
function group G is stratifiable.

To establish the above theorem, we use Maskit’s description of geometrically
finite function groups to obtain generators for G. Appropriate fixed points of
these generators appear in the stratification for G (see also §6). We have
essentially produced an algorithm for obtaining a stratification of G, once one
knows how G is built up from simpler groups.

1.2. Given the Kleinian group G, a point x € C is called sturdy if the following
holds. Whenever w, w* are compatible with G and 6, = 6,,+, then w(x)=w*(x).
We remark that limit points are always sturdy; points of 2 which are not fixed
points are never sturdy; fixed points of elliptic elements of order >2 are always
sturdy; fixed points of elliptic elements of order 2 are sometimes sturdy and
sometimes not. We note that if G has exactly two components, then elliptic fixed
points of order 2 are sturdy.

1.3. Let G be a non-elementary Kleinian group, and let x,, x,, x; be distinct

sturdy points for G. Let A be an invariant union of components of G.
For each u € M(G, A), we set

G* = w*G(w*) !,
A* =w*(4),

where w* is normalized at (x,, x,, x3). Also, for each ge G, we set

g = whogo(w),
and we denote the isomorphism g+~ g" by 6, instead of 6,,..

1.4. We need the Bers fiber space

F(G, 8)={(®(n), 2) | n e M(G, A), z€ A"},

It is easy to see that F(G, A4), is a complex manifold of dimension
dim T(G, A)+1.

We denote the projection on the first factor by

w:F(G, A) = T(G, A).
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The group G operates on F(G, A), so as to preserve the fiber of this
projection: if g€ G,

g(@(w), 2) =(P(n), g*(2)), wmeM(G,4), zew"(4).

The quotient space V(G, A)=F(G, 4)/G is also a complex manifold of the
same dimension, but not necessarily connected (V(G, A) has the same number of
components as 4/G).

If A={), we use the notation:

T(G)=T(G, 02), F(G)=F(G, ), V(G) = V(G, 02).

§2. Quadratic differentials

2.1. Let G be a non-elementary stratifiable Kleinian group, and let y, x;, x,,
x5 be four distinct sturdy points for G. We normalize each w* at (xq, X5, X3).
We define the function ¢, : F(G) — C as follows (here u € M(G), z € w*(2)):

— wh(y)—x; . N o
(py(d)(“')a Z) - (Z __xl)(z ""Xz)(z “'X3)(Z IR W“(Y)) ’ lf X1, X2, X3, W (Y) % ’
(2)
—1 : " — 00°
e(P(p), 2)= Z=x)—x)z—x)’ if wh(y)=00;
w*(y)—x, :
(z—x)(z — %) (z— w*(y))~ -
w*(y)—x, :
z-x)z-x)z—-wry) = 2
1 if x1 =00,

T(z-x)(z—xa)(z—wH(y)’

Using the well known fact [2] that w* is holomorphic in u, one sees at once
that ¢, is a holomorphic map F(G)— C.
It is also quite easy to see that ¢, is integrable over each fiber of F(G); that is,

JJ‘ |, (P(n), 2) dz AdZ| <o

ﬂﬂ-

(in fact, the rational function ¢,(®(n), -) is integrable over all of ()}
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We now define the Poincaré series operator ® by the formula

(060, @(w). )= T ¢,(@(w), ) 2(2)) 3)

geG

It is a routine computation to see that this series converges uniformly and
absolutely on compact subsets of F(G).

For each fixed u, the series (3) is a classical Poincaré series on 2* and
O¢,(P(w), z) is an integrable quadratic differential in z on 2*; that is,

(06,)(@(1), 8(2) - (5 £*(2)) = (66,)(@(w), 2), @

for all ge G; also

[ {100 @), 2 dz ndz= [ [1e, @), 2) dz nazi <= s)

QvGH v

We remark that @@, (P(w), z) is holomorphic even if y or some x; is an elliptic
fixed point in 2(G). To see this, we fix u and renormalize so that w*(y) =0 (or
x; =0), and the maximal elliptic subgroup of G*" with fixed point at 0 is
{z>e?™z p=0,...,q—1}. Welet H be the corresponding subgroup of G and we
write the sum in (3) as first a sum over H, then a sum over G/H. It suffices to show
that the sum over H is regular at 0. We rewrite (2) in its partial fraction
decomposition, and note that the coefficient of 1/z for ¢,(P(n), z) is 1/xx5
(assuming x, #© # x3). Then the sum over H of the singular terms reduces to

For each ue M(G), we let Q(G*) be the space of holomorphic integrable
quadratic differentials for G* (that is, the space of holomorphic functions on
0(G*) satisfying (4) and (5)). We denote the dimension of this space by d (of
course, d is independent of w); it is well known that d =dim T(G).

Our main result is the following:

THEOREM 1. Let G be a stratifiable Kleinian group with stratification
X1, X2, X3, Y1, - - - » Ya. Then for each u € M(G), the d functions

¢, (P(1), 2), . . ., Op, (P(n), 2),

defined on Q(G"*), form a basis (over C) for Q(G*).
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As remarked before, for fixed w the restriction of @ to 2(G*") is the classical
Poincaré @ operator. In this situation, we will write ¢,(z) for ¢,(®(n), z), etc.

