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On the geometry of conjugacy classes in classical groups

Hanspeter Kraft* and Claudio Procesi

Summary We study closures of conjugacy classes in the Lie algebras of the orthogonal and symplectic
groups and détermine which ones are normal vaneties Furthermore we give a complète classification
of the minimal singularities which anse in this context, î e the singularises which occur m the open
classes m the boundary of a given conjugacy class In contrast to the results for the gênerai hnear
group ([KP1], [KP2]) there are classes with non normal closure, they are branched in a class of
codimension two and give nse to normal minimal singularities The methods used are (classical)
invariant theory and algebraic geometry

0. Introduction

0.1 The subject of this paper is the study of the singularities arising in the
closure of a conjugacy class of a semisimple group. In our preceding papers
[KP1], [KP2], [PK] we treated in détail the case of the linear group, developing a

number of techniques mostly based on classical invariant theory. In this paper we
continue the analysis for the other classical groups, obtaining various précise
results that will be presently explained. The exceptional groups seem to be

untreatable by the methods hère developed, essentially because of the lacking of a

suitable analogue of the so-called &quot;First Fundamental Theorem of Invariant
Theory&quot; which we hâve for classical groups.

Before going into a detailed discussion of our results let us recall some of the
main features of the theory.

0.2 Conjugacy classes: If G is a reductive group over C, g its Lie algebra, we
study the adjoint action of G on itself and on g. The orbits of this action are the

conjugacy classes. If C is such a conjugacy class in G, it is open in its closure C
which is an affine algebraic variety. The dimension of each class is even and C is

the union of finitely many conjugacy classes. In C there is a unique closed class C&quot;

which is necessarily the conjugacy class of a semisimple élément. By the theory of

* Supported in part by the SFB Theoretische Mathematik, University of Bonn, and by the
Umversity of Hamburg
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540 HANSPETER KRAFT AND CLAUDIO PROCESI

Luna [Lu] we can fibre C over C&quot; by a map cp:C-*Cf which associâtes to each
élément x of C its semisimple part xs. The fibre of an élément seC can be
described in this way: If y eCH(p~l(s) and y s.u is the Jordan décomposition
then &lt;p~x(s) is isomorphic to the closure of the conjugacy class of u in the
(reductive) centralizer ZG(s) of s.

This analysis shows that the study of singularities in closures of conjugacy
classes can be reduced to the case of unipotent classes. Moreover, if we assume
that G is a classical group so will be the centralizer ZG(s). Thus we will restrict
ourselves to unipotent éléments. Finally, since we work over C, the unipotent
variety of G is isomorphic in a G-equivariant way with the nilpotent cône N of g
(under the logarithmic map). It will be more convenient to treat this case.

0.3 Invariant fonctions on g (The theory of Kostant [Ko]): Let R be the ring of
regular functions on g invariant under G. R is a polynomial ring in r : rank G
homogeneous generators which define a map tt : g —&gt; C constant on conjugacy
classes. By the gênerai theory of invariants in each fibre we find a unique closed

orbit, hère the class of a semisimple élément. Moreover, in tt~1(x) there is a

unique open dense class, the regular class, and 7t~1(tt(0)) is the nilpotent cône N
of g. The fibres of ir hâve ail the same dimension, are reduced and even normal. In
fact, the r équations defining /n~1(x) give us this fibre as a normal complète
intersection.

The closure of a non regular class is not a complète intersection in gênerai and

one of our methods consists in constructing an associated variety which is a

complète intersection from which the given closure can be obtained as a quotient
(cf. 0.10).

There are other important features in this theory which hère will not be

pursued; they refer mostly to the theory of sheets (i.e. maximal irreducible subsets

of g of classes of a fixed dimension, cf. [BK]). This part of the analysis of
conjugacy classes has been extensively treated by various authors and it is of
course also intimately connected with ours (cf. [BK], [Kr], [P], [B], [Kel]).

0.4 Rational singularities: The resuit of Kostant on the global nature of the
fibres tt~1(jc) can be usefully improved showing that this variety has rational
singularities ([H3]). We recall:

DEFINITION. A normal variety Z is said to hâve rational singularities if
there is a resolution of singularities &lt;p:Y-*Z such that Rl&lt;p*ÛY 0 for ail i &gt; 0.

This notion is considerably stronger than the Cohen-Macaulay property and

will play a rôle in our analysis. In fact, we hâve the following resuit of Kempf&apos;s
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([KK] p. 50):

PROPOSITION. If Z is a normal variety and &lt;p:Y-*Z a resolution of
singularities then Z has rational singularities if and only if Z is Cohen-Macaulay
and for any differential form &lt;o defïned on the smooth part of Z, the pull back &lt;p*(&lt;o)

can be extended to the whole of Y.

0.5 Kleinian singularities: In the case of a surface, rational singularities are
strongly connected with quotient singularities and with semisimple groups
(cf. 0.6). This connection is established through the simple or Kleinian
singularities. Let H be a finite subgroup of SL2(C). The quotient C2/H is a surface in
C3 with an isolated singularity in zéro. The finite groups H and the équations
defining C2/H hâve been described by Klein; they correspond to the Dynkin
diagrams An, Dn, E6y E7 and E8.

H \H\ équation ofC2/HcC3 Dynkin diagram

cyclic
dihedral 4n xn+1 + xy2 + z2 0 ^n+2
binary tetrahedral 24 x4 + y3 + z2 0 E6
binary octahedral 48 x3y + y3 + z2 0 E7
binary icosahedral 120 x5 + y3 + z2 0 E8

The connection with the Dynkin diagrams appears forming a minimal resolution of
singularities. Then the exceptional fibre is a union of lines with selfintersection
number -2 meeting transversally. The Dynkin diagram is constructed simply by
drawing for each Une a vertex and for each intersection point an edge between the

two corresponding vertices (cf. for example [Brl]).

0.6 Subregular singularities (Brieskorn&apos;s theory [Br2], [SI]): We hâve seen that
the nilpotent cône M in a reductive Lie algebra g contains a unique dense open
class, the regular class Creg. If we consider Nr: Jf-Creg we still find in Jf&apos; a

unique dense open class, the subregular class Csubreg which is of codimension 2 in Jf.

If we slice Jf transversally to Csubreg we find an isolated surface singularity. It is

always a Kleinian singularity and its Dynkin diagram is the one corresponding to G
in the cases An, Dn, E6, E7 and E8. In the other cases there is a simple rule to
discover the corresponding Dynkin diagram which gives the following table:

group singularity

Bn A2n_1
Cn Dn+1
G2 D4
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We will generalize thèse results to pairs of conjugacy classes C, C such that
C^C and codimcC&apos; 2 (cf. theorems 2 and 2&apos; in 0.9).

The theory of Brieskorn continues to describe a semiuniversal déformation of
the singularity under considération which is obtained by restricting the quotient
map 7r:g-»Cr (0.3) to a cross section in g through the subregular class Csubreg.

This should hâve some analogue in our theory which has not yet been understood.

(K7 Collapsing of vector bundles and minimal singularities (Kempf&apos;s theory
[K]): Let G be again a reductive group acting linearly on a vector space V and

xeV. A way, sometimes useful, to study the orbit closure Gx is the following:
Assume there is a linear subspace [/cGx with xeU such that
P: {geG | gl/c [/} is a parabolic subgroup. We can then construct a proper
map

and say that Gx is obtained by collapsing the vector bundle GxpU (over G/P). If
the stabilizer Gx of x is contained in P we hâve that &lt;p is birational, hence a

resolution of singularities. Kempf&apos;s theorem implies now that, // P acts in a
completely reducible way on U, then Gx is normal with rational singularities, The
strength of this theorem lies (also) in the fact that the normality is automatically
insured, the weakness on the other hand results from the seriously restrictive
hypothesis on the action of P on U. WhOe it is often easy to describe a resolution
of singularities of the form G xp U it seldom happens that the action of P on U is

completely reducible.
One noteworthy example which plays also a rôle in our analysis is the

following: Given an irreducible représentation V of G and a highest weight
vector v e V, the Une Cu is fixed by a parabolic and the variety Gv has a

resolution of singularities given by the line bundle G xpCv over G/P. In the case

of the adjoint action of G on g, Gv is the unique minimal nilpotent (non zéro)
class indicated by Cmin, and Cj^n is normal, Cohen-Maeaulay and has an isolated
rational singularity in zéro.

(K8 Having recalled thèse theorems we can now expose the contents of the

paper. The first type of results deals with the following question: Given a

nilpotent conjugacy class C in the orthogonal or symplectic Lie algebra on or spn,

what can we say about its closure C? E.g. is it normal Cohen-Macaulay or with
rational singularities like in the case of g^? W. Hesselink has shown in [H4] that
C is normal if for the corresponding partition T) (Th, r\2,...) describing the
Jordan normal form of a matrix in C we hâve T^-f t|2 4 in the orthogonal case
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and 71x^2 in the symplectic case. Hère we should remark that for the orthogonal
group O2n a conjugacy class C sometimes splits as the union of two SO2n -classes
C(1) and C(2). This happens precisely when ail blocks in a Jordan normal form of
an élément of C hâve even size. It will turn out, that for thèse spécial classes C(l)

our information is more incomplète. For the other classes (including the non-
connected orthogonal classes) we hâve the following resuit (9.2,16.2).

THEOREM 1. Let C be an orthogonal or symplectic conjugacy class. Then
(a) C is always seminormal (i.e. any homeomorphic map Z-+C is an

isomorphism),
(b) C is normal if and only if it is normal in the classes of codimension 2.

In particular C is normal if it does not contain a class of codimension 2 (8.3);
this occurs often for low-dimensional classes (cf. tables at the end of the paper).
For another conséquence consider a resolution of singularities &lt;p : Y ~» C (cf. 10.2
and 15.1). Then C is normal if and only if the fibres of &lt;p over any class of
codimension 2 in C are connected.

The first connected non-normal closures of conjugacy classes are C(3j2,2) in so7,

A3,3,i,i) m 5Ps and C(5j2,2) in «Oc (the partition always refers to the Jordan normal
form of a matrix in C). In so8 ail classes hâve normal closure, but there is always a

(connected) class with non-normal closure in spn and son for n^9.
The more précise question about the Cohen-Macaulay property or rational

singularities does not yet always hâve an answer; one serious difficulty which does

not occur in gln cornes from the présence of non-polarizable classes (cf. section
10). In the third part we collect various spécial results and methods in this line.

0.9 Theorem 1 shows that the normality of C is determined by the type of
singularities occurring in the classes of codimension two. More precisely we ask

the following question: Given a conjugacy class C and an open class C in the

boundary dC C-C, what is the type of singularity (up to smooth équivalence) of
C in C? We hâve already seen two such examples in 0.6 and 0.7: the subregular
singularity CsubregcCreg and the minimal singularity OeC^n. It turns out that
with one exception thèse are the only types of singularities occurring.

THEOREM 2. Let C be an orthogonal or symplectic conjugacy class and C an
open class in the boundary dC C-C.

(a) // C is of codimension 2 then the singularity of C in C is smoothly
équivalent to an isolated surface singularity of type Ak, Dk or Ak U Afc, where the
last one is the non-normal union of two surface singularities of type Ak meeting

transversally in the singular point.
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(b) If C is of codimension &gt;2 then the singularity of C in C is smoothly
équivalent to a minimal singularity in son or spn.

In addition we give a simple combinatorial method to détermine thèse pairs
(C,C) and the corresponding singularity: If r\ and a are the Young-diagrams
(partitions) of C and C (describing the Jordan-decomposition of a matrix in C
and C), we cancel ail common rows and columns of -r\ and cr to obtain an
&quot;irreducible&quot; pair r)&apos; and af, called the type of (C, C).

THEOREM 2&apos;. In the situation of theorem 2 the singularity of C in C dépends

up to smooth équivalence only on the type of (C, C). The types and the correspond-
ing singularities are listed in table I (3.4). (cf. 12.3).

E.g. the pair (C, C&quot;) in sp12 given by the partitions (4,3,3,1,1) and
(4, 2, 2, 2, 2) has type (2, 2), (1,1,1,1) (cancel the first row and the flrst column!)
with corresponding non-normal singularity A1UA1.

0.10 A main tool in the proofs of thèse theorems is classical invariant theory.
Given a symplectic space U and an orthogonal space V (i.e. vector-spaces with
non-degenerate skew-symmetric or symmetric form respectively) we consider
Hom(U, V) as a représentation of Sp(U)xO(V). Then the &quot;First Fundamental
Theorem&quot; states that there are natural maps 7r:Hom(U, V)—»sp(l/) and

p:Hom(l/, V)—»st&gt;(V) which are quotients with respect to O(V) and Sp(U)
respectively (4.2). This construction allows us to proceed by induction and to
associate to a conjugacy class C an affine variety Z and a surjective map
ft:Z-*C which is a quotient (0.11) under a certain product of orthogonal and

symplectic groups (§5). We show that Z is a complète intersection and compute the
dimension ^&quot;HC&quot;) of classes C&apos;^C. For this purpose we give a classification of
the orbits in Hom(U, V) under Sp(U)xO(V), called &quot;orthosymplectic orbits&quot; (§6).

(We thank H.-G. Quebbemann and V. Kac for explaining to us-in rather
différent ways - how this classification can be obtained.) Furthermore we need a

dimension formula for thèse orbits Oc:Hom(U, V) expressing dim O in terms of
the dimensions of the conjugacy classes tt(O) &lt;= sp(L/) and p(O) &lt;= so( V) (§7). With
thèse results it is not difficult to obtain part (b) of theorem 1, whereas for the
other claims we hâve to make a very précise and detailed analysis of the geometry
of the two quotient maps tt and p. This is done in part II of the paper.

