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On the geometry of conjugacy classes in classical groups

HANSPETER KRAFT* and CLAUDIO PROCESI

Summary. We study closures of conjugacy classes in the Lie algebras of the orthogonal and symplectic
groups and determine which ones are normal varieties. Furthermore we give a complete classification
of the minimal singularities which arise in this context, i.e. the singularities which occur in the open
classes in the boundary of a given conjugacy class. In contrast to the results for the general linear
group ([KP1], [KP2]) there are classes with non normal closure; they are branched in a class of
codimension two and give rise to normal minimal singularities. The methods used are (classical)
invariant theory and algebraic geometry.

0. Introduction

0.1 The subject of this paper is the study of the singularities arising in the
closure of a conjugacy class of a semisimple group. In our preceding papers
[KP1], [KP2], [PK] we treated in detail the case of the linear group, developing a
number of techniques mostly based on classical invariant theory. In this paper we
continue the analysis for the other classical groups, obtaining various precise
results that will be presently explained. The exceptional groups seem to be
untreatable by the methods here developed, essentially because of the lacking of a
suitable analogue of the so-called “First Fundamental Theorem of Invariant
Theory” which we have for classical groups.

Before going into a detailed discussion of our results let us recall some of the
main features of the theory.

0.2 Conjugacy classes: If G is a reductive group over C, g its Lie algebra, we
study the adjoint action of G on itself and on g. The orbits of this action are the
conjugacy classes. If C is such a conjugacy class in G, it is open in its closure C
which is an affine algebraic variety. The dimension of each class is even and C is
the union of finitely many conjugacy classes. In C there is a unique closed class C'
which is necessarily the conjugacy class of a semisimple element. By the theory of

* Supported in part by the SFB Theoretische Mathematik, University of Bonn, and by the
University of Hamburg
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540 HANSPETER KRAFT AND CLAUDIO PROCESI

Luna [Lu] we can fibre C over C’' by a map ¢ : C — C’ which associates to each
element x of C its semisimple part x,. The fibre of an element s€ C’ can be
described in this way: If ye CN¢~'(s) and y =s.u is the Jordan decomposition
then ¢ '(s) is isomorphic to the closure of the conjugacy class of u in the
(reductive) centralizer Z;(s) of s.

This analysis shows that the study of singularities in closures of conjugacy
classes can be reduced to the case of unipotent classes. Moreover, if we assume
that G is a classical group so will be the centralizer Z(s). Thus we will restrict
ourselves to unipotent elements. Finally, since we work over C, the unipotent
variety of G is isomorphic in a G-equivariant way with the nilpotent cone N of g
(under the logarithmic map). It will be more convenient to treat this case.

0.3 Invariant functions on g (The theory of Kostant [Ko]): Let R be the ring of
regular functions on g invariant under G. R is a polynomial ring in r:=rank G
homogeneous generators which define a map mw:g— C" constant on conjugacy
classes. By the general theory of invariants in each fibre we find a unique closed
orbit, here the class of a semisimple element. Moreover, in 7 '(x) there is a
unique open dense class, the regular class, and 7~ '(7(0)) is the nilpotent cone N
of g. The fibres of 7 have all the same dimension, are reduced and even normal. In
fact, the r equations defining 7 '(x) give us this fibre as a normal complete
intersection.

The closure of a non regular class is not a complete intersection in general and
one of our methods consists in constructing an associated variety which is a
complete intersection from which the given closure can be obtained as a quotient
(cf. 0.10).

There are other important features in this theory which here will not be
pursued; they refer mostly to the theory of sheets (i.e. maximal irreducible subsets
of g of classes of a fixed dimension, cf. [BK]). This part of the analysis of
conjugacy classes has been extensively treated by various authors and it is of
course also intimately connected with ours (cf. [BK], [Kr], [P], [B], [Kel).

0.4 Rational singularities: The result of Kostant on the global nature of the
fibres 7 '(x) can be usefully improved showing that this variety has rational
singularities ((H3]). We recall:

DEFINITION. A normal variety Z is said to have rational singularities if
there is a resolution of singularities ¢ : Y — Z such that R0y = 0 for all i >0.

This notion is considerably stronger than the Cohen-Macaulay property and
will play a role in our analysis. In fact, we have the following result of Kempf’s
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((KK] p. 50):

PROPOSITION. If Z is a normal variety and ¢:Y — Z a resolution of
singularities then Z has rational singularities if and only if Z is Cohen—Macaulay
and for any differential form o defined on the smooth part of Z, the pull back ¢*(w)
can be extended to the whole of Y.

0.5 Kleinian singularities: In the case of a surface, rational singularities are
strongly connected with quotient singularities and with semisimple groups
(cf. 0.6). This connection is established through the simple or Kleinian sing-
ularities. Let H be a finite subgroup of SL,(C). The quotient C*/H is a surface in
C* with an isolated singularity in zero. The finite groups H and the equations
defining C*/H have been described by Klein; they correspond to the Dynkin
diagrams A,, D,, E¢, E; and Eg.

H |H| equation of C2/H<C? Dynkin diagram
cyclic n+1 x"tl4y2422=0 A,

dihedral 4n x"l+xy2+22=0 D,.,

binary tetrahedral 24 x*+y3+2%2=0 E,

binary octahedral 48 x3y+y3+22=0 E,

binary icosahedral 120 x3+y3+2z%2=0 Eg

The connection with the Dynkin diagrams appears forming a minimal resolution of
singularities. Then the exceptional fibre is a union of lines with selfintersection
number —2 meeting transversally. The Dynkin diagram is constructed simply by
drawing for each line a vertex and for each intersection point an edge between the
two corresponding vertices (cf. for example [Brl1]).

0.6 Subregular singularities (Brieskorn’s theory [Br2], [Sl]): We have seen that
the nilpotent cone N in a reductive Lie algebra g contains a unique dense open
class, the regular class C, If we consider N':=N—C,, we still find in ¥’ a
unique dense open class, the subregular class Cqypreg Which is of codimension 2 in A.
If we slice N transversally to C,,pe, We find an isolated surface singularity. It is
always a Kleinian singularity and its Dynkin diagram is the one corresponding to G
in the cases A,, D,, E¢, E; and Eg. In the other cases there is a simple rule to
discover the corresponding Dynkin diagram which gives the following table:

group singularity

Bn A2n—l
Cn Dn+1
G, D,

F, E,
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We will generalize these results to pairs of conjugacy classes C, C’ such that
C'< C and codims C’ =2 (cf. theorems 2 and 2’ in 0.9).

The theory of Brieskorn continues to describe a semiuniversal deformation of
the singularity under consideration which is obtained by restricting the quotient
map 7:g—>C" (0.3) to a cross section in g through the subregular class Cgpreg.
This should have some analogue in our theory which has not yet been understood.

0.7 Collapsing of vector bundles and minimal singularities (Kempf’s theory
[K]): Let G be again a reductive group acting linearly on a vector space V and
x€V. A way, sometimes useful, to study the orbit closure Gx is the following;:
Assume there is a linear subspace U cGx with xeU such that
P:={ge G| gUc U} is a parabolic subgroup. We can then construct a proper
map

¢:GxPU—> Gx

and say that Gx is obtained by collapsing the vector bundle G x* U (over G/P). If
the stabilizer G, of x is contained in P we have that ¢ is birational, hence a
resolution of singularities. Kempf’s theorem implies now that, if P acts in a
completely reducible way on U, then Gx is normal with rational singularities. The
strength of this theorem lies (also) in the fact that the normality is automatically
insured, the weakness on the other hand results from the seriously restrictive
hypothesis on the action of P on U. While it is often easy to describe a resolution
of singularities of the form G xP U it seldom happens that the action of P on U is
completely reducible.

One noteworthy example which plays also a role in our analysis is the
following: Given an irreducible representation V of G and a highest weight
vector ve V, the line Cv is fixed by a parabolic and the variety Gv has a
resolution of singularities given by the line bundle G X* Cv over G/P. In the case
of the adjoint action of G on g, Gv is the unique minimal nilpotent (non zero)
class indicated by C,;,, and C,, is normal, Cohen—Macaulay and has an isolated
rational singularity in zero.

0.8 Having recalled these theorems we can now expose the contents of the
paper. The first type of results deals with the following question: Given a
nilpotent conjugacy class C in the orthogonal or symplectic Lie algebra o, or sp,,
what can we say about its closure C? E.g. is it normal, Cohen—Macaulay or with
rational singularities like in the case of gl,? W. Hesselink has shown in [H4] that
C is normal if for the corresponding partition m =(ny, M5, ...) describing the
Jordan normal form of a matrix in C we have m,+ 71, =4 in the orthogonal case
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and m; =2 in the symplectic case. Here we should remark that for the orthogonal
group O,, a conjugacy class C sometimes splits as the union of two SO,,, —classes
C™ and C*. This happens precisely when all blocks in a Jordan normal form of
an element of C have even size. It will turn out, that for these special classes C®
our information is more incomplete. For the other classes (including the non-
connected orthogonal classes) we have the following result (9.2, 16.2).

THEOREM 1. Let C be an orthogonal or symplectic conjugacy class. Then

(@) C is always seminormal (i.e. any homeomorphic map Z— C is an
isomorphism),

(b) C is normal if and only if it is normal in the classes of codimension 2.

In particular C is normal if it does not contain a class of codimension 2 (8.3):
this occurs often for low-dimensional classes (cf. tables at the end of the paper).
For another consequence consider a resolution of singularities ¢ : Y — C (cf. 10.2
and 15.1). Then C is normal if and only if the fibres of ¢ over any class of
codimension 2 in C are connected.

The first connected non-normal closures of conjugacy classes are C 5 5, in s07,
6(3,3,1,1) in spg and 6(5,2,2) in sog (the partition always refers to the Jordan normal
form of a matrix in C). In sog all classes have normal closure, but there is always a
(connected) class with non-normal closure in sp, and so, for n=9.

The more precise question about the Cohen-Macaulay property or rational
singularities does not yet always have an answer; one serious difficulty which does
not occur in gl, comes from the presence of non-polarizable classes (cf. section
10). In the third part we collect various special results and methods in this line.

0.9 Theorem 1 shows that the normality of C is determined by the type of
singularities occurring in the classes of codimension two. More precisely we ask
the following question: Given a conjugacy class C and an open class C' in the
boundary dC = C — C, what is the type of singularity (up to smooth equivalence) of
C in C'? We have already seen two such examples in 0.6 and 0.7: the subregular
singularity Cgypreg S C,eg and the minimal singularity 0e C,;,. It turns out that
with one exception these are the only types of singularities occurring.

THEOREM 2. Let C be an orthogonal or symplectic conjugacy class and C' an
open class in the boundary 4C =C~C.

(a) If C’ is of codimension 2 then the singularity of C in C' is smoothly
equivalent to an isolated surface singularity of type A,, D, or A, U A,, where the
last one is the non-normal union of two surface singularities of type A, meeting
transversally in the singular point.



544 HANSPETER KRAFT AND CLAUDIO PROCESI

(b) If C' is of codimension >2 then the singularity of C in C' is smoothly
equivalent to a minimal singularity in so, or sp,,.

In addition we give a simple combinatorial method to determine these pairs
(C, C’) and the corresponding singularity: If n and o are the Young-diagrams
(partitions) of C and C’ (describing the Jordan-decomposition of a matrix in C
and C’), we cancel all common rows and columns of m and o to obtain an
“irreducible’ pair ' and o', called the type of (C, C).

THEOREM 2'. In the situation of theorem 2 the singularity of C in C' depends
up to smooth equivalence only on the type of (C, C’). The types and the correspond-
ing singularities are listed in table I (3.4). (cf. 12.3).

E.g. the pair (C,C’) in sp;, given by the partitions (4,3,3,1,1) and
(4,2,2,2,2) has type (2, 2), (1,1, 1, 1) (cancel the first row and the first column!)
with corresponding non-normal singularity A, U A;.

0.10 A main tool in the proofs of these theorems is classical invariant theory.
Given a symplectic space U and an orthogonal space V (i.e. vector-spaces with
non-degenerate skew-symmetric or symmetric form respectively) we consider
Hom(U, V) as a representation of Sp(U)X O(V). Then the “First Fundamental
Theorem” states that there are natural maps = :Hom(U, V)— sp(U) and
p :Hom(U, V) — so(V) which are quotients with respect to O(V) and Sp(U)
respectively (4.2). This construction allows us to proceed by induction and to
associate to a conjugacy class C an affine variety Z and a surjective map
¥ :Z — C which is a quotient (0.11) under a certain product of orthogonal and
symplectic groups (§5). We show that Z is a complete intersection and compute the
dimension 97 }(C’) of classes C'< C. For this purpose we give a classification of
the orbits in Hom(U, V) under Sp(U) X O(V), called ““orthosymplectic orbits” (§6).
(We thank H.-G. Quebbemann and V. Kac for explaining to us—in rather
different ways —how this classification can be obtained.) Furthermore we need a
dimension formula for these orbits O c Hom(U, V) expressing dim O in terms of
the dimensions of the conjugacy classes 7(O) < sp(U) and p(O) = so(V) (§7). With
these results it is not difficult to obtain part (b) of theorem 1, whereas for the
other claims we have to make a very precise and detailed analysis of the geometry
of the two quotient maps 7 and p. This is done in part II of the paper.

0.11 Finally we should remark some conventions. The ground field k is algebrai-
cally closed and of characteristic zero. For any variety Z we denote by 0(Z) the
ring of (global) regular functions. If G is a reductive group acting on an affine



On the geometry of conjugacy classes in classical groups 545

variety Y, R=0(Y), R the subring of invarient functions and W the maximal
spectrum of R, we will often indicate W= Y/G and call the map w: Y — Y/G
the quotient map under G (even if it has bad fibres). Sometimes Y/G is contained
in a larger variety Z but we may still call the composed map Y — Y/G < Z a
quotient.