2.2. We now fix p, and consider the space R* of rational functions f(z),
where the poles of f are all simple and occur only at some of the points:
{x1, X2, X3, w*(y41), ..., w*(yq)}; we require further that f(z) = O(|z|™*) near o, if
® is not one of these points, and we require f(z)= O(|z|™3) if « is one of these
points. One easily sees that the vector space R* has dimension d.

Our theorem asserts that the Poincaré series operator establishes an isomorph-
ism between R* and Q(G").

Since {x1, ..., y4} is a stratification for G, the space R* depends, not on u, but
on &(n)e T(G). Then R* and Q(G*) are the fibers of trivial d-dimensional
vector bundles over T(G).

2.3. We again return to the case that A is an invariant union of components of
G. We let Q(G, A) be the subspace of Q(G) consisting of those quadratic
differentials supported on A.

For ¢ € Q(G, A) and p € L*(G, A), we introduce the pairing

.w=} [ [ o(2n() laz ndzl,

A/G

and we set
Q(G, Ay ={n e L™(G, A) | (¢, n)=0 for all ¢ € Q(G, A)}.

The pairing gives us a canonical isomorphism between the dual space
Q(G, A)* of Q(G, 4) and L™(G, A)/Q(G, A)* (see [14, Chapter III]).

It is well known (see for example [16] and the literature quoted there) that the
tangent space to T(G, A) at ¢(u) is canonically isomorphic to Q(G*, A*)*, and
(using the pairing) the cotangent space is (canonically isomorphic to) Q(G*, 4*).

2.4. We now proceed to the proof of our theorem. For ease of computation
we assume first that x; =oo0. It was shown by Ahlfors and Bers [2] that for fixed
w e M(G, A), for t7'>||ull., and for fixed z # x,, x5, X5, the function t —> w*(z) is
a holomorphic function of t. They further showed that for x; =,

u(g) dtn d
)& —x)(E—x)

(6)

4 ()] o= (2 —x)(z —
v (Z)lt=0—2,n.i (z=x)(z = x2) JI(C“"

0
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We fix u € M(G) and we choose v,, ..., v; € L°(G*) so that v,, ..., v; forms
a basis for L*(G*)/Q(G*)".

We return to our map ¥: T(G) — €4, since x; =%, ¥: T(G)— C%, and we need
to study the differential D¥ at the point @(w). We consider a point ¥(P(w))e
C% and we write ¥,,...,¥, as natural parameters on C? Regarding
L~(G)/Q(G*)"* as the tangent space to T(G), an arbitrary tangent vector to T(G)
at ®(wn) can be written as Y, z;w; with z; €C. Then formula (6) yields

z=0

= (B@@)(E )

0 S
“(',;‘:Z‘W (w ()’i))lz=0

v ({) d(/\df
(&—x)(&—x)(— WM(Y)'))

1
=5 (W () = x)(WH(3) —x2) j j

ﬂll

1 —
== wey)-x) [ [ e, @w), 0 dendE
.

=—2—1—' (W (y;) — x2)(me (+), @‘Pw((p(“)’ ).
i

We showed in [18] that ¥ is a holomorphic injection (onto an open set); hence
DYV is a linear isomorphism. Since the v, span the tangent space to T(G) at ®(w),
the functions ¢, (P(w), -) must span the cotangent space. We have shown that
for every u, the functions O, (P(w),-), j=1,...,d, are linearly independent.

In order to coniplete the proof of our theorem, it remains only to remove the
restriction x;=o. We do this by choosing a Mobius transformation a with
a(x,) =x;, a(x,)=x,, and a(®)=x;. An easy computation shows that there is a
constant ¢, depending only on a, so that the quadratic differentials G¢, , ..., O¢,,
for G, and Og,,), - - - » O, for aGa™! are related by

O, (P(v), a(2))(a'(2))* = cOp, (P(p), 2),
where w(z)a'(z) = v(az)a'(z), z € Q"

2.5. For any finitely generated Kleinian group, T(G) is a domain in C" (see
[18]), hence the cotangent space is trivial. We have shown the following.



Bases for quadratic differentials 611

COROLLARY 1. Let G be a stratifiable Kleinian group, with dim T(G)=d.
Then there are d holomorphic functions ¢+, ..., ¢; on F(G), so that @¢,, ..., Op,
exhibits a global holomorphic trivialization of the cotangent bundle of T(G).

2.6. We now turn to the case where we have selected an invariant union of
components A. Since T(G, 4) is a submanifold of T(G), the cotangent space of
T(G, A) is a subspace of the cotangent space of T(G). This yields the following.

COROLLARY 2. Let G be a stratifiable Kleinian group and let A be an
invariant union of components. Let r =dim T(G, A). Then there are r functions
Y1, . .., ¥, meromorphic on F(G, A), so that for any uec M(G, A), the functions
Oy, ..., Oy, form a basis for Q(G*, A*) and vanish identically on Q*\A".

§3. Fuchsian groups

3.1. Let I’ be a finitely generated Fuchsian group of the first kind operating on
the upper half plane U (and on the lower half plane U*). We assume that
d =dim T(I', U)>0. We showed in [18] that I" can be stratified by real points,
X1, X2, X3, Y1, - - - » Y24, and that the Fuchsian groups in T(I") are precisely those
points for which the 2d coordinates w*(y,) are all real.