0.11 Finally we should remark some conventions. The ground field k is algebrai-
cally closed and of characteristic zéro. For any variety Z we dénote by €(Z) the

ring of (global) regular functions. If G is a reductive group acting on an affine
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vanety Y, R 6(Y), RG the subring of invarient functions and W the maximal
spectrum of RG, we will often mdicate W= Y/G and call the map n Y^- Y/G
the quotient map under G (even if ît has bad fibres) Sometimes Y/G îs contained
in a larger vanety Z but we may still call the composed map Y —&gt; Y)G CL&gt; Z a

quotient
The main property of quotient maps îs that if Xc Y is a closed G-stable

subvanety then tt(X) is a closed subvanety of Y/G and tt\x X—&gt; tt(X) is again a

quotient under G Clearly if Y is normal then tt(Y) Y/G is also normal Such a

permanence does not hold for the Cohen-Macaulay property On the other hand
one can often use the followmg important resuit of Boutot ([Bt], cf [Ho])

THEOREM // Y has rational singulanties then Y/G has also rational sing-
ulanties

More precisely Boutot proves that for any subring S^6(Y) which is a direct
summand as S-module the maximal spectrum of S has rational smgulanties

The authors would hke to thank C De Concini, W Hesselink, V Kac, G
Kempken, D Luna, H -G Quebbemann, P Slodowy and N Spaltenstein for
many useful and stimulatmg discussions

Part I. The basic construction

1. Quadratic spaces

1.1 Let e be 4-1 or -1 A finite dimensional vector space V with a non-
degenerate form such that (u, v) e(v, u) for ail u, ve V will be called a

quadratic space of type e (shortly an orthogonal space in case e 1, a symplectic

space in case e -1) We dénote by G(V) the subgroup of GL(V) leaving the
form invariant So we hâve G(V) On or G(V) Spn according to e l or
e=-l (n =dim V)

Let 9* End V —&gt; End V be the canonical involution associated to the form,
i e for any De End V the adjoint endomorphism D* is defined by

&gt;) (u,D*t&gt;) for u,veV

By définition we hâve

g(V)
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(the space of skew endomorphisms), and

: dimV.

If V and U are quadratic spaces of type s and e&apos; respectively and X:V^[/a
linear map, the adjoint map X* : U —&gt; V is defined by

(Xt&gt;, u)v (t&gt;, X*u)v for veV, ue U.

One easily sees that (X*)* s • e&apos; • X.

1,2 Let V be a quadratic space of type e, U a quadratic space of type -e. Then
the compositions XX* and X*X are skew; hence we hâve the two maps

L(V,

i
9(V)

defined by tt(X): XX*, p(X): X*X, where L(V, LT): Homk(V, U) is the

space of linear maps. The group G(U) x G(V) acts on L(V, U) in the obvious way
((g, ft)X:= gXh&quot;1), and tt and p are equivariant with respect to this opération and
the adjoint opération of G(U) and G(V) on q(U) and g(V) respectively.

Let us assume n : dim V&gt; m : dim U. The following is the first fundamental
theorem of classical invariant theory ([W] II.A theorem 2.9.A and VI theorem
6.1.A, [V] §3, théorème 1 and théorème 2):

THEOREM. ir and p are quotient maps (under G(V) and G(U) respectively)
and the image of p is the determinantal variety in g( V) of endomorphisms of rank

(For a characteristic free proof see [CP] theorem 5.6 (i) and theorem 6.6.)

Remark. Hère we are reformulating the theorem for the orthogonal group.
We are using the fact that, if J is a non-degenerate skew n*n matrix, one can

identify the space of symmetric nXn matrices with the Lie algebra of the

symplectic group of J, by the map Y»-&gt; YJ.
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2. Conjugacy classes and their degenerations

2.1 Let V be a quadratic space of type e. The following is the crucial resuit for
the classification of conjugacy classes and their closures in classical Lie algebras
(Freudenthal, Gerstenhaber, Hesselink; cf. [SS] IV.2.19, [Hl] theorem 3.10). For
any subgroup G^GL(V) and any élément De End V we dénote by G • D the
conjugacy class of D under G.

PROPOSITION. If Dgq(V) is an endomorphism, then

(a) GL(V) • D Hg(V) G(V)D,
(b) GL(V)-Dng(V) G(V)-D.

This implies that the conjugacy class CD : G(V) • D of a nilpotent D € g( V) is

determined by its associated partition T) (r\l, t)2, ,r\t),

1 1

given by the sizes of the blocks of the Jordan normal fonn of D (in End V). If
we dénote by r) (rh,..., î?s) the dual partition (i.e. r\t : #{/| tj, &gt;i}) we hâve
for ail /

dim Ker D1 £ %•

It is convenient to represent the partitions geometrically as Young-diagrams with
rows consisting on r\u tj2, Tjt boxes respectively. Then the dual partition tj is

defined by setting r\t equal to the length of the ith column of the diagram r\. E.g.
the partition (5,4,4, 3, 2,1) is represented by

2.2 The diagram t\ associated to a nilpotent D€g(V) satisfies the following
condition Ye ([SS] IV.2.15):

Ye) The number #{/ 1^ 1} is even for i s -—- mod 2.
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This means that for orthogonal V (symplectic V) the rows of even length (of odd
length) occur pairwise. Furthermore any diagram of this type cornes front a
nilpotent conjugacy class in g(V).

DEFINITION. A Young-diagram rj satisfying condition Ye is called an
e-diagram. We dénote by Ce/n the associated nilpotent conjugacy class in g(V), V
a quadratic space of type e of dimension |rj|.

Remark. There are Young-diagrams rj satisfying both conditions Yx and Y-x.
Such a diagram détermines two différent conjugacy classes C1&gt;T1 and C_xjTl, an
orthogonal and a symplectic one.

Let us summarize thèse results.

THEOREM. Let V be a quadratic space of type e and 17 a Young-diagram of
size \r\\ — dim V. &quot;Dénote by Cn the corresponding nilpotent conjugacy class in gl( V).

(i) Q ng(V) j= 0 if and only if r\ is an s-diagram.
(ii) If r] is an e-diagram, then

(a) Cong(V) CeT1 is a single conjugacy class in g(V),
(b) ;

2.3 Let us remark that a conjugacy class C under the orthogonal group is
connected if and only if C is also a conjugacy class under the spécial orthogonal
group. To détermine thèse classes we need the following analysis ([SS] IV.2.27).

DEFINITION. A Young-diagram rj is called very even, if ail rows are of even
length and occur an even number of times.

PROPOSITION. For an e-diagram r\ the conjugacy class Ce/n is disconnected

if and only if e 1 (hence V orthogonal) and i\ is very even. In this case |tj| O

mod4 and CeT1 splits into two conjugacy classes with respect to SO(V).

Remark. If 17 is very even and C(1), C(2) are the two components of CijT1, then

we hâve CçC^HC155 for any conjugacy classes C^CltJ

2.4 We recall the formula giving the dimension of a conjugacy class Ce/n in
terms of the diagram tj (cf. [Hl] corollary 3.8(a)).
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PROPOSITION. Let Vbe a quadratic space of type e and D e g( V) a nilpotent
élément with associated Young-diagram 17. Then

dim CentG(V)D =- (^ t|?-e#{/ | 17, oddjj

dim Q. =| (|r,|2-e M~I T|2 + e#{j | ^ odd}).

Remark. One has dim CentGUV)D=5].&apos;n?(cf. [Hl] corollary 3.8(a)), hence

dim CentGL(V)D 2 dim CentG(V)£&gt; + e#{j 117, odd}

and

dimCI=2dimCe.tI+e(h|-#{/|TïJ odd}),

where Q is the conjugacy class in gï(V) generated by CeT1.

2,5 DEFINITION. Let t\ be an e-diagram. An e-degeneration of 17 is an
e-diagram a such that |o-| |t)| and Ce)ffçCe&gt;T|. We describe this ordering by

The following is the basic resuit on degenerations of conjugacy classes ([Hl]
theorem 3.10; cf. also theorem 2.2(ii)(b) and [KP1] proposition 1.3(a)).

PROPOSITION. Given two e-diagrams a and 17 with H |rj| we hâve
Ce&lt;r c Ce&gt;T| if and only if S=i &lt;rt ^2=i % for ail j. This is équivalent to Sk&gt;j àk ^
Ik&gt;, m M aH /.

Remark. One can show that any e-degeneration of 17 is obtained by &quot;moving

down some boxes&quot;, taking care of the fact that the resuit has to be again an
e-diagram. E.g. (e 1)

tj (4,4.2, 2,1) &gt; o- (3, 3, 3, 3,1)
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3. Minimal dégénérerions (combinatorial description)

3.1 In order to state the main resuit of this section we need the following
définition.

DEFINITION. An e-degeneration a &lt;tj is called minimal, if cr^t] and there
is no e-diagram v such that cr&lt;v&lt;r\ (i.e. cr&lt;r\ are adjacent in the ordering of
e-diagrams).

In geometrical terms this means that the conjugacy class Ce(T is ôpen in the

complément of Ce/n in Ce/n.

3.2 To explain the classification of minimal degenerations we introduce a

combinatorial équivalence on e-degenerations suggested by the following resuit.

PROPOSITION. Let o&quot;^r\be an s-degeneration. Assume that for two integers

r and s the first r rows and the first s columns of j] and cr coincide and that

(rji, tj2, T)r) is an e-diagram. Dénote by r\&apos; and a&apos; the diagrams obtained by

erasing thèse rows and columns of tj and a respectively and put e&apos; : (— l)se. Then
&lt;t;&lt;t|&apos; is an e&apos;-degeneration and

codimee „Ce&gt;tCr&gt; codimce^Ce&lt;r.

Proof By induction it is enough to consider the two cases s l, r 0 and
s 0, r&gt;0.

(a) 5 1, r 0: Then e&apos; — e, â\ r\ly tïÎ tj^ — 1 and o-î c]rI-l. In addition
#01 V\ °^d} #{/1 r\j even} r\x — #{/1 tj, odd} and similarly for cr. Moreover it is

clear from the second description of the ordering that o-&apos;&lt;tî&apos;. Using the dimension

formula 2.4 one gets

/1 a-, odd}-#{/1 Tfc odd})

Z ^2-I V?-e\#{j | a-; odd}-#{j| r,; odd})

(b) s 0, r&gt;0: Then e&apos; e, ^=0; for l&lt;i&lt;r, ^,=7?; + ^ &amp;t =&amp;[ + r for
1 &lt;î&lt;t:= rïr crr and -r}, a, for /&gt;r. Hence
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since

Furthermore #{/1 a, odd}-#{j | t), odd} #{/1 cr&apos;} odd - #{/1 tj; odd}. Again by the
dimension formula 2.4 we get the required resuit, since clearly o-&apos;^tj&apos; from the
first description of the ordering (2.5). qed.

Remark, A similar statement holds in the linear case ([KP2], proposition 3.1).

3.3 DEFINITIONS, (a) In the setting of the proposition above we say that the
e-degeneration a^r\ is obtained from the e&apos;-degeneration cr&apos;^rj&apos; by adding rows
and columns.

(b) An e-degeneration tr&lt;r| is called irreducible if it cannot be obtained by
adding rows and columns in a non trivial way.

Remarks, (i) In the previous setting we hâve codimCe ^CC&gt;&lt;T =codimCe^Cecr
(3.2) and ct&apos;&lt;tj&apos; is minimal if and only if cr&lt;7j is minimal.

(ii) Any e-degeneration is obtained in a unique way from an irreducible
e&apos;-degeneration by adding rows and columns.

3.4 The previous analysis suggests that, for the classification of the minimal
e-degenerations, one should first describe the minimal irreducible e-degenerations.
They are given in the following table. (The meaning of the last line of the table is

Table I
Irreducible minimal e-degenerations

Type

Lie algebra

e

n
cr

codim^ C

a

sp2

-1
(2)
(1,1)
2

b

sp2n
n&gt;\

-1
(2n)
(2n-2,2)
2

c

n&gt;0

1

(2n + l)
(2n-1,1,1)
2

Sp4n+2
n&gt;0

-1
(2n + l,2iH-l)
(2n,2n,2)
2

n&gt;0

1

(2n, 2n)
(2n-l,2n-l, 1,1)
2

A2n-1UA2n_1

Wn&gt;l

1

(2,2,12&quot;&quot;3)

(l2n+1)
4n-4

SP2;&gt;i

-1
(2,12n~2)
d2n)
2n

n&gt;2

1

(2,2,12n~4)
(l2n)
4n-6



552 HANSPETER KRAFT AND CLAUDIO PROCESI

explained in section 14, cf. 14.2 and 14.3.) It is clear that thèse e-degenerations
are irreducible and one easily sees that they are minimal. Furthermore it is not
hard to deduce from [Hl] (proposition 3.1) that the list is complète.

Remark. For the types a, b, c, f and g of table I the e is determined by r\ and

a (because of condition Ye). The pair (rj, cr) in case e and h is an e-degeneration
also for e —1, but not a minimal one.

DEFINITION. Let te {a, b, c, d, e, f, g, h}. An e-degeneration o-&lt;tj is said to
be of type t, if it is obtained from the corresponding minimal irreducible degenera-
tion by adding rows and columns.

The previous analysis implies that each minimal degeneration a&lt;r\ has a

uniquely determined type te {a, b, c, d, e, /, g, h} and that codimce^Ceo. equals the
codimension of the type t (3.2). In particular codimeeT)Ce&gt;cr 2 if and only if
te {a, b,c, d, e}.

4. The induction lemma

4.1 Let V be a quadratic space of type e and Deg(V) a nilpotent élément with
conjugacy class CeT). Consider the new form on V given by \u9v\: (u,Dv).
Clearly it is of type -e and its kernel is exactly Ker D. Thus we hâve canonically
defined a non-degenerate form on U: lmD of type -s, and one sees that the
two maps

given by the canonical décomposition D I°X:V—? [/ ImDCL&gt;V, are
adjoint, in the sensé that X* I (cf. 1.1). We hâve

and

£&gt;&apos;: £&gt; 1^ XI XX*.

In particular D&apos;eç(U) (1.2) and it follows from the construction that D&apos;e CLe.v
where tj&apos; is obtained from tj erasing the first column (cf. [KP1] 2.2 and 2.3).
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4.2 Consider the two maps as in 1.2:

L(V, U) -^U 9(L0

I-

9(V)

and define L&apos;(V, U): {YeUV, U) \ Y surjective}.