The main property of quotient maps is that if X< Y is a closed G-stable
subvariety then w(X) is a closed subvariety of Y/G and 1 |x : X — w(X) is again a
quotient under G. Clearly if Y is normal then w(Y)= Y/G is also normal. Such a
permanence does not hold for the Cohen—Macaulay property. On the other hand
one can often use the following important result of Boutot ([Bt], cf. [Ho]):

THEOREM. If Y has rational singularities then Y/G has also rational sing-
ularities.

More precisely Boutot proves that for any subring S < O(Y) which is a direct
summand as S-module the maximal spectrum of S has rational singularities.

The authors would like to thank C. De Concini, W. Hesselink, V. Kac, G.
Kempken, D. Luna, H.-G. Quebbemann, P. Slodowy and N. Spaltenstein for
many useful and stimulating discussions.

Part I. The basic construction

1. Quadratic spaces

1.1 Let € be +1 or —1. A finite dimensional vector space V with a non-
degenerate form ( , ) such that (u, v)=¢(v, u) for all u,ve V will be called a
quadratic space of type € (shortly an orthogonal space in case £ =1, a symplectic
space in case € =—1). We denote by G(V) the subgroup of GL(V) leaving the
form invariant. So we have G(V)=0, or G(V)=Sp, according to €¢=1 or
e=—1 (n:=dim V).

Let ?2*:End V — End V be the canonical involution associated to the form,
i.e. for any D €End V the adjoint endomorphism D* is defined by

(Du, v)=(u, D*v) for u,veV.
By definition we have

G(V)={geGL(V)|g*=g7"},
a(V):=Lie G(V)={De€End V| D*=-D}
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(the space of skew endomorphisms), and

n%—en

2 b

dim G(V)=dimg(V) = n:=dim V.

If V and U are quadratic spaces of type € and &' respectively and X:V—> U a
linear map, the adjoint map X*: U — V is defined by

(Xv, w)y =(v, X*u)y for veV,uel.

One easily sees that (X*)*=¢-¢'- X

1.2 Let V be a quadratic space of type €, U a quadratic space of type —&. Then
the compositions XX* and X*X are skew; hence we have the two maps

L(V, U) — g(U)

1

a(V)

defined by @ (X):=XX*, p(X):=X*X, where L(V, U):=Hom,(V, U) is the
space of linear maps. The group G(U) X G(V) acts on L(V, U) in the obvious way
((g, h)X :=gXh™"), and 7 and p are equivariant with respect to this operation and
the adjoint operation of G(U) and G(V) on g(U) and g(V) respectively.

Let us assume n :=dim V=m :=dim U. The following is the first fundamental
theorem of classical invariant theory ((W] II.LA theorem 2.9.A and VI theorem
6.1.A, [V] §3, théoréme 1 and théoréme 2):

THEOREM. 7 and p are quotient maps (under G(V) and G(U) respectively)
and the image of p is the determinantal variety in g(V) of endomorphisms of rank
=m.

(For a characteristic free proof see [CP] theorem 5.6 (i) and theorem 6.6.)

Remark. Here we are reformulating the theorem for the orthogonal group.
We are using the fact that, if J is a non-degenerate skew n Xn matrix, one can
identify the space of symmetric n Xn matrices with the Lie algebra of the
symplectic group of J, by the map Y+ YJ.
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2. Conjugacy classes and their degenerations

2.1 Let V be a quadratic space of type &. The following is the crucial result for
the classification of conjugacy classes and their closures in classical Lie algebras
(Freudenthal, Gerstenhaber, Hesselink; cf. [SS] IV.2.19, [H1] theorem 3.10). For
any subgroup G <€ GL(V) and any element D € End V we denote by G - D the
conjugacy class of D under G.

PROPOSITION. If Deg(V) is an endomorphism, then
(@) GL(V)-DNg(V)=G(V)-D,
(b) GL(V)- DNg(V)=G(V) - D.

This implies that the conjugacy class Cp, := G(V) - D of a nilpotent D e g(V) is
determined by its associated partition n=(ny, M2, ..., M),

t

M=M= 2, |n|:= Zna=dim Vv,
i=1

given by the sizes of the blocks of the Jordan normal form of D (in End V). If
we denote by 7 =(#,,..., 7)) the dual partition (i.e. W :=#{j| n;=i}) we have
for all j

i
dim Ker D' = ) #;.
i=1

It is convenient to represent the partitions geometrically as Young-diagrams with
rows consisting on ny, 1, . . . , N, boxes respectively. Then the dual partition 7 is
defined by setting 7}, equal to the length of the ith column of the diagram n. E.g.
the partition (5, 4, 4, 3, 2, 1) is represented by

|

L

2.2 The diagram n associated to a nilpotent D eg(V) satisfies the following
condition Y, ([SS] IV.2.15):

1.._
(Y,) The number #{j | n; =i} is even for i= -—2—£mod 2.
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This means that for orthogonal V (symplectic V) the rows of even length (of odd
length) occur pairwise. Furthermore any diagram of this type comes from a
nilpotent conjugacy class in g(V).

DEFINITION. A Young-diagram = satisfying condition Y, is called an
e-diagram. We denote by C, ,, the associated nilpotent conjugacy class in g(V), V
a quadratic space of type £ of dimension |7|.

Remark. There are Young-diagrams m satisfying both conditions Y; and Y_,.
Such a diagram determines two different conjugacy classes C;, and C_,,, an
orthogonal and a symplectic one.

Let us summarize these results.

THEOREM. Let V be a quadratic space of type € and  a Young-diagram of
size |m| =dim V. Denote by C, the corresponding nilpotent conjugacy class in gi( V).
(i) C,Ng(V)# O if and only if n is an e-diagram.
(ii) If m is an e-diagram, then
(a) G, Ng(V)=C,,, is a single conjugacy class in g(V),
(b) C,Ng(V)=C,..

2.3 Let us remark that a conjugacy class C under the orthogonal group is
connected if and only if C is also a conjugacy class under the special orthogonal
group. To determine these classes we need the following analysis ([SS] IV.2.27).

DEFINITION. A Young-diagram 7 is called very even, if all rows are of even
length and occur an even number of times.

PROPOSITION. For an e-diagram m the conjugacy class C, ., is disconnected
if and only if ¢ =1 (hence V orthogonal) and m is very even. In this case |m|=0
mod 4 and C,, splits into two conjugacy classes with respect to SO(V).

Remark. If m is very even and CV, C® are the two components of C, ,,, then
we have C< CPNC? for any conjugacy classes C< C, ,, C# Cy..

2.4 We recall the formula giving the dimension of a conjugacy class C,,, in
terms of the diagram m (cf. [H1] corollary 3.8(a)).
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PROPOSITION. Let V be a quadratic space of type € and D € g(V) a nilpotent
element with associated Young-diagram m. Then

: (v . :
dim CentG(v)D 2‘2‘ (Z 7?12— 8#{] I M; Odd})
. _}_ 2 _ A2 .
dim €, =5 {[nl*—& In| 2 At +e#j | m odd} )

Remark. One has dim Centg (v\D =Y, #7 (cf. [H1] corollary 3.8(a)), hence

dim Centg; (v,D =2 dim Centg D + € #{j | m; odd}

and
dim C, =2 dim C, ,, +&(In|— #{j |n; odd}),

where C, is the conjugacy class in gl(V) generated by C, .

2.5 DEFINITION. Let 7 be an g-diagram. An e-degeneration of m is an
g-diagram o such that |o|=|n| and C,,<C,,. We describe this ordering by
o=

The following is the basic result on degenerations of conjugacy classes ([H1]
theorem 3.10; cf. also theorem 2.2(ii)(b) and [KP1] proposition 1.3(a)).

PROPOSITION. Given two e-diagrams o and m with |o|=|n| we have
C..<C.., if and only if Yi_, o;<Y!_ m; for all j. This is equivalent to ¥;~; 6, =
Zk>j M for all j.

Remark. One can show that any e-degeneration of n is obtained by ‘“moving
down some boxes”, taking care of the fact that the result has to be again an
e-diagram. E.g. (¢ = 1)

n=4,42,2,1)>0=(3,3,3,3,1)

N

N
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3. Minimal degenerations (combinatorial description)

3.1 In order to state the main result of this section we need the following
definition.

DEFINITION. An e-degeneration a <7 is called minimal, if o# n and there
is no e-diagram » such that o <v<n (i.e. ¢ <m are adjacent in the ordering of
e-diagrams).

In geometrical terms this means that the conjugacy class C,, is open in the
complement of C,, in C, .

3.2 To explain the classification of minimal degenerations we introduce a
combinatorial equivalence on e£-degenerations suggested by the following result.

PROPOSITION. Let 0 =n be an g-degeneration. Assume that for two integers
r and s the first r rows and the first s columns of m and o coincide and that
(M1, M2, .- ., M) is an e-diagram. Denote by ' and o' the diagrams obtained by
erasing these rows and columns of n and o respectively and put €' :=(—1)¢. Then
o'=n' is an €'-degeneration and

codimeg,, C. , =codime  C, .

Proof. By induction it is enough to consider the two cases s=1, r=0 and
s=0, r>0.

(a) s=1, r=0: Then ¢'=—¢, 6;=71, ni=m,—1 and o;=0;—1. In addition
#{i| m} odd} = #{j| m; even}= 7, —#j| n; odd} and similarly for o. Moreover it is
clear from the second description of the ordering that ¢’ <%'. Using the dimen-
sion formula 2.4 one gets

2 codime_ C, . =), 67— ) 72— e(#j | o; odd}—#{j | n; odd})
=Y 67— 72— ¢'(#i | o} odd}— #{j| m} odd})
=2 codimg,, C, .

(b) s=0, r>0: Then ¢'=¢, m;=0; for 1=i=<r, W =1.+r, 6;:=6.+r for
l=i=<t:=m,=o0, and 7); =6; for j>t Hence

L oi-Yat=YeP-1 A7
1 1] 4 1
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since
2 6= 2 Ai=|o'|=In|=0.

Furthermore #{j| o; odd}—#{j| m; odd} = #{j| o, odd — #{j| m} odd}. Again by the
dimension formula 2.4 we get the required result, since clearly ¢’=n' from the
first description of the ordering (2.5). ged.

Remark. A similar statement holds in the linear case ([KP2], proposition 3.1).

3.3 DEFINITIONS. (a) In the setting of the proposition above we say that the
e-degeneration o = is obtained from the &'-degeneration o' <7n' by adding rows
and columns.

(b) An e-degeneration o <n is called irreducible if it cannot be obtained by
adding rows and columns in a non trivial way.

Remarks. (i) In the previous setting we have codimc, C, , =codimc C,,
(3.2) and o'<n' is minimal if and only if o <m is minimal.

(ii) Any e-degeneration is obtained in a unique way from an irreducible
¢'-degeneration by adding rows and columns.

3.4 The previous analysis suggests that, for the classification of the minimal
g-degenerations, one should first describe the minimal irreducible ¢-degenerations.
They are given in the following table. (The meaning of the last line of the table is

Table 1
Irreducible minimal e-degenerations
Type a b c d
Lie algebra P, P2, $02n+1 $Pan+2
n>1 n>0 n>0
€ -1 -1 1 -1
n ?) 2n) 2n+1) 2n+1,2n+1)
o 1,1 @n-2,2) (2n-1,1,1) (2n,2n2)
codimg, C, 2 2 2 2
Sing(éem’ Ce,o') Al Dn+1 A2n—-1 A2n~—1
e f g h
5°4n $03p+1 $Py, $0,,
n>0 n>1 n>1 n>2
1 1 -1 1
(2n, 2n) (% 2, 150=3 (2,122 (2,2,12" %
(2n-1,2n-1,1,1)  (12**) (12") ()
2 4n—-4 2n 4n—-6
A2n—-1 U A2n—1 bn Cn dn
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explained in section 14, cf. 14.2 and 14.3.) It is clear that these £-degenerations
are irreducible and one easily sees that they are minimal. Furthermore it is not
hard to deduce from [H1] (proposition 3.1) that the list is complete.

Remark. For the types a, b, ¢, f and g of table I the ¢ is determined by n and
o (because of condition Y,). The pair (n, o) in case e and h is an £-degeneration
also for £ =—1, but not a minimal one.

DEFINITION. Let te{a, b, c, d, e, f, g, h}. An e-degeneration o <n is said to
be of type t, if it is obtained from the corresponding minimal irreducible degenera-
tion by adding rows and columns.

The previous analysis implies that each minimal degeneration o<mn has a
uniquely determined type te{a, b, c, d, e, f, g, h} and that codimg, C,, equals the
codimension of the type ¢t (3.2). In particular codimg, C.,=2 if and only if
te{a, b, c, d,e}.

4. The induction lemma

4.1 Let V be a quadratic space of type £ and D €g(V) a nilpotent element with
conjugacy class C,,. Consider the new form on V given by |u, v|:=(u, Dv).
Clearly it is of type —e and its kernel is exactly Ker D. Thus we have canonically
defined a non-degenerate form on U:=Im D of type —¢, and one sees that the
two maps

given by the canonical decomposition D=1 X:V— U=ImD < V, are ad-
joint, in the sense that X*=1I (cf. 1.1). We have

D=IX=X*X
and
D':=D |y = XI = XX*

In particular D' e g(U) (1.2) and it follows from the construction that D'e C_, .
where m’ is obtained from m erasing the first column (cf. [KP1] 2.2 and 2.3).
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4.2 Consider the two maps as in 1.2:

L(V, U) —> g(U)

a(V)
and define L'(V, U):={Y eL(V, U)| Y surjective}.

LEMMA. For any YeL'(V, U) the stabilizer of Y in G(U) is trivial and
p Y (p(Y)) is an orbit under G(U).

Proof. The first statement is clear since Y:V — U is surjective. Let Ze€
p p(Y)), i.e. Z*Z=Y*Y. Since Y*Y has rank m:=dim U the map Z is
necessarily surjective (and Z* injective) and Ker Z=Ker Z*Z =Ker Y*Y =
Ker Y. Hence we can find a ge GL(U) such that gZ =Y, and so

Z¥*Z=Y*Y=2Z%g*eZ.
Since Z* is injective and Z surjective this implies g*g =1, i.e. ge G(U). qed.