One easily sees that if I'* is Fuchsian, and w*(y;) are all real, then for each j,

O¢, (P(n), z) = O, (P(pn), 2).
We restate our main result in this case as follows.

THEOREM 2. Let I’ be a finitely generated Fuchsian group of the first kind,
with dim T(I', U)=d. Let x,, X5, X3, Y1, - - - » Y24 be a real stratification for I'. Let
weM(I') be such that T'* is Fuchsian. Then the functions O¢,, ..., O¢,
(a) commute with complex conjugation, (b) form a basis over C for Q(I'*), and
(c) form a basis over R for Q(I'*, U).

We remark that conclusion (a) is false if I'* is not Fuchsian; conclusion (b) is
true even if I'* is quasifuchsian. Nothing is known about conclusion (c) if I'* is
not Fuchsian.

3.2. Our main theorem asserts that certain sets of Poincaré series form a basis
for quadratic differentials; in particular, these Poincaré series do not identically
vanish.
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CORROLLORY 3. Let I' be a finitely generated Fuchsian group of the first
kind, and let x,, x,, x5, y be part of a stratification for I'. Then the Poincaré series
O¢, (0, -) does not vanish identically in U or in U*.

We showed in [18], that every elliptic fixed point can be made part of a
stratification of a Fuchsian group. Hence we obtain:

COROLLORY 4. Let y be an elliptic fixed point of the Fuchsian group of the
first kind I'. Then there are real points x,, X,, x5 so that the Poincaré series O¢, (0, -)
does not vanish identically in both U and U*.

One often can choose both fixed points of an elliptic element as part of a
stratification set.

COROLLORY 5. Let x4, x,, X3, y be part of a stratification set for the Fuchsian
group of the first kind I', where {x,, x,, X3, y} is invariant under complex conjuga-
tion. Then the Poincaré series @@, (0, -) does not vanish identically in either U or U*.

Remarks. (1) Let I' be a torsion free Fuchsian group operating on U such
that U/I" is a compact surface of genus g=2. In [27], Wolpert constructs 6g—6
Poincaré series that form a basis for Q(I, U) over R. Further, by using the
Petersson scalar product and a geometric interpretation of the Poincaré series he
constructs, he is able to select 3g —3 series that form a basis over C.

(2) In [13], Hejhal studies Poincaré series of rational functions that are
invariant under conjugation. He produces finite spanning sets for Q(I') (and
hence also Q(I', U)) that are not necessarily linearly independent. His methods
are not limited to quadratic differentials, but also work for g-differentials, g > 2.

§4. Other appﬁmﬁom

4.1. If G is a stratifiable function group with invariant component A, where
T(G)=T(G, A) (for example G might be a Schottky group, or G might be such
that all the components other than A are thrice punctured spheres), then a
stratification gives us global coordinates for T(G), and Theorem 1 gives us a
global holomorphic trivialization of the cotangent space. In the special case that A
is simply-connected, we get global coordinates for the Teichmiiller space (every
Teichmiiller space can be so realized; see Maskit [24]).

4.2. We also remark that if G is as in the preceding section, we can achieve
the same result with functions which are not necessarily rational. To this end, we
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let I' be the Fuchsian model of G; that is, there is a holomorphic projection
h:U— A, where for each yelI, there is a ge G so that hey=goh. This
projection map induces a holomorphic covering T(I', U) — T(G, 4), (see [6], [15],
[21]) and this map can be further extended to a fiber preserving holomorphic
covering H: F(I', U) — F(G, A) (see, for example, [10]).

The map H induces a map Hy from functions on w*(4) to functions on w?(U)
(where p and o are appropriately related). If we transform functions as quadratic
differentials (that is, Hy@(z) = @(h(z))h'(z)?), then, denoting the Poincaré series
operator for G by @g, an easy computation shows that @goHy= Hy°o@r. We
choose ¢;,...,¢@; so that Or¢,,...,Or¢; form a basis for Q(I', U). Then
OcHy¢1, . . ., OgHy@, form a basis for Q(G), and conversely a basis for Q(I', U)
can be obtained from a basis for Q(G).

§5. Extensions of Fuchsian groups of the second kind

5.1. In this and the next section we give stratifications for all Z,-extensions of
quasifuchsian groups of the first kind. In this section we focus on certain groups
which are Z,-extensions of Fuchsian groups of the second kind.

Let I' be a finitely generated, non-elementary Fuchsian group of the
second kind. There are standard generators for I' of the form A, B,,...,
A, By, E,,...,E,F,,...,F,, where the A, B, and F, are hyperbolic and
the E; are elliptic or parabolic. The signature of I" is (g, n, m; vy, . .., v,) where p,
is the order of E, if E, is elliptic, and », = if E; is parabolic. Since I' is of the
second kind, m > 0. The defining relations for I are

[EI [Aj’Bj]on Ekol_l I:l = 1,
i=1 k=1 1=1
=1, if py <o, k=1,...,n,
where as usual
[Aj, Bj]=Aj°Bj°Ai—1°B;l.

One easily sees that viewing I' as a Kleinian group, {2(I')/I" is a surface of
genus 2g+m—1 with 2n distinguished points on it. Hence dim T(I')=
32g+m)—6+2n.

