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On the Gauss map of complète surfaces of constant mean curvature
in R3 and R4

D. A. HOFFMAN, R. OSSERMAN AND R. SCHOEN*

1. Introduction

The Gauss map for complète minimal surfaces in Rn has been the object of
extensive study over the past twenty years. The gist of the results is that if the set
of tangent planes to a complète minimal surface S is sufficiently restricted, then S

must be a plane. The first such resuit, conjectured by Nirenberg, was that if a

complète minimal surface S in R3 is not a plane, then its normals must be

everywhere dense on the unit sphère (Osserman [16]). This was later extended by
Chern [4] to minimal surfaces in R4, using the structure of the Grassmannian of
oriented 2-planes in R4 as a product of 2-spheres, and in a somewhat différent
form, to surfaces in Rn. Chern&apos;s results were further refined in Osserman [17] and
Chern-Osserman [6]. In a surprising récent development, Xavier [22] obtained a

much stronger version of the theorem in R3. He showed that the normals to a

complète non-planar minimal surface S in R3 can omit only a finite number of
points.t His method carries over also to surfaces in R4, using the product
décomposition referred to above (Chen [3]).

It is natural to ask whether analogous results hold for complète surfaces of
constant mean curvature in R3, or more generally for surfaces with parallel mean
curvature vector in Rn. By way of background, we note that Bernstein ([1],
pp. 242-244) proved that there are no complète graphs of constant mean curvature

in R3. In fact he gave a spécifie upper bound to the radius jR of the largest
disk over which there can lie a surface of constant mean curvature H&gt;0. Heinz
[10] gave a very simple proof of the sharp bound JR &lt; 1/H. A more intrinsic form
of this resuit was given by Chern ([5], p. 82) who considered hypersurfaces of
constant mean curvature in Rn with the property that the Gauss map lies in a

closed hémisphère. Chern ([5], p. 83) also raised the question whether the

* This work was supported in part by NSF grants at the University of Massachusetts, Amherst;
Stanford University, Stanford; University of California, Berkeley.

t Specifically, Xavier shows that no more than six points may be omitted. The last step in his proof
is not correct as it stands, but a somewhat différent estimation Ieads to the desired resuit.
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property of the Gauss map being everywhere dense holds also for complète
surfaces with non-zero constant mean curvature. However, no such resuit can
hold, since there are complète surfaces of révolution with constant mean curvature

(the &quot;unduloids&quot;) whose Gauss maps lie in an arbitrarily narrow strip about a

great circle on the sphère. On the other hand, in a conversation with one of the
authors, M. do Carmo suggested that on the basis of the known examples one
might well conjecture that some limitation on the Gauss map would still suffice to

prove that the surface must be a plane-for example, the assumption that the

image under the Gauss map lie in a sufficiently small neighborhood of a point. We
are grateful to do Carmo for his comments, which provided the impetus for the
results presented hère.

Our principal goal is to prove the foliowing two theorems.

THEOREM 1. Let S be a complète orientée surface of constant mean curvature
in R3. If the image of S under the Gauss map lies in some open hémisphère, then S

is a plane» If the image under the Gauss map lies in a closed hémisphère, then S is a

plane or a right circular cylinder.

THEOREM 2. Let S be a complète oriented surface in R4 whose mean
curvature vector is parallel and non-zero. Let the Grassmannian of oriented

two-planes in R4 be represented as the product of sphères Sx x S2. Then the image of
S under the generalized Gauss map has the property that neither of its projections
onto Sx or S2 can lie in an open hémisphère; if either projection lies in a closed

hémisphère, then S is a right circular cylinder in some R3cR4, or a product of
circles.

We note that if a surface S of constant mean curvature in a sphère S3(r) is

considered as lying in R4 under the natural embedding of S3(r) in R4, then S has

mean curvature vector in R4 that is parallel and non-zero. An immédiate

conséquence of Theorem 2 is therefore:

COROLLARY. Let S be a complète surface in S3(r) such that, when considered

as lying in R4, its Gauss map has at least one projection lying in a closed

hémisphère. If S has constant mean curvature, then it is a product of circles. In
particular, if S is minimal in S3(r), then it is a Clifford torus.