LEMMA. For any YeL&apos;(V, U) the stabilizer of Y in G(U) is trivial and

p~\p(Y)) is an orbit under G(U).

Proof. The first statement is clear since Y.V-+U is surjective. Let Ze
P^ipiY)), i.e. Z*Z= Y*Y. Since Y*Y has rank m: dimU the map Z is

necessarily surjective (and Z* injective) and Ker Z Ker Z*Z Ker Y * Y
Ker Y. Hence we can find a geGL(U) such that gZ= Y, and so

Since Z* is injective and Z surjective this implies g*g 1, i.e. geG(U). qed.

4.3 Now we are ready to prove our main induction lemma. Using the notations
introduced in 4.1 we put Ney] :=Tr~1(C_e,n&apos;).

LEMMA. (i) tl Qv
(ii) p^CQ/n) IS a s*ttgfe ^r^ wnder G([/)xG(V) contained in

ï
(iii)

AT.,,, -^ C_e,v

Proo/. Clearly the closed set Ne&gt;71 is stable under G(U)xG(V). The construction

in 4.1 shows that p(X) DeCe^ and tt(X) D l^eC-e^, hence Ce&gt;11c

p(Ner]). Since p is a quotient map (1.2) the image p(Ne^) is closed (0.11) and so

Ce&gt;T1cp(iVeTÎ). On the other hand we hâve for each YeNBtV

-^Zri^Zi fi 1,2,...
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(cf. 2.5 and 1.2; T)i TJ,+i by construction). Hence

rk(Y*Y)h =rk Y*(YY*)h-x

This, again by 2.5, implies that p(Y)=Y*YeCBfyx, proving assertion (i). By
construction we hâve XeL&apos;(V, U), hence p~\p(X)) is the orbit of X under G(L0
(lemma 4.2). It follows that p&apos;^Q^) is the orbit of X under G(U) x G( V), which
implies the assertions (ii) and (iii). qed.

We will use this lemma, in the spirit of [KP1], to présent the variety Ce&gt;T| as a

quotient of a suitable variety Z which is a complète intersection (cf. the following
section 5).

Remark. The construction and the lemma above dépend only on the first
column of t\. In the future we will freely apply it to a partition t\ and ail its

degenerations which hâve the same first column.

5. Tlie variety Z

5.1 Let us start with a nilpotent endomorphism Dgq(V) with conjugacy class

CD Ce&gt;T1. In the previous section we hâve canonically defined a non degenerate
form onD(V) such that the two maps

x
V&lt; &gt;D(V)3 D I - X the canonical décomposition,

i

are adjoint (i.e. X* I) and that D \D(V) X • I is skew symmetric. Thus proceed-
ing by induction we construct spaces

Vo:= V, Vt : D(V),..., V, : D&apos;(V),...

endowed with non-degenerate forms of type e, — e,..., (-l)le, Since D is

nilpotent, for some minimal r^Owe hâve Vt+1 0.

The analysis in 4.1 shows that the skew endomorphism D |v belongs to the
conjugacy class Cv&gt;Tli, where e1 =(-l)le and tj1 is obtained from r\ deleting the
first i columns.

5.2 We construct now from thèse quadratic spaces a variety

u V2)x • • • xL(VM, Vt)
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defined by the following équations:

X\tî|c Y*YX^L j — ^\2y\2

2^2 ~~ ^3^3

(*)

XV^ Y^fc Y

The variety Z is clearly stable under the obvious action of G(V0) x G( Vx) x • • • x
G(Vf) on M. The given équation imply for a point (Xu..., Xt)e Z that

rk (XfX1)H rk XÎ(X1XÏ)h-lX1 &lt; rk (X1X:¥l)h~l rk (X^X^&quot;1 etc.,

i.e.

rk (XÎX!)h &lt; dim Vh =rk Dh.

Thus (2.5) X\XX e~Q&gt;. On the other hand the string (X?, X%9..., X?) defined by
X?: D |Vi_t: V!-!-* V, is clearly in Z and X?*X? D.

Thus we hâve defined a map

by (Xj,..., X,) ?-» XÏXi, which is G(V0)-equivariant by construction, and so

5.3 THEOREM. (i) ITie variety Z is a reduced complète intersection in M
with respect to the équations (*).

(ii) The map ^\Z-^CU is surjective and a quotient map under G(Vi)x
G(V2)x...xG(Vt).

The proof of this theorem is rather similar to the one in [KP1] for the linear

group; it will be given in 5.5. The new feature is that Z is in gênerai singular in
codimension 1. The conséquences of this phenomena will be extensively analysed
in part II.

5.4 We need a crucial lemma whose proof will be given in 8.2 as a conséquence
of the theory of orthosymplectic orbits (section 6 and 7).
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LEMMA. For every conjugacy class C^CD we hâve

codimz {T\C) &gt;\ codimeD G

5.5 Proof of theorem 5.3: Consider the map

given by (Xl9..., Xt) ^ (XXXÎ -X%X2, X2X* -X*X3,..., XJC*). Then Z, as a

scheme, is the fibre £-1(0). We first claim that £ is smooth in

M&apos; : {(Xi,..., Xt) | ail X, surjective} fi L&apos;(Vt-U Vt).
i i

For this we compute the difïerential dÇ at a point a - (Xl9..., Xt) € M&apos;. Taking a

tangent vector (Pl9..., Pt) e M we get:

Pi, • • •, Pt) (PiX

Since each X, is surjective we can solve the équation (d£)a(Pl9..., Pt)

(T1?..., Tt) inductively: If Pt, Pt_l5..., P1+1 hâve been determined, one has to
solve an équation

for some S, satisfying S* -Sr This can be done setting Sj=Rj-R* and then
solving XjP^jR, using the fact that X, is surjective. Thus (d£)a is surjective for
a € M&apos;, proving the claim.

In particular Z, as a scheme, is smooth in Z&apos;: ZflM&apos;. Furthermore by an

easy induction using lemma 4.3 (ii) and (iii) we see that f^cZ&apos;, hence
Z&apos;^0 and codimM Z&apos; dim N.

Since Ce&gt;-Cd consists of finitely many conjugacy classes C, and for each we
hâve œdimz^~1(Q)&gt;^codimcDQ^l by lemma 5.4, we deduce that Z is a

complète intersection smooth in codimension 0. Thus Z is a reduced Cohen-
Macaulay variety ([EGA] IV, proposition 5.8.5) and Z Z&apos;. This proves (i). For
(ii) we proceed by inverse induction. By theorem 1.2 the quotient of M under

G(Vt) is given by the map (Xl9 ...,Xt)^ (Xu Xt^u X*Xt). But, on Z, we
hâve X*Xt Xt_1Xt_1, and so the quotient map restricted to Z is just the

projection Z s (X1?..., Xt) ^ (Xl9..., Xt_i).
Proceeding in this way we see that the quotient of Z under G(V2)xG(V3)x

• • • x G(Vt) is given by the projection (X1?..., Xt) »-&gt; Xu and finally that # is the
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quotient under G(Vi) x • • • x G(Vt), as desired. Since we hâve already remarked
in 5.2 that CD^iï(Z), we must hâve iï(Z)=7^ (0.11). qed.

6. Orthosymplectic orbits

6.1 Let U be an orthogonal and V a symplectic space. In this section we want to
recall the classification theory of the orbits in L(V, U) under the group
G:=O(U) x Sp(V), shortly &quot;orthosymplectic orbits&quot;. For simplicity we will restrict
ourselves to unstable orbits (in the sensé of géométrie invariant theory). It is easily
seen that the représentation of G on L(V, U) is a @-group in the sensé of
Vinberg-Kac, and that the ring of invariants is the polynominal ring in the
éléments Tr((X*X)t), i 1, 2,... ,min(dim V,dim U). If we associate to Xe
L(V, 10 the pair

(X*,X)€L(17, V)xL(V, U)

we hâve that X is unstable if and only if (X*, X) is a &quot;nilpotent pair&quot; ([KP1] 4.1),
i.e. if (X*, X) as an endomorphism of U® V is nilpotent.

6.2 We will always consider

L(V,[/)çL([/,V)xL(V,[/)

by the previous map X»-&gt; (X*, X). The classification follows the same pattern as

the one relative to 9(V)cgI(V) (cf. 2.1, 2.2); it has been explained to us

independently by H. Quebbemann (cf. [Q]) and V. Kac (using the method
developed in [GV]).

If XeL(V, 17) we dénote by Ox its G-orbit and by Px the GL(l/)xGL(V)-
orbit of the corresponding pair (X*, X). The first step in the classification is given
by

pxnL(v,L0 ox.

Thus the orbit Ox is determined by the ab-diagram of the pair (A, B) (X*, X);
we refer the reader to [KP1] 4.2 and 4.3 for a discussion of nilpotent pairs and
their ab-diagrams.

6.3 To complète the classification we need to describe the ab-diagrams which
occur in this way; thèse diagrams will be called orthosymplectic. As in the theory
of Jordan blocks for classical Lie algebras (cf. [SS]) one can form direct sums and

speak of indécomposables. (Of course the ab-diagram of a direct sum is just the
union of the two ab-diagrams.) Thus one is reduced to the classification of
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indécomposable orthosymplectic afe-diagrams. This is given in the following table.
(For the number of a&apos;s and b&apos;s in the ab-diagram of Xeh(V,U) one has

#a=dim U and #fc=dim V.)

Table II
Indécomposable orthosymplectic afr-diagrams

Type

ab -diagram

n

#a

«n

aba — -ba

—

2nxl
2n

bab - — ab

2n-l
2n

yn

aba • — ba

aba — • ba

odd

2(n + l)
2n

8&quot;

bab-
bab-

even

2n
2(n + l

•ab

L)

a6a
6a6

—

2n
2n

-ab
-ba

6A Remark. If t is the ab-diagram of an (unstable) élément XeL(V, 17) the

Young-diagram of ir(X) XX* and p(X) X*X are obtained from t erasing the
fe&apos;s (respectively the a&apos;s). The reader may observe that from the ortho-symplectic
diagram t we obtain, of course, a (+l)-diagram and a (-l)-diagram in this way.
We will write also tt(t) and p(r) for thèse two Young-diagrams. E.g.

ab
ba

t ababa
bab
bab

a

a

gives tt(&lt;t) aaa
a
a

-
—
L_J

ID b

and p(t) bfe

bb

We remark also that X is injective (respectively surjective) if and only if the

corresponding ab-diagram t is formed by indécomposables of types an and yn

(respectively 0n and ôn) (cf. [KP1] 4.4, remark 2).

6,5 If t is an ab-diagram we dénote by PT the corresponding orbit under

GL(U)xGL(V) (in L(t7, V)xL(V, l/)). If t is orthosymplectic OT dénotes the

corresponding orbit under G~O(U)xSp(V) (in L(V, U)sL(l7, V)xL(V, LO).

To summarize we hâve the following resuit (cf. theorem 2.2).

THEOREM. Letrbean ab-diagram.
(i) t is orthosymplectic if and only if it is a union of diagrams of types

a, ft % S, e (table II).
(ii) Pr HL(V, 17) ^ 0 i/ and only i/ t is orthosymplectic

tiii) 1/ t is orthosymplectic then Pr HL(V, U) OT.
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7. Dimension formula for orthosymplectic orbits

T.l To any afc-diagram t we associate the number

where a, (resp. bt) is the number of rows of t of length i starting with a (resp. with
b) (cf. [KP1] 5.3). If t is orthosymplectic we hâve Ar 0 if the corresponding map
X: V—&gt; U is injective or surjective. More precisely one easily finds

#ô2k)
k

where #ak, #j3k,... dénotes the number of indécomposable factors of t of type
ak,/3k,...(cf. 6.3).

PROPOSITION. Let OgL(V, U) be an orthosymplectic orbit with associated

ab-diagram t. Then

dim O =4(dim 7r(O) + dim p(O) + dim U • dim V-Ar).

For the proof we need some préparation.

7.2 We first describe L(V, U) as a &lt;9-group in the sensé of Vinberg-Kac (cf.
[Vi]). As in section 6 we will always dénote by U an orthogonal space and by V a

symplectic space. Consider the group G:=GL(U($V) and the automorphism
&amp;:G-* G given by

(A B\ /A* C^y1
\c d/^Kb* dv *

We hâve 04 ld and 02 lnt/, the conjugation with J:= I yj Further-
\ 0 —Id J

more one easily détermines the fixed point groups and finds

G:=G* O(l/)xSp(V)

&amp; détermines an automorphism of order 4 of the Lie algebra § : Lie G
End(l/©V), also denoted by 0, given by

(A B\ (A* C*\
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Fixing a 4th root of unity £ we obtain a Z/4Z-graduation of g

g â(o)0â(1)eg(2)eg(3), g(l) :={x e g | ex ex}

which is clearly G-stable. By définition

g(0) g: LieG and g(o)0g(2) g&apos;: Lie G&apos;.

Furthermore

hence we can identify g(1) and L(V, L/) as G-modules (cf. 6.2).

7.3 We recall that a triple (X, H, Y) of éléments of a Lie algebra g is called an
sï2-triple, if they satisfy the following relations:

[H,X] 2X, [H,Y] -2Y, IXY] H, (*)

i.e. if the linear map sl2 —» g defined by J
&gt;-&gt; X, 1 •-* H, j •-&gt; Y

is a Lie algebra homomorphism.

LEMMA. Let X€g(1) be a nilpotent élément. Then there is an sl2-triple
(X,H, Y) m g with Heg(0) and Y€§(3).

Proof. By the Jacobson-Morozov theorem there exists an sI2-triple (X, H\ Y&apos;)

in g. In particular [H&apos;, X] 2X and H&apos; e [X, g]. Denoting by H the component of
H&apos; in g(0) we get [H, X] 2X and H g [X, g], since X e g(1). Hence there is a Y&quot; e g
such that (X, H, Y&quot;) is an sï2-triple ([Bo] chap. VIII, §11, lemme 6). Denoting by
Y the component of Y&quot; in g(3) the relations (*) for (X, H, Y&quot;) immediatly imply
that (X, H, Y) is an sI2-triple too. qed.

