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On the Gauss map of complete surfaces of constant mean curvature
in R> and R*

D. A. HorrmaN, R. OsseRMAN AND R. ScHOEN*

1. Introduction

The Gauss map for complete minimal surfaces in R™ has been the object of
extensive study over the past twenty years. The gist of the results is that if the set
of tangent planes to a complete minimal surface § is sufficiently restricted, then S
must be a plane. The first such result, conjectured by Nirenberg, was that if a
complete minimal surface S in R> is not a plane, then its normals must be
everywhere dense on the unit sphere (Osserman [16]). This was later extended by
Chern [4] to minimal surfaces in R*, using the structure of the Grassmannian of
oriented 2-planes in R* as a product of 2-spheres, and in a somewhat different
form, to surfaces in R™. Chern’s results were further refined in Osserman [17] and
Chern-Osserman [6]. In a surprising recent development, Xavier [22] obtained a
much stronger version of the theorem in R>. He showed that the normals to a
complete non-planar minimal surface S in R> can omit only a finite number of
points.t His method carries over also to surfaces in R*, using the product
decomposition referred to above (Chen [3]).

It is natural to ask whether analogous results hold for complete surfaces of
constant mean curvature in R?, or more generally for surfaces with parallel mean
curvature vector in R". By way of background, we note that Bernstein ([1],
pp. 242-244) proved that there are no complete graphs of constant mean curva-
ture in R°. In fact he gave a specific upper bound to the radius R of the largest
disk over which there can lie a surface of constant mean curvature H> 0. Heinz
[10] gave a very simple proof of the sharp bound R <1/H. A more intrinsic form
of this result was given by Chern ([5], p. 82) who considered hypersurfaces of
constant mean curvature in R” with the property that the Gauss map lies in a
closed hemisphere. Chern ([S], p.83) also raised the question whether the

* This work was supported in part by NSF grants at the University of Massachusetts, Amherst;
Stanford University, Stanford; University of California, Berkeley.

1 Specifically, Xavier shows that no more than six points may be omitted. The last step in his proof
is not correct as it stands, but a somewhat different estimation leads to the desired result.
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520 D. A. HOFFMAN, R. OSSERMAN AND R. SCHOEN

property of the Gauss map being everywhere dense holds also for complete
surfaces with non-zero constant mean curvature. However, no such result can
hold, since there are complete surfaces of revolution with constant mean curva-
ture (the “unduloids’’) whose Gauss maps lie in an arbitrarily narrow strip about a
great circle on the sphere. On the other hand, in a conversation with one of the
authors, M. do Carmo suggested that on the basis of the known examples one
might well conjecture that some limitation on the Gauss map would still suffice to
prove that the surface must be a plane-for example, the assumption that the
image under the Gauss map lie in a sufficiently small neighborhood of a point. We
are grateful to do Carmo for his comments, which provided the impetus for the
results presented here.
Our principal goal is to prove the following two theorems.

‘THEOREM 1. Let S be a complete oriented surface of constant mean curvature
in R>. If the image of S under the Gauss map lies in some open hemisphere, then S
is a plane. If the image under the Gauss map lies in a closed hemisphere, then S is a
plane or a right circular cylinder.

THEOREM 2. Let S be a complete oriented surface in R* whose mean
curvature vector is parallel and non-zero. Let the Grassmannian of oriented
two-planes in R* be represented as the product of spheres S, X S,. Then the image of
S under the generalized Gauss map has the property that neither of its projections
onto S; or S, can lie in an open hemisphere; if either projection lies in a closed
hemisphere, then S is a right circular cylinder in some R>*cR*, or a product of
circles.

We note that if a surface S of constant mean curvature in a sphere $(r) is
considered as lying in R* under the natural embedding of S3(r) in R*, then S has
mean curvature vector in R* that is parallel and non-zero. An immediate
consequence of Theorem 2 is therefore:

COROLLARY. Let S be a complete surface in S>(r) such that, when consi-
dered as lying in R*, its Gauss map has at least one projection lying in a closed
hemisphere. If S has constant mean curvature, then it is a product of circles. In
particular, if S is minimal.in S3(r), then it is a Clifford torus.