4.3 Now we are ready to prove our main induction lemma. Using the notations
introduced in 4.1 we put N, ,:=7 (C_, ).

LEMMA. (i) p(N..)=C., .,
(i) p~'(C.,.,,) is a single orbit under G(U) X G(V) contained in
N, ., NL'(V, U),
(iii) w(p~(C.n))=C—e -

N,, = C_...
d

C.m

Proof. Clearly the closed set N, , is stable under G(U)x G(V). The construc-
tion in 4.1 shows that p(X)=DeC,, and w(X)=D|yeC_,,,, hence C,, <

Q_(__I:JE,,,). Since p is a quotient map (1.2) the image p(N, ) is closed (0.11) and so
C.nSp(N,,). On the other hand we have for each YeN,,

k(YY* <Y 4'=Y 4, h=12,...

ji=h i>h
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(cf. 2.5 and 1.2; %= 1;., by construction). Hence

rk(Y*Y)' =1k Y*(YY*)" 'Y <tk(YY*" < ) 4.

i>h

This, again by 2.5, implies that p(Y)=Y*YeC,,, proving assertion (i). By
construction we have X e L'(V, U), hence p~'(p(X)) is the orbit of X under G(U)
(lemma 4.2). It follows that p~'(C,,,) is the orbit of X under G(U) x G(V), which
implies the assertions (ii) and (iii). ged.

We will use this lemma, in the spirit of [KP1], to present the variety C,, as a
quotient of a suitable variety Z which is a complete intersection (cf. the following
section 5).

Remark. The construction and the lemma above depend only on the first
column of m. In the future we will freely apply it to a partition m and all its
degenerations which have the same first column.

5. The variety Z

§.1 Let us start with a nilpotent endomorphism D € g(V) with conjugacy class
Cp = C, . In the previous section we have canonically defined a non degenerate
form on D(V) such that the two maps

X

V——=D(V), D =1 - X the canonical decomposition,
I

are adjoint (i.e. X*=1I) and that D |pv,= X - I is skew symmetric. Thus proceed-
ing by induction we construct spaces

Vo:=V, V,:=D(V),..., V.:=D'(V),...

endowed with non-degenerate forms of type €, —¢,...,(—1)'s,.... Since D is
nilpotent, for some minimal t=0 we have V,, ,=0.

The analysis in 4.1 shows that the skew endomorphism D [y, belongs to the
conjugacy class C.,..;, where &' =(—1)'e and 7' is obtained from m deleting the
first i columns.

5.2 We construct now from these quadratic spaces a variety

ZcM:=L(V,, V) XL(Vy, V)X - - - XL(V,_4, V)
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defined by the following equations:

X, XT=X3X,
X2X§ =X§X3

Xz—1X:k~1 = XTX:
X,X’f =0

The variety Z is clearly stable under the obvious action of G(Vy) X G(V,) X -+ X
G(V,) on M. The given equation imply for a point (X, ..., X,)e Z that ‘

rk (XEX)P =1k XH(X, XD X, =1k (X, XD =1k (X5X,)" ! etc.,

i.e.

rk (X*X,)" =dim V, =rk D".

Thus (2.5) X*X, € Cp. On the other hand the string (X9, X3, ..., X?) defined by
X?:=D|y,_:V,_;—> V, is clearly in Z and X{*X{=D.
Thus we have defined a map

9:Z—-Cp

by (Xi,..., X))~ X*X,, which is G(V,)-equivariant by construction, and so
HZ)=2C,.

5.3 THEOREM. (i) The variety Z is a reduced complete intersection in M
with respect to the equations (*).

(ii) The map &:Z — Cp, is surjective and a quotient map under G(V,)x
G(V,)X -+ - XG(V).

The proof of this theorem is rather similar to the one in [KP1] for the linear
group; it will be given in 5.5. The new feature is that Z is in general singular in
codimension 1. The consequences of this phenomena will be extensively analysed
in part II.

S.4 We need a crucial lemma whose proof will be given in 8.2 as a consequence
of the theory of orthosymplectic orbits (section 6 and 7).
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LEMMA. For every conjugacy class C < Cp we have

codim 9~ '(C) =3 codimg,, C.

5.5 Proof of theorem 5.3: Consider the map
(:M—[la(V)=:N
i=1

given by (X;,..., X)—=» (X, XT-X%X,, X, X3 - X%X;,..., X X¥). Then Z, as a
scheme, is the fibre {7'(0). We first claim that ¢ is smooth in

t
M':={(X,,...,X)]|all X; surjective} = [[L"(V,_,, V).
i=1
For this we compute the differential d{ at a point a =(X;, ..., X;)e M'. Taking a
tangent vector (Py, ..., P,)e M we get:

(dg)a(Ply ) Pt)=(P1XT+X1PT_P§X2‘—X§P25 s ey Pt—1Xt—-1
+X,.1P, - PTXP, PX+ X.PY).

Since each X, is surjective we can solve the equation (d¢),(P,,...,P)=
(Ty, ..., T,) inductively: If P, P,_,,..., P,.; have been determined, one has to
solve an equation

PXT+XPY=S,

for some S; satisfying S* = —S;. This can be done setting S; = R;— R’ and then
solving X;P* = R; using the fact that X; is surjective. Thus (d{), is surjective for
a € M', proving the claim.

In particular Z, as a scheme, is smooth in Z':=Z N M’. Furthermore by an
easy induction using lemma 4.3 (ii) and (iii) we see that {"'(Cp)< Z', hence
Z'# < and codim,, Z'=dim N.

Since Cp—Cp, consists of finitely many conjugacy classes C; and for each we
have codim; 9 '(G)=3codimg, C;=1 by lemma 5.4, we deduce that Z is a
complete intersection smooth in codimension 0. Thus Z is a reduced Cohen—
Macaulay variety (EGA] IV, proposition 5.8.5) and Z =Z'. This proves (i). For
(i) we proceed by inverse induction. By theorem 1.2 the quotient of M under
G(V,) is given by the map (X;,..., X)—>(X;,...,X_1, XTX)). But, on Z, we
have X*X =X,_,X,_,, and so the quotient map restricted to Z is just the
projection Z3(X,,...,X)—>(X,,..., X_1).

Proceeding in this way we see that the quotient of Z under G(V;) X G(V3) X
-+« X G(V,) is given by the projection (X, ..., X;) > X,, and finally that § is the
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quotient under G(V,) X - - - X G(V,), as desire_q._ Since we have already remarked
in 5.2 that Cp, € 9(Z), we must have 3(Z)=Cp (0.11). ged.

6. Orthosymplectic orbits

6.1 Let U be an orthogonal and V a symplectic space. In this section we want to
recall the classification theory of the orbits in L(V, U) under the group
G := O(U) x Sp(V), shortly “orthosymplectic orbits”. For simplicity we will restrict
ourselves to unstable orbits (in the sense of geometric invariant theory). It is easily
seen that the representation of G on L(V, U) is a @-group in the sense of
Vinberg-Kac, and that the ring of invariants is the polynominal ring in the
elements Tr(X*X)"), i=1,2,...,min(dim V,dim U). If we associate to X e
L(V, U) the pair

(X* X)e L(U, V)XL(V, U)

we have that X is unstable if and only if (X*, X) is a “nilpotent pair” ((KP1] 4.1),
i.e. if (X™, X) as an endomorphism of U@ V is nilpotent.

6.2 We will always consider
L(V,U)cL(U, V)XL(V, U)

by the previous map X > (X*, X). The classification follows the same pattern as
the one relative to g(V)<gl(V) (cf. 2.1, 2.2); it has been explained to us
independently by H. Quebbemann (cf. [Q]) and V. Kac (using the method
developed in [GV]).

If XeL(V, U) we denote by Oy its G-orbit and by Px the GL(U) X GL(V)-
orbit of the corresponding pair (X*, X). The first step in the classification is given
by

Thus the orbit Oy is determined by the ab-diagram of the pair (A, B) = (X*, X);
we refer the reader to [KP1] 4.2 and 4.3 for a discussion of nilpotent pairs and
their ab-diagrams.

6.3 To complete the classification we need to describe the ab-diagrams which
occur in this way; these diagrams will be called orthosymplectic. As in the theory
of Jordan blocks for classical Lie algebras (cf. [SS]) one can form direct sums and
speak of indecomposables. (Of course the ab-diagram of a direct sum is just the
union of the two ab-diagrams.) Thus one is reduced to the classification of
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indecomposable orthosymplectic ab-diagrams. This is given in the following table.
(For the number of a’s and b’s in the ab-diagram of XeL(V, U) one has
#a=dim U and #b=dim V.)

Table II
Indecomposable orthosymplectic ab-diagrams

Type an Bn ‘Yn 8" sn

aba - - - ba bab - - - ab aba - - - ab
ab-diagram aba - - - ba bab - - - ab aba - - - ba bab - - - ab bab - - - ba

n — —_ odd even —_
#a 2nx1 2n—1 2(n+1) 2n 2n
#b 2n 2n 2n 2(n+1) 2n

6.4 Remark. If 7 is the ab-diagram of an (unstable) element X e L(V, U) the
Young-diagram of 7(X)=XX™* and p(X)=X™*X are obtained from 7 erasing the
b’s (respectively the a’s). The reader may observe that from the ortho-symplectic
diagram 7 we obtain, of course, a (+1)-diagram and a (—1)-diagram in this way.
We will write also w(7) and p(7) for these two Young-diagrams. E.g.

ab a b

ba a ] b
T=ababa gives w(o)=aaa= [ and p(7r)=bb=

bab a — bb —

bab a - bb

We remark also that X is injective (respectively surjective) if and only if the
corresponding ab-diagram t is formed by indecomposables of types a, and v,
(respectively B, and §,) (cf. [KP1] 4.4, remark 2).

6.5 If v is an ab-diagram we denote by P, the corresponding orbit under
GL(U)XGL(V) (in L(U, V)xXL(V, U)). If 7 is orthosymplectic O, denotes the
corresponding orbit under G = O(U)x Sp(V) (in L(V, U)c L(U, V) xXL(V, U)).
To summarize we have the following result (cf. theorem 2.2).

THEOREM. Let 7 be an ab-diagram.
(i) 7 is orthosymplectic if and only if it is a union of diagrams of types
a, B, v, 6, € (table II).
(i) P, NL(V, U)# & if and only if v is orthosymplectic
(iii) If 7 is orthosymplectic then P, NL(V, U)= 0O..
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7. Dimension formula for orthosymplectic orbits

7.1 To any ab-diagram 7 we associate the number

A=) a-b
i odd
where a; (resp. b;) is the number of rows of 7 of length i starting with a (resp. with
b) (cf. [KP1] 5.3). If 7 is orthosymplectic we have A, =0 if the corresponding map
X:V — U is injective or surjective. More precisely one easily finds

a4, =22k: (#Bi * #Yar—1+#ay - #62)

where #ay, #Bs, . . . denotes the number of indecomposable factors of 7 of type
Qe Blo ‘v s (Cf. 6.3).

PROPOSITION. Let O<L(V, U) be an orthosymplectic orbit with associated
ab-diagram t. Then

dim O =3(dim 7(O)+dim p(O)+dim U - dim V—A,).

For the proof we need some preparation.

7.2 We first describe L(V, U) as a @-group in the sense of Vinberg-Kac (cf.
[Vi]). As in section 6 we will always denote by U an orthogonal space and by V a
symplectic space. Consider the group G:=GL(U® V) and the automorphism
0:G — G given by

(A B) (A* C*)“’
> .
C D B* D*

Id O
We have ©®*=1d and ©*=IntJ, the conjugation with J :=(

0 —I d)' Further-

more one easily determines the fixed point groups and finds

G:=G®=0(U)x Sp(V)
G':=G® =GL(U)x GL(V).

® determines an automorphism of order 4 of the Lie algebra §:=Lie G=
End (U® V), also denoted by 6, given by

(A B) (A* C*)
> — .
C D B* D*
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Fixing a 4th root of unity { we obtain a Z/4Z-graduation of §

é - §(0)®§(1)®§(2)®§(3)3 Q(i) e= {x e g I OX = CIX}

which is clearly G-stable. By definition

§d9=g:=LieG and §g°®§g?®=g:=Lie G
Furthermore
0 B)
gt = Bel(V,U },
8 {(;B* o)/ BEL(V.U)
hence we can identify §* and L(V, U) as G-modules (cf. 6.2).

7.3 We recall that a triple (X, H, Y) of elements of a Lie algebra g is called an
sl,-triple, if they satisfy the following relations:

[H, X]=2X, [H, Y]=-2Y, [X, Y]=H, (*)

01 1 0 0 0
i.e. if the linear map sl, — g defined by ( )»—> X, ( )»—) H, ( )»——) Y
. . . 0 0 0 -1 1 0
is a Lie algebra homomorphism.

LEMMA. Let Xeg? be a nilpotent element. Then there is an sl,-triple
(X,HY) in g with Heg® and Yeg®.

Proof. By the Jacobson-Morozov theorem there exists an sl,-triple (X, H', Y’)
in g. In particular [H’, X]=2X and H'€[X, g]. Denoting by H the component of
H' in §® we get [H, X]=2X and He[X, g], since X 3. Hence there isa Y"e€g
such that (X, H, Y") is an sl,-triple ([Bo] chap. VIII, §11, lemme 6). Denoting by
Y the component of Y” in §® the relations (*) for (X, H, Y”) immediatly imply
that (X, H, Y) is an sl,-triple too. ged.

Remark. It is clear from the proof above that the lemma holds for any
®-group.

7.4 Let (X, H,Y) be an sl,-triple in §. The semisimple element H defines a
Z-graduation of §:

§=Dg, &:={Xej|[H X]=iX"}.

It is easy to see that p:=€D,.,§ is a parabolic subalgebra with nilradical
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ft:=€,.08 and Levi-decomposition p=g,D fi. We denote by P the parabolic
subgroup of G with Lie algebra p.
The following proposition is proved in [SS] (III 4.16, 4.11 and 4.19 (1)).

PROPOSITION. (a) The stabilizer Gx of X is contained in P.