5.2. We want to adjoin square roots f, of the elements F,, where f, inter-
changes upper and lower half planes. We do this as follows.
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We choose some F,(1=p=m) and we let I, denote the axis of F, in U. We
denote reflection in the real axis by j, and set

C, =1, Uj(I,) U{fixed points of F,}.

The circle C, bounds two discs; one of them, call it D, is precisely invariant
under F, in I (that is, if A eI is not a power of F, then A(D,)ND, = ).

Since F, is hyperbolic, there are two distinct Mobius transformations whose
square is F,. One square root is hyperbolic and it preserves D, ; call the other f,.

We let I'h=1T, and for p=1,..., m, we define I', to be generated by I',_; and
fo- The construction of I', from I',_; and f, requires a version of Combination
Theorem II (see, for example, [22]) which is unfortunately not in print. We briefly
outline the proof here.

We let w, be a fundamental domain for I', (acting on (I,)), where w, "D,
is a fundamental domain for the action of (F,,;)on D,,,, p=0,1,...,m—1. We
denote the complement of D, by D,.

LEMMA. For p=0,...,m—1, the group I,., is discrete; ﬁp+lﬂwp is a
fundamental domain for I',.,; the relations in I',., are the relations of I, together
With fi.’.l — Fp+1.

Proof. Any element of I,,; can be written as A=A, ofit 0 A 00
filieA,, where A;, A, might be trivial, but otherwise no A, is a power of
F,., (there is also the easy case A =f§l1°P:;,+1). Let z be a point of D,,,Nw,.
Then A(z)¢ w, (f A;#1) and A(z)e D,.; ;til °cA(2)¢ Dp+l’ A2°f;ti1 °
A, (z2)e 15,,+1\wp, etc.

We have shown that no two distinct points of @, N D, are equivalent under
any word of the above form; hence I,., is discrete, and the relations are as
stated. The remainder of the proof that ﬁp+1 Nw, is a fundamental domain is
standard (see for example [22]).

We will later need a similar version of Combination Theorem II, where
instead of f2=F, € G,, we have f2= 1. The proof is almost identical and is left to
the reader.

Looking at the identifications of the sides of the fundamental domains, we see
that for p<m, (I,) is connected and the surfaces (I},)/I, are all surfaces of
the same conformal type (2g+m—1,2n).

However 0(T,,) has two components U and U*, but Q(I,,,)/TI,, is still just one
surface of the same conformal type (2g+m—1,2n). In particular the spaces
T(I,) all have the same dimension.

5.3. THEOREM 3. The Kleinian groups I, are all stratifiable.
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Proof. For p <m, these are geometrically finite function groups and so there is
nothing to prove [18].

We now assume that p =m, and notice that the two components of I’,, are
simply connected. Hence T([I,,) is simply connected and so for every element v of
I, tr weyeow™ the trace of weyow™! is well defined on T(I',,) once we have
chosen tr v.

There are several cases to consider.

Case 1. g>0.

For i=1,...,m,let z;; and z;, be the attractive and repulsive fixed points,
respectively of F;.

For i=1,...,g—1, we let x;,,...,x;6, be respectively, the attractive fixed

point of A,, the repulsive fixed point of A;, the attractive fixed point of B, the
repulsive fixed point of B;, A;(z,), and B;(z, ;).

We let C be the commutator [A,, B, ]; we set u, = A, (attractive fixed point of
C), u,= A, (repulsive fixed point of C), u; =B, (attractive fixed point of C).

Fori= 1 ,n, we let y; ;, y;, be the fixed points of E; if E; is elliptic; if E; is
parabolic, we let y;1 be the fixed point of E;, and y;, = E;(z,,).

Finally for i=1,..., m, we set z,3="f(u,).

We note that we have defined 6g—6+3+2n+3m =dim T([,,) +3 complex
parameters.

Let w be some deformation in T(I,,). We need to show that the parameters
w(x11),...,w(z,3) determine the generators weA ;ew ™', ..., wof, ow™ of
wl',,w™!. By changing the origin of the deformation space, this and all similar
arguments in subsequent cases, are reduced to showing that the parameters
X115 - - -5 Zma determine the generators A,, ..., f, of I,.

Obviously Ay, By,...,Ag-1,Be-1, Ey, ..., E, f1, ..., fn are all determined.
Hence C is determined; the choice of tr C™! together with u, u,, us;, determine
A, and B, [18].

Case Il. g=0, n=2.

Fori=1,..., m, we define z;, and z;, as above. Thenfori=1,...,n—2, we
define vy, and y.» as above, and we let y be a fixed point of E,_, Flnally, for

i=1,...,m, we define z;;=f.(y).
The elements Ei,...,E._2 f1,...,fn are all determined. Hence E,_,°E, is

determined. It was shown in [18] that E,_;°E,, together with y determine E,,_,
and E,.

Case III. g=0, n=1.
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We remark that in this case m =2, and we choose our parameters as follows.
Let y be a fixed pointof E;. Fori=1,..., m—1,let z;,, z;,, z; 5 be, respectively,
the attractive fixed point of F,, the repulsive fixed point of F;, and f;(y). Let z,, be
the attractive fixed point of F,,.