Remark. It is clear from the proof above that the lemma holds for any
®-group.

TA Let (X, H, Y) be an sI2-triple in g. The semisimple élément H defines a

Z-graduation of g:

9= © &amp;, ft : {X&apos;eg I [H, X] iX&apos;}.

It is easy to see that p:=©iSo9i is a parabolic subalgebra with nilradical
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n:=©l&gt;o9l and Levi-decomposition p âo©n. We dénote by P the parabolic
subgroup of G with Lie algebra p.

The following proposition is proved in [SS] (III 4.16, 4.11 and 4.19 (i)).

PROPOSITION, (a) The stabilizer Gx of X is contained in P.

(b) AH z\2-triples of the form (X, H&apos;, Y&apos;) are conjugate under Gx- In particular
the parabolic p dépends only on X.

(c) XGft2: ©t&gt;2Ôi and the map ad X:p—»n2 is surjective.

We remark that the assertions (a) and (c) imply that the canonical map

is a desingularisation, where Cx is the conjugacy class of X in g. In particular we
hâve

dim Cx — dim n + dim ft2.

7.5 Remark. It is easy to calculate the dimensions of the weight spaces of H in
terms of the Young-diagram À of the nilpotent endomorphism X of U(B V.
Thèse dimensions dépend only on the conjugacy class Cx and not on the choice of
an sï2-triple (X, H, Y) (cf. proposition 7.4(b)). The boxes of À correspond to a

Jordan basis of X. Choosing H diagonal with respect to this basis with entries
(2n, 2n -2,..., 2,0, -2,..., ~2n) in a row of A of length 2n -h 1 and with entries
(2n -1, 2n - 3,..., 1, -1,..., -2n +1) in a row of length 2n, it is well known
(and easy to check) that there exists a Yeq such that (X, H, Y) is an sI2-triple. In
particular the zéro weight space of H is spanned by the base vectors correspond-
ing to the middle boxes of the rows of odd length.

E.g. A

3 1-1
2 0-2

has weights 2 0-2
0

0

hence the dimension of the weight space Wx of weight i are given by dim Wo 4,
dim Wi dim WLx 1, dim W2 dim W_2 2, dim W3 dim W_3 1.

If in addition Xeg(1)©g(3) has associated afr-diagram t, the définition of H
above implies that H€g&apos; g(0)©g(2). Hence the weight spaces of H are of the
form Ut © V,, and it is clear how to calculate the dimensions of 17, and Vt in
terms of the afc-diagram t. In particular dim Uo is given by the number of rows of

t consisting of an odd number of a&apos;s and an even number of fc&apos;s; similarly for
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dim Vo.

abababa
bababab

E.g. t ababa ; then dim Uo 3,dim V0=l.
ab
ba

a

7.6 Now let Xg§(1) be a nilpotent élément with associated orthosymplectic
ab-diagram t. We choose an sï2-triple (X, H, Y) with Hgq(0) q (lemma 7.3).
Then H defines a Z-graduatipn of g&apos; and g, both induced by the Z-graduation of g

(7.4). Hence p&apos;: png&apos; and p: pflg are parabolic subalgebras of g&apos; and g with
Levi décompositions

p&apos; gi©n&apos;, g£: gong&apos;, n&apos;:=nHg&apos;

and

Denoting by P&apos; and P the corresponding parabolic subgroups of G&apos;

GL(U)xGL(V) and G O(l/)xSp(V) it follows from proposition 7.4 (a) that
&apos; and Gx^P- Defkiing

and n2:

proposition 7.4 (c) implies that the maps

adX:p&apos;-»n2, ad X:p-+n2

are surjective. From this we easily deduce assertion (a) and (b) of the following
lemma.

LEMMA. Let Ox, Ox and Ox dénote the orbits of X under G1, G and
G° SO(U)xSp(V) respectively.

(a) The canonical maps

G&apos;xp&apos;nï-*~dJc and G°xpn2-&gt;Ôx

are desingularisations,
(b) dim Oi= dim n&apos; + dim n2, dim Ox dim Ox dim n+dim n2

(c) dim n2 2 dim n2.

Proof of (c). We hâve seen in 7.2 that the automorphism &amp;2:G-*G is the



On the geometry of conjugacy classes in classical groups 563

conjugation with J= rj le G. Since
\ 0 —la /

ge we hâve 0H H, hence

JH HJ. Furthermore Jg(1) g(3) and so J(g(1) H&amp;) g(3) H g, for ail i. In particular
/(g(1)nft2) g(3)nfi2. Since n2 (g(1)nn2)0(g(3)nn2) and n2 g(1)r&gt;n2 the claim
follows. qed.

7.7 Proo/ o/ the dimension formula 7.1: We first compare the dimension of the
orbit Ox of a nilpotent élément Xeg(1) L(V, U) under G O(U)xSp(V) with
the dimension of the orbit Ox of X under G&apos; GL(U) x GL(V). We choose an

sl2-triple (X,H,Y) with H€g g(0) (Iemma7.3) and consider the associated

parabolic subalgebras

P&apos;= 9o © n&apos; S g&apos; and p go © n c g

(cf. 7.6). By définition the Levi factors gi and go are the stabilizers of H in g&apos; and

g. If U 0, Ux and V ©, V, are the weight space décompositions of U and V
with respect to H (i.e. Ul: {ueU\ Hu i • u} and similarly for V), we find

Furthermore the subspaces L/, + f/_, of (7 are non degenerate orthogonal spaces
and V, + V_, are non degenerate symplectic subspaces of V. Hence

go=(©gI(l/l))©o(l/o)©(©gI(VJ))©sp(Vo).
\i&gt;0 / \j&gt;0 /

Putting da : dim Uo and db : dim Vo we get (cf. 1.1)

2 dimgo-dim go (2 dimo(l/o)-d^ + (2 dim sp(V0)-db)

4-4-
Using lemma 7.6 and putting m : dim (7, n : dim V we obtain (cf. 1.1)

4 dim Ox -2 dim Ox~ 4 dim n —2 dim n&apos;

2(dim g- dim go) - (dim g&apos; - dim çQ

(2 dim g- dim g&apos;) - (4 ~ 4)

hence

4 dim Ox 2 dim Oi+(n - m)(4 ~ 4). (1)
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Now consider the conjugacy classes Ca :=tt(Ox)^o(U) and Q: p(Qx)c«p(V)
and dénote by C&apos;a and Cb the conjugacy classes in gl(L0 and gl(V) generated by
Ca and Cb. The dimension formula in the linear case ([KP1]; proposition 5.3)
gives

dim Ox è(dim C&apos;a+dim C&apos;b) + nm- AT. (2)

Moreover we hâve (remark 2.4)

dimC&apos;a 2 • dim Ca + m - ra, dim Cb 2 • dim Cb-n + rb, (3)

where ra, rb are the number of odd rows in the Young-diagram of Ca and Cb

respectively. From (1), (2) and (3) we obtain

It remains to show that tb~ra db — da. Denoting by a,,, the number of a&apos;s in the
vth row of t and by bv the number of b&apos;s, we hâve (cf. remark 7.5) da =#{v\ a^,

odd and bv even} and db #{v \ bv odd and av even}. Hence db-da
#{v | bv odd}- #{yL | ^ odd} rb- ra. qed.

8. Stratification and singularities of Z

8.1 We now go back to the variety Z constructed out of a given endomorphism
£*e&lt;î(V), Va quadratic space of type e (5.2). We recall that Z is essentially an
iterated fibre product:

U1 lc

i7PQ
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with Dt: D |Vi, Vt: Dl(V), Consider the finiîe set A of strings A (t15t2, Tt)

of orthosymplectic ab-diagrams rt corresponding to orthosymplectic orbits OTi ç:

L(Vt_b V.) satisfying
(a) ir(T,) p(TI+1): orI for î 1, 2,..., f-1 (i.e. &lt;ir(OT|) Q p(OTi+1), cf.

6.4),
(b) o-t=0(i.e. at=0).

It follows from the construction of Z that C^ £ CDi for i 0,1,..., f, cr0 : p(t&quot;i).

For A g A we define a locally closed subset ZxçZby

zx :={(xx, x2,..., xt g z | x; g oTi}.

The définition of A implies that we hâve a fibre product diagram subordinate to
the basic diagram (*) constructing Z:

I I I I

I

I I [
i ~~i ~*î
IIP&quot;&quot;

(Hère At dénotes the string (t1+1, t1+2, •, t,), Ao A.) Since ail the maps in this

diagram are smooth the variety Zk is smooth and we get from the dimension
formula 7.1 (putting n, : dim Vt)

dim ZA dim OTl - dim C&lt;Tl + dim ZXl

|(dim CŒo +dim Cai + Hq^ - âT) +dim Q + dim ZXl,



566 HANSPETER KRAFT AND CLAUDIO PROCESI

hence dim Zx — \ dim Cao \ {nQnx — A,) + dim ZXi—\ dim C^. By induction this
implies the following resuit.

PROPOSITION. For any À (tx, rt) e A we hâve

t-i
dim Zx | dim Q +| Z n^+i-\Ak

where or: p(r1), n, : dim V,

8.2 We are now ready to prove lemma 5.4, i.e. to show that for each conjugacy
class C^CD we hâve

codimz tTHO &gt; \ codimcD C

We first remark that there is a unique (open) stratum Zxo on top of the open orbit
CD, A0 (t?, t?), where t? is the ab-diagram of X? : D \Vi_t : ¥,_! -&gt; Vr This
is an easy conséquence of lemma 4.3 (ii) and (iii) (cf. also 5.2). For this stratum we
hâve ZxocZ&apos; ZnM&apos; (5.5) and one easily sees that Ako 0 (6.4), hence

t-i
dim Zxo \ dim CD +1S HA+i

i=0

and dim Zx ^dim Zxo-1 for ail other keA.
This implies dim Z dim Zxo dim Z&apos; and also the claim, since d-1(C) is a

finite union of strata Zx satisfying

codimz Zx dim Zxo — dim Zx |(codimCDC 4- Ak *

In particular we see that the strata Zx of codimension 1 lie on top of a conjugacy
class CcCDof codimension 2 and satisfy Ak 0. This already has the following
implication.

8.3 PROPOSITION. Assume that CD contains no conjugacy classes of codimension

2. Then the variety Z is normal and so CD is normal too.

(Use theorem 5.3(ii) and 0.11 for the last statement.)

8.4 Remark. One can show that Z is normal if and only if the only codimension

2 degenerations of CD are of type a (cf. 3.4). In ail other cases Z is singular in some

stratum Zx of codimension 1.
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E.g. let Deso3 be a regular nilpotent élément, i.e. DeClT, with r\ aaa.
Then the stratum Zx with

is of codimension 1 in Z (cf. formula (*) in 8.2), and is in fact the only possible
such stratum. We claim that Z is singular in Zx. Since ÔT with t ababa is a

quotient of Z it is enough to show that ÔT is not normal. To see this one remarks

_ bab
that the map it is not smooth in O+ c OT, t&apos; : a and that OT&apos; has codimension

i.

9. Functions on orbh closures

9.1 For any variety Y let us dénote by C( Y) the ring of global regular functions
on Y. We need a gênerai lemma which seems to be known by the specialists but
for which we could not find a référence.

LEMMA. Let Z be an affine Cohen-Macaulay variety, W^Z a closed subset

of codimension ^2. Then every regular function on Z—W extends to a regular
function on Z, i.e. C(Z-W) €(Z).

Proof. Let S^R: O(Z) be the set of non zéro divisor, K: RS and fe
€{Z-W)Ç:K. Consider the idéal I: {reR | r • /eJR}. By assumption the zéro
set V(I) of the idéal I is contained in W. Hence there is an s e IH S (i.e. an s € I
not vanishing identically on the irreducible components of Z). Since R/sR is

Cohen-Macaulay, the idéal sR has no embedded primes. Let sR Dlql be the
primary décomposition, p, : y/qt. It follows that 1^ p, for any i, since

codimxT(I)&gt;codimx W&gt;2. Hence feRVi for ail i. If we write f=r/s for some
reR this implies resRPl=qlRPi and therefore reqtRPi HR =q, for ail i. Thus
r g H, qt sR and so / r/s 6 K. qed.

Remark. In the setting of the lemma euery regular map &lt;p:Z~W-+Y into an
affine variety Y extends to the whole variety Z. This implies for instance that every
connected Cohen-Macaulay variety is connected in codimension 1.

9.2 For any conjugacy class Ccg(V) we dénote by C the complément in C of
the union of ail conjugacy classes of codimension ^4. C is open in C and it is the
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union of C with the codimension 2 classes:

C CU\JQ, codimeC 2.

THEOREM. (i) Every regular fonction on C extends to G
(ii) C is normal if and only if it is normal in the conjugacy classes of

codimension 2.

Proof. (i) Let fe€(C) and consider the quotient map # : Z -&gt; C (5.2, 5.3). We
know from lemma 5.4 that codimz &amp;~\C — C)^2. Hence the composed function
F: f ° #, defined on ^&quot;^(C1), extends to Z by the previous lemma 9.1. On the
other hand F is invariant on #~1(C) and so also on Z. Thus F defines an
extension of / to the whole C.

(ii) Since codime(C — C)^2 the variety C is normal if and only if every
regular function on C extends to C. Now if C is normal every regular function on
C extends to C by the same reason, and so, by (i), to the whole G qed.

93 The previous theorem reduces the problem of normality for C to the study
of the singularity in a codimension 2 class C&quot;. This will be the main object of part
II, where we will prove, as a conséquence of a more précise description, that C is

not normal in C if and only if this is a degeneration of type e (3.4; cf. theorem
16.2).