We make the foliowing observations concerning the above theorems.

First, we note that a theorem of Yau ([23], p. 358) states that every surface of
parallel mean curvature in R4 is in fact a surface of constant mean curvature
either in some affine 3-space in R4 or else in some 3-sphere S3(r). In view of
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Yau&apos;s theorem, Theorem 2 is équivalent to the combination of Theorem 1 and the

Corollary to Theorem 2.

Second, the example of the unduloid referred to above shows that Theorem 1

is sharp, in the sensé that the conclusion fails if one allows the Gauss image to lie
in any open set containing a closed hémisphère. Thus, for complète surfaces of

arbitrary constant mean curvature, a much greater restriction is needed on the
Gauss map to force it to be a plane than in the spécial case of minimal surfaces.

For surfaces in R4 the situation is in a sensé reversed. There one does not hâve

a stronger version of Theorem 2 for minimal surfaces, and one must in fact

specifically exclude zéro mean curvature for the theorem to be valid. In the case

of a minimal surface, no restriction on a single projection of the Gauss map can
force the surface to be a plane, since one of the projections may even be constant,
as happens for those minimal surfaces that correspond to holomorphic curves with
respect to some complex structure on R4. One can also construct nonholomorphic
complète minimal immersions of the disk into R4, where one of the projections of
the Gauss map lies in an arbitrarily small neighborhood of a point, and neither
projection is constant. The détails are given in Section 4 below.

The proof of Theorems 1 and 2 are given in Sections 2 and 3, respectively.
Before prbceeding with the détails, we make a few gênerai comments concerning
the proofs.

We note first that a vital tool in the case of minimal surfaces is the fact that the
Gauss map is anti-holomorphic. The corresponding property of surfaces of
parallel mean curvature is that the Gauss map is harmonie (Ruh-Vilms [19]). We
do not actually make explicit use of harmonie maps in this paper, although they
play an important background rôle. In particular, the Liouville theorem for
harmonie maps due to Hildebrandt, Jost and Widman [11] led us to conjecture
that the hémisphère was the correct domain to consider in the formulation of
Theorem 1.

The main tool that we do use in the proof of Theorem 1 is the well-known
équation

Av + \\dvfv 0 (1.1)

for the unit normal v to a surface S of constant mean curvature in R3, where the

coefficient ||di&gt;||2 may be viewed equivalently as the square norm of the Weingar-
ten map dv or of the second fundamental form of S. One interprétation of
équation (1.1) is that the Gauss map is harmonie. (See Remark 3 at the end of
Section 3.) The classical theorem of Rodrigues shows that the mean curvature of a

surface in R3 vanishes at a point if and only if the Gauss map is anticonformai at
the point. Thus every surface of constant non-zero mean curvature in R3 induces
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a harmonie map into the sphère which is nowhere (weakly) anticonformal. A
récent resuit of Kenmotsu [15] gives a remarkable converse to this fact: let Rbe a
simply-connectée, Riemann surface, and let h be any harmonie map of R into the

unit sphère which is nowhere (weakly) anticonformal Then for any constant Hf 0,
there exists a surface S in R3 of constant mean curvature H, and a conformai map
f: R -» S such that h- g°f, where g is the Gauss map of S.

Kenmotsu shows further that if the map h is given in the form w h(z), where
z is a local coordinate on R and w is a complex coordinate on the image sphère
obtained by stereographic projection, then the metric on S is given by

&lt;&quot;&gt;

Taking into account the known results for minimal surfaces, it follows that
Theorem 1 is équivalent to a resuit that may be formulated purely in terms of
harmonie maps into the sphère:

THEOREM 1A. Let h:R~* S2 be a harmonie map of a Riemann surface R
into the unit sphère. Suppose that h is nowhere weakly anticonformal If the image
h(R) lies in an open hémisphère, then the metric (1.2) cannot be complète.