We have defined 3m—1=dim T(I',,) +3 parameters. We see at once that

fis+ .., fm—1 are determined. We normalize I',, so that z, =%, y=0; we write
a b K 0 a B
Fl°° ' °°Fm—1= <C d)’ ad-—bc=1, Elz(p K—j)’ fm = (0 a_1)7 ‘a|>1

Since T(I',,) is simply connected, we can choose K, a, b, ¢, d so that in SL(2; C)

G e A6 200 D)

This yields

(1) Kaa=a,
(2) KaB +Kba™'=-8,
(3) a(pa+K'c)=0.

Since aa # 0, we can solve (3) for p. Equation (1) yields « up to sign. We can
solve (2) to obtain B = —(Kb/1+aK)a'. Hence f,, is determined in PSL(2;C)
(note that 1+ aK # 0; since otherwise b =0 which is impossible).

Case IV. g=0, n=0.

In this case m=3. Let y, be the repulsive fixed point of F;. For i=
2,...,m—1, welet z;,, z;,, z;3 be, respectively, the attractive fixed point of F,
the repulsive fixed point of F,, f;(y,). Let y, be the repulsive fixed point of F,,, and

let y3=fi(y,).

We look at a deformation of I',, and we note that f,, ..., f,._; are determined
by the z;;. We normalize I, so that y,=0, y,=, y;=1. Then we can write
a b) (K 0 ) (a B )
Qe s 0 = d —_ o 1 = > s Im = _ ) <
F2 m-—1 (C d » A bC 3 fl K K——] ’ lKl 1 f O a 1 |a|

1, where a, b, ¢, d are known, and the choice is made so that

e el k)G D6 -0 2

(that is, we choose a, b, ¢, d, K, a, B for the original I',, so that this relation holds;



Bases for quadratic differentials 617

then we can regard a, b, ¢, d, K, «, B as functions on T(I,,), where this relation
continues to hold; since T(I,,) is simply connected, the functions are well
defined).

From routine calculation we obtain the following four equations:

(D) K;aa =a

(2) K?aB+K?ba'=—-,

(3) (K*+1)aa +K %ca =0,

(4) (K2+1)(aB+ba)+K 2(cB+da") =a.

Since a # 0, we can solve (3) for K? and obtain

Since |K|>1, we can never have c/a =}, hence on T(I,,) there is a unique
solution for K2, and equally well for K.

We then solve (1) for a? and (2) for B8 in terms of a™'; hence as above, we can
solve for a and B.

§6. Global coordinates of Teichmiiller spaces II: Earle slices

6.1. Let G be a finitely generated Kleinian group with exactly two compo-
nents, neither of them invariant. We shall see (Lemma 6.3) that such a group must
be a Z,-extension of a finitely generated quasifuchsian group of the first kind. It
was remarked by Earle [9] that T(G), the deformation space of G, is in this case
the Teichmiiller space of A4,/G,, where

A =one of the components of 2(G),
G, = stabilizer of A in G, and

Ao={z€A; z is not a fixed point of an elliptic element of G}.
In this section we shall prove the following.

THEOREM 4. Let G be a finitely generated Kleinian group with two compo-
nents and 2(G)/G connected. Then the group G is stratifiable.
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6.2. The results of the next two sections, while apparently obvious, have, to
the best of our knowledge, never appeared in print. The proofs seem to require
deep results. For the convenience of the reader, we include complete details.

LEMMA. Let G, be a finitely generated quasifuchsian group with components
A and A*. Then there exists a unique extremal quasireflection J:€ =€ which
commutes with every element of G, and which maps A onto A*.

Proof. As usual let U be the upper half-plane and f: 4 — U, a Riemann map.
Define the finitely generated Fuchsian group F, of the first kind by Fy,=fGf .
Let U* be the lower half-plane and let j(z)=2Z. We let f*: U*— A* be the
unique Teichmiiller (extremal) mapping that induces the isomorphism

Foay = feyef '€ G,.
Define

X )_{f*°i°f(2), 2e AUA(G),
D7 eio (™), e A*UAG).

It is easy to see that J commutes with every element of G,. Since J preserves the

fixed points of elements of G,, J is the identity on A(G). Hence J is a global

quasireflection. Further J has minimal maximal dilatation among all quasireflections

commuting with G,, and J is the unique quasireflection with these properties.
We shall call J the extremal quasireflection for G,.

6.3. LEMMA. Let G be an arbitrary finitely generated Kleinian group with two
components, neither of them invariant. Then there exists a Z,-extension F of a finitely
generated Fuchsian group of the first kind so that G is a quasiconformal deformation
of F.

Proof. Let A and A* be the two components of G, and let G, be the stabilizer
of A (therefore also of A*). We conclude that G, is a finitely generated
quasifuchsian group of the first kind (see, for example, [20] or [17]) and that G is
a Z,-extension of G,.