10. Polarization and Cohen-Macaulay property

10.1 Let C be a nilpotent conjugacy class in a semisimple Lie algebra g Lie G.

If C is a Cohen-Macaulay variety then C is also normal. This follows from
Serre&apos;s criterion since codime(C-C)&gt;2. The converse is not known in gênerai,
but only for the so called &quot;polarizable&quot; classes (and also some spécial cases, cf.
section 18).

DEFINITION. A nilpotent conjugacy class C is called polarizable if there is a

parabolic subalgebra pcg with nilradical n such that nH C is dense in n (cf. [H2]).
Such a parabolic is called a polarization of C.

10.2 The following resuit is due to R. Elkik.

PROPOSITION. If a nilpotent conjugacy class C admits a polarization, the

normalization of C is Cohen-Macaulay with rational singularities (0.4).
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Proof. Let p LieP be a polarization of C, n the nilradial of p and zenHC.
For the stabilizers Gz and Pz of z in G and P one has GZ^&gt;PZ=&gt;GZ. The natural

map &lt;p:Gxpn-^&gt; Ô, C the normalization of C, is proper, surjective and of degree
[Gz :PZ] and G xpn is the cotangent bundle over G/P (see for example [BK] §7).
Consider the Stein factorization

i.e. X is affine with coordinate ring 6(X) €(Gxpn). Now &lt;p&apos; is a resolution of
singularities. Since Y is the cotangent bundle over G/P the canonical divisor of Y
is trivial, hence Rl(p*6Y 0 for i &gt; 0 by the theorem of Grauert-Riemenschneider
([GR] Satz 2.3, cf. [HO] proposition 2.2). Thus X has rational singularities.

For x: &lt;p&apos;((lG,z))eX we hâve X=Gx, GX=PZ and codimx (X-Gx)&gt;2.
Since X and are normal, this implies 0(X) ^&gt; &lt;?(G)P% 0(£) -^ (?(G)G^ and
&lt;p : €(C) —&gt; &lt;P(X) is identified with the inclusion.

It follows that €(C) is a direct summand of 6(X) as ©(^-module. Hence by
Boutot&apos;s theorem (cf. 0.11) C has rational singularities too. qed.

10.3 In order to apply the previous proposition one has to détermine the

polarizable nilpotent conjugacy classes. For classical Lie algebras this is done in
[H2]. We only state the following partial resuit which is sufficient for our purpose
(cf. [H2] theorem 7.1(a) and 6.2 or [Kel]).

PROPOSITION. Let C be an orthogonal or symplectic nilpotent conjugacy
class with associated Young-diagram tj. If ail rows of r\ hâve even length or ail
rows odd length, then C is polarizable.

Part II. Minimal singularities

11. Geometry of tt and p

11.1 Let us go back to our basic set up (1.2)

g(V)
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V a quadratic space of type e, U a quadratic space of type —e, dim V \n&gt;

m : dim U. As in 4.2 we set

L&apos; : L&apos;( V, U) {X e L( V,U)\X surjective}.

PROPOSITION, (i) 7T is srnooth in L&apos; and tt(L&apos;) {D € g(l/) | rk D &gt; 2m - n}.
(ii) p(L&apos;) {D € g( V) | rk D m} and p |L, : L&apos; -» p(L&apos;) is a fibration with typical

fibre G(U).

(Fibration hère means &quot;locally trivial in the étale topology&quot;.)

Proof. (i) By définition we hâve (dir)x(P) PX* + XP*. We want to show that
(dir)x is surjective for XeL&apos;. To solve PX* + XP* Q for given Qeq(U) it is

enough to solve PX* ^Q, since then PX* + XP* PX*-(PX*)* |Q-èQ*
Q. This is always possible since X* is injective. Furthermore it is clear that if
D€tt(L&apos;), D XX* with X surjective, X* injective, and so rkD&gt;2m-n. The
converse can be proved by an easy matrix argument: Given a symmetric (or skew

symmetric) nxn matrix S of rank ^2m — n, one must write S Y1 Y (or
S y&apos;/Y, / a non degenerate skew matrix) where Y is an m x n matrix of rank
m. (One can verify it also by the classification of ortho-symplectic pairs given in
section 6.)

(ii) U is an orbit under GL(V) acting by left multiplication, and p is

equivariant under GL(V) with respect to the action D *-* g*Dg on g(V). Thus p is

of the form H\GL{V)-*H&apos;\GL(V), hence locally trivial. Since the actions of
G(U) and GL(V) on L(V, U) commute, the claim follows from lemma 4.2. qed.

Remark. We will later use the second statement of the proposition in the

following way: For any locally closed G(U)-stable subset WçL&apos; the image p(W) is

locally closed in g(V) and p |w : W-&gt; p(W) is smooth. (Since W is G(C/)-stable we
hâve W p&quot;1(p(W)), hence p |w : W-* p(W) is a fibration.)

11.2 PROPOSITION. Let Dsq(U) be nilpotent with dimKerD&lt;n-m.
Assume that CD is Cohen-Macaulay. Then ir&quot;1(ÇD) is reduced and Cohen-
Macaulay.

Proof. The assumption implies that the first column of the Young-diagram tj
of D has length &lt;n - m, hence piiT^iCn)) Ce^, where f} is obtained from r\ by
adding one column of length n — m (4.1). Since tt is smooth in L&apos; (proposition
ll.l(i)), N:=7T~1(CD), as a scheme, is smooth in the orthosymplectic orbit
OT: p~1(Ce/fi) by lemma 4.3(ii) and (iii). The claim will follow if we show that



On the geometry of conjugacy classes in dassical groups 571

dim O&lt;dim OT-1 for ail other_orthosymplectic orbits O^N, since this implies
first that codimL N codimfl(Lr) CD, hence N is Cohen-Macaulay ([EGA] IV,
15.4.2, a) ^&gt; e&apos;))9 then that N=Ôr and finally that N is smooth in codimension 0,
hence reduced ([EGA] IV, 5.8.5). This inequality is a conséquence of the dimension

formula for orthosymplectic orbits (6.8) plus the remark that OT is the unique
orbit on top of QA (lemma 4.3(ii)) and that Ar 0. qed.

Remark. Under the assumptions of the proposition above tt~1(Cd) contains a
dense orthosymplectic orbit, Le. Or p~1(Ce^) (see proof).

11.3 To complète the picture we state some remarks which can be deduced from
the previous analysis using [EGA] IV, 15.4.1 and 12.1.1, the Serre criterion
([EGA] IV, 5.8.6) and the fact that an orthogonal space of dimension 2m has two
rulings of isotropic subspaces of dimension m, inequivalent under SO2nv

Remark. Assume dim V&gt;2dim U. Then the map

is flat, Cohen-Macaulay and reduced. If in addition U is orthogonal or dim V&gt;

2 • dim U the map tt is even normal. If U is symplectic and dim V 2 • dim U the
zéro fibre of tt has two components intersecting in codimension 1.

11.4 The first assertion of proposition 11.1 can be improved if U is an
orthogonal space.

PROPOSITION. In the setting 11.1 assume that U is orthogonal. Then tt is

smooth in L°: {x eL(V, U) | codim ImX&lt; 1}.

Proof. Let X e L° and Q g( U). As in the proof of proposition 11.1 (i) we hâve

to solve PX* T for some TeBnd(U) with T-T* Q. If Ker T^KerX* this
is obviously possible. If not let u e Ker X*, u =/= 0 and put v : Tu. Then there is an

SeEnd(U) such that S* S and Su v. (In fact choosing an orthonormal basis

in U it is easy to see that for given vectors u,veU, u =£ 0, one always finds a

symmetric matrix S such that Su v.) Replacing T by T&apos;:=T-S we get
m e Ker T and we still hâve T - T&apos;* Q. qed.

Remark. One can show by a similar argument that L&apos; and L° in the cases U
symplectic and U orthogonal respectively are exactly the smooth points of the map
TT.
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11.5 In the setting of 11.4 (i.e. U orthogonal) consider the following décomposition

of the map p:

L: L(V,l/)

L/SO(l/)

where p° is the quotient under SO(U) and p the quotient under Z/2Z^=
O(U)/SO(U). Define L&quot;: {XeL(V, (7) | rk p(X)&gt;dim 17-1}. Of course L&quot;2L&apos;.

PROPOSITION, (a) p° |L. : L&quot; -» p°(L&quot;) is a /iftrarion wîffi fypica/ /îfcre SO( LQ.

(b) Z/2Z acte rritwally on p°(L&quot;-L&apos;).

Proof. For (a) we want to use Luna&apos;s criterion ([Lu], III. Corollaire 1) for
principal fibrations, i.e. prove that the stabilizer in SO(U) of any point XeL&quot; is

trivial. We already know this if XeL&apos; (ll.l(ii)). So we may assume that p(X) is a

matrix of rank m — 1, m dim U. Choosing a basis of V we may identify L( V, 17)

with the set of n-tuples (wl5..., iO of vectors in U, n =dim V. Then p can also

be thought as mapping (ul9..., iO into the symmetric matrix p(X) ((m,, M7))n

of scalar products (cf. remark 1.2). Using the action of GL» we may assume that

p(X) has the form m~l — j. This means that ul9..., Um-i are an orthonormal

basis of a subspace f/&apos;çl/ of codimension 1. The remaining vectors

1^, 1*™+1,..., i^ must be 0 being isotropic in the non degenerate one dimensional

space Utx. Now it is clear that the stabilizer of X in SO(U) is trivial, proving (a),
and that the stabilizer of X in O(U) is Z/2Z, proving also (b). qed.

12. Smoothly équivalent singularities, cross sections

12.1 DEFINITION (cf. [Hl] 1.7). Consider two varieties X, Y and two points
x e X, y € Y. The singularity of X in x is called smoothly équivalent to the

singularity of Y in y if there is a variety Z, a point zeZ and two maps

y



On the geometry of conjugacy classes m classical groups 573

such that &lt;p(z) x, i/r(z) y, and cp and i/r are smooth m z This clearly defines an
équivalence relation between pomted vaneties (X, x) We dénote the équivalence
class of (X, x) by Sing(X, x)

Assume that an algebraic group G acts regularly on the vanety X Then
Sing(X, x) Smg(X, x&apos;) if x and x&apos; belong to the same orbit O In this case we
dénote the équivalence class also by Smg(X, O)

12.2 Remark The smooth équivalence of two singularises x g X, y e Y means
that, after multiplication by affine spaces, they are analytically isomorphic This
implies that vanous géométrie properties of X m x dépend only on the équivalence

class Smg(X, x), for example Smoothness, normahty, seminormality
(cf 16 1), unibranchness, Cohen-Macaulay, rational singulanties ([El]
théorème 5) A typical example of a property which is not preserved, smee ît has

not an analytic meaning, is îrreducibihty in x

12.3 Now we can formulate the main resuit of this section We use the notations
mtroduced m section 3

THEOREM Let the e-degeneration ct^tj be obtained from the e&apos;-

degeneration a&apos;&lt;r)&apos; by adding rows and columns Then Smg(Ce v, Ce „) -
Smg(Ce ^,Ce(T)

The proof is similar to the one in the linear case (cf [KP2]) We must treat
separately the two steps &quot;cancelhng rows&quot; and &quot;cancellmg columns&quot; In the
second case (proposition 13 5) we will use the analysis carned out in section 11,
while the first case (proposition 13 4) will be handled with the method of cross
sections, which we now describe There is a difficulty in this case that did not
appear in the linear case and is due to the possible lack of normahty of the closure
of a conjugacy class This is overcome by a suitable réduction to the linear case

(cf 13 1)

12.4 DEFINITION Let X be a vanety with a regular action of an algebraic

group G A cross section at a point xeX is defined to be a locally closed

subvariety SgX such that x € S and the map GxS-^&gt;X, (g9s)*~* gs, is smooth at
the point (e, x)

Of course we hâve Smg(S, x) Sing(X, x) There is a natural way to construct
cross sections for affine G-vaneties X Choose a G-equivanant closed embedding

X^Vin some vector space V with a linear G-action and a complément N of
the tangent space Tx(Gx) m V Define S =(N+x)flX (schematic intersection)
Then GxS-*X,(g,s)*~* gs, is smooth at the point (e, x), smee G x (JV + x) -&gt; V,
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(g, n + x)»-»g(tt + x) is smooth at (e,x) ([EGA] IV, 17.11.1) and

Gx(N+x) &gt; V

s j
GxS &gt;X

is a fibre product. Hence S is reduced in x and so S, as a variety, is a cross section
at x. The construction implies that x is an isolated point in S H Gx. Assuming X
irreducible (or equidimensional) we get dimx S codimGx X.

12.5 Another useful fact on singularities is the following resuit.

LEMMA. Let X, Y be varieties with an action of an algebraic group G and

(p:X-*Y an equivariant map. Assume that Y is an orbit under G. Then &lt;p is a

locally trivial fibration (in the étale topology). In particularfor each x € X we hâve

Sing(X, x) Sing(&lt;p-1((p(x)), x).

Proof. Consider a point yo€ Y, the orbit map if/:G—&gt;Y and the fibre product

GxYX &gt;X

i j-
G ——&gt;Y

Since i£ is smooth, GxYX is the subvariety of GxX given by

X {(g,x)|gyo &lt;

The image of G xyX under the isomorphism G xX^&gt; GxX, (g, x) -» (g, g~lx),
is clearly Gx^&apos;^yo). qed.

Remark. If in the setting of the lemma we do not assume that Y is an orbit we
still hâve the following resuit: If S^Y is a cross section in the point &lt;p(x), then

Sing((P&quot;1(S),x).

13. Cancelling rows and columns

13.1 Let G be an algebraic group. As usual we dénote its Lie algebra by the

corresponding german letter g. For x € g we write Gx for its conjugacy class in g

(i.e. its orbit under the adjoint action).
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PROPOSITION. Let G be an algebraic group, G\Jî^G closed subgroups
such that H&apos;:=G&apos;nH is reductive and let xefy, yeH&apos;x. Assume

(i) codimGx G&apos;y codimGx Gy,
(ii) Gyny H&apos;x,

(iii) Gx is normal in y.
Then Sing(Hx, y) Sing(ÏTx, y).