(Equivalently, assuming that the open hémisphère corresponds to |h(z)|&lt;l, the

metric

dh

dz
\dz\2 (1.3)

cannot be complète.) If the image h(R) lies in a closed hémisphère, then the metric

(1.2) (or (1.3)) cannot be complète unless h(R) is a great circle.

For a surface S in R4, the theorem of Ruh-Vilms states that S has parallel
mean curvature if and only if the Gauss map g is harmonie. But g is harmonie if
and only if both projections gl9 g2 are harmonie. In that case, one cannot assign g1

and g2 arbitrarily, as in the Kenmotsu theorem, but rather one has an additional
constraint, derived in Hoffman-Osserman [14]. That constraint plays a key rôle in
the proof of Theorem 2.

The other main ingrédients in the proof of Theorem 2 are a resuit of
Fischer-Colbrie and Schoen [9] concetning complète conformai metrics on the
unit disk (also used in the proof of Theorem 1), a formula for the Gauss curvature
of a surface in R4 due to Blaschke [2], a computation for harmonie maps of
surfaces due to Schoen and Yau [20], and a resuit of Hoffman [12] on flat surfaces

of parallel mean curvature in R4.
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2. Proof of Theorem 1

Let S be a complète surface of constant mean curvature in R3, and let S be the
universal covering surface of S. If the image of S under the Gauss map lies in a

hémisphère, then the same is true of S. By the uniformization theorem, there are
just three possibilities:

Case 1. S is conformally a 2-sphere.

This case is clearly impossible, since the image of a sphère under the Gauss

map contains every point of the sphère.

Case 2. S is conformally the plane.

In this case we get a map v of the plane into the unit sphère, satisfying
équation (1.1). We may assume that the hémisphère containing the image is the
lower hémisphère, in which case -1&lt;v3^0. Since by (1.1) we hâve

Av3 -\\dvfv3, (2.1)

it foliows that v3 is a bounded subharmonic function. But when S is conformally
the plane we must hâve v3 constant. Thus the image under the Gauss map lies on
a circle. One may then use any of a number of elementary arguments to conclude

that S is either a plane or a right circular cylinder.
For example, one can observe that if v3 is a non-zero constant, then by

équation (2.1) ||dï&gt;||2 0, so that *&gt;== constant, and hence S is a plane. If v3 0,

then the vertical vector e3 lies in the tangent space to S at every point. This

implies that through each point of S there passes a Une parallel to e3 and lying
entirely in S. Thus S is a cylinder over a plane curve, and since S has constant

mean curvature, that plane curve is a circle or a line implying that S is a plane or
a right-circular cylinder.

Case 3. S is the unit disk.

We wish to show that this case cannot arise. We again use équation (2.1) and

note that

(2.2)

where we may consider A as the Weingarten map (or the second fundamental
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form oî S), H is the mean curvature and K the Gauss curvature of S. Thus v3
satisfies the équation

(2.3)

Again we may assume that the image under the Gauss map lies in the lower
hémisphère, so that -1 &lt; i/3&lt;0, and by (2.1), v3 is subharmonic. By the maximum
principle, if v3 0 at any interior point, then v3 0. But as noted in Case 2, that
would mean that S is a plane or a cylinder, forcing S to be the plane, and not a

disk. Thus we conclude that v3 is strictly négative. But a resuit of Fischer-Colbrie
and Schoen ([9], Corollary 3 on p. 205) states that when K is the Gauss curvature
of a complète conformai metric on the unit disk, there can be no positive (or
equivalently, négative) solution of équation (2.3). This complètes the proof of
Theorem 1.

3. Surfaces in R4; proof of Theorem 2

We shall make use of the following facts concerning the Grassmannian and the
Gauss map for surfaces in R4. (See for example Hoffman-Osserman ([13],
§§1,2.»