Let g be some element of G\ G,. Let J be the extremal quasireflection for Go.
Since J is unique, goJog~'=J; that is, g commutes with J. Hence (goJ)*>= g€
G,; that is, goJ acts as an orientation reversing (quasiconformal) involution on
A/G,. It is classical (see, for example, [4]) that there is a Z,-extension F' of a
finitely generated Fuchsian group of the first kind F, by an orientation reversing
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conformal self-map of U which topologically uniformizes A/G’, where G’ is the
group generated by G, and goJ. Thus there exists a quasiconformal map
f:A — U that conjugates G’ to F'. For ze A*, we define f(z)=jofoJ(z), and
observe that f extends to a global quasiconformal homeomorphism which conju-
gates G' onto F' [1]. Obviously f conjugates J to j and G, to F,, and so
fogef '=(fogoJof Yo(foJof ') is a fractional linear transformation interchang-
ing U and U*, where (fegef ')*e F,. Finally, we let F be the group generated by
F, and fogef . :

6.4. Using Lemma 6.3, we conclude that to prove Theorem 4, it suffices to
assume that G is a Z,-extension of a finitely generated Fuchsian group G, of the
first kind acting on U, and that the extra generator of G interchanges U and U*.
We shall assume that we are in a slightly more general situation. We are studying
extensions G of non-elementary finitely generated Fuchsian groups of the first or
second kind G, acting on U by an element g, that maps U onto U*. We let
g € G\ Gy, and we form the group G’ generated by G, and j o g. Then G’ acts as a
group of conformal and anti-conformal automorphisms of U, G’ is isomorphic to
G, and G’ is independent of our choice of the element ge G\G,. Furthermore
jog induces an anti-conformal involution J on S = U/G,.

It is classical that S/J is a surface, perhaps non-orientable, of some genus, with
some number of boundary curves and some number of cross-caps. We give this a
precise statement, and for the convenience of the reader, we include a proof.

There is a unique closed orientable surface S which conformally contains S;
the difference S\ S is a finite set of parabolic punctures.

LEMMA. There is a finite set of simple disjoint loops wi, . .., w, on S with the

following properties.

(1) The loops w, . . ., w, divide S into two subsurfaces; J interchanges these two
subsurfaces and keeps each w; invariant.

(2) For each i, J either fixes every point of w;, or has no fixed point on w,.

(3) If J fixes every point of w, then w;, may pass through some elliptic
ramification points or parabolic punctures. Off these punctures, w; is a
geodesic on S, = S\{ramification points}.

(4) If J has no fixed point on w;, then w; is a smooth geodesic on S,, (and doesn’t
pass through any elliptic or parabolic punctures).

(5) Every fixed point of J is a point of some w;.

Proof. We look at the set of fixed points in U of elements of G'; these consist
of fixed points of elliptic elements of G, and fixed axes of orientation reversing
elements of G'. A point of intersection of two or more of these axes is necessarily
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an elliptic fixed point. Looking at all these axes near an elliptic fixed point; one
sees that they project onto a simple path on S. We conclude that the projection of
the fixed axes is a set of simple disjoint paths.

We next show that if A is the line of fixed points of the element g€ G'; then
either A is the axis of a hyperbolic element of G,, or both endpoints of A are
parabolic fixed points. Let x and y be the endpoints of A, and assume x is not a
parabolic fixed point. Then [3] x is a point of approximation for G, and so there is
a sequence g, of distinct elements of Gy, with g,(x) — x’, g,.(y) =y’ # x’. Since
G' is discrete, we must have g,(x)=x’, g.(y)=y’ for almost all n; that is, for
fixed m and n sufficiently large g,°g.'(x)=x, g.° g (y)=y.

We have shown that the projection to S of the set of fixed points of reflections
in G' is a set wy, ..., w, of simple disjoint loops.

By looking at paths connecting these loops one easily sees that wy, ..., w,
divides S into at most two surfaces.
If wy,...,w, does not divide S then there is a homotopically non-trivial loop

v on S, where.v is disjoint from all w; and the element of G, corresponding to v
is hyperbolic (this follows easily from the fact that G, is non-elementary). Let h
be some hyperbolic element of G, whose axis is disjoint from all reflection axes in
G’, and let r be some reflection in G'. Normalize G’ so that r(z)=-—2Z, and

h= (: 2), ad—bc =1, a, b, c, d real; then —bc >0, and |a + d|> 2. Observe that

(hor)?= ( 6 =be bl ““)).
cla—d) d°“—bc

If this were the identity, then we would have a=d, —bc>0 and a*—bc =1, so
that |a +d|<2. We have shown that if w,, ..., w, does not divide S, then S/J is
non-orientable, or equivalently, that G’ contains freely acting orientation revers-
ing elements.

Let u be the shortest orientation-reversing loop on (S\(w; U - Uw,))/J. Then
u?=w,,1, is a simple loop on S\(w,U- - -U w,) which is invariant under J.

If wy, . .., w1, does not divide S, then we repeat the above argument; after a
finite number of steps we arrive at the required wy, ..., w,.

6.5. In proving Theorem 4 under the simplifying assumption of §6.4, we first
take up the case that none of the loops wy, ..., w is pointwise fixed by J.

This means that jeg has no fixed points in U, for any choice of g€ G\G,.