Proof. By assumption we hâve t)&apos; â&apos;nï). We claim that there is a complément
N of fô&gt; y] *n 9 such that

[ï), y] ©No,

Since H&apos; is reductive, we can find an H&apos;-stable décomposition g
h&apos;@M&apos;®M0@D such that g&apos; ï)&apos;©M&apos;, l) ï)&apos;eMo. Hence [g,y]
[V,y]©[M&apos;,y]©[M0,y]©[D,y] since y€t)\ and so B&apos;,y]s^ [M&apos;,y]gM&apos;,

[M0,y]cM0 and [D, y]cD. This implies the existence of décompositions ï)&apos;

[V, y] © Ni, M;^[M&apos;,j ] © N7, Mo [Mo, y ] © No and D [D, y] © D. It follows
that N: N^®N&apos;®N0®D has the required property, since NÔ Nntf, N&apos;

No N H l) =^N0 © No- Now define S: (N+y)nGx,
(N0 + y)nHx and S^: (Nl) + y)nHtx. These_are ail

cross sections in y (12.4) and we hâve S&apos;Hty ((N&apos; + y)nt)&apos;)n(G&apos;xni)f)

(N0 + y)nH&apos;jc==S0 and S&apos;cg&apos;, hence S0 S&apos;ni). From assumption (i) we get
dimyS dimyS&apos; (12.4). Since S is normal in y by assumption (iii) and remark
12.2, this implies that S and S&apos; coïncide in a suitable neighbourhood of y, and so

the same holds for S fil) and S&apos;fil). But S C\l)^So^So S&apos;ni) by construction,
hence So and So coincide in a suitable neighbourhood of y too. Thus finally

Ôï y) Sing(S0, y) Sing(S0, y) Sing(Hx, y), qed.

13,2 Remark. The proposition remains true if we replace the normality condition

(iii) by the slightly weaker assumption:
(iii) Gx is unïbranch in y.

In fact the assumption (iii) was used to show that S and S&apos; coincide in a suitable

neighbourhood of y (notations of the proof). Now (iii)&apos; implies that S is unibranch
in y (being a cross section in a neighbourhood of y, cf. 12.2) and in particular
irreducible in y. Hence the equality dimy S dimy S&apos; is enough to insure that S

and S&apos; coincide in a neighbourhood of y.

133 Using this remark, we get the following corollary (put H G9 H&apos; G&apos;).
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COROLLARY. Let G be an algebraic group, G&apos;^G a closed reductive

subgroup and let xeg&apos;,ye G&apos;x. Assume
(i) codimGx G&apos;y codimGx Gy,
(ii) Gx is unibranch in y.

Then SingCCTx, G&apos;y) Sing(Gx, Gy).

13.4 We now can prove one part of theorem 12.3.

PROPOSITION. Assume that the e-degeneration &lt;r^r\ is obtained from the

e-degeneration o-&apos;&lt;V by adding rows (3.3). Then Sing(Ce&gt;T|, Ceo.)

Sing(Ce.v, C^).

Proof. Let V be a quadratic space of type s of dimension |tj| and DeCey] Ç
g(V). By assumption the diagrams 17 and a are decomposed, tj i&gt; + t)&apos; and
cr v + ar\ v also an e-diagram. Thèse décompositions correspond to an
orthogonal décomposition V W0 V such that D (F, D&apos;)eg(W) 0g(V) cg(V),
D&apos;€ CCT1&apos;, and there exists E (F, E&apos;)e Ce(T with E&apos;e Ce^. To apply proposition
13.1 we define G:=GL(V), G&apos;:=GL(W)xGL(Vr), H:=G(V) and

H&apos; := G(W)x G(V). Now condition (i) follows from the dimension formula for
linear conjugacy classes (cf. remark 3.2), (ii) from theorem 2.2 (iib) and (iii) from
the normality of conjugacy classes in gïn ([KP1]). Hence Sing(C6 ^ E) -
Sing(RD, JE) Sing(H\D, E). Since H&apos;.D G(W).Fx G{V&apos;).D&apos; and J5 (F, E1)
is contained in the open subset G(W).FxG(V&apos;).£&gt;&apos;, we get Sing(H\D, E)
Sing(G(V&apos;).D\ E&apos;) Sing(Ce,v, E&apos;). qed.

13.5 Proposition: Assume that the e-degeneration cr&lt;r) is obtained from the

ef-degeneration a&apos;^i\&apos; by adding columns (3.3). Then Sing(Ce.,,, Ceo.)

Sing(CeW, C9W).

Proof. It is enough to treat the case where ct&lt;tî is obtained from cr&apos;&lt;Tï&apos; by
adding a single column. Let V be a quadratic space of type e and dimension |tj|
and U be a quadratic space of type — e and dimension |V|. Consider the basic set

up (1.2):

9(V)
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and the induced diagram of maps (4.3)

As a conséquence of proposition 11.1 and its remark we hâve that thèse two maps
are smooth in the open set N&apos;e^: Ne^ HL&apos;(V, U). Thus it is sufficient to show
that there is a point XeN&apos;e^ with tt(X)g C_e&lt;r&apos; and p(X)eCe&gt;o. (12.1). From
4.3(ii), (iii) (and remark) we hâve p~\Ceta)&amp;N&apos;etlt and ir(p~\Cet&lt;r)) C_et&lt;T&apos; and
so we can choose any Xep~\Ceta). qed.

13.6 Let V Vx © V2 be an orthogonal décomposition of a quadratic space V.

Consider nilpotent conjugacy classes Cx in g(V,) and degenerations C[ç:Ci,
i 1, 2, and dénote by C and C the conjugacy class in g( V) generated by Cx x C2

and CJxC^ respectively. Generalizing 13.4 we give a simple condition under
which Sing(C, C&apos;) Sing(Q, C i) x Sing(CÏ, C2) : Sing(C\ x Q, C i x C^). For this
let î], be the diagram of C, and &lt;7t that of C[.

PROPOSITION. Assume that t)i and ai hâve the same number of rows and
that the last row of r]1 is larger than the first row of r\2. Then

Sing(C, Cf) Sing(Cx, Cl) x Sing(C2, C2)

Proof We proceed as in 13.4 applying proposition 13.1. The only point is to
verify the codimension condition which is easily seen to be a conséquence of the

hypothèses made. qed.

Remark. One can easily extend the statement to any décomposition V
V1©V2©---©VS.

14. Singularities of minimal degenerations

14.1 In this section we give the classification of the singularities Sing(Ce&gt;71, Ceo.)

for a minimal e-degeneration ot&lt;tï (3.1). By theorem 12.3 we are reduced to
study the irreducible ones given in table I (3.3, 3.4). We distinguish the two cases

codimceTi Q,cr= 2 and &gt;2. For the first case we need to recall part of Brieskorn&apos;s

theory on subregular singularities in simple groups (cf. 0.6). The nilpotent cône M
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of a simple Lie algebra is the closure of a unique conjugacy class Creg, the regular
class; its boundary dCTe&amp; Jf- Cr&amp;g&gt; is itself the closure of a unique conjugacy class

Csubreg, the subregular class, and codinv Qubreg 2.

THEOREM (cf. [SI], 6.4 Theorem): Let Jf be the nilpotent cône in sïn+i,

so2n+l5 sP2n (w — 1) or so2n (n &gt; 3). Then the singularity ofJfin the subregular class

Qubreg is smoothly équivalent to the simple surface singularity of type An, A2n-i,
Dn+1 and Dn respectively.

14.2 If we now look at table I (3.4) we can immediately recognize that for the

types a, b and c the diagrams r) and a are those of the regular and the

sub-regular class in the corresponding Lie algebra. In case e the conjugacy class

Citt| has two components C(1) and C(2) and ~^ n&apos;Cm ~C~Ua. (remark 2.3). In
particular C1&gt;7| is nof normal in this case. We will describe more precisely this

singularity and show in particular (15.4(a), 15.1) that the intersection C(1) fi C(2) is

reduced and Sing(C(l), Cly€T) A2n-i» We will indicate such singularity by
Sing(C1&gt;T|, Clf&lt;r) A2n_! U A2n_!.

The remaining case d is related to the exceptional case e ; we will prove that it
gives rise to a singularity of type A2n_! also (15.4(b)). We set aside to the next
section thèse two cases and first complète the study of minimal degenerations of
codimension &gt;2.

14.3 Inspecting table I in the cases /, g, h we see that &lt;r is the diagram of the
zéro class while tj is the diagram of the unique minimal non zéro class. It is well
known that this is the orbit of a highest weight vector in the Lie algebra, i.e. the

conjugacy class of a long root vector x. This singularity is usually described as a

&quot;collapsing&quot; of a Une bundle: One considers the line L:=kx, the parabolic P
stabilizing L in the corresponding group G and the line bundle G xpL over G/P.
The natural map &lt;p : G xpL —*&gt; Ce&gt;T) is a resolution of singularises and (p~x(0) is the

zéro section of this bundle (cf. 0.7).
The conséquences of this construction for the geometry of Ce&gt;T1 hâve been

studied extensively by several authors. In particular it follows from [K] §2 that
Ce&gt;&lt;n is normal, Cohen-Macaulay with rational singularities. We remark that in this

case the normality of CC&gt;T1 can also be deduced from proposition 8.3. For a more
précise discussion of thèse varieties we refer the reader to the previously cited
literature. Hère we only remark that, in case g, G/P=P2n~l and the line bundle is

0p*-i(-2).
Finally, in analogy to the standard notations for simple groups, thèse

singularities are denoted by the symbols 5n, Cn, d».

We hâve now explained the, meaning of the symbols on the last line of table I
to which we now can refer.
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15. The types d and e

15.1 Consider the very even conjugacy class C:=C(2n,2n) in so4n with the two
components C(1) and C(2). One has ~Cmn~Cm &apos;C&apos; with C associated to the
partition (2n — 1, 2n -1,1,1) (remark 2.3).

PROPOSITION. The singularity of C^ in C is smoothly équivalent to the

simple surface singularity A2n-\.

Proof Let U be a vectorspace of dimension 2n, 17* its dual space. Then
V:= U® 17* is an orthogonal space with respect to the symmetric form ((u, e),
(u\ e1)) : e(ur) + e\u). We hâve the closed immersion GL(U) ^ SO(V) given by
91-* (ô, 9*&quot;1), which induces the inclusion q\(U) c^ so( V), D*-*D: (D, -D*). If
Deg\(U) is nilpotent with partition tj (tii, tïs), its image D has partition
V (ili» &apos;Hi» 112» 172, • • • &gt; tis? ^s)- In particular the (connected) regular class Co of gln

is mapped into one component of C, say C(1), the subregular class CÔ&lt;=^C0 is

mapped into C, and codim^ C&apos;Q-2 codimcm C. This enables us to apply
corollary 13.3 and deduce the claim, provided we can show that C(1) is unibranch
in C&apos;.(1)

To see this consider the flag variety 9 of isotropic flags F (FU F2,..., Fn) in
the 4n-dimensional orthogonal space V,F1cF2C&apos;&quot;cFn, Ft isotropic of dimension

2i, and the vectorbundle V: {(F,X) | XF, çF^ for ail O^^Xso(V) over
^. The projection pr : SFxso(V) —» so(V) induces a &quot;desingularisation&quot; &lt;p : T~» C,
i.e. for the two connected components V(1) and T^(2) we hâve ^(y(l)) C^ and

cp |rw : T^(l) -&gt; C^3 is proper and birational (cf. [H2] §4). So we hâve to show, that
the fibre P: &lt;p~x(D) of an élément DeC has (at most) two connected components.

We choose a basis {eu e2,..., eln-i, fi, f2&gt;- • &gt;
/2»-i&gt; g, h] of V such that

Pf, =/,-i, 2&gt;^, ^-i, c^/^&amp;heKerD and such that V
&lt;ei, • • •, «2n-i&gt;©&lt;fi» • • • ,/2n-i&gt;©&lt;g&gt;©&lt;h&gt; is an orthogonal décomposition ([SS]

IV, 2.19). In the non-degenerate orthogonal space (en, fn, g, h) we hâve two types
of isotropic planes:

and

Consider any flag F in P(=&lt;p~1(I&gt;)). Clearly Fn^V&apos;:~

&lt;ex,..., en, fl9..., /n, g, fi) and it is isotropic of dimension 2n. This implies that

1 The following analysis was indicated to us by N. Spaltenstein.
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FM contains Vn_x : (eu en-u fl9..., /„_!&gt;, the kernel of V. Thus Fn

Vn_! © JEj,^ for some à/jll e(P\ ô ±1. The condition DF, c Ft_! implies that for
À/jLt ^ 0, oo we necessarily hâve F, Vj : (el9..., et, fu ft) for i &lt; n. The flags
of this form defîne a subset Pn8 of F isomorphic to P1. Assume now, for instance,

=oo. Then we may also assume that for some n&gt;r&gt;0 we have

for n&gt;i&gt;r

and that Fr is not of this form. This implies that Fr_! Vr-X and so Ft Vt for
i&lt;r-l. As for Fr itself it may be chosen arbitrarily of dimension 2r, such that

V^i c Fr c Fr+i, DFr ç V,-! and DFr+1 ç Fr. Thèse conditions imply that Fr
contains Fr_x ©&lt;er + J^fr) and is contained in Fr-t © &lt;er, /r, g + 8\f-îh). Hence thèse

flags form a subset F*ô of P isomorphic to P1. Similarly for À//m=0 we find
subsets F?ô. The analysis shows that

P1UP_1, P :

and that the terms are the irreducible components of P. One easily détermines the
intersection properties of thèse lines and vérifies that Pt and P_j are the two
connected components of P, each consisting of 2n — 1 lines with graph:

n-3,8

rn,ô

Pn-1,8

/c

qed.