The Grassmannian of oriented 2-planes in R4 may be identified with the

product S2* S2 where each factor is the standard 2-sphere of radius 1/V2. The
Gauss map g of an oriented surface S in R4 factors into a pair of maps gl9 g2,
where gk is a projection of g onto a factor S2. Let fk be the complex-valued map
produced by composing gk with stereographic projection. By the theorem of
Ruh-Vilms [19], a surface S has parallel mean curvature vector if and only if the
Gauss map g is harmonie, which in turn is équivalent to each of the factors gk

being harmonie. The harmonicity of the map gk may be expressed by the équation

Avk + 2\\dvk\\2vk 0, (3.1)

where vk represents the position vector on the sphère S2, considered as a standard
sphère of radius 1A/2 in R3. (The factor 2 in this équation, missing in (1.1),

appears because the radius of the sphère in this case is 1A/2 rather than 1. See

Remark 3 at the end of this section.)
In order to prove Theorem 2, we shall make use of a number of facts

concerning the maps gl9 g2, and the corresponding fonctions /i,/2- It will be
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helpful to introduce the derived functions

|2 »

where z is a local isothermal parameter on S. We note that if fk is composed with
a linear fractional transformation corresponding to a rotation of the sphère, then
the quantities |Fk|, \Fk\ remain invariant. Thus there are no singularities at points
where fk ».

The facts we need are the following:
1. If e(g) dénotes the energy density of the Gauss map g, then

(3.3)

where ek dénotes the energy density of gk.

2. In terms of fk,

where the metric on S is given by ds2 A2 \dz\2.

3. If Jk dénotes the Jacobian of the map gk, then

(3.4)

-|Ft|2]. (3.5)

4. The Gauss curvature K of the surface S is given by

K Jt + J2. (3.6)

(Blaschke [2], §4; see also Weiner [21], and Hoffman-Osserman [14].)
5. (Hoffman-Osserman [14])

IFJ-IFJ. (3.7)

6. Let H be the mean curvature vector of S. Then

H 0&lt;^&gt;F1 0 and F2 0 (3.8)

(Hoffman-Osserman [14]).
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7. Suppose the map gk is harmonie. Then at any point where

41og|Fk| 2Jfc, (3.9)

Where à is the Laplace-Beltrami operator on S. (See Schoen-Yau [20], §1, (17),
where û0 is equal in our notation to y/2 F/À. See also Hoffman-Osserman [14].)

We now combine thèse facts to prove Theorem 2. Since S has parallel mean
curvature vector Hf 0, each gk is a harmonie map, and by virtue of (3.8) we may
apply (3.9) for fe 1,2. Combining (3.7) with (3.9) yields

JX J2. (3.10)

Another application of (3.7), together with (3.5) and (3.10), gives

Inserting (3.7) and (3.11) into (3.4) gives

Cl c2. (3.12)

Finally, comparing (3.12) with (3.3), we find

e 2e, 2e2. (3.13)

Thus the équations (3.1) take the form

0, Jk l,2. (3.14)

We now invoke our hypothesis that either vt for v2 lies in a hémisphère. Say

that this holds for vx. Then for some fixed unit vector c, the function

p c-Vl (3.15)

satisfies

p&lt;0. (3.16)

But by (3.14),

0. (3.17)
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Since e(g)^0, it follows from (3.16) and (3.17) that fi is a subharmonic function.
We assert that /x must be constant.

Let S be the universal covering surface of S, and let fi be the function /z lifted
to S. Then fi is a continuous subharmonic function, bounded above.

Case 1. S is conformally a sphère. Then /ï attains a maximum and hence is

constant.

Case 2. S is conformally the plane. Then since fi is subharmonic and bounded
above, it is constant.

Case 3. S is conformally the unit disk. In this case we observe that the
coefficient e(g) in (3.17) may also be expressed in terms of the second fundamen-
tal form B of the surface S as

|B11 + B22|2 + 2(|B12|2-B11-B22)

4|H|2-2K

Hence (3.17) takes the form

4|H|2/ï 0. (3.18)

As in the proof of Theorem 1, we know by the theorem of Fischer-Colbrie and
Schoen ([6], p. 205) that (3.18) has no strictly négative solutions for a complète
conformai metric on the unit disk. Since fi ^ 0, it follows that fi 0 somewhere.
But then the maximum principle for subharmonic functions implies that fi s 0,

We thus conclude that in ail cases, \i must be constant. By the définition (3.15)
of jjl, vx lies on a circle on the sphère S2. But then Jt 0, and by (3.10) also J2 0.