(b) All sl,-triples of the form (X, H', Y’) are conjugate under Gy. In particular
the parabolic p depends only on X.

() Xet,:=€D,.,8 and the map ad X:p— 7, is surjective.

We remark that the assertions (a) and (c) imply that the canonical map
G xP fl, —> E‘; -

is a desingularisation, where Cx is the conjugacy class of X in §. In particular we
have

dim Cx = dim ft+ dim t,.

7.5 Remark. It is easy to calculate the dimensions of the weight spaces of H in
terms of the Young-diagram A of the nilpotent endomorphism X of U@ V.
These dimensions depend only on the conjugacy class Cx and not on the choice of
an sh,-triple (X, H, Y) (cf. proposition 7.4(b)). The boxes of A correspond to a
Jordan basis of X. Choosing H diagonal with respect to this basis with entries
2n,2n-2,...,2,0,-2,...,—2n) in a row of A of length 2n+ 1 and with entries
2n—-1,2n-3,...,1,-1,...,—-2n+1) in a row of length 2n, it is well known
(and easy to check) that there exists a Y €g such that (X, H, Y) is an sl,-triple. In
particular the zero weight space of H is spanned by the base vectors correspond-
ing to the middle boxes of the rows of odd length.

31 -1 3

2 0 -2
Eg A= has weights 2 0 -2

0

0

hence the dimension of the weight space W, of weight i are given by dim W,=4,
dim W; =dim W_; =1, dim W,=dim W_,=2, dim W;=dim W_;=1.

If in addition X g @ §> has associated ab-diagram 7, the definition of H
above implies that He g =§® @ §?®. Hence the weight spaces of H are of the
form U, @ V, and it is clear how to calculate the dimensions of U, and V, in
terms of the ab-diagram 7. In particular dim Uj, is given by the number of rows of
7 consisting of an odd number of a’s and an even number of b’s; similarly for
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dim V,,

abababa
bababab
E.g. r=ababa ; then dim U,=3,dim V,=1.
ab
ba
a

7.6 Now let Xeg? be a nilpotent element with associated orthosymplectic
ab-diagram 7. We choose an sl,-triple (X, H, Y) with Heg® =g (lemma 7.3).
Then H defines a Z-graduation of g’ and g, both induced by the Z-graduation of g
(7.4). Hence p':=pNg and p:=pNg are parabolic subalgebras of ¢’ and g with
Levi decompositions

pP=g D, g :=8,Ng, :=iNg

and

pP=gyDn, g0:=8oNag, n:=nNag.

Denoting by P’ and P the corresponding parabolic subgroups of G'=
GL(U)XGL(V) and G =O(U)x Sp(V) it follows from proposition 7.4 (a) that
G x< P' and Gx < P. Defining

n:=iNE D) and n,:=f,Ng">
proposition 7.4 (c) implies that the maps

ad X:p' — ny, ad X:p—n,

are surjective. From this we easily deduce assertion (a) and (b) of the following
lemma.

LEMMA. Let Oy, Ox and O% denote the orbits of X under G', G and
G°®=SO(U) X Sp(V) respectively.
(a) The canonical maps

G'xPnb— Ox and G°xPn,— O%
are desingularisations,
(b) dim O%=dim n’'+dim nj}, dim Ox =dim O%=dim n+dim n,

(c) dimn; =2 dim n,.

Proof of (c). We have seen in 7.2 that the automorphism @2:G — G is the
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Id 0
0 -Id
JH = HJ. Furthermore JgV =g§® and so J@* Ng,)=§>Ng; for all i. In particular
J@P Niy) = Nh,. Since ny =GV N,) G Nit,) and n, =P N, the claim
follows. ged.

conjugation with J = ( )e G. Since He g =§° we have ®H = H, hence

7.7 Proof of the dimension formula 7.1: We first compare the dimension of the
orbit Ox of a nilpotent element X e gV =L(V, U) under G = O(U) x Sp(V) with
the dimension of the orbit O of X under G'= GL(U) X GL(V). We choose an
sl,-triple (X, H,Y) with Heg=g§° (lemma7.3) and consider the associated
parabolic subalgebras

pP=g®n'cg and p=g,Dncg

(cf. 7.6). By definition the Levi factors g, and g, are the stabilizers of H in ¢’ and
g. If U=6D,; U; and V =6€B, V, are the weight space decompositions of U and V
with respect to H (i.e. U;:={ue U|Hu =i - u} and similarly for V), we find

%= d(U) @ (@ a(v)).

Furthermore the subspaces U, + U_; of U are non degenerate orthogonal spaces
and V;+ V_; are non degenerate symplectic subspaces of V. Hence

3= (L)) @o(Up) ® (@ 9(V))) @ sn(Vo).

i>0 j>0

Putting d, :=dim U, and d, :=dim V,, we get (cf. 1.1)

2 dim g, —dim g} = (2 dimo(Up) — d?) + (2 dim sp( V) — d3)
= (da(d, — 1) —d2) +(dy(dy +1)— d})
= db —da'
Using lemma 7.6 and putting m :=dim U, n:=dim V we obtain (cf. 1.1)
4dim Ox —2dim Ox=4dimn—2dimn' =
= 2(dim g—dim g,) — (dim ¢’ —dim g;)
=(2dimg—dim ¢')— (dy, —d,)
=(m(m—-1D+nn+1)—-m*-—n>-(d,—d,), .

hence

4 dim Ox =2 dim Ox+(n—m)(d, —d,). (1)
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Now consider the conjugacy classes C, := w(Ox) < o(U) and G, :=p(Ox) =sp(V)
and denote by C/ and C; the conjugacy classes in gl(U) and gI(V) generated by
C, and C,. The dimension formula in the linear case ([KP1]; proposition 5.3)
gives

dim O%=131(dim C.+dim C})+nm—A.. (2)
Moreover we have (remark 2.4)
dimC,=2-dimC,+m—r,, dmCy,=2-dimC,—n+n, (3)

where r,, rn, are the number of odd rows in the Young-diagram of C, and G,
respectively. From (1), (2) and (3) we obtain
4 dim Ox =dim C,+dim C,+2nm—-24.+(n—m)—(d, —d,)
=2dim C,+2 dim C, +2nm —24, +(r,—r,) —(dy, — d,).
It remains to show that r, —r, = d, —d,. Denoting by a,, the number of a’s in the

vth row of 7 and by b, the number of b’s, we have (cf. remark 7.5) d, = #{v| a,
odd and b, even} and d,=#{v|b, odd and a, even}. Hence d,—d, =

#v|b, odd}—#{u| a, odd}=r,—r,. qed.
8. Stratification and singularities of Z

8.1 We now go back to the variety Z constructed out of a given endomorphism
D eg(V), V a quadratic space of type £ (5.2). We recall that Z is essentially an
iterated fibre product:

Z_______)._____).__).--o._.___)o_)CD‘zo

| 1

> > >...‘_~—>CD'_1

v

L1

~——-—>-————>CD2 (*)
[

- —> Cp,

|
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with D, :=D |y, V,:=D'(V). Consider the finite set A of strings A = (7, 72, ..., 7,)
of orthosymplectic ab-diagrams =; corresponding to orthosymplectic orbits O, <
L(Vi_1, V}) satisfying

(@) w(r)=p(1,1):=0; for i=1,2,...,t—-1 (ie. w(O,)=C, =p(0,,), cf
6.4),

(b) 0.=0 (i.e. G, =0).
It follows from the construction of Z that C, = Cp, for i=0,1,...,1t, o¢:=p(7y).
For A € A we define a locally closed subset Z, = Z by

Z)\::{(XlsXZ,'- -’XI)EZIXiEOT,}‘

The definition of A implies that we have a fibre product diagram subordinate to
the basic diagram (*) constructing Z:

Z, > 2\ —> 2\, —> —> 0, —> C, =0

> > _______)--..______)C

e

—> O, — C,,

Cs,

(Here A; denotes the string (7,1, Ti12, - - - » T)» Ag=A.) Since all the maps in this
diagram are smooth the variety Z, is smooth and we get from the dimension

formula 7.1 (putting n, :=dim V)

dim Z, =dim O,, —dim C,, +dim Z,,
=1(dim C,, +dim C,, + non, —4,) +dim C, +dim Z, ,



566 HANSPETER KRAFT AND CLAUDIO PROCESI

hence dim Z, —3dim C, =3 (non,—A4,)+dim Z, —3dim C,. By induction this
implies the following result.

PROPOSITION. For any A =(14,..., 7)€ A we have

t—1
dim Z, =dim C, +1 ), nn. —34,
i=0

where o :=p(7)), n,:=dim V, and 4, :=3;_, 4,.

8.2 We are now ready to prove lemma 5.4, i.e. to show that for each conjugacy
class C = Cp we have

codimz 4 (C) =1 codimg,, C.

We first remark that there is a unique (open) stratum Z,. on top of the open orbit
Cp, A°=(1Y,..., 7)), where 70 is the ab-diagram of X{:=D|y,_,: V;_; — V.. This
is an easy consequence of lemma 4.3 (ii) and (iii) (cf. also 5.2). For this stratum we
have Z,ocZ'=Z NM’ (5.5) and one easily sees that A,.=0 (6.4), hence

t—1
dim Z,o=1dim Cp +3 ¥, min1y
i=0

and dim Z, =dim Z,.—1 for all other A € A.
This implies dim Z =dim Z,.=dim Z’ and also the claim, since 9 '(C) is a
finite union of strata Z, satisfying

codimz Z, =dim Z,.—dim Z, =3(codim, C+4,). (*)

In particular we see that the strata Z, of codimension 1 lie on top of a conjugacy
class C< Cp of codimension 2 and satisfy A, =0. This already has the following
implication.

8.3 PROPOSITION. Assume that Cp, contains no conjugacy classes of codimen-
sion 2. Then the variety Z is normal and so Cp is normal too.

(Use theorem 5.3(ii) and 0.11 for the last statement.)

8.4 Remark. One can show that Z is normal if and only if the only codimension
2 degenerations of Cp are of type a (cf. 3.4). In all other cases Z is singular in some
stratum Z, of codimension 1.
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E.g. let Deso; be a regular nilpotent element, i.e. DeC,, with n=aaa.
Then the stratum Z, with

bab
, bab

>
Il

is of codimension 1 in Z (cf. formula (*) in 8.2), and is in fact the only possible
such stratum. We claim that Z is singular in Z,. Since O, with = =ababa is a
quotient of Z it is enough to show that O, is not normal. To see this one remarks

— bab
that the map = is not smooth in O,.< O,, 7':=a , and that O,. has codimension

1 a

9. Functions on orbit closures

9.1 For any variety Y let us denote by O(Y) the ring of global regular functions
on Y. We need a general lemma which seems to be known by the specialists but
for which we could not find a reference.

LEMMA. Let Z be an affine Cohen—Macaulay variety, W < Z a closed subset
of codimension =2. Then every regular function on Z—W extends to a regular
function on Z, i.e. 0(Z—-W)=0(2).

Proof. Let ScR:=0(Z) be the set of non zero divisor, K:=Rg and fe
0(Z—-W)c K. Consider the ideal I:={reR|r- fe R}. By assumption the zero
set V'(I) of the ideal I is contained in W. Hence there is an se INS (i.e. ansel
not vanishing identically on the irreducible components of Z). Since R/sR is
Cohen-Macaulay, the ideal sR has no embedded primes. Let sR = N,q; be the
primary decomposition, p;:= \/a: It follows that I&p, for any i, since
codimy V(I) =codimy W=2. Hence fe R, for all i. If we write f=r/s for some
re R this implies re sR, =q;R, and therefore req;R, NR =q; for all i. Thus
re N;q; =sR and so f=r/se R. ged.

Remark. In the setting of the lemma every regular map ¢ : Z—W — Y into an
affine variety Y extends to the whole variety Z. This implies for instance that every
connected Cohen-Macaulay variety is connected in codimension 1.

9.2 For any conjugacy class C < g(V) we denote by C the comple_l_nent in C of
the union of all conjugacy classes of codimension =4. C is open in C and it is the
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union of C with the codimension 2 classes:

C=CUUG, codimsG =2.

THEOREM. (i) Every regular function on C extends to C.
(i) C is normal if and only if it is normal in the conjugacy classes of
codimension 2.

Proof. (i) Let fe ©(C) and consider the quotient map 9:Z — C (5.2, 5.3). We
know from lemma 5.4 that codim, 9 1(C — C)=2. Hence the composed function
F:=f o 9, defined on 37 YC), extends to Z by the previous lemma 9.1. On the
other hand F is invariant on 9 (€) and so also on Z. Thus F defines an
extension of f to the whole C.

(i) Since codimz(C—C)=2 the variety C is normal if and only if every
regular function on C extends to C. Now if C is normal every regular function on
C extends to C by the same reason, and so, by (i), to the whole C ged.

9.3 The previous theorem reduces the problem of normality for C to the study
of the singularity in a codimension 2 class C’. This will be the main object of part
I1, where we will prove, as a consequence of a more precise description, that C is
not normal in C' if and only if this is a degeneration of type e (3.4; cf. theorem
16.2).

10. Polarization and Cohen—-Macaulay property

10.1 Let C be a nilpotent conjugacy class in a semisimple Lie algebra g=Lie G.
If C is a Cohen—Macaulay variety then C is also normal. This follows from
Serre’s criterion since codima(C — C)=2. The converse is not known in general,
but only for the so called “polarizable” classes (and also some special cases, cf.
section 18).

DEFINITION. A nilpotent conjugacy class C is called polarizable if there is a
parabolic subalgebra p = g with nilradical n such that nN C is dense in n (cf. [H2]).
Such a parabolic is called a polarization of C.