15.2 To proceed to type d and complète type e we need a few gênerai facts on
reduced intersections. Let X be a variety, Xu X2 two locally closed subvarieties and
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DEFINITION. The intersection XxnX2 is called reduced in x, if in the local
ring 6X,X of X in x we hâve

where alx, û2,x, ûx are the ideals of functions in 6X,X vanishing on Xl9 X2,X1C\X2
respectively. We say that X!nX2 is reduced, if it is reduced in ail points
xeX1DX2.

Remark. (1) In the définition one can replace X by any subvariety containing

(2) This property is équivalent to say that the schematic intersection Xx n X2
is reduced in x, i.e. that the séquence

is exact.
(3) The set of points xeXtn X2, where the intersection is reduced, is open in

X!nX2 ([EGA] IV, 12.1.7).

15.3 Let us collect some elementary properties on reduced intersections, mostly
well known. The setting is as in 15.2; €(X) indicates the ring of global regular
functions on X.

(a) If XxnX2 is reduced, we hâve the following global property (cf. 15.2
remark 2):

(P) For ail /iG^Xx), f2e€(X2) such that /i |Xlnx2 /2 knx2 there is an
fe€(XlUX2) withf\Xi ft.

(b) If X is affine and Xl9 X2 closed subsets, then property (P) is équivalent to

X1H X2 being reduced.

(In fact for the ideals a, al5 a2 ç €(X) of functions vanishing on Xx HX2, Xu X2 we
hâve a

(c) If Xj and X2 are smooth in x with normal crossing (i.e. dim(Tx(X1)n
Tx(X2)) dimx (X1nX2)\ then XXHX2 is reduced in x.

(In this case the schematic intersection is even smooth in x.)

(d) Let &lt;p : Y -* X be a regular map, Yt : ^(X,) and y e Yt H Y2 a point with
&lt;p(y) x. Assume that &lt;p is smooth in y. Then Yt H Y2 is reduced in y if and only if
Xx H X2 is reduced in x.
(The property of being reduced in x is a property in the completion éx&gt;x.)
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(e) Let X be affine with an action of a reductive group G, tt : X —» XIG the

quotient map. Assume that Xu X2 are closed and G-stable subsets with reduced

intersection, Then iriX^) H tt(X2) is reduced.

(This follows from gênerai facts of quotient maps; see 0.11.)

(f) Let a be an automorphism of order 2 of X such that cr(Xi) — X2 and a is

the identity on XxflX^ Consider the quotient map tt:X—»X/o\ Then the

induced map ttx : Xx —&gt; ^(Xj) is an isomorphism in Xx - (Xx H X2) and in ail points

xeXxr\X2 where the intersection is reduced.

(We can easily reduce to the setting X XtUX2, X affine, X,çX closed and
reduced. From the exact séquence

€(x) -&gt; ©(xo x o(x2) zt 0(xt n x2)

we get the exact séquence for the invariants

C(xr -&gt; (©(Xx) x ©(x^r =t c(Xi n x2)a o(Xx n x2).

Any function / g €(Xt) is transformed by cr into a function fa g €(X2) and the
invariants in €{X^)xG{X2) are just the pairs (/,/*). Thus O(X)&lt;T-&gt;

(0(Xx) x O(X2))cr is an isomorphism and, composed with the projection onto
O(XX) gives the desired resuit.)

(g) Assume that X XtUX2 is affine and Cohen-Macaulay and Xt closed in
X. If there is a closed subset W^XtnX2 with codimx W&gt;2 such that XXC\X2 is

reduced in (Xx HX2)- W then X1DX2 is reduced.

(This follows immediately from (a) and lemma 9.1.)

(h) Universal property: Let &lt;pl:Xt—^Y9 i i,2, be regular maps such that
&lt;Pi \xtnx2 &lt;P2 \xtnx2&apos; If XiHX2 is reduced there is a unique regular map
&lt;p:X1UX2-~&gt;Ysuch that &lt;p \Xt &lt;p,.

15.4 We can now formulate the main resuit of this section and complète the

study of singularities in minimal degenerations (cf. 14.2).

PROPOSITION, (a) The two components of the closure of the very even

conjugacy class C(2n,2n) in **&gt;4n hâve a reduced intersection and are normal,

Cohen-Macaulay with rational singularities.
(b) The closure of the conjugacy class C(2n+1&gt;2n+1) in sp4n+2 is normal, Cohen-

Macaulay with rational singularities and

Sing(C(2H+l,2n+l)&gt; C(2n,2n,2)) -A2n-1-
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We first prove that (a) implies (b) and then (15.6) that (b) for sp4k-2 implies (a) for
so4fc. This proves the resuit by induction, since (b) is clear for n 0.

Proofof (a) =^&gt; (b): Put m 2n and let U be an orthogonal space of dimension
2m, V a symplectic space of dimension 2m + 2. By assumption the two compo-
nents C(1) and C(2) of C : C(m,m)çso(l/) hâve normal closures C^ and CP with
reduced intersection. We hâve to show that the closure of D := C(m+1&gt;m+1) csp( V)
is normal and Cohen-Macaulay with rational singularities. We hâve the maps
(L: L(V,U))

L/SO(in

where p° is the quotient by SO(U) and p the quotient by Z/2Z (=O(U)ISO(U);
cf. 11.5). Put N:= tt-\C). We know that Q:=p-\D) is a single O(U) x Sp(V)-
orbit contained in L&apos; and that tt(Q) C (4.3 lemma (ii) and (iii)). Hence Q is the
union of two SO( 17)xSp(V)-orbits Q(1) and O(2) with ir(Q(0) C(i). Further-
more Q&apos;^p&quot;1^&apos;), D&apos;: C(m,m,2), is a single O((7)xSp(V)-orbit too, since
there is a unique orthosymplectic afe-diagram t lying on top of (m, m, 2), i.e.

feafe • • • ab

t bab - - - ab
bab

a

(cf. 6.3). From this we see that Q&apos;ç=L° {XeL(V, U) |dimKer X&lt;1}, Q&apos;ç:L&quot;

{XeL(V, L0|rkp(X)&gt;m-l} and 71(0&apos;) ^. Thus the map &lt;rr:N-&gt;C is

smooth on QUQ&apos; (11.4) and p°: Q U Q;-^ p°(Q U QO is a principal SO(LT&gt;-

fibration (11.5). This implies that Q^ and Q157 are normal in Q&apos; with reduced
intersection there (15.3), and hence that p°(Q(1)) and p°(O(2)) are normal in
P°(Q&apos;) with reduced intersection there. Since O&apos;çL&quot;-L&apos; the action of Z/2Z on
P°(O0 is trivial (proposition 11.5(b)). Using 15.3(f) we see that the p : p°(Qm)-&gt;

p(Q) D is an isomorphism on p°(Q(1)UQ&apos;), hence D is normal in D&apos; and
Sing(A DO Sing^p^O^), p°(Q&apos;)) S^O^, Q&apos;) Sing(C^, C) A2n_1. The
main theorem 9.2 implies now that D is normal and since D admits a polarisation
(10.3), it is also Cohen-Macaulay with rational singularities (10.2). qed.

15.5 For the second implication (b)^(a) we need some préparation. Let
m 2n be even, U an orthogonal space of dimension 2m and V a symplectic
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space of dimension 2m-2. Consider the usual setting

and the two conjugacy classes D: C(m_i.m_i)Ç*p(V) and C:= C(m,m)çso(L0.
From the classification 6.3 we see the tt~1(D) consists of three orthosymplectic
orbits P, P&apos;, P&quot; associated to the afc-diagrams

abab
abab

• • • aba
• • • aba,

ababa
baba •

a

a

&quot;•ab

•&quot;ba,

baba
baba

a
a

a
a

•-b
-b.

We hâve (4.3) p\C) P, p(P) C C(1)UC(2) and p(P0 C&apos;:=C(m_1,m_1,1,1),

the dense orbit in C^HC?21. Furthermore P tt~1(D) is Cohen-Macaulay (11.2
proposition and remark). Thus PUP&apos; 7r~1(D)np&quot;~1(CUC&apos;) is open in P and
P P(1)UP(2) with P(l) p~\C(l)). In addition, from the dimension formula 7.1,
we hâve codimpP&apos; 1.

LEMMA: P&apos;^&apos;WT&gt;n&apos;Pm, P^ and F21 are smooth in P&apos; with normal crossing
in P&apos; and the complément of P U P&apos; in P has codimension &gt;2.

Proof. The last claim follows from the dimension formula 7.1 remarking that,
for any other orthosymplectic orbit O in P we hâve

codime p(O) + codimô tt(O) &gt; 4.

P(1) and P(2) are SO(U)xSp(V)-orbits, hence connected, and W^HP^ is stable
under O(U)xSp(V). Since P is Cohen-Macaulay it is connected in codimension
1 (cf. remark 9.1). By the previous remark on the complément of PUP&apos; we must
hâve P&apos;^W^n^. By lemma 12.5 the map tt~\D)-+D is a locally trivial
fîbration. Hence we can verify our claim on a fibre. The map tt is also equivariant
under the larger group GL(V) acting on L(U, V) by X»-&gt;gX and on sp(V) by
B *-+gBg*. Thus we can compute the fibre at any point on the GL(V)-orbit D
generated by D. Set for simplicity d : dim V 2m — 2. Choosing a basis of V we
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can identify L(U, V) with (C/*)d Ud and sp(V) with the space Symd of symmet-
ric dxd matrices (cf. 1.2 remark). In this setting the map

7r:Ud-^Symd

is given by (uu... ,ud)*-*((ul9u]))d]==1, the matrix of scalarproducts, and the
action of GLd on Ud is by linear combination of the vectors and on Symd the
usual A *-» gAg\

Now D is just the set of symmetric matrices of rank d-2. For the matrix

\
eD

we find

tt~1(A) {(u1, ud) | w3,..., ud form an orthonormal set, (uu jul2) isotropic
in (u3,. ud)x},

and so tt&apos;1(A) QUO&apos;UQ&quot;, where Q, Q\ Q&quot; are defined by the condition
dim(Ml5 u2)=z2,1,0 respectively. If A gBg* for some BeD we see from the
description of the orthosymplectic orbits P, F, P&quot; that Q giPCiTr&apos;^B)), Q&apos;

and Q&quot;= gCFTlTr&apos;^B)). Using again lemma 12.5 we get for any

0

0

0
0

0

0

la-2

F) Si Y) Si X),

X:= gY. To study the singularity of tt^CA) we project to the last d-2 vectors
and obtain a map &lt;p : tt~1{A) —&gt; Std_2 from tt&quot;&quot;1(A) onto the Stiefel variety Std_2

of d —2 orthonormal vectors in a d-2 dimensional orthogonal space. &lt;ç is

O(l/)-equivariant and Std_2 is an orbit under O(U), so we can apply again lemma
12.5 and reduce to the study of a fibre of &lt;p. If W is a four dimensional orthogonal
space, each fibre of &lt;p is isomorphic to F: {(m1? u2)€ W2|&lt;Ui, u2&gt; isotropic}, and

Sing(7r-1(A),X)

where f (u1,u2) is any point of F with dim&lt;w1, u2)= 1. We can assume /
(«o, 0) eF&apos;: {(ul9 u2)£F\u1£0} and study Sing(F&apos;,/). For this consider the
projection i/r:F&apos;-&gt; W, (ux, uà*-*Ux. This map t/&gt; is O(W)-equivariant and its image
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is the orbit of isotropic vectors ^0 in W. Thus, always by lemma 12.5,

Now

wg&lt;uo)-l and &lt;u0, u) isotropic}
-1

I u isotropic}.

Writing (uo)± (uo)(&amp; W, an orthogonal sum with an orthogonal space W of
dimension 2, we finally get that the last set is isomorphic to

A1 x {û € W | m isotropic}.

Of course the set of isotropic vectors in a 2-dimensional orthogonal space is a

union of two Unes through the origin. qed.

15,6 Proof of (b)^(a): We now assume (b) for sp2k-2 for ail k &lt; n and want to
prove (a) for so4n. We use the same notations as before. By assumption
J5 (=C(2n-i,2n-i)) is Cohen-Macaulay and so P tt~1(D) is Cohen-Macaulay too
(11.2). Thus the previous lemma 15.5 and 15.2 imply that the intersection
F^nF5 is reduced, and so, by 15.2(e), the intersection ^^D^C^ is reduced
too. Now we claim that C 7^(17?® is normal. This follows from theorem
9.2(ii), since the only codimension 2 degeneration of C&quot; is given by (2n-l,
2n-3, 3, l)&lt;(2n-1,2n-1,1,1) for n &gt;2 and (3, 2, 2,1)&lt;(3, 3,1,1) for n 2,
i.e. are of &quot;normal&quot; type b and a respectively (see Table I and 14.3).

In order to prove that C(1) is normal we hâve to show that each regular
function fx on C(1) extends to a regular function on C(1). Since C(1) is normal in C
(proposition 15.1), fx extends to C^UC. By the normality of C the restriction
fx |c extends to a regular function fx on C. Thus we can find a function f2 on C(2)

with f2 \c&apos; — fv By construction the function f2 on C(2)UC agrées with fx in the
intersection C. Since the intersection C(1) (1 C(2) is reduced in C (lemma 15.5) we
obtain a regular function / on C(1)UC(2)UC&quot; extending ft (15.3a). We can now
apply the main theorem 9.2(i) saying that / can be extended to the whole variety
C. In particular /|£n&gt; is the required extension of ft. As in the proof of (a) =&gt; (b)
(15.4) the normality of C(1) implies also that this variety is Cohen-Macaulay with
rational singularities (10.2 and 10.3). qed.

15.7 Remark: The results of this section complète the proof of the claims
contained in Table I concerning the singularities. In particular we see that for any
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conjugacy class C the closure C is normal in each minimal degeneration C of type
différent from e, and not normal in ail minimal degenerations of type e.

16. Nonnality and seminormality résulte

16.1 In this section we wish to summarize the results obtained so far and add
some more précise information on the geometry of orbit closures. Let us recall (cf.

[AB], [T]) that a variety X is said to be seminormal if every homeomorphic
regular map (p:Y-+X is an isomorphism. This is a local analytic property. A
variety X is normal if and only if it is seminormal and unibranch.