Every element g € G\ Gy is either loxodromic or elliptic of order 2; one easily
sees that g is elliptic if and only if jog has fixed points in U. Hence J has no fixed
points if and only if every element of G\ G, is loxodromic.
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We look at all lifts of all w;; these divide U into regions; we choose one of
these regions, call it R, and let I" be the stability subgroup of R in G,. One sees at
once that R/I" is one of the halves of S cut along wy,...w, Hence I is a finitely
generated Fuchsian group of the second kind representing a surface of some
genus, with some number of elliptic or parabolic punctures, and s holes. We
observe that for each primitive Fe I representing one of these holes, there is an
element f e G, with f>=F, and f interchanges upper and lower half planes (that is,
jof preserves the axis of F but interchanges the two non-euclidean half planes
bounded by it).

We choose Fi,...,F, to be non-conjugate primitive such elements and let
fi, - . . f; be their square roots. Then the group G generated by 'and f;, ..., f. is
a subgroup of G, has two components, neither invariant, and, as we observed in
§5, 2(G)/G is the two halves of S with their boundaries glued together; that is,
2(G)/G =0(G)/G. We conclude that G=G and hence, using 85.3, G is
stratifiable.

6.6. We turn now to the case that J has fixed points on S. As we remarked
earlier, this is equivalent to there being an involution g € G, which interchanges
the upper and lower half planes. We conjugate G so that g(z)=—z.

Then the involution J is induced by jog:z = —Z; it has the positive imaginary
axis as fixed point set. Let w be the fixed loop of J on S containing the projection
of the positive imaginary axis, and let n be the number of elliptic and parabolic
punctures on w. There are several cases to consider.

Case V. n=0.

In this case w is a simple closed curve. Let &f be the set of all translates in
both U and U* of {Re z =0, Im z >0} under G. Let R be the subset of C cut out
by &, where R is bounded by the imaginary axis and lies in the right half plane.
Let G, be the stabilizer of R in G and let Gy, = G, N G,.

Exactly as in §5.2 (except that g>= 1), we can form the group G generated by
G, and g. We know that G < G, G has two components, neither invariant, and
02(G)/G is homeomorphic to £2(G,)/G,. Since G, has one component and
contains no degenerate subgroups, it is stratifiable. The fixed points of g are
hyperbolic fixed points of G;; hence G is stratifiable. It remains to show that
G=0G.

If w does not divide S = U/G,, then R N U/G,,, and R N U*/G,,, are both equal
to S cut along w. Then there is some loop w,, disjoint from w, which is also
invariant under J. Lifting J so that it keeps a lift C< RN U of w, invariant, we get
an orientation reversing element g, € G', which keeps RN U invariant. Then jo g,
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maps R N U onto R N U*; thatis, jo g, € G,. We conclude that R/G, = RN U/ Gy, is
S cut along w. Hence 2(G)/G = 2(G)/G, so G =G.

If w divides S, then RN U/G,; and R N U*/G,, are either equal or they are the
two halves of s cut along w. Since j(R N U) = RN U*, it must be the latter. The result
now follows as above.

Case VI. n=1.

We let P be the point of ramification or the puncture on w. Deforming w to lie
on “either side” of P, we get two non-homotopic simple loops on S; we let w’ and
w" be the geodesics on S in the corresponding homotopy classes (such geodesics
exist except when S is a sphere with three elliptic or parabolic punctures in which
case dim T(G)=0).

We note that J(w')=w". The loops w’' and w” bound a subsurface S,< S,
where Pe S,. We let S, =S\S,.

We let C' be a geodesic in U lying over w'. For the sake of definiteness we
assume that C' is in the first quadrant. We extend C’ to be a complete circle in C,
and let o =|J,cc ¥Y(C'). As before o is a G'-invariant union of disjoint circles
accumulating at all points of R. Let R, be the region in the first quadrant cut out
by &, bounded in part by C’, where the projection of R, to U/G, does not
contain the curve w.

As before we let G, be the stabilizer of R, U jR; in G, and Gy, be the stabilizer
of R, in G,.

The surface S; may or may not be connected. If S, is not connected, then
R,/Gy, is half of S; and (R,UjR,)/G,=S,. In this case Gy;=G;. If S, is
connected then G, is a Z,-extension of Gy, and R,/Gy;=S;=(R,UjR,)/G;. In
either case 2(G,)/G, is S; with a tube attaching the two boundary components;
that is, £2(G,)/G; is the surface S with the point P no longer a puncture or
ramification point. We conclude that

d=d(G)=d(G,)+1.

We also remark that G, is a function group —it is either a finitely generated
non-elementrary Fuchsian group of the second kind or a Z,-extension of such a
group. In particular, every structure subgroup of G, is elementary. Hence G, is
geometrically finite [23], and so it is stratifiable [18]. We let x;,..., x4., be a
stratification of G,.

We now let R, be the region cut out by & on the other side of C’. Observe
that the projection of R, to S contains the curve w. As before we let G, be the
stabilizer of R,UjR, in G and G,, be the stabilizer of R, in G,. Note that R,
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contains the positive imaginary axis, and that hence G, is Gy, extended by
g:z+>—z. Thus S, = R,/Gy, =(R,U jR,)/G,. Observe that R, is invariant under
the map z > —Z. As a matter of fact R,/G; is a sphere with two holes and one
point of ramification order v(2=<wv =), JS, = S,, J has the reflection line w on S,,
this line passes through the ramification point P, and J interchanges the two holes.
We conclude that G, is a Fuchsian group of signature (0, 1, 1; »). We also see
that 2(G,)/G, is a torus with one ramification point of order .

