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On the structure of S5-dimensional Poincaré duality spaces

RALPH STOCKER

Abstract. We give a complete classification of simply connected 5-dimensional Poincaré duality spaces
up to oriented homotopy type. The most important step is a method for describing the Spivak normal
fibration and hence the exotic characteristic class.

1. Introduction

In the last two decades there have been developed many and powerful
methods to reduce problems in differential topology to questions in homotopy
theory. If, for example, you want to classify differentiable manifolds with certain
properties up to diffeomorphism, you may try it as follows. First, you classify
Poincaré duality spaces with the corresponding properties up to homotopy type.
Then you decide which of these spaces have the homotopy type of a manifold.
And finally you look if this manifold is unique, i.e. you study the connection
between diffeomorphism and homotopy type in the given class of manifolds. Each
step leads to purely homotopy theoretical questions.

In this paper we present the first two steps of this program for the class of
closed simply connected 5-dimensional differentiable manifolds. Thus we classify
the corresponding Poincaré duality spaces and we decide which of them have the
homotopy type of a closed manifold. This especially gives the homotopy classifica-
tion of these manifolds. In a subsequent paper [15] we shall present the third step
and hence a new and purely homotopy theoretical proof of Barden’s classification
theorem [1].

Of course the steps above give more than technical methods for solving
problems in differential topology. First, the understanding of the underlying
homotopy theory is necessary to understand the topology of manifolds. The
reason, for example, that diffeomorphism and homotopy type coincide for the
S-manifolds above, is not that the diffeomorphism invariants in [1] are also
homotopy invariants. The real reason is that these spaces admit sufficiently many
self-equivalences (which together with the exact sequence of surgery gives the
result). Second, Poincaré duality spaces are of own interest. The most intrinsic
invariants of these spaces are their ‘“tangential invariants” (the Spivak fibration
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482 RALPH STOCKER

and derived invariants, e.g. exotic characteristic classes). In general, they are
difficult to compute, and their geometric interpretation is not obvious. In this
paper too the calculation of the exotic class is the most difficult part. But the
results and examples show clearly its geometric meaning, so from the exotic only
the fascination remains, but no mystery.

Recall that an n-dimensional Poincaré duality space is a topological space P,
of the homotopy type of a compact n-dimensional polyhedron, together with a
class [P]e H,(P) such that the cap product N[P]:H%(P)— H, ,(P) is an
isomorphism for all q. Two such spaces P and P’ are of the same oriented
homotopy type if there exists a homotopy equivalence P — P’ sending [P] to [P'].
We denote by OHP™" the set of oriented homotopy types of simply connected
n-dimensional Poincaré duality spaces. This is a semigroup under connected sum
with zero element the class of the n-sphere. Of course OHP' = &, OHP" =0 for
n =2, 3, and there is a bijection between OHP* and the set of isomorphy classes
of nonsingular symmetric bilinear forms on free abelian groups of finite rank
(induced by intersection numbers; this is an easy exercise). So the first nontrivial
example is to describe the structure of OHP®, and this will be presented here.

The paper is organized as follows. In Section 2 we describe the classifying
invariants and we formulate the classification theorem (Theorem 2.2): OHP? is
isomorphic to a certain algebraically defined semigroup J. The structure of J will
be studied in Section 3. With that result an alternative formulation of the
classification theorem is given in Section 4 (Theorem 4.1); it says that the
elements of OHP®> may be uniquely described by certain integers (including ).
The most intrinsic invariant is what we call the linking order: it tells whether or
not the Stiefel-Whitney characteristic cycle and the exotic cycle are linked in the
whole space. The relations between the classifying invariants are proved in
Section 5 and Section 6. In Section 7 we do the necessary calculations in
homotopy groups; some very helpful remarks of the referee made this section
much more readable than in the first version of the paper. The calculation of the
exotic class, depending on a cell decomposition of the given space, is presented in
Section 8; it uses the results of [14]. The proof of the classification theorem 2.2 is
given in Section 9; here we construct models for the generators of OHP?, and we
prove that the elements of that semigroup are uniquely determined by the
invariants described in Section 2. In Section 10 we give a third version of the
classification theorem, namely a complete list of all simply connected 5-
dimensional Poincaré duality spaces.