We make the following observations concerning the above theorems.

First, we note that a theorem of Yau ([23], p. 358) states that every surface of
parallel mean curvature in R* is in fact a surface of constant mean curvature
either in some affine 3-space in R* or else in some 3-sphere S$3(r). In view of
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Yau’s theorem, Theorem 2 is equivalent to the combination of Theorem 1 and the
Corollary to Theorem 2.

Second, the example of the unduloid referred to above shows that Theorem 1
is sharp, in the sense that the conclusion fails if one allows the Gauss image to lie
in any open set containing a closed hemisphere. Thus, for complete surfaces of
arbitrary constant mean curvature, a much greater restriction is needed on the
Gauss map to force it to be a plane than in the special case of minimal surfaces.

For surfaces in R* the situation is in a sense reversed. There one does not have
a stronger version of Theorem 2 for minimal surfaces, and one must in fact
specifically exclude zero mean curvature for the theorem to be valid. In the case
of a minimal surface, no restriction on a single projection of the Gauss map can
force the surface to be a plane, since one of the projections may even be constant,
as happens for those minimal surfaces that correspond to holomorphic curves with
respect to some complex structure on R*. One can also construct nonholomorphic
complete minimal immersions of the disk into R*, where one of the projections of
the Gauss map lies in an arbitrarily small neighborhood of a point, and neither
projection is constant. The details are given in Section 4 below.

The proof of Theorems 1 and 2 are given in Sections 2 and 3, respectively.
Before proceeding with the details, we make a few general comments concerning
the proofs.

We note first that a vital tool in the case of minimal surfaces is the fact that the
Gauss map is anti-holomorphic. The corresponding property of surfaces of
parallel mean curvature is that the Gauss map is harmonic (Ruh-Vilms [19]). We
do not actually make explicit use of harmonic maps in this paper, although they
play an important background role. In particular, the Liouville theorem for
harmonic maps due to Hildebrandt, Jost and Widman [11] led us to conjecture
that the hemisphere was the correct domain to consider in the formulation of
Theorem 1.

The main tool that we do use in the proof of Theorem 1 is the well-known
equation

Av+||dv|P v=0 (1.1)

for the unit normal v to a surface S of constant mean curvature in R?, where the
coefficient ||dv|[>* may be viewed equivalently as the square norm of the Weingar-
ten map dv or of the second fundamental form of S. One mterpretatlon of
equation (1.1)-is that the Gauss map is harmonic. (See Remark 3 at the end of
Section 3.) The classical theorem of Rodrigues shows that the mean curvature of a
surface in R? vanishes at a point if and only if the Gauss map is anticonformal at
the point. Thus every surface of constant non-zero mean curvature in R? induces
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a harmonic map into the sphere which is nowhere (weakly) anticonformal. A
recent result of Kenmotsu [15] gives a remarkable converse to this fact: let R be a
simply-connected Riemann surface, and let h be any harmonic map of R into the
unit sphere which is nowhere (weakly) anticonformal. Then for any constant H# 0,
there exists a surface S in R> of constant mean curvature H, and a conformal map
f:R — S such that h=g o f, where g is the Gauss map of S.

Kenmotsu shows further that if the map h is given in the form w = h(z), where
z is a local coordinate on R and w is a complex coordinate on the image sphere
obtained by stereographic projection, then the metric on S is given by

2 1
2_| 4
as [H1+|h12

ah
8z

]2 |dz[*. (1.2)

Taking into account the known results for minimal surfaces, it follows that
Theorem 1 is equivalent to a result that may be formulated purely in terms of
harmonic maps into the sphere:

THEOREM 1A. Let h: R —> S? be a harmonic map of a Riemann surface R
into the unit sphere. Suppose that h is nowhere weakly anticonformal. If the image
h(R) lies in an open hemisphere, then the metric (1.2) cannot be complete.
(Equivalently, assuming that the open hemisphere corresponds to |h(z)|<1, the
metric

ds*=

oh|2
azl |dz| (1.3)

cannot be complete.) If the image h(R) lies in a closed hemisphere, then the metric
(1.2) (or (1.3)) cannot be complete unless h(R) is a great circle.