10.2 The following result is due to R. Elkik.

PROPOSITION. If a nilpotent conjugacy class C admits a polarization, the
normalization of C is Cohen-Macaulay with rational singularities (0.4).
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Proof. Let p=Lie P be a polarization of C, n the nilradial of p and zenNC.
For the stabilizers G, and P, of z in G and P one has G, © P, © G?. The natural
map ¢:GxFn— C, € the normalization of C, is proper, surjective and of degree
[G, :P,] and G xFn is the cotangent bundle over G/P (see for example [BK] §7).
Consider the Stein factorization

Y:=Gxfntsx-25¢

i.e. X is affine with coordinate ring 0(X)=0(G XFn). Now ¢’ is a resolution of
singularities. Since Y is the cotangent bundle over G/P the canonical divisor of Y
is trivial, hence R'p40y = 0 for i >0 by the theorem of Grauert-Riemenschneider
(IGR] Satz 2.3, cf. [HO] proposition 2.2). Thus X has rational singularities.

For x:=¢'((1g, z))€ X we have X =Gx, G, =P, and codimy (X —Gx)=2.
Since X and € are normal, this implies 0(X)= 0(G)™, 0(€) > 0(G)% and
¢ :0(C) — O(X) is identified with the inclusion.

0(G)%: < 0(G)"™-.

It follows that 0(C) is a direct summand of @(X) as 0(C)-module. Hence by
Boutot’s theorem (cf. 0.11) € has rational singularities too. ged.

10.3 In order to apply the previous proposition one has to determine the
polarizable nilpotent conjugacy classes. For classical Lie algebras this is done in
[H2]. We only state the following partial result which is sufficient for our purpose
(cf. [H2] theorem 7.1(a) and 6.2 or [Kel]).

PROPOSITION. Let C be an orthogonal or symplectic nilpotent conjugacy
class with associated Young-diagram m. If all rows of m have even length or all
rows odd length,. then C is polarizable.

Part II. Minimal singularities
11. Geometry of 7 and p

11.1 Let us go back to our basic set up (1.2)

L(V, U) = g(U)

1,,

a(V)
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V' a quadratic space of type &, U a quadratic space of type —¢, dim V=:n=
m:=dim U. As in 4.2 we set

L':=L'(V,U)={XeL(V, U) | X surjective}.

PROPOSITION. (i) 7 is smooth in L' and w(L')={D eg(U) |tk D =2m —n}.
(i) p(L)={Deg(V)|tk D=m} and p |..:L' — p(L’) is a fibration with typical
fibre G(U).

(Fibration here means “locally trivial in the étale topology”.)

Proof. (i) By definition we have (dm)x(P) = PX*+ XP*. We want to show that
(dm)x is surjective for XeL'. To solve PX*+XP*= Q for given Qeg(U) it is
enough to solve PX*=1Q, since then PX*+ XP*=PX*—(PX**=1Q0-1Q*=
Q. This is always possible since X™ is injective. Furthermore it is clear that if
D e w(l), D= XX* with X surjective, X* injective, and so tk D =2m —n. The
converse can be proved by an easy matrix argument: Given a symmetric (or skew
symmetric) nXn matrix S of rank =2m—n, one must write S=Y'Y (or
S=Y'JY, J a non degenerate skew matrix) where Y is an m X n matrix of rank
m. (One can verify it also by the classification of ortho-symplectic pairs given in
section 6.)

(i) L' is an orbit under GL(V) acting by left multiplication, and p is
equivariant under GL(V) with respect to the action D — g*Dg on g(V). Thus p is
of the form H\GL(V)— H'\GL(V), hence locally trivial. Since the actions of
G(U) and GL(V) on L(V, U) commute, the claim follows from lemma 4.2. ged.

Remark. We will later use the second statement of the proposition in the
following way: For any locally closed G(U)-stable subset W = L' the image p(W) is
locally closed in g(V) and p |w : W — p(W) is smooth. (Since W is G(U)-stable we
have W=p~ ' (p(W)), hence p |w: W— p(W) is a fibration.)

11.2 PROP_OSITION. Let D eg(U) be nilpotent with dimKer D<n—m. As-
sume that Cp is Cohen-Macaulay. Then = (Cp) is reduced and Cohen—
Macaulay.

Proof. The assumption implies that the first column of the Young-diagram n
of D has length <n—m, hence p(7"(Cp)) = Ce,,-,, where 7 is obtained from 7 by
adding one column of length n—m (4.1). Since 7 is smooth in L' (proposition
11.1G8)), N:=#"%Cp), as a scheme, is smooth in the orthosymplectic orbit
O,:=p Y(C,;) by lemma 4.3(ii) and (iii). The claim will follow if we show that
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dim O =dim O, —1 for all other orthosymplectic orbits O < N, since this implies
first that codim; N = codimyq;, E‘;, hence N is Cohen-Macaulay ([EGA] IV,
15.4.2, a) > ¢')), then that N = O, and finally that N is smooth in codimension 0,
hence reduced ([EGA]IV, 5.8.5). This inequality is a consequence of the dimen-
sion formula for orthosymplectic orbits (6.8) plus the remark that O, is the unique
orbit on top of C,; (lemma 4.3(ii)) and that A, =0. ged.

Remark. Under the assumptions of the proposition above = (Cp) contains a
dense orthosymplectic orbit, i.e. O, =p '(C,;) (see proof).

11.3 To complete the picture we state some remarks which can be deduced from
the previous analysis using [EGA] IV, 15.4.1 and 12.1.1, the Serre criterion
([IEGA] 1V, 5.8.6) and the fact that an orthogonal space of dimension 2m has two
rulings of isotropic subspaces of dimension m, inequivalent under SO,,,.

Remark. Assume dim V=2 dim U. Then the map

m:L(V, U)— g(U)

is flat, Cohen—Macaulay and reduced. If in addition U is orthogonal or dim V>
2 - dim U the map = is even normal. If U is symplectic and dim V =2 - dim U the
zero fibre of 7 has two components intersecting in codimension 1.

11.4 The first assertion of proposition 11.1 can be improved if U is an
orthogonal space.

PROPOSITION. In the setting 11.1 assume that U is orthogonal. Then = is
smooth in L°:={xeL(V, U) | codim Im X <1}.

Proof. Let XeL®and Q =g(U). As in the proof of proposition 11.1 (i) we have
to solve PX* =T for some TeEnd (U) with T—T*=Q. If Ker T2Ker X* this
is obviously possible. If not let u € Ker X*, u# 0 and put v := Tu. Then there is an
S € End (U) such that S*=S and Su =v. (In fact choosing an orthonormal basis
in U it is easy to see that for given vectors u, ve U, u#0, one always finds a
symmetric matrix S such that Su=1v.) Replacing T by T':=T—-S we get
ueKer T’ and we still have T'—T"*= Q. qed.

Remark. One can show by a similar argument that L’ and L° in the cases U
symplectic and U orthogonal respectively are exactly the smooth points of the map
.
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11.5 In the setting of 11.4 (i.e. U orthogonal) consider the following decomposi-
tion of the map p:

L:=L(V, U)
L/SO(U) P
sp(V)

where p° is the quotient under SO(U) and p the quotient under Z7/27 =
O(U)/SO(U). Define L":={X eL(V, U) |tk p(X) =dim U —1}. Of course L"2L".

PROPOSITION. (a) p°|.:L"— p°L") is a fibration with typical fibre SO(U).
(b) Z/2Z acts trivially on p°(L"—L).

Proof. For (a) we want to use Luna’s criterion ([Lu], III. Corollaire 1) for
principal fibrations, i.e. prove that the stabilizer in SO(U) of any point X el is
trivial. We already know this if X e L' (11.1(ii)). So we may assume that p(X) is a
matrix of rank m —1, m =dim U. Choosing a basis of V we may identify L(V, U)
with the set of n-tuples (u,,...,u,) of vectors in U, n =dim V. Then p can also
be thought as mapping (u,, . .., u,) into the symmetric matrix p(X) = ((;, y;))"
of scalar products (cf. remark 1.2). Using the action of GL, we may assume that
p(X) has the form (1]'6‘1 g) This means that u,, ..., u,,_; are an orthonormal
basis of a subspace U'cU of codimension 1. The remaining vectors
Uy Um+1, - - - » W, must be O being isotropic in the non degenerate one dimensional
space U'*. Now it is clear that the stabilizer of X in SO(U) is trivial, proving (a),
and that the stabilizer of X in O(U) is Z/2Z, proving also (b). ged.

12. Smoothly equivalent singularities, cross sections

12.1 DEFINITION (cf. [H1] 1.7). Consider two varieties X, Y and two points
xeX, yeY. The singularity of X in x is called smoothly equivalent to the
singularity of Y in y if there is a variety Z, a point z € Z and two maps

Z—tX

!

Y
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such that ¢(z)=x, ¢(z) =y, and ¢ and ¢ are smooth in z. This clearly defines an
equivalence relation between pointed varieties (X, x). We denote the equivalence
class of (X, x) by Sing(X, x).

Assume that an algebraic group G acts regularly on the variety X. Then
Sing(X, x) =Sing(X, x") if x and x’ belong to the same orbit O. In this case we
denote the equivalence class also by Sing(X, O).

12.2 Remark. The smooth equivalence of two singularities x € X, ye Y means
that, after multiplication by affine spaces, they are analytically isomorphic. This
implies that various geometric properties of X in x depend only on the equival-
ence class Sing(X, x), for example: Smoothness, normality, seminormality
(cf. 16.1), unibranchness, Cohen—Macaulay, rational singularities ([E1]
théoreme 5). A typical example of a property which is not preserved, since it has
not an analytic meaning, is irreducibility in x.

12.3 Now we can formulate the main result of this section. We use the notations
introduced in section 3.

THEOREM. Let the ¢-degeneration o=<m be obtained from the ¢€'-
degeneration o'<m' by adding rows and columns. Then Sing(C,,,C.,)=
Sing(C., ., Cer o)

The proof is similar to the one in the linear case (cf. [KP2]). We must treat
separately the two steps ‘“‘cancelling rows” and ‘“‘cancelling columns”. In the
second case (proposition 13.5) we will use the analysis carried out in section 11,
while the first case (proposition 13.4) will be handled with the method of cross
sections, which we now describe. There is a difficulty in this case that did not
appear in the linear case and is due to the possible lack of normality of the closure
of a conjugacy class. This is overcome by a suitable reduction to the linear case
(cf. 13.1).

12.4 DEFINITION. Let X be a variety with a regular action of an algebraic
group G. A cross section at a point x€ X is defined to be a locally closed
subvariety S < X such that x€ S and the map G XS — X, (g, s) =~ gs, is smooth at
the point (e, x).

Of course we have Sing(S, x) = Sing(X, x). There is a natural way to construct
cross sections for affine G-varieties X. Choose a G-equivariant closed embedding
X S V in some vector space V with a linear G-action and a complement N of
the tangent space T,(Gx) in V. Define S :=(N+x)NX (schematic intersection).
Then G XS — X, (g, s) —> gs, is smooth at the point (e, x), since GX(N+x)—V,
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(g, n+x)— g(n+x) is smooth at (e, x) (EGA] IV, 17.11.1) and

GX(N+x)— V

] J

GXxS —— X

is a fibre product. Hence S is reduced in x and so S, as a variety, is a cross section
at x. The construction implies that x is an isolated point in S N Gx. Assuming X
irreducible (or equidimensional) we get dim, S =codimg, X.

12.5 Another useful fact on singularities is the following result.

LEMMA. Let X, Y be varieties with an action of an algebraic group G and
¢ : X — Y an equivariant map. Assume that Y is an orbit under G. Then ¢ is a
locally trivial fibration (in the étale topology). In particular for each x € X we have

Sing(X, x) = Sing(¢ ™' (¢(x)), x).
Proof. Consider a point y,€ Y, the orbit map ¢: G — Y and the fibre product

Ik

G ———Y

Since ¢ is smooth, G Xy X is the subvariety of G XX given by

G xy X ={(g x)| gyo= @ (x)}.
The image of G Xy X under the isomorphism G xXX> G xX, (g, x)— (g, g 'x),
is clearly G X ¢~ (y,). qed.

Remark. If in the setting of the lemma we do not assume that Y is an orbit we
still have the following result: If S< Y is a cross section in the point ¢(x), then
Sing(X, x) = Sing(¢ (), x).

13. Cancelling rows and columns

13.1 Let G be an algebraic group. As usual we denote its Lie algebra by the
corresponding german letter g. For x eg we write Gx for its conjugacy class in g
(i.e. its orbit under the adjoint action).
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PROPOSITION. Let G be an algebraic group, G', H< G closed subgroups

such that H':= G' N H is reductive and let xely, ye H'x. Assume
(i) codimg, G'y = codimg, Gy,

(i) G'xNy =H'x,

(iii) Gx is normal in y.
Then Sing(—H_;c, y)= Sing(m, y).

Proof. By assumption we have ) =g'Nl. We claim that there is a complement
N of [g, y] in g such that

gd=[d,y]®N’, N':=NnNg,
b:[ba)’] @NO’ NO:ZNnb’
b=[b,y]l®Nys, No:=NNH=NyNg.

Since H' is reductive, we can find an H’'-stable decomposition g=
YOM DBMEBD such that g=HPBM', bh=Y®M, Hence [g y]=
[V, y]®[M', y]®[M,, y]D[D, y] since yel, and so [§,ylcl, [M', y]le M/,
[M,, y]= M, and [D, y]l< D. This implies the existence of decompositions § =
[0, yYI® Ny, M’ =[M', y]® N’, My=[M,, y]® N, and D =[D, y]® D. It follows
that N:=N{@® N'@® N,® D has the required property, since Ny=NNY, N'=
NNg=N,®N and Ny=NNh=N,BN, Now define S:=(N+y)NGx,
S':=(N'+y)NG'x, So:=(No+y)NHx and S}:=(Ns+y)NH'x. These are all
cross sections in y (12.4) and we have S'NK=(N'+y)Nk) ﬂ(.fi’—xﬂb’) =
(Ny+y)NH'x=S} and S'cg, hence S,=S'Nh. From assumption (i) we get
dim, S =dim, S’ (12.4). Since S is normal in y by assumption (iii) and remark
12.2, this implies that S and S’ coincide in a suitable neighbourhood of y, and so
the same holds for SNh and S'NH. But SNH=2S,257=S'NH by construction,
hence S, and S| coincide in a suitable neighbourhood of y too. Thus finally
Sing(m, y) = Sing(S}, y) = Sing(S,, y) = Sing(—H_x, y). ged.