We let H be the stabilizer of C’ in G. Then H is a hyperbolic cyclic group with
generator h; also H = G, N G,. It is quite easy to see that G, is generated by h and
g, and that these satisfy the relations

gzzl’ (goh_logoh)":l (7)

(y” =1 means that vy is parabolic). (One can see from this that there is a loop v on
02(G,)/G,, where v cuts w, w', w” each exactly once, and v? lifts to a loop on
02(G,). This in fact proves that there can be no other relations in G, (see [23],

[25]).)
We show finally how to extend the stratification of G; by adding one
parameter to obtain a stratification of G. Our last parameter is

y = g(attractive fixed point of h).

Note that h € G,; hence h is determined by the stratification of G;. We must show
that the extra parameter determines the extra generator of G. We normalize so
that

r 0
h=(" T_l), 0<lrl<1,

y=g(0)=1.

(We can assume that 7 is determined since T(G) is simply connected.) Hence
(because g*2=1)

g= (g ::) a(B-a)=1.

The second of the relations (7) implies that

tr (goh~'ogoh) = 2a%— aB(r*+77?)
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is constant on T(G). Since h? is loxodromic, the last two equations determine of3
and a? uniquely. Hence these two equations have solutions (a, 8) and (—a, —B),
and so we have determined g from our parameters. This completes Case VI.

Case VII. n>1.

We let P, and P, be two adjacent ramification points or parabolic punctures
on some reflection arc w of the anti-conformal involution J on S. We denote the
orders of these ramification points by v;, 2=<w; =, and we find a simple loop v on
S with the following properties. The loop v divides S into two subsurfaces S; and
S,; both invariant under J. The subsurface S, has genus 0, contains the two points
P, and P, and no other ramification points or punctures.

We may assume that d(G)>0 (as otherwise there is nothing to prove). Then
there is a shortest geodesic in the homotopy class of v. We now replace v by the
geodesic in its equivalence class and note that the statement that P, and P, are
adjacent means that if v, <oo, v, <o, then S, contains exactly two fixed points of
J. We remark that if v, =2=v,, then the geodesic is no longer a loop, but a
segment between the ramified points, and all our arguments require minor
modifications, which we will ignore.

Exactly as before, we let C’ be a lift of v, where C’ intersects the positive
imaginary axis; we complete it to a circle and let & =, . y(C’). We let R, and
R, be the regions in U cut out by & with the boundaries of R, and R, containing
C’ so that the projections of these regions are S; and S, respectively. Both R, and
R, are jog-invariant. As in the preceding cases, for i=1, 2 we let G; be the
stabilizer of R; UjR; in G, and let G,; be the stabilizer of R, in G,. We know that
R, is invariant under the reflection je g, and thus (R; U jR,)/G; = R/G,;. Further
R,/G; are two parts of S cut along v. We also know that jog is a reflection that
conjugates Gy, into itself, and that the fixed line of jog cuts C'. If we let H, be
the hyperbolic cyclic group stabilizing C’, then we see that gH,g ' = H,, and we
conclude that the stabilizer H of C' in G, is a non-abelian Z,-extension of Hj;
that is, as a Fuchsian group acting on the inside of C’, H represents a disc with
two ramification points each of order 2. We conclude that 02(G,)/G, is
homeomorphic to 2(G)/G as a surface with ramification points, except that the
points P; (i=1,2) no longer have ramification index »;; now they both have
ramification index 2. Hence

d =d(G)=d(G,).

Of course G, is a geometrically finite function group; hence stratifiable. We let
Xy, ..., X443 be a stratification for G;.
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We repeat the above analysis for G, and we conclude that 2(G,)/G, is a
sphere with four ramification points of indices v,, v,, 2, 2. We choose generators
g1, 8 for Gy, where gi*=1 (i=1,2), g,og,=h, a generator for H,, and
(gej)egio(gej)=g1'. Then G, is generated by g;, g,, g These satisfy the
relations gi*=g3>=g>=(gog,°g;)°=(geg;)*=1. (We remark that from the
theory of signatures of Kleinian groups [26], we know 2(G,)/G,, and so G, has a
presentation of three elliptic or parabolic generators where a product of two of
them is elliptic, parabolic or the identity, and a product of all three is elliptic or
parabolic.)

We must show that the stratification of G, already stratifies G. The stratifica-
tion of G, determines h and g. Again we change normalization so that (G, is no
longer Fuchsian)

h__('r 0) =(0 l)
AU S S N\

We write
a B
g1=( )9 aa—B'Y:l.
Yy O

Now tr g; and tr g, are known constants. But

trg,=trheg;'=18+1"q,

trg,=a+a.

Hence we can solve for a and 8. Since (gog,)*> =1, we also have vy = . Finally to
solve for y we use y*=ad—1. In general we have two solutions (note that
ad# 1). The connectivity and simply connectivity of T(G) force the selection of
square root.

This completes the proof of Theorem 4.

Remark. The cuts we made in the surface S had to be chosen with care. For
example, had we chosen in the last case to cut S along a simple non-dividing loop
v where J has exactly two fixed points on v, then we would have obtained a group
G, with d(G,)>d(G).
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