For a surface S in R*, the theorem of Ruh~Vilms states that S has parallel
mean curvature if and only if the Gauss map g is harmonic. But g is harmonic if
and only if both projections g,, g, are harmonic. In that case, one cannot assign g,
and g, arbitrarily, as in the Kenmotsu theorem, but rather one has an additional
constraint, derived in Hoffman—Osserman [14]. That constraint plays a key role in
the proof of Theorem 2.

The other main ingredients in the proof of Theorem 2 are a result of
Fischer-Colbrie and Schoen [9] concerning complete conformal metrics on the
unit disk (also used in the proof of Theorem 1), a formula for the Gauss curvature
of a surface in R* due to Blaschke [2], a computation for harmonic maps of
surfaces due to Schoen and Yau [20], and a result of Hoffman [12] on flat surfaces
of parallel mean curvature in R*.
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2. Proof of Theorem 1

Let S be a complete surface of constant mean curvature in R, and let $ be the
universal covering surface of S. If the image of S under the Gauss map lies in a
hemisphere, then the same is true of S. By the uniformization theorem, there are
just three possibilities:

Case 1. S is conformally a 2-sphere.

This case is clearly impossible, since the image of a sphere under the Gauss
map contains every point of the sphere.

Case 2. $ is conformally the plane.

In this case we get a map v of the plane into the unit sphere, satisfying
equation (1.1). We may assume that the hemisphere containing the image is the
lower hemisphere, in which case —1=<w;=<0. Since by (1.1) we have

Avy = —||dv? v,, (2.1)

it follows that v, is a bounded subharmonic function. But when § is conformally
the plane we must have v; constant. Thus the image under the Gauss map lies on
a circle. One may then use any of a number of elementary arguments to conclude
that S is either a plane or a right circular cylinder.

For example, one can observe that if v; is a non-zero constant, then by
equation (2.1) ||dv|*=0, so that v= constant, and hence S is a plane. If v;=0,
then the vertical vector e; lies in the tangent space to S at every point. This
implies that through each point of S there passes a line parallel to e; and lying
entirely in S. Thus S is a cylinder over a plane curve, and since S has constant
mean curvature, that plane curve is a circle or a line implying that S is a plane or
a right-circular cylinder.

Case 3. S is the unit disk.

We wish to show that this case cannot arise. We again use equation (2.1) and
note that

lav|® = ||A|* = 4H*- 2K, (2.2)

where we may consider A as the Weingarten map (or the second fundamental
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form of S), H is the mean curvature and K the Gauss curvature of S. Thus v,
satisfies the equation

Avs—2Kv;+4H?v, = 0. 2.3)

Again we may assume that the image under the Gauss map lies in the lower
hemisphere, so that —1=w»;=0, and by (2.1), v; is subharmonic. By the maximum
principle, if v;=0 at any interior point, then v;=0. But as noted in Case 2, that
would mean that S is a plane or a cylinder, forcing $ to be the plane, and not a
disk. Thus we conclude that v, is strictly negative. But a result of Fischer-Colbrie
and Schoen ([9], Corollary 3 on p. 205) states that when K is the Gauss curvature
of a complete conformal metric on the unit disk, there can be no positive (or
equivalently, negative) solution of equation (2.3). This completes the proof of
Theorem 1.

3. Surfaces in R*; proof of Theorem 2

We shall make use of the following facts concerning the Grassmannian and the
Gauss map for surfaces in R*. (See for example Hoffman-Osserman ([13],
§81,2.)) A

. The Grassmannian of oriented 2-planes in R* may be identified with the
product S?x S? where each factor is the standard 2-sphere of radius 1/y/2. The
Gauss map g of an oriented surface S in R* factors into a pair of maps g, g,,
where g, is a projection of g onto a factor S2. Let f, be the complex-valued map
produced by composing g, with stereographic projection. By the theorem of
Ruh-Vilms [19], a surface S has parallel mean curvature vector if and only if the
Gauss map g is harmonic, which in turn is equivalent to each of the factors g
being harmonic. The harmonicity of the map g, may be expressed by the equation