13.2 Remark. The proposition remains true if we replace the normality condi-
tion (iii) by the slightly weaker assumption:
(iii) Gx is unibranch in y.

In fact the assumption (iii) was used to show that S and S’ coincide in a suitable
neighbourhood of y (notations of the proof). Now (iii)’ implies that S is unibranch
in y (being a cross section in a neighbourhood of y, cf. 12.2) and in particular
irreducible in y. Hence the equality dim, S =dim, S’ is enough to insure that S
and S’ coincide in a neighbourhood of y.

13.3 Using this remark, we get the following corollary (put H= G, H' = G’).
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COROLLARY. Let G be an algebraic group, G'= G a closed reductive
subgroup and let xe g, y € G'x. Assume

(1) codimg,, G’y = codimg, Gy,

(i) Gx is unibranch in y.
Then Sing(m, G'y)= Sing(_G—;c, Gy).

13.4 We now can prove one part of theorem 12.3.

PROPOSITION. Assume that the e-degeneration o <m is obtained from the
g-degeneration o'<m' by adding rows (3.3). Then Sing(C.,,C.,)=
Sing(C. ., C..o)-

Proof. Let V be a quadratic space of type £ of dimension |n| and DeC,, <
g(V). By assumption the diagrams m and o are decomposed, n=v+n' and
o=v+0o', v also an e-diagram. These decompositions correspond to an or-
thogonal decomposition V=W ® V' such that D =(F, D) eg(W)® g(V') cg(V),
D’eC,,, and there exists E =(F, E')e C, , with E'e C, ,.. To apply proposition
13.1 we define G:=GL(V), G':=GL(W)XGL(V", H:=G(V) and
H':=G(W)xG(V"). Now condition (i) follows from the dimension formula for
linear conjugacy classes (cf. remark 3.2), (ii) from theorem 2.2 (iib) and (iii) from
the normality of conjugacy classes in gl, ([KP1]). Hence Sing(C,,, E)=
Sing(H.D, E) = Sing(H'.D, E). Since H'.D=G(W).FxG(V").D’ and E=(F, E’)
is contained in the open subset G(W).FXG(V').D', we get Sing(ﬁ, E)=
Sing(G(V").D’, E") =Sing(C., ., E’). qed.

13.5 Proposition: Assume that the c-degeneration o <m is obtained from the
¢'-degeneration o'=<m’ by adding columns (3.3). Then Sing(C.,,C.,)=
Sing(ée',n’, Ce',c')'

Proof. It is enough to treat the case where o <n is obtained from o’'<n' by
adding a single column. Let V be a quadratic space of type £ and dimension |n|
and U be a quadratic space of type —e and dimension |n’|. Consider the basic set
up (1.2):

L(V, U)—>g(U)

l"

a(V)
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and the induced diagram of maps (4.3)

w

‘n'—l(é_smr) =:Ngy — C—em’

lp

Cem

As a consequence of proposition 11.1 and its remark we have that these two maps
are smooth in the open set N, ,:=N,, NL'(V, U). Thus it is sufficient to show
that there is a point Xe N, , with m(X)eC_,, and p(X)e C,, (12.1). From
4.3(ii), (iii) (and remark) we have p~'(C.,)< N’ and w(p~(C.,)) =C_., and
so we can choose any Xep '(C,,). ged.

13.6 Let V=V,® V, be an orthogonal decomposition of a quadratic space V.
Consider nilpotent conjugacy classes C, in g(V;) and degenerations C< C,
i =1, 2, and denote by C and C' the conjugacy class in g(V) generated by C; X C,
and C;XC; respectively. Generalizing 13.4 we give a simple condition under
which Sing(C, C") =Sing(C,, C}) X Sing(C,, C}) :=Sing(C, X C,, C} X C3). For this
let m; be the diagram of C, and o; that of C..

PROPOSITION. Assume that m, and o, have the same number of rows and
that the last row of n, is larger than the first row of m,. Then

Sing(C, C’) = Sing(C,, C}) x Sing(C,, C4)

Proof. We proceed as in 13.4 applying proposition 13.1. The only point is to
verify the codimension condition which is easily seen to be a consequence of the
hypotheses made. ged.

Remark. One can easily extend the statement to any decomposition V =

Vl@V2®"'®VS.

14. Singularities of minimal degenerations

14.1 In this section we give the classification of the singularities Sing(C. ., C..,)
for a minimal e-degeneration o< (3.1). By theorem 12.3 we are reduced to
study the irreducible ones given in table I (3.3, 3.4). We distinguish the two cases
codimeg, C., =2 and >2. For the first case we need to recall part of Brieskorn’s
theory on subregular singularities in simple groups (cf. 0.6). The nilpotent cone N
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of a simple Lie algebra is the closure of a unique conjugacy class C,,, the regular
class; its boundary 9C,., = N — C,, is itself the closure of a unique conjugacy class
Ciubreg, the subregular class, and codimy Ci,preq = 2.

THEOREM (cf. [S1], 6.4 Theorem): Let N be the nilpotent cone in sl,.,
$02n41, $P2n (N =1) or so,, (n=3). Then the singularity of N in the subregular class
Caubreg IS Smoothly equivalent to the simple surface singularity of type A,, A,,_1,
D, ., and D, respectively.

14.2 If we now look at table I (3.4) we can immediately recognize that for the
types a, b and ¢ the diagrams m and o are those of the regular and the
sub-regular class in the corresponding Lie algebra. In case e the conjugacy class
C.., has two components C* and C® and CPNCP=C,, (remark 2.3). In
particular Clm is not normal in this case. We will describe more precisely this
singularity and show in particular (15.4(a), 15.1) that the intersection CONCP s
reduced and Sing(_(_?m, Cio)=As,—1. We will indicate such singularity by
Sing(C, .., Cr.o) = Agn_1U Az, .

The remaining case d is related to the exceptional case e; we will prove that it
gives rise to a singularity of type A,,_; also (15.4(b)). We set aside to the next
section these two cases and first complete the study of minimal degenerations of
codimension >2.

14.3 Inspecting table I in the cases f, g, h we see that o is the diagram of the
zero class while 7 is the diagram of the unique minimal non zero class. It is well
known that this is the orbit of a highest weight vector in the Lie algebra, i.e. the
conjugacy class of a long root vector x. This singularity is usually described as a
“collapsing” of a line bundle: One considers the line L :=kx, the parabolic P
stabilizing L in the corresponding group G and the line bundle G XFL over G/P.
The natural map ¢ : G XFL — C,, is a resolution of singularities and ¢ ~*(0) is the
zero section of this bundle (cf. 0.7).

The consequences of this construction for the geometry of C., have been
studied extensively by several authors. In particular it follows from [K] §2 that
C.., is normal, Cohen-Macaulay with rational singularities. We remark that in this
case the normality of C-fem can also be deduced from proposition 8.3. For a more
precise discussion of these varieties we refer the reader to the previously cited
literature. Here we only remark that, in case g, G/P=[P?"~! and the line bundle is
Op2n-1(—2).

Finally, in analogy to the standard notations for simple groups, these sing-
ularities are denoted by the symbols b,, c,, d,.

We have now explained the, meaning of the symbols on the last line of table I
to which we now can refer.
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15. The types d and e

15.1 Consider the very even conjugacy class C :_=__C(2,,,2n) in so,, with the two
components C® and C?®. One has CPNCP=C’ with C' associated to the
partition 2n—1,2n—-1,1,1) (remark 2.3).

~ PROPOSITION. The singularity of C9 in C' is smoothly equivalent to the
simple surface singularity A,, _,.

Proof. Let U be a vectorspace of dimension 2n, U* its dual space. Then
V:=U@® U™ is an orthogonal space with respect to the symmetric form ((u, e),
(u', e):=e(u’)+e'(u). We have the closed immersion GL(U) < SO(V) given by
g~ (g, g*"!), which induces the inclusion gl(U) <> so(V), D+ D :=(D, ~D¥). If
D egl(U) is nilpotent with partition n=(n,,...,n,), its image D has partition
=M1, M1, M2s M2, - - - » Ns» Ns)- In particular the (connected) regular class C, of g,
is mapped into one component of C, say C, the subregular class Cy< C, is
mapped into C’, and codimg Co=2=codimco C’. This enables us to apply
corollary 13.3 and deduce the claim, provided we can show that CD is unibranch
in C'.@

To see this consider the flag variety % of isotropic flags F=(Fy, F,, ..., F,) in
the 4n-dimensional orthogonal space V, F, < F,< - - - © F,, F; isotropic of dimen-
sion 2i, and the vectorbundle ¥V :={(F, X) | XF, c F,_, for all i}< % Xso0(V) over
%. The projection pr: F X so(V) — so(V) induces a “desingularisation” ¢: ¥V — C,
i.e. for the two connected components ¥® and ¥® we have ¢(¥V®)=C® and
@ |yo: V@ — C® is proper and birational (cf. [H2] §4). So we have to show, that
the fibre P:= ¢ (D) of an element D € C’ has (at most) two connected compo-
nents. We choose a basis {e;, €5,...,€m-1, 1> f2>- -+ fon-1, & h} of V such that
Df, =f,_,, De; = ¢;_;, ey, f1, 8 heKer D and such  that V=
(e1,...,m 10D 1, ..., fon1)DP(g)D(h) is an orthogonal decomposition ([SS]
IV, 2.19). In the non-degenerate orthogonal space (e,, f,, 8 h) we have two types
of isotropic planes:

EL,:=(A(e, +V—=1f,)+ u(g —v=1h), w(e, —vV=1f,) —A(g +vV=1h))
and
Exk:=(\(e, +V=1f,) + u(g +v—1h), u(e, ~V=1f,) A (g —V-1h)),

MweP'. Consider any flag F in P(=¢ (D)). Clearly F,cV':=
(e1,...,€n f1,---»fr & h) and it is isotropic of dimension 2n. This implies that

1 The following analysis was indicated to us by N. Spaltenstein.
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F, contains V,_,:={(ey,...,€,_1,f1,...,fr—1), the kernel of V'. Thus F, =
V,_1® E3,, for some A/ €P', 8 =+1. The condition DF, < F,_, implies that for
A #0, © we necessarily have F; =V, :=(eq,..., e, f1,..., ;) for i <n. The flags
of this form define a subset P, 5 of P isomorphic to P'. Assume now, for instance,
A/u =, Then we may also assume that for some n>r=0 we have

F=V_ ®(g+8v-1h)® (e, +V—1f) for n=i>r

and that F, is not of this form. This implies that F,_,=V,_; and so F, =V, for
i=r—1. As for F, itself it may be chosen arbitrarily of dimension 2r, such that
V,_1<F, <cF,,,, DF,cV,_, and DF,, ,cF,. These conditions imply that F, con-
tains F,_, @ (e, + V—1f.) and is contained in F,_, ® (e, f., g+ 5v—1h). Hence these
flags form a subset Py of P isomorphic to P'. Similarly for A/u =0 we find
subsets P2;. The analysis shows that

P=P1UP_1, PS:::(UP?,S)UPn,SU(UP:S)

and that the terms are the irreducible components of P. One easily determines the
intersection properties of these lines and verifies that P, and P_, are the two
connected components of P, each consisting of 2n —1 lines with graph:

qed.

15.2 To proceed to type d and complete type e we need a few general facts on
reduced intersections. Let X be a variety, X;, X, two locally closed subvarieties and
xeX 1 N Xz.
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DEFINITION. The intersection X; N X, is called reduced in x, if in the local
ring Ox, of X in x we have

a, = al,x +a2,x

where a, ,, a,,, a, are the ideals of functions in O, vanishing on X, X, X; N X,
respectively. We say that X, NX, is reduced, if it is reduced in all points
xeX 1 N Xz.

Remark. (1) In the definition one can replace X by any subvariety containing
X, UX,.

(2) This property is equivalent to say that the schematic intersection X; N X,
is reduced in x, 1.e. that the sequence

Ox,ux,x = Ox,x X Ox » 3 Ox x, «

1S exact.
(3) The set of points x € X; N X,, where the intersection is reduced, is open in
X;NX, ([EGA] IV, 12.1.7).

15.3 Let us collect some elementary properties on reduced intersections, mostly
well known. The setting is as in 15.2; 0(X) indicates the ring of global regular
functions on X.

(a) If X;NX, is reduced, we have the following global property (cf. 15.2
remark 2):

(P) For all f,e0(X,), f,€O0(X,) such that f|x,nx,=f2|x,nx, there is an
fe O(X,UX,) with f |x =,

(b) If X is affine and X, X, closed subsets, then property (P) is equivalent to
X, N X, being reduced.
(In fact for the ideals a, a;, a, < 0(X) of functions vanishing on X; N X, X;, X, we
have a=a; +a,.)

(¢) If X, and X, are smooth in x with normal crossing (i.e. dim (T, (X;)N
T, (X,)) =dim, (X;NX5)), then X, NX, is reduced in x.
(In this case the schematic intersection is even smooth in x.)

(d) Let ¢: Y — X be a regular map, Y; :=¢ '(X;) and y € Y,N'Y, a point with
@ (y) = x. Assume that ¢ is smooth in y. Then Y, N Y, is reduced in y if and only if
X:NX, is reduced in x.
(The property of being reduced in x is a property in the completion @X,x.)
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(e) Let X be affine with an action of a reductive group G, 7:X — X/G the
quotient map. Assume that X, X, are closed and G-stable subsets with reduced
intersection. Then w(X,) N7 (X3) is reduced.

(This follows from general facts of quotient maps; see 0.11.)

(f) Let o be an automorphism of order 2 of X such that o(X;)=X, and o is
the identity on X;NX,. Consider the quotient map 7 :X — X/o. Then the
induced map m,: X; — w(X,) is an isomorphism in X, —(X; N X};) and in all points
x € X, N X, where the intersection is reduced.

(We can easily reduce to the setting X = X; U X,, X affine, X; € X closed and
X;NX, reduced. From the exact sequence

0(X)— 0(X)) X 0(X;) 3 0(X,NX,)

we get the exact sequence for the invariants

O(X)” — (0(X) X O0(X2))” 3 O(X; N Xp)” = O(X, N Xy).