A first step for proving Theorem 10.1 was done in [6] where it was shown that
the spaces described in Section 9 generate the semigroup OHP®. The complete
structure of that semigroup was first given in [13], but with an unsatisfactory proof
since it used Bardens classification of 5-manifolds and hence methods of differen-
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tial topology. A homotopy theoretical proof failed because of the mystery of the
exotic class. Now it is possible, using the theory developed in [14].

Remarks on notations. They are as usual, but the following should be noted.
y € m5(S?) is the Hopf class. X™ is the n-skeleton of the CW complex X. If
e" < X is a n-cell, then e" € m,(X™, X" V), e"e H,(X) and é" e H"(X) are the
elements corresponding to a fixed characteristic map of that cell (if they are
defined). If it happens that the boundary of e is the base point, we also write ",
¢" insted of e, é"; then also " € m,(X). The map &": X™ — X™ v 8" pinches the
boundary of a n-ball in e" to the base point and é":X™ — S" is its composite
with X™v 8" — S™.

I thank the referee for his helpful suggestions.

2. The invariants and the clasification theorem

The invariants which classify simply connected 5-dimensional Poincaré duality
spaces are the second homology group, the linking numbers, the second Stiefel-
Whitney-class and, finally, the first exotic characteristic class.

Let P be a simply connected 5-dimensional Poincaré duality space.

The linking number of x, y € Tor H,(P), where Tor G denotes the torsion
subgroup of the abelian group G, is defined to be Kronecker product b(x, y) =
(x',y)eQ/Z, where x'e H*(P;Q/Z) is such that B*(x)N[P]=x, with
B* : H*(P; Q/Z)— H?(P;Z) the Bockstein corresponding to 0 — Z — Q— Q/Z — 0.
This defines a nonsingular skew-symmetric bilinear form (see e.g. [1])

b : Tor H,(P) X Tor Hy(P) — Q/Z.

Let vp be the Spivak normal fibration of P [12]. This is a spherical fibration over
P, so its second Stiefel-Whitney-class

w=w,e H*(P;Z) =Hom (Hx(P),Z,)

is defined. Let g:P— BG be the classifying map of vp. There is a unique
obstruction e € H*(P;Z,) to lifting g to BO with respect to the canonical map
j:BO — BG. Since H3*(P;Z,)=H,(P;Z,)=H,(P)®Z,, we may view e as an
element e € H,(P)QZ,.

These invariants are related as follows:

2.1 LEMMA. (a) If xeTor H,(P), then b(x, x)={(w, x), where {0,3} < Q/Z is
identified with Z.,.
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(b) (w®id)(e)=0, where w®id:H,(P)QZ, > Z,07Z,=17,.

The proof will be given in Sections 5 and 6.

Suppose given a finitely generated abelian group G, a nonsingular skew-
symmetric bilinear form b:Tor G XTor G — Q/Z, a homomorphism w:G —Z,
and an element e € GRZ,. If these dates satisfy w(x) = b(x, x) for x € Tor G and
(w®id)(e) =0, then the system I =(G, b, w, e) is called a system of invariants. It
is obvious how to define isomorphism and direct sums of systems of invariants: let
J be the semigroup of isomorphism classes of systems of invariants.

It follows from 2.1 that to each simply-connected 5-dimensional Poincaré
duality space there corresponds a system of invariants I(P) = (H,(P), b, w, e). The
main result of this paper is the following:

2.2 CLASSIFICATION THEOREM. The assignment P — I(P) induces an
isomorphism of semigroups OHP> — J.

It is straightforward that this assignment is well defined and homomorphic;
bijectivity will be proved in Section 9.

3. The algebraic classification of systems of invariants

Let T be a finite abelian group and let b:TXT — Q/Z be a nonsingular
skew-symmetric bilinear form. Let |x| be the order of xeT. A subset B=
{x1, X2, ..., Xon_1, X2} < T is called symplectic if |x|=|x., and b(x;, x;.,)=
—b(x;11, %)=1/|x;| for i=1,3,...,2n—1, and if b(u, v)=0 for all other pairs
(u, v) € BX B. If the same is true except b(x;, x;) =3 for some fixed j, then B is
called almost-symplectic with b-exceptional element x;. A subset of the form
BU{z}<=T with |z|=2, b(z,z)=3 and b(z,x)=0 for xeB is called quasi-
symplectic if either B =(J or B is symplectic.