Avk +2 ||dvk”2 Ve = 0, (3.1)

where v, represents the position vector on the sphere S?, considered as a standard
sphere of radius 1/y2 in R>. (The factor 2 in this equation, missing in (1.1),
appears because the radius of the sphere in this case is 1/{/2 rather than 1. See
Remark 3 at the end of this section.) ‘

In order to prove Theorem 2, we shall make use of a number of facts
concerning the maps g, g,, and the corresponding functions f;, f,. It will be
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helpful to introduce the derived functions

_ )z ar__(fi)s
et BT RE 32

where z is a local isothermal parameter on S. We note that if f, is composed with
a linear fractional transformation corresponding to a rotation of the sphere, then
the quantities |Fy|, |Fy| remain invariant. Thus there are no singularities at points
where f; = . ‘
The facts we need are the following:
1. If e(g) denotes the energy density of the Gauss map g, then

e(g)=e te, (3.3)

where e, denotes the energy density of g.
2. In terms of f,

Azek = 2”Fklz + Iﬁ‘k|2] (3.4)

where the metric on S is given by ds*=A?|dz|*.
3. If J, denotes the Jacobian of the map g, then

22T =2[|E P~ |F]. (3.5)
4. The Gauss curvature K of the surface S is given by
K=]1+J2. (3.6)

(Blaschke [2], §4; see also Weiner [21], and Hoffman-Osserman [14].)
5. (Hoffman—-Osserman [14])

|Fy|=|F,|. (3.7)
6. Let H be the mean curvature vector of S. Then
H=0&F,=0 and F,=0 ' (3.8)

(Hoffman-Osserman [14]).
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7. Suppose the map g, is harmonic. Then at any point where F,# 0,

A log |F | =21, (3.9)
Where A is the Laplace-Beltrami operator on S. (See Schoen-Yau [20], §1, (17),
where i, is equal in our notation to /2 F/A. See also Hoffman-Osserman [14].)

We now combine these facts to prove Theorem 2. Since S has parallel mean
curvature vector H# 0, each g, is a harmonic map, and by virtue of (3.8) we may
apply (3.9) for k=1,2. Combining (3.7) with (3.9) yields

Ji=1,. (3.10)
Another application of (3.7), together with (3.5) and (3.10), gives

|F| = ). (3.11)
Inserting (3.7) and (3.11) into (3.4) gives

e, =e,. (3.12)
Finally, comparing (3.12) with (3.3), we find

e=2e,=2e,. (3.13)
Thus the equations (3.1) take the form

Ay, +e(g)v =0, k=1,2. (3.14)

We now invoke our hypothesis that either v, for v, lies in a hemisphere. Say
that this holds for »,. Then for some fixed unit vector c, the function

B=C"* vV (3‘15)
satisfies
p=0. (3.16)

But by (3.14),

Ap +e(g)pn =0. (3.17)
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Since e(g) =0, it follows from (3.16) and (3.17) that u is a subharmonic function.
We assert that u must be constant.

Let S be the universal covering surface of S, and let (i be the function p lifted
to S. Then /i is a continuous subharmonic function, bounded above.

Case 1. § is conformally a sphere. Then ji attains a maximum and hence is
constant.

Case 2. S is conformally the plane. Then since /i is subharmonic and bounded
above, it is constant.

Case 3. S is conformally the unit disk. In this case we observe that the
coeflicient e(g) in (3.17) may also be expressed in terms of the second fundamen-
tal form B of the surface S as

e(g)=|BIP= 2 |B,

ij=1
= |B11 + B22|2 + 2(|312|2 — B, B,,)
= 4 |HP-2K.

Hence (3.17) takes the form
Ap-2Ki+4|Hf* @ =0. (3.18)

As in the proof of Theorem 1, we know by the theorem of Fischer-Colbrie and
Schoen ([6], p. 205) that (3.18) has no strictly negative solutions for a complete
conformal metric on the unit disk. Since g <0, it follows that @ =0 somewhere.
But then the maximum principle for subharmonic functions implies that @ =0,

We thus conclude that in all cases, u must be constant. By the definition (3.15)
of u, v, lies on a circle on the sphere S%. But then J, =0, and by (3.10) also J,=0.
It then follows from (3.6) that K=0 on S. Finally, a theorem of Hoffman ([12],
Theorem 3.1) guarantees that a surface of parallel mean curvature in R* with
vanishing Gauss curvature lies on a right circular cylinder in R*<R* or else on a
product of circles. This completes the proof of the theorem.