It then follows from (3.6) that X 0 on S. Finally, a theorem of Hoflfman ([12],
Theorem 3.1) guarantees that a surface of parallel mean curvature in R4 with
vanishing Gauss curvature lies on a right circular cylinder in R3cR4 or else on a

product of circles. This complètes the proof of the theorem.

Remark 1. It follows from the theorem that Cases 1 and 3 do not in fact

occur; that is, under the hypothèses of Theorem 2, the universal covering surface
of S is conformally the plane.
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Remark 2. One can give a somewhat différent proof of the theorem that does

not require équation (3.9). In its place one may use a second équation of Blaschke
([2], §4) complementing (3.6):

Kn Ji-Ji, (3.19)

where KN is the curvature of the normal bundle. (See also Weiner [21], and

Hoffman-Osserman [14], for alternative proofs of (3.19).) If S has non-zero
parallel mean curvature vector H, then setting e3 HJ\H\, and e4 the unit vector
orthogonal to H in the normal plane, we find that the normal bundle is flat, and
hence KN 0. Thus équation (3.10) is an immédiate conséquence of (3.19). The
remainder of the proof is as before.

Remark 3. Equations (1.1) and (3.1) are both spécial cases of the équation

AX=-\\dX\2X (3.20)

characterizing harmonie maps of a surface S into a sphère of radius r in R&quot;

Namely, if

X:S-»Rn

is a map whose image lies in a submanifold N of Rn, then the map X: S -&gt; N is

harmonie if and only if at each point p of S the n-vector AX is normal to N at

X(p). (See [8], p. 9, and (4.13), p. 16.) In our case, when N=Sn&quot;1(0, the

condition becomes

AX ÀX (3.21)

for some function A on S. Thus (3.20) implies that the map X:S-+ S&quot;&apos;1^) is

harmonie. Conversely, if z x + iy is a local conformai parameter on S, then since

X • X=r2, we hâve

and
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But

xz-xf H|xx|2+|xy|2).

Hence

AX -X 4XZZ • X= -4XZ • X-z -\dX\2. (3.22)

But if (3.21) holds, then AX • X A |X|2= Àr2, and by (3.22), À -|dX|2/r2, so

that (3.20) follows.

4. A Counterexample

We présent hère the example mentioned in the introduction, showing that the

hypothesis in Theorem 2 that the mean curvature is différent from zéro, cannot be

dropped.

PROPOSITION 4.1. Given any e&gt;0, there exists a complète regular minimal
surface in R4 whose Gauss map has the property that each projection fuf2 is a

non-constant holomorphic map, and the image underf1 lies in a disk of radius s.

Proof: Let w g(z) be the map of the unit disk |z|&lt;l onto the universal

covering surface of the £-plane minus the points £ 0 and £= 1. Let

Tr (4J)

Then \\f{z) ^ 0, and the surface S defined by

X(z) Re P 1MI + /1/2, î(l-/i/2),/i-/2, K/1 + /2)) dz (4.2)

is a regular minimal surface in R4, with fx and f2 the projections of the Gauss

map. (See [13], §3.)

Since X2 =|(l + A/2, i(l-fJ2),fi-f2, Hfi + h)\
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The metric on the surface S is given by A2 \dz\2 where §À2(z) |XZ|2. Hence the
length of any curve C on S is given by

=[ À|dz|=f V[(l + l/i(2)|2)(l + l/2(z)|2)] |*(z)| \dz
Jy Jy

where y is the path in |z|&lt;l corresponding to C.

Let F be the image of y under the map g. Then

&quot;y

max

Now C is a divergent path on S if and only if y tends to the boundary of \z\&lt; 1.

There are two cases to consider. If F has infinité length, then by (4.3) L oo. On
the other hand, if F has finite length, then it tends to a point f0- Since y tends to
\z\ 1, it follows that £0 0 or £o 1» But then again L oo by (4.3). Hence every
divergent path on S has infinité length, and S is complète.
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