3.1 PROPOSITION. There exists a maximal basis of T which is symplectic or
almost-symplectic or quasi-symplectic.

For a proof see [1]; it follows that T=T,® T, or T=T,P T,DPZ, for some
subgroup T, < T (compare [17]).

Now let I=(G, b;w, e) be a system of invariants. A basis B< G is called
special if the following holds:

(a) B contains a basis of Tor G as in 3.1.

(b) If w#0, then there exists z,, € B (the w-exceptional element) such that
w(z,)=1 and w(b)=0 for z,#beB.
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(c) If e#0, then there exists z, € B (the e-exceptional element) such that
e=2Q1.

3.2. PROPOSITION. There exists a special basis of G. If B resp. B' is a
special basis of G with exceptional elements z,, z!, and z,, z., then

(i) |zwl=12| and |z.|=|zdl.

(ii) If these orders are finite, then b(z,, z,) =0 iff b(z,, z.) = 0.

The existence proof is similar to the proof of Lemma E in [1]. Take a basis B
of G containing a basis of Tor G as in 3.1 such that (b) holds. Then by
appropriate change of basis elements (using (w®id)(e) =0) one gets a new basis
which is special. The proof of (i) and (ii) is the same as the proof of Lemma C in
[1].

To each system of invariants I =(G, b, w, e) we assign numerical invariants i, j
and k as follows. For w=0 let i=k=0. For e=0 let j=k=0. If w#0 resp.
e#0, and if z,, resp. z, is the exceptional element of some special basis of G, let

i__{°° if [z,|=0 ._{00 if [z,|=o0
m if |z,|=2" n if |z|=2"

By 3.1 and 3.2 this is well defined. Finally let k =1 if b(z,, z.) is defined and not
zero; in all other cases let k =0. Thus we have 0<i, j=w and k=0, 1, and if
k=1 then 0<i=j<oo. (A more intrinsic definition of these invariants will be
given in section 4.)

3.3 PROPOSITION. Two systems of invariants I=(G,b,w,e) and I'=
(G',b’,w',e") are isomorphic if and only if G=G' and they have the same
numerical invariants i, j and k.

Proof. Since G = G’ there exists a special basis

Bz{aly---’assxly))la'--sxrayrsz}

1 __ ’
B _’{all"-°>a;ax,1’y,1’---sx:,)):3z}

of G resp. G’ such that |a;| =|a]| =, and |x;| = y;| = |x}| = |y]l, where the elements
z, z' with |z|=|z'|=2 only occur in the quasi-symplectic case. Let f: G — G’ be
the obvious isomorphism. We show that we may choose B and B’ such that
b'o(fxf)=b, wof=w and (f®id)(e) =¢’; then f is an isomorphism of systems of
invariants. The first two conditions are satisfied in the quasi-symplectic case, and
the third holds after an appropriate change of basis elements (which is possible
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since j=j'). If I is symplectic, then i =0 or o, hence I' is symplectic. Therefore
b'o(f Xxf)=>b, and by changing basis elements one gets w'of=w and (fQid)(e) =
e'. In the almost-symplectic case one gets similarly b’o(fXf)=b, hence also
w'ef=w. If j=0 or o, then (f®id)e = e’ is no problem. Let 1<j=<oo, and let y,,
y; be the w-exceptional elements. If k =k’ =1, then x;, x| are the e-exceptional
elements, thus (f®id)(e)=¢’ is true. If k =k’'=0, then we may assume that the
e-exceptional elements are x, and x/, with v, u# 1. Then (f®id)(e)=e’ holds
after interchanging (x,, y;) and x., y.).

4. Classification of the spaces by numerical invariants

Let P be a simply connected 5-dimensional Poincaré duality space, with
Stiefel-Whitney class w € Hom (H,(P),Z,) and exotic class e € H,(P)®Z,. We
define numerical invariants of P, the Stiefel-Whitney order, the exotic order and
the linking order, as follows.