Remark 1. It follows from the theorem that Cases 1 and 3 do not in fact
occur; that is, under the hypotheses of Theorem 2, the universal covering surface
of S is conformally the plane.
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Remark 2. One can give a somewhat different proof of the theorem that does
not require equation (3.9). In its place one may use a second equation of Blaschke
([2], §4) complementing (3.6):

KN=J1_]2’ (3.19)

where K, is the curvature of the normal bundle. (See also Weiner [21], and
Hoffman-Osserman [14], for alternative proofs of (3.19).) If S has non-zero
parallel mean curvature vector H, then setting e; = H/|H|, and e, the unit vector
orthogonal to H in the normal plane, we find that the normal bundle is flat, and
hence Ky =0. Thus equation (3.10) is an immediate consequence of (3.19). The
remainder of the proof is as before.

Remark 3. Equations (1.1) and (3.1) are both special cases of the equation
1 2
AX = —;ElXm X (3.20)

characterizing harmonic maps of a surface S into a sphere of radius r in R".
Namely, if

X:S—R"

is a map whose image lies in a submanifold N of R", then the map X:S— N is
harmonic if and only if at each point p of S the n-vector AX is normal to N at
X(p). (See [8], p.9, and (4.13), p.16.) In our case, when N=S""'(r), the
condition becomes

AX=AX (3.21)
for some function A on S. Thus (3.20) implies that the map X:S — S"7'(r) is
harmonic. Conversely, if z= x + iy is a local conformal parameter on S, then since
X - X=r? we have

X, - X=0

and

X, X+X, X,=0.
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But

X, - X =2 (XL + X, ).
Hence

AX - X=4X,, - X =-4X, - X, = —|dX]. (3.22)
But if (3.21) holds, then AX - X =X |X]*= Ar?, and by (3.22), A = —|dX|*/r?, so
that (3.20) follows.

4. A Counterexample

We present here the example mentioned in the introduction, showing that the
hypothesis in Theorem 2 that the mean curvature is different from zero, cannot be
dropped.

PROPOSITION 4.1. Given any £ >0, there exists a complete regular minimal
surface in R* whose Gauss map has the property that each projection f,, f, is a
non-constant holomorphic map, and the image under f; lies in a disk of radius .

Proof: Let w=g(z) be the map of the unit disk [z]<1 onto the universal
covering surface of the {-plane minus the points {=0 and {=1. Let

¥(z) = g'(2)
fi(z) = ez
1
e e @b
Then (z) #0, and the surface S defined by
X(z)=Re Jz Y(1+f.f5, i(1=fif>), fi—fai(fitf,) dz (4.2)

is a regular minimal surface in R*, with f, and f, the projections of the Gauss
map. (See [13], §3.)

Since X, =3 (1+fufy, {01~ ffa), i~ fo iCfi+ ),

X, =1 WP+ IfPYA+]FP).
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The metric on the surface S is given by A? |dz|> where 3A%(z) =|X,|>. Hence the
length of any curve C on S is given by

L= Mazl= [ VA+R@PO+ @RI 4z

where v is the path in |z| <1 corresponding to C.
Let I' be the image of y under the map g. Then

L> JA+ 2P [9(2)] |dz]
V(1 rg=e)
> max {L _—_—_lg'lllf—l-ll 5 J-F ldll}.

Now C is a divergent path on S if and only if y tends to the boundary of |z|<1.
There are two cases to consider. If I' has infinite length, then by (4.3) L =. On
the other hand, if I" has finite length, then it tends to a point {,. Since y tends to
|z| =1, it follows that {,=0 or {, = 1. But then again L =« by (4.3). Hence every
divergent path on S has infinite length, and S is complete.

I

<,
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