Any function fe 0(X,) is transformed by ¢ into a function f? € O(X;) and the
invariants in O(X;)xX0(X,) are just the pairs (f,f°). Thus O(X)” —
(0(X,) X 0(X,))” is an isomorphism and, composed with the projection onto
0(X,) gives the desired result.)

(g) Assume that X =X,U X, is affine and Cohen-Macaulay and X; closed in
X. If there is a closed subset W <= X; N X, with codimy W =2 such that X,NX, is
reduced in (X;NX,)— W then X, NX, is reduced.
(This follows immediately from (a) and lemma 9.1.)

(h) Universal property: Let ¢,: X, — Y, i=i,2, be regular maps such that
@1 lx,nx, =2 Ix,nx,c If XiNX, is reduced there is a unique regular map
¢:X;UX, — Y such that ¢ |x = ¢

15.4 We can now formulate the main result of this section and complete the
study of singularities in minimal degenerations (cf. 14.2).

PROPOSITION. (a) The two components of the closure of the very even
conjugacy class Cg,any in s04, have a reduced intersection and are normal,
Cohen—Macaulay with rational singularities.

(b) The closure of the conjugacy class Cp+1.2n+1) iN $Pan+2 is normal, Cohen—
Macaulay with rational singularities and

Sing(Can+1.2n+1) Cianzn2) = Azn-1-
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We first prove that (a) implies (b) and then (15.6) that (b) for sp,,_, implies (a) for
s04.. This proves the result by induction, since (b) is clear for n =0.

Proof of (a) = (b): Put m =2n and let U be an orthogonal space of dimension
2m, V a symplectic space of dimension 2m +2. By assumption the two compo-
nents C'V and C® of C:= C,, m) < 0(U) have normal closures C and C® with
reduced intersection. We have to show that the closure of D := C,,. 1 m+1 Ssp(V)
is normal and Cohen-Macaulay with rational singularities. We have the maps
(L:=L(V, U))

L(V, U) = so(U)

L/SO(U) ] ?

p

sp(V)

where p° is the quotient by SO(U) and p the quotient by Z/2Z (=O(U)/SO(U);
cf. 11.5). Put N:=7"'(C). We know that Q:=p (D) is a single O(U) x Sp(V)—
orbit contained in L’ and that w(Q) = C (4.3 lemma (ii) and (iii)). Hence Q is the
union of two SO(U) % Sp(V)—orbits Q¥ and Q® with w(Q")=C®. Further-
more Q':=p ' (D’), D':=Cguma), is a single O(U)x Sp(V)—orbit too, since
there is a unique orthosymplectic ab-diagram 7 lying on top of (m, m, 2), i.e.

bab - - - ab
T=bab---ab

bab

a

(cf. 6.3). From this we see that Q'cL°={XeL(V, U)|dimKer X=<1}, Q'cL"=
{Xel(V,U)|tk p(X)=m—1} and #(Q")=C’. Thus the map w:N—C is
smooth on QU Q' (11.4) and p°: QUQ’ — p°(QU Q') is a principal SO(U)-
fibration (11.5). This implies that Q™ and Q% are normal in Q' with reduced
intersection there (15.3), and hence that p°(Q™) and p%(Q™) are normal in
p%(Q") with reduced intersection there. Since Q' <L”—L’ the action of Z/2Z on
p°(Q") is trivial (proposition 11.5(b)). Using 15.3(f) we see that the p: p%(Q™) —
p(Q)=D is an isomorphism on p°(Q™®UQ’), hence D is normal in D’ and
Sing(D, D) = Sing(p°(Q™), p*(Q") =Sing(Q™, Q") =Sing(C™, C")= Az,_;. The
main theorem 9.2 implies now that D is normal and since D admits a polarisation
(10.3), it is also Cohen-Macaulay with rational singularities (10.2). ged.

15.5 For the second implication (b)=>(a) we need some preparation. Let
m =2n be even, U an orthogonal space of dimension 2m and V a symplectic
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space of dimension 2m —2. Consider the usual setting

L(U, V) —>sp(V)

lp

so(U)

and the two conjugacy classes D:=C(,_1.m-1ySsp(V) and C:=C,,, ., Sso(U).
From the classification 6.3 we see the 77 '(D) consists of three orthosymplectic
orbits P, P', P" associated to the ab-diagrams

abab - - - aba ababa - - - ab baba - - - b
abab - - - aba, baba - - - - ba, baba - - - b.
a a
a a
a
a

We have (4.3) p”(C)=P, p(P)=C=CPUC® and p(P)=C":=Cin_1.m-1.1.1)s
the dense orbit in CP N C®. Furthermore P = w (D) is Cohen-Macaulay (11.2
proposition and remark). Thus PUP' =7 (D)Np '(CUC’) is open in P and
P=PPUP? with P¥=p }(C%). In addition, from the dimension formula 7.1,
we have codimp P’ = 1.

LEMMA: P'c PPNP?, PD gnd P® are smooth in P’ with normal crossing
in P' and the complement of PUP’ in P has codimension =2.

Proof. The last claim follows from the dimension formula 7.1 remarking that,
for any other orthosymplectic orbit O in P we have

codimg p(O) +codimp w(0O) =4.

P and P@ are SO(U) x Sp(V)— orbits, hence connected, and PP N PP is stable
under O(U) x Sp(V). Since P is Cohen-Macaulay it is connected in codimension
1 (cf. remark 9.1). By the previous remark on the complement of P U P’ we must
have P’ PPNPP. By lemma 12.5 the map = (D)— D is a locally trivial
fibration. Hence we can verify our claim on a fibre. The map = is also equivariant
under the larger group GL(V) acting on L(U, V) by X+ gX and on sp(V) by
B > gBg*. Thus we can compute the fibre at any point on the GL(V)-orbit D
generated by D. Set for simplicity d :=dim V =2m —2. Choosing a basis of V we
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can identify L(U, V) with (U*)4 = U? and sp(V) with the space Sym, of symmet-
ric d X d matrices (cf. 1.2 remark). In this setting the map

m:U?% — Symy
is given by (uy,...,us) > ((w, u;))f;-;, the matrix of scalarproducts, and the
action of GL; on U? is by linear combination of the vectors and on Sym, the
usual A > gAg"'.

Now D is just the set of symmetric matrices of rank d —2. For the matrix

00
00 0 _
A= eD
0 | 1,
we find
7 A)={(uy,...,uy) | us, ..., uy form an orthonormal set, {u,, w,) isotropic
in <u3, c ey ud>J.}a

and so 7 '(A)=QUQ'UQ", where Q, Q', Q" are defined by the condition
dim (u,, u,)=2, 1,0 respectively. If A =gBg' for some Be D we see from the
description of the orthosymplectic orbits P, P’, P” that Q=g(PN#w (B)), Q' =
g(P’N7~Y(B)) and Q"= g(P"N = '(B)). Using again lemma 12.5 we get for any
YeP N7 Y(B):

Sing(7~}(C), P’) =Sing(w'(B), Y) = Sing(7w'(A), X),

X :=gY. To study the singularity of w '(A) we project to the last d —2 vectors
and obtain a map ¢: 7 '(A)— St,_, from 7 '(A) onto the Stiefel variety St,_,
of d—2 orthonormal vectors in a d—2 dimensional orthogonal space. ¢ is
O(U)-equivariant and St,_, is an orbit under O(U), so we can apply again lemma
12.5 and reduce to the study of a fibre of ¢. If W is a four dimensional orthogonal
space, each fibre of ¢ is isomorphic to F:={(u,, u,) € W?|u,, u,) isotropic}, and

Sing(7~'(A), X) = Sing(F, f)

where f=(u,, u,) is any point of F with dim (u,, u,)=1. We can assume f=
(ug, 0) € F':={(u,, u,) ¢ F | u; # 0} and study Sing(F’, f). For this consider the pro-
jection ¢ : F'— W, (uy, u,) — u,. This map ¢ is O(W)-equivariant and its image
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is the orbit of isotropic vectors #0 in W. Thus, always by lemma 12.5,

Sing(F”, f) = Sing(y~ " (uo), f).
Now

U Wug) ={(ug, u) | u € (ug)* and (u,, u) isotropic}

={u € (up)* | u isotropic}.

Writing (uo)* ={(uo)® W, an orthogonal sum with an orthogonal space W of
dimension 2, we finally get that the last set is isomorphic to

A'x{ii e W | @ isotropic}.

Of course the set of isotropic vectors in a 2-dimensional orthogonal space is a
union of two lines through the origin. ged.

15.6 Proof of (b)=>(a): We now assume (b) for sp,,_, for all k =<n and want to
prove (a) for so,, We use the same notations as before. By assumption
D (=Cn-12n-1) is Cohen-Macaulay and so P = #~}(D) is Cohen-Macaulay too
(11.2). Thus the previous lemma 15.5 and 15.2 imply that the intersection
PPN PP is reduced, and so, by 15.2(e), the intersection CONCD s reduced
too. Now we claim that C'=CPNCP is normal. This follows from theorem
9.2(ii), since the only codimension 2 degeneration of C’' is given by (2n—1,
2n-3,3,1)<2n-1,2n—-1,1,1) forn>2and (3,2,2,1)<@3,3,1,1) for n=2,
i.e. are of “normal” type b and a respectively (see Table I and 14.3).

In order to prove that C® is normal we have to show that each regular
function f; on C'V extends to a regular function on C®. Since CD js normal in C'
(proposition 15.1), f, extends to C’ U C'. By the normality of C’ the restriction
f1|c extends to a regular function f{ on C'. Thus we can find a function f> on c®
with f, |z =f,. By construction the function f, on C®U C' agrees with f, in the
intersection C'. Since the intersection C® N C@ is reduced in C’ (lemma 15.5) we
obtain a regular function f on C®U C® U C’ extending f; (15.3a). We can now
apply the main theorem 9.2(i) saying that f can be extended to the whole variety
C. In particular f|zm is the required extension of f;. As in the proof of (a) = (b)
(15.4) the normality of C™ implies also that this variety is Cohen—-Macaulay with
rational singularities (10.2 and 10.3). ged.

15.7 Remark: The results of this section complete the proof of the claims
contained in Table I concerning the singularities. In particular we see that for any
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conjugacy class C the closure C is normal in each minimal degeneration C’ of type
different from e, and not normal in all minimal degenerations of type e.

16. Normality and seminormality results

16.1 In this section we wish to summarize the results obtained so far and add
some more precise information on the geometry of orbit closures. Let us recall (cf.
[AB], [T]) that a variety X is said to be seminormal, if every homeomorphic
regular map ¢: Y — X is an isomorphism. This is a local analytic property. A
variety X is normal if and only if it is seminormal and unibranch.

LEMMA. If a variety X has two components X, and X,, both normal and with
reduced intersection, then X is seminormal.

Proof. Let ¢ : Y — X be a regular homeomorphic map. Then for Y, := ¢ (X;)
the induced map ¢; : Y; — X; is homeomorphic too, hence an isomorphism. If ¢, is
the inverse of ¢; the universal property 15.3(h) implies that there exists a
Y:X — Y such that ¢ |x =¢;. Thus ¢ =¢ " is regular. ged.

16.2 Theorem: Let C be an orthogonal or symplectic conjugacy class.
(i) C is a seminormal variety.
(ii) C is normal if and only if C has no degenerations of type e (3.4, Table I).
(iii) If C, is the union of C and all conjugacy classes corresponding to degenera-
tions of type e, then any regular function on C, extends to a regular function
on C.

Proof. We start with (iii). Let C be the complement of the union of all
conjugacy classes of codimension =4. We cover C with the two open sets C, and
C!, where C. is the complement in € in the classes corresponding to degenera-
tions of type e (i.e. C.=CU(C—C,)). C.is a normal variety (15.7). So if f is a
regular function on C, its restriction to C can be extended to C_, hence f can be
extended to a regular function on C. Thus (iii) follows from theorem 9.2 (i).

If C is normal, we must have C, = C (15.7). Conversely if C, = C, any function
on C can be extended to C by (iii) and so C is normal, proving (ii).

For (i) we remark first of all that C, is seminormal. This follows from the
previous lemma 16.1, the fact that seminormality is preserved by smooth equival-
ence and proposition 15.4(a). Now let ¢: Y — C be a regular homeomorphism.
In particular Y is affine ((EGA] II, 5.2.2). It follows that the induced
map ¢:¢ (C,)— C, is an isomorphism, hence by (iii) the composition
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C. l"—_‘-><p‘1(C.g) — Y can be extended to a regular map C — Y. This map is
necessarily the inverse of ¢. ged.

16.3 Remark: The previous results give some information on the relations
between functions on the class C and its closure C even in the non normal case.
Let us consider in fact the normalization C of C. By construction every function
on C extends to C. If we look at the preimage C, of C, in C we see that each non
normal point is covered by two points in C,. The universal properties proved show
now that a regular function f on C, factors through C, if and only if f is constant
on these fibres. This gives in principle a method to study which functions on C
extend to the whole C.

Part III. Special Results

17. Conjugacy classes under SO

17.1 Recall that the SO-conjugacy classes which are not O-conjugacy classes
are exactly the components of the very even classes (2.3). Up to now the only
information on those are contained in the propositions 15.1 and 15.4a). Further-
more it is easy to see that for a very even class C=C®UC® the intersection
CPN C? is the union of the closures of all codimension 2 degenerations C; =C,
and that all these degenerations are of type e (3.4). This implies the following
result:

PROPOSITION. The closure of a component C® of a very even class is
normal in codimension 2 with singularities of type A in each codimension 2
degeneration. In addition the intersection CPNC? is reduced in each of these
classes.

17.2 Remark. We shall see that unlike the orthogonal or symplectic classes this
result does not imply the normality of C®. On the other hand the classes C® are
always polarizable (10.3) and so their normalization is Cohen-Macaulay with
rational singularities (proposition 10.2).