LEMMA. If a variety X has two components Xx and X2, both normal and with
reduced intersection, then X is seminormal.

Proof. Let cp:Y-^Xbea regular homeomorphic map. Then for Y, := &lt;p~l(Xt)

the induced map &lt;pl:Yl-^&gt; Xt is homeomorphic too, hence an isomorphism. If ifo is
the inverse of &lt;p, the universal property 15.3(fi) implies that there exists a
ifr :X—» Y such that i/r |x tyx. Thus t/r &lt;p-1 is regular. qed.

16.2 Theorem: Let C be an orthogonal or symplectic conjugacy class.

(i) C is a seminormal variety.
(ii) C is normal if and only if C has no degenerations of type e (3.4, Table I).
(iii) If Ce is the union of C and ail conjugacy classes corresponding to degenera¬

tions of type e, then any regular function on Ce extends to a regular function
on C.

Proof. We start with (iii). Let C be the complément of the union of ail
conjugacy classes of codimension &gt;4. We cover C with the two open sets Ce and
C&apos;e, where C&apos;e is the complément in C in the classes corresponding to degenerations

of type e (i.e. C&apos;e CU(C-Ce)). C&apos;e is a normal variety (15.7). So if / is a

regular function on Cc its restriction to C can be extended to Ce, hence / can be
extended to a regular function on C. Thus (iii) follows from theorem 9.2 (i).

If C is normal, we must hâve Ce C (15.7). Conversely if Q C, any function
on C can be extended to C by (iii) and so C is normal, proving (ii).

For (i) we remark first of ail that Ce is seminormal. This follows from the
previous lemma 16.1, the fact that seminormality is preserved by smooth équivalence

and proposition 15.4(a). Now let &lt;p : Y—&gt; C be a regular homeomorphism.
In particular Y is affine ([EGA] II, 5.2.2). It follows that the induced

map i/r:&lt;p~1(C€)~&gt; Ce is an isomorphism, hence by (iii) the composition
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Ce-—xp~1(Ce) -* Y can be extended to a regular map C-*Y. This map is

necessarily the inverse of &lt;p. qed.

16.3 Remark: The previous results give some information on the relations
between functions on the class C and its closure C even in the non normal case.

Let us consider in fact the normalization C of C By construction every function
on C extends to C. If we look at the preimage Ce of Ce in C we see that each non
normal point is covered by two points in Ce. The universal properties proved show

now that a regular function / on Ce factors through Ce if and only if / is constant
on thèse fibres. This gives in principle a method to study which functions on C
extend to the whole C.

Part III. Spécial Results

17. Conjugacy classes under SO

17.1 Recall that the SO-conjugacy classes which are not O-conjugacy classes

are exactly the components of the very even classes (2.3). Up to now the only
information on those are contained in the propositions 15.1 and 15.4a). Further-
more it is easy to see that for a very even class C C(1)UC(2) the intersection
TF^nlÔ® is the union of the closures of ail codimension 2 degenerations Q ^C,
and that ail thèse degenerations are of type e (3.4). This implies the following
resuit:

PROPOSITION. The closure of a comportent C(1) of a very even class is

normal in codimension 2 with singularities of type A in each codimension 2

degeneration. In addition the intersection ^C^H^^ is reduced in each of thèse

classes.

17.2 Remark. We shall see that unlike the orthogonal or symplectic classes this
resuit does not imply the normality of C(l). On the other hand the classes C(l) are

always polarizable (10.3) and so their normalization is Cohen-Macaulay with
rational singularities (proposition 10.2).

17.3 Let Tj be a very even partition. We write r\ (tïï1, t]22, •.., vit1)

Vi&gt; V2&gt; &apos; &apos; &apos; &gt; Vt &gt;0 and vt eN+ in place of

&gt; ftt&gt; • • •, Vt)&gt;

«1 «2

Of course the numbers tj, and vt are ail even.
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THEOREM. Let r\ ={y\\\ r\}) be a very even partition, Q C(1)U C(2)

the corresponding class.

(a) The intersection C(1) Pi C(2) is reduced.

(b) If t l then C(l) is normal, Cohen-Macaulay with rational singularities.
(c) r/ r&gt;3 or v2&gt;4 then C(l) is not normal In fact it is branched in a class of

codimension 4.

Proof (a) Let S be the union of ail codimension 2 classes in Q,, C(l) C(0US
and C CUS. Let fl9f2 be regular functions on C(1), C(2&gt; which coincide in
C(1) n C(2) S. We hâve to show that the function / defined by fx and f2 is regular
on Qr Since the intersection C(1)C)C(2) is reduced (17.1), / is regular on C. But
then by theorem 9.2(i) we know that / is regular on C^.

(b) In this case we can follow exactly the same argument as in the second part
of 15.6, since there is a unique class C&quot; of codimension 2 in Q,, C(1)flC(2)= C&quot; is
reduced by (a) and C&quot; is normal.

(c) We want to apply the resuit 13.6. We décompose the Young-diagram
y] 7\&apos; + tj&quot; with 7]&apos; (tjï», tî2, 7]2) and r}&quot; the rest. Under the assumption r\&quot; is not
empty, and we can perform degenerations crr &lt;r)f, cr&quot;&lt;r\&quot; of type e in such a way
that the hypothèses of 13.6 are satisfied. This implies for a:=or&apos; + cr&quot;:

SingCC^, C) Sing(Cv, C.) ¥ Sing(Cv, O).

This is a non-normal singularity with four branches, hence each component C(l) of
Ô, has a singularity with two branches in Q.. qed.

Note that in thèse codimension 4 singularities the intersection C(1)flC(2) is
reduced.

17.4 With the previous analysis the following problems remain unsettled.
Problems. (i) If 7] is a very even partition of the form (tjï, tj!) is C^} normal?

(ii) // T) is uery euen, w C£} seminormall
(iii) 1/ tj is very even and C^ is the union of C^} and ail its degeneration of type

e or of two independent steps of type e, can every regular function on C^° be

extended regularly to C^?
By the previous analysis we can easily show that (iii) 4&gt; (ii) =£&gt; (i).

The first unsettled case is r\ (4,4, 2, 2). In this case we can prove that C^ is

unibranch and that its normalization is the quotient of some irreducible component

of the corresponding variety Z under the connected group Sp8 x SO4 x Sp2.

17.5 Lemma. If Y Yx U Y2 and Yx H Y2 are seminormal varieties then Yl9 Y2

are seminormal with reduced intersection.
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Proof. Let irl:Yl—&gt;Yl be seminormalizations. The map ttx \7r-\Yïny2) is a

homeomorphism, hence ir~l(Y1nY2) is isomorphic to Y1nY2, since this is
seminormal. Thus we can form the cofiber product of Yt and Y2 along Y1C\Y2.
This cofiber product maps homeomorphically to Y and hence isomorphically. qed.

In our case Y Cn =&apos;CmU~Cm it is hard to verify that &apos;CmCi~Cm is seminormal.

This variety is in fact a union of seminormal varieties and we could deduce

that it is seminormal if we knew that the intersections are reduced. This can be

verified only on some part of the intersection.

18. Rational Singularities

18.1 Let us go back to the discussion on the Cohen-Macaulay property and on
rational singularities started in section 10. We saw that for a polarizable conju-
gacy class C the normalization of C has rational singularities (10.2). It is possible
that this resuit is true in gênerai but we are able to indicate only some spécial
methods by which certain non polarizable classes can be treated. Let us say by
convention that an e-diagram tj is polarizable if the corresponding class CeT1

admits a polarization.

18.2 One of the first methods which were attempted for the study of
singularities of orbit closures is due to Kempf [K] and used successfully by Hesselink
[H4] in some spécial cases of conjugacy classes. His results imply in particular the

following (cf. [H4] §5, criterion 2):

PROPOSITION. If the s-partition r\ has at most two columns, then CeT, has

rational singularities.

18.3 The second method is based on the following observation which is already
a conséquence of 13.4. Let tj, r\&apos; be e-partitions such that tj is obtained from tj&apos;

by adding some rows (3.3).

// the normalization Ce&gt;T| of Ce&gt;Tl has rational singularities so does Ce,v
One can use this in the situation where a non polarizable e-diagram tj&apos;

becomes polarizable after adding some suitable rows.

Example. If r\&apos; is a symplectic diagram with the first row of even and ail other

rows of odd length, then C^ has rational singularities.

(In fact if V (tjx, r\2,..., T]r) one can show that tï (i\u r\l9 tj2, t|3,..., rjr) is

polarizable; cf. [H2] or use the method of Kempken and Spaltenstein [Kel].)
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18.4 There is also an inductive method which applies to a very large class of
conjugacy classes and which is based on the induction lemma (sections 4 and 11).
Let us go back to the basic set up (4.3):

dim £/=m&lt;dim V=n. One can try to follow the same strategy as in [ADK].
Assuming that C_e&gt;Tl&apos; has rational singularities we want to apply Boutot&apos;s theorem
(0.11) to the map p and deduce that CeT1 has rational singularities from a similar
statement for N. Since N is Cohen-Macaulay (11.2) to insure that N has rational
singularities it is enough to find a desingularization (p:Y-*N and an open set

AcN such that N has rational singularities in A and codimY&lt;p~1(N-A)&gt;2 (cf.
[ADK] corollary 1.4).

Now N is the closure of an orthosymplectic orbit OT p~~\Cetri) (remark
11.2), where the afe-diagram t is obtained from the a-diagram 17 by filling in ail
the b&apos;s. Furthermore we hâve constructed a natural desingularization (cf. lemma
7.6(a))

G G(U)xG(V). Let us define the open sets

L: {XeL(V, U)|tt is smooth in X} and Lr: {XeL(V, U) \ rk tt(X)&gt;r}

of L (cf. 11.4).

18.5 Lemma: If C_e/n&apos; has rational singularities, then NeTl has rational
singularities in A : NeJ} fl(LULt), where

{2m —n if e —1

2m-n + l if e l
Proof. It is clear that NHL has rational singularities. As for NflLt, using the

resuit of Elkik ([El] IV. theorem 5) it is enough to show that tt:L-*q(U) is fiât
with fibers with rational singularities. Foliowing the analysis developed in the
proof of lemma 15.5 one easily obtains the following description of a fiber
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(a) If U is symplectic then

F={(vl9 v2, - • •, vm) € Vm | vl9..., vr orthonormal and

(vr+1, ...,vm) isotropic in (vl9..., v^}.

(b) If U is orthogonal and so r 2s is even then

F {(vu vm) g Vm | vu u2s form a symplectic
basis and &lt;i?2s+i,. • •, vm) isotropic in (vl9..

For r&gt;2m-n it is easy to see that ail fibers hâve the same dimension, hence
7T :L2m-n —*ô(L0 is flat. Furthermore the singularities of F are smoothly équivalent

to the singularities of the variety F of (m - r)-tuples of vectors spanning an

isotropic space in an orthogonal or symplectic space of dimension n-r. This
variety can be studied by the method of Kempf [K] and, for r ^ 2m - n, it has

always rational singularities except when V is orthogonal and r 2m-n (in which
case F has two components corresponding to the two rulings of maximal isotropic
subspaces, both having rational singularities with reduced intersection), qed.

18.6 In order to verify that Y— &lt;p-1(A) has codimension &gt;2 in Y Gxprt2 we
hâve to show that n2n(N—A) has codimension &gt;2 in the vectorspace n2. We
hâve been able to handle many spécial cases in this way but unfortunately the
method also fails many times. (E.g. we hâve seen in 15.4 that N may be singular
in codimension 1 while Ce ^ has rational singularities.) We hâve not attempted to
give a précise description of ail the cases which can be treated this way.

18.7 We finish with some gênerai questions. Consider a reductive group G
acting on an affine variety V with a dense orbit.

Problem 1. Is it true that if V is normal then V has rational singularities?

There are many examples of such varieties ([ADK], [Ke2]). Moreover, this
statement is true when G is a torus ([KK], chap. I §3, theorem 14).

PROPOSITION. Let G, V be as before, U&lt;^G the unipotent radical of a
parabolic subgroup of G and R 6(V). Then we hâve
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(i) The ring of invariants Ru is finitely generated,

(ii) // Vur^Spec Ru has rational singularities so does V.

Using this and the classification of the affine SL2-embeddings [P] one gets a

positive answer for problem 1 also in case G SL2.

One spécial case of the first problem is the following:

Problem 2. Let M^G be a closed subgroup such that the ring Û(G)M of
right-invariant fonctions is finitely generated (e.g. any observable subgroup). Is
GM: Spec€(G)M a vanety with rational singularities?

In order to describe a class of subgroups for which we hâve a positive answer let
us give an inductive définition.

DEFINITION. A unipotent subgroup l/cz G is said to be of type &lt;n if there
is a reductive subgroup HcG and parabolic subgroup P of H such that

(i) t/çH
(ii) U contains the unipotent radical UP of P and L//L/P &lt;= P/l/P is of type

If U is of type &lt;n for some n we say U is of finite type. (Of course we consider {1}
of type 0.) Using the proposition above one obtains the following resuit.

PROPOSITION. If Me G is a subgroup such that its unipotent radical is of
finite type, then GM: Specû(G)M is a vanety with rational singularities.

19. Tables

In this last paragraph we draw tables representing the nilpotent conjugacy classes

in gïn for n&lt;7 (cf. [KP2]), son for rc&lt;ll and sp2n for n&lt;5. The tables are
constructed (following Hesselink [Hl]) as follows: Each conjugacy class is rep-
resented by a dot, its corresponding partition À and dimension (taken from [Hl])
is indicated at its right. For any minimal degeneration of classes we draw an edge
and we place the dots from top to bottom according to the containment 3 of
closures. On each edge we write the type Ap A, U A,, Dr ap bJ9 c} or d, of the

corresponding singularity (cf. 3.4 table I and section 14). We put a question mark
on a dot corresponding to any class whose closure is not known to hâve rational
singularities (cf. section 18).
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