17.3 Let n be a very even partition. We write n=(n3, 1%, ..., with
n>mn,>:->n,>0 and v, eN" in place of

M=, M5 My M2y, My s Mo+ - -5 M)

Uy L] Uy

Of course the numbers 1; and v; are all even.
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THEOREM. Let n=(n3},..., M) be a very even partition, C, =C"UC®
the corresponding class.
(a) The intersection is reduced.
(b) If t=1 then CO is normal, Cohen—Macaulay with rational singularities.
(c) If t=3 or v,=4 then C® is not normal. In fact it is branched in a class of
codimension 4.

cONCD

Proof. (a) Let S be the union of all codimension 2 classes in C,, C¥=C®US
and C=CUS. Let f,, f, be regular functions on CP, C® which coincide in
CPNCP=S§. We have to show that the function f defined by f, and f, is regular
on C,. Since the intersection CP'NC? is reduced (17.1), f is regular on C. But
then by theorem 9.2(i) we know that f is regular on C,,.

(b) In this case we can follow exactly the same argument as in the second part
of 15.6, since there is a unique class C’ of codimension 2 in C,,, CONCP="C'is
reduced by (a) and C’ is normal.

(c) We want to apply the result 13.6. We decompose the Young-diagram
n =n'+n" with n' = (1, m,, n2) and n” the rest. Under the assumption n" is not
empty, and we can perform degenerations o' <7n’, " <m" of type e in such a way
that the hypotheses of 13.6 are satisfied. This implies for o := o'+ o":

Sing(C,, C,) = Sing(C,,, C,") X Sing(C,», C»).

This is a non-normal singularity with four branches, hence each component C9 of
C, has a singularity with two branches in C,. ged.

Note that in these codimension 4 singularities the intersection CPNC? s

reduced.

17.4 With the previous analysis the following problems remain unsettled.
Problems. (i) If n is a very even partition of the form (n3, n3) is E‘? normal?
(ii) If m is very even, is _(:‘E? seminormal?

(iii) If m is very even and C® is the union of C and all its degeneration of type

e or of two independent steps of type e, can every regular function on C¥ be

extended regularly to C9?

By the previous analysis we can easily show that (iii) = (ii) = (i).

The first unsettled case is n = (4, 4, 2, 2). In this case we can prove that 237,,3 is
unibranch and that its normalization is the quotient of some irreducible compo-
nent of the corresponding variety Z under the connected group Spg X SO, X Sp,.

17.5 Lemma. If Y=Y,UY, and Y,N'Y, are seminormal varieties then Y, Y,
are seminormal with reduced intersection.
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Proof. Let m,: Y, — Y; be seminormalizations. The map l,,r~1(ylnyz) IS a
homeomorphism, hence 7;'(Y;NY,) is isomorphic to Y;NY,, since this is
seminormal. Thus we can form the cofiber product of Y, and Y, along Y,NY>.
This cofiber product maps homeomorphically to Y and hence isomorphically. ged.

In our case Y=C,=CPUC®? it is hard to verify that C® N C? is seminor-
mal. This variety is in fact a union of seminormal varieties and we could deduce
that it is seminormal if we knew that the intersections are reduced. This can be
verified only on some part of the intersection.

18. Rational Singularities

18.1 Let us go back to the discussion on the Cohen—Macaulay property and on
rational singularities started in section 10. We saw that for a polarizable conju-
gacy class C the normalization of C has rational singularities (10.2). It is possible
that this result is true in general but we are able to indicate only some special
methods by which certain non polarizable classes can be treated. Let us say by
convention that an e-diagram m is polarizable if the corresponding class C,
admits a polarization.

18.2 One of the first methods which were attempted for the study of singu-
larities of orbit closures is due to Kempf [K] and used successfully by Hesselink
[H4] in some special cases of conjugacy classes. His results imply in particular the

following (cf. [H4] §5, criterion 2):

PROPOSITION. If the -partition n has at most two columns, then C,,, has
rational singularities.

18.3 The second method is based on the following observation which is already
a consequence of 13.4. Let m, n’ be e-partitions such that n is obtained from n’
by adding some rows (3.3).

If the normalization C.,, of C,., has rational singularities so does C, .

One can use this in the situation where a non polarizable e-diagram n’
becomes polarizable after adding some suitable rows.

Example. If ' is a symplectic diagram with the first row of even and all other
rows of odd length, then C, has rational singularities.

(In fact if "l' = (711’ N2 .-t nr) onc can ShOW that n= ("h, M M2 M35 - - -5 nr) is
polarizable; cf. [H2] or use the method of Kempken and Spaltenstein [Kel].)
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18.4 There is also an inductive method which applies to a very large class of
conjugacy classes and which is based on the induction lemma (sections 4 and 11).
Let us go back to the basic set up (4.3):

N:=N,,—C_..<gaU)

s
Cemn<a(V)

dim U=m =dim V=n. One can try to follow the same strategy as in [ADK].
Assuming that C_. .. has rational singularities we want to apply Boutot’s theorem
(0.11) to the map p and deduce that C, , has rational singularities from a similar
statement for N. Since N is Cohen—Macaulay (11.2) to insure that N has rational
singularities it is enough to find a desingularization ¢ : Y — N and an open set
A < N such that N has rational singularities in A and codimy ¢ '(N—A)=2 (cf.
[ADK] corollary 1.4).

Now N is the closure of an orthosymplectic orbit O, =p '(C,,) (remark
11.2), where the ab-diagram 7t is obtained from the a-diagram m by filling in all
the b’s. Furthermore we have constructed a natural desingularization (cf. lemma
7.6(a))

\
¢:Y:=Gx*n,»>N=0,
G = G(U) X G(V). Let us define the open sets
L:={XeL(V,U) | is smooth in X} and L,:={XeL(V, U)|rk w(X)=r}
of L (cf. 11.4).

18.5 Lemma: If C_., has rational singularities, then N,, has rational sing-
ularities in A :=N,, N(LUL,), where

t‘—{ 2m—n if e=-—1
T L2m-n+1 if e=1"

Proof. It is clear that N NL has rational singularities. As for NNL,, using the
result of Elkik ((E1] IV. theorem 5) it is enough to show that = :L — g(U) is flat
with fibers with rational singularities. Following the analysis developed in the
proof of lemma 15.5 one easily obtains the following description of a fiber
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F=a"Yw(X)) for XeL,:
(a) If U is symplectic then

F={(vy,v5,...,0,)€ V™| vy,..., v, orthonormal and
(Uys15 - . ., U,y isotropic in {vq, ..., v, )}

(b) If U is orthogonal and so r=2s is even then

F={(vy,...,0,)€e V™| vy,..., v, form a symplectic
basis and (U441, . - - , Uy iSOtropic in (vy, . . ., Vs> }

For r=2m—n it is easy to see that all fibers have the same dimension, hence
7 :Ly,—n — a(U) is flat. Furthermore the singularities of F are smoothly equival-
ent to the singularities of the variety F of (m —r)-tuples of vectors spanning an
isotropic space in an orthogonal or symplectic space of dimension n—r. This
variety can be studied by the method of Kempf [K] and, for r=2m —n, it has
always rational singularities except when V is orthogonal and r =2m —n (in which
case F has two components corresponding to the two rulings of maximal isotropic
subspaces, both having rational singularities with reduced intersection). ged.

18.6 In order to verify that Y—¢ '(A) has codimension =2 in Y =G X n, we
have to show that n,N(N—A) has codimension =2 in the vectorspace n,. We
have been able to handle many special cases in this way but unfortunately the
method also fails many times. (E.g. we have seen in 15.4 that N may be singular
in codimension 1 while C_,‘Em has rational singularities.) We have not attempted to
give a precise description of all the cases which can be treated this way.

18.7 We finish with some general questions. Consider a reductive group G
acting on an affine variety V with a dense orbit.

Problem 1. Is it true that if V is normal then V has rational singularities?

There are many examples of such varieties ([ADK], [Ke2]). Moreover, this
statement is true when G is a torus ([KK], chap. I §3, theorem 14).

PROPOSITION. Let G,V be as before, U< G the unipotent radical of a
parabolic subgroup of G and R = 0(V). Then we have



On the geometry of conjugacy classes in classical groups 593

(i) The ring of invariants RY is finitely generated,
(ii) If Vi :=Spec RY has rational singularities so does V.

Using this and the classification of the affine SL,-embeddings [P] one gets a
positive answer for problem 1 also in case G = SL,.

One special case of the first problem is the following:

Problem 2. Let Mc G be a closed subgroup such that the ring O(G)™ of
right-invariant functions is finitely generated (e.g. any observable subgroup). Is
Gy :=Spec O(G)M a variety with rational singularities?

In order to describe a class of subgroups for which we have a positive answer let
us give an inductive definition.

DEFINITION. A unipotent subgroup U < G is said to be of type <n if there
is a reductive subgroup H < G and parabolic subgroup P of H such that

i) UcH

(i) U contains the unipotent radical Up of P and U/Up < P/U, is of type
=n-—1.
If U is of type =n for some n we say U is of finite type. (Of course we consider {1}
of type 0.) Using the proposition above one obtains the following result.

PROPOSITION. If M< G is a subgroup such that its unipotent radical is of
finite type, then Gy, :=Spec O(G)™ is a variety with rational singularities.

19. Tables

In this last paragraph we draw tables representing the nilpotent conjugacy classes
in gl, for n=<7 (cf. [KP2]), so, for n=11 and sp,, for n=5. The tables are
constructed (following Hesselink [H1]) as follows: Each conjugacy class is rep-
resented by a dot, its corresponding partition A and dimension (taken from [H1])
is indicated at its right. For any minimal degeneration of classes we draw an edge
and we place the dots from top to bottom according to the containment 2 of
closures. On each edge we write the type A, A;UA;, D;, a;, b;, ¢; or d; of the
corresponding singularity (cf. 3.4 table I and section 14). We put a question mark
on a dot corresponding to any class whose closure is not known to have rational
singularities (cf. section 18).
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A, al, A
(2)
AlI
(1,1)
A, gl A
(3)
A,
(2,1)
3;
(1.1, 1)
Dz=A1+A1 S04 A
(3,1)
A/ \A
(2,2)
CH CH (14)
B,=C, S0g A
(5)
A;
(3,1, 1)
A,
(2,2,1)
b,
(1%)
C,=B, $Pg A
(4)
A;
(2,2)
A
(2I 1' 1)
i
(1)
A9=D3 A A
(4)
A3z
(3, 1)
A
(2,2)
a
(2,1,1)
33
(1)
D,=A, s A
* (5, 1)
D;
(3,3)
K
(3,1,1,1)
3
I (2,2,1,1)
d;

s (19)

dim

o b o ®

dim

© &~ O ®

dim
12
10

dim
12
10

6
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A
(7)

(5,1, 1)
(3,3,1)
(3,2,2)
(3,19

(2,2,13)
(17)

A
(6)

(4, 2)
4,1,1)
(3,3)
(2,2,2)
(2,2,1,1)
(2,19
(18)

A
(5)

(4, 1)
(3,2)
(3,1, 1)
(2,2,1)
(2,19
(1%)

A
(7,1

(5, 3)
(5,1,1,1)
(4,4)
(3,3,1,1)
(3.2,2,1)
(3,1%)
(2%)
(2,2,1%)
(18)

595
dim
18
16
14
12
10

dim
18

16
14
14
12
10

dim
20
18
16
14
12

dim
24

22
20
20

18

12
12

10
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B, s0g A dim
(9) 32
(7,1, 1) 30
(5,3,1) 28
(5,2,2) 26
(5,14 24
4,4,1) 26
(3,3,3) 24
(3,3, 13) 22

(3:2721 111) 20

(3, 19) 14
(2%, 1) 16
(2,2, 15) 12
(1°) 0
C. A dim
(8) 32
(6,2) 30
(6,1,1) 28
(4, 4) 28
(4,2,2) 26

(4,2,1,1) 24
(4,1%) 20
(3,3,2) 24
3,3,1,1) 22

(2,2,2,2) 20
(2,2,2,1,1) 18
(2,2,19) 14
(2,19) 8
(18) 0
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A
(6)

(4,2)
(4,1,1)
(3,3)
(3,2,1)
3.1.1,1)
(2,2,2)
(2,2,1,1)
(2,19
(1¢)

A
(9, 1)

(7.3)
(7,1,1,1)
(5, 5)
(5.3,1,1)
(5,2,2,1)
(5, 15)
(4,4,1,1)
(3,3,3,1)
(3,3,2,2)
(3,3,1%
(3.2,2, 13
(3,17)
(2%,1,1)
(2,2,19
(1%9)

dim
30
26
24
24
22
18
18
16
10
0

dim
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A
(1)
(8,1,1)
(7.3,1)
(7.2,2)
(7.1.1,1.1)
(5,5, 1)
(5,3,3)
(5,3,1,1,1)
(6,2,2,1,1)
(5,1°)
(4,4,3)
4,4,1,1,1)
(3,3,3,1,1)
(3,3,2,2,1)
(3,3, 1%)
(3,2,2,2,2)
(3,2,2,19
(3,19)
(2,2,2,2, 13
(2,2,17)
(1)

dim

W
N

8 8 8k 88 8

2

H
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P10 A dim
(10) 50
(8,2) 48
(8,1, 1) 46
(6,4) 46
(6,2,2) 44

(6,2,1,1) 42
(6,1,1,1,1) 38
(5, 5) 44
(4,4,2) 42
(4,4,1,1) 40
(4,3,3) 40
(4,.2,2,2) 38
4,2,2,1,1) 36
(4,2,19) 32
(4,1°) 26
(3.3,2,2) 36
(3,.3,2,1,1) 34

(3,3,19) 30
(2,2,2,2,2) 30
(24,1,1) 28
(22,14 24
(2,2,19) 18
(2,18) 10

(110) 0
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Ag A dim
(7) 42
(6,1) 40
(5,2) 38
(5,1,1) 36
(4,3) 36
(4,2,1) 34
(3,3,1) 32
(4,13) 30
(3,2,2 30
(3,2,1,1) 28
(2,2,2,1) 24
(3,14 22
(2,2, 13) 20
(2,19) 12
(17) 0
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