The Stiefel-Whitney order is zero if w=0, and it is © if w#0, but w=0 on
Tor H,(P). If w# 0 on Tor H,(P), then it is the largest integer n such that w is
zero on the subgroup G, of Tor H,(P) consisting of all x such that 2" 'x =0.
Similarly, the exotic order is zero if e=0, and it is o if e#0 and
e¢ (Tor Hy(P))®Z,. If 0# e e(Tor H,(P))®Z,, then it is the largest integer m
such that e is not contained in the image of G,,®Z, — H,(P)QXZ,.

Suppose that the Stiefel-Whitney order and the exotic order are both equal to
n, where 1=<n <o, and suppose further that for all elements x, y € H,(P) such
that (w, x)=1, y®1=e and |x|=|y|=2" the linking number b(x, y) has order 2".
Then the linking order of P is defined to be 1; in all other cases it is defined to be
zero.

Choosing a special basis of H,(P) it is not difficult to prove that the invariants
i, j and k of the system of invariants (H,(P), b, w, e) are just the Stiefel-Whitney
order, the exotic order and the linking order of P, respectively. Therefore we get
from 2.2 and 3.3 the following formulation of the main theorem:

4.1 CLASSIFICATION THEOREM. Two simply connected 5-dimensional
Poincaré duality spaces are of the same oriented homotopy type if and only if they
have the same second Betti number, the same two-dimensional torsion coefficients,
the same Stiefel-Whitney order, the same exotic order and the same linking order.

4.2 Remarks. (a) Since these invariants do not depend on the orientation, we
see that homotopy type and oriented homotopy type coincide.
(b) A simply connected S5-dimensional Poincaré duality space P has the
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homotopy type of a closed smooth manifold if and only if its exotic order is zero.
For this is equivalent to e=0 in H>(P;Z,), hence to the existence of an
orthogonal sphere bundle structure on the Spivak fibration (compare 5.2 below),
and the result follows from Browder-Novikov theory [2].

(c) From the preceeding remarks it follows that (oriented) homotopy types of
closed smooth simply connected S-manifolds are classified by H,(P) and the
second Stiefel-Whitney class, or, equivalently, by H,(P) and the Stiefel-Whitney
order i =ip.

(d) The numerical invariants i, j and k above have the following geometric
interpretation. The w-exceptional element z, (of some special basis) which may
be called the “Stiefel-Whitney” cycle of P, has order 2'. Similarly, the “exotic
cycle” z, has order 2'. The linking order k describes the connection between these
cycles: it is 1 if they are linked and 0 otherwise (compare remark (b) in 10.2).

5. The relation between the Stiefel-Whitney class and the exotic class

In the followmg we denote by X a 51mply connected CW complex of
dimension =3. Let KO(X) [X, BO] resp. KG(X) [X, BG] be the group of
stable orthogonal sphere bundles resp. stable spherical fibrations over X, and let
j:BO — BG be the natural al _map. The second Stiefel-Whitney class w=w,
defines homomorphisms w : KO(X)—->H2(X Z,) and w: KG(X)-—>H2(X Z,). If
g:X — BG is the classifying map of geKG(X), then there exists g': X — BO
such that jg'| X® =g | X®. The difference cochain of the maps jg’, g: X - BG
represents an element e(§)eH3(X Z,), called the first exotic class of & [5]. This
defines a homomorphism e : KG(X)——> H3(X;Z,).

5.1 PRQ\I”OSIT TION. The following homomorphisms are isomorphims:
(a) w: KOQ() — H*(X;Z,),
(b) w+e:KG(X)— H¥(X;Z,) D H*X;Z,).

Proof. By well known facts on m,(BO) — m,,(BG) for n =<3, this is true for S?,
S* and S? U, €. Since X is a wedge of these spaces, it is true in general.

5.2 PROPOSITION. Let A=XU,e> with aem(X). Then the following
homomorphisms are isomorphims:

(a) w:KO(A)—> H(A;Z,)

(b) w+e:KG(A)— HXA,Z,) ®Ker (Sq>: H¥(A; Z,) > H(A; Zy)).

Proof. The fourth homotopy group of S2, S*> and S? U, €’ is finite (the last one
by the Hurewicz theorem modulo the class of finite groups). Therefore, by the
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Hilton-Milnor theorem, w,(X) is a finite group modulo Whitehead products.
Since these products are zero in the H-space BO, and since mw,(BO) = Z, any map
X— 29 extengi to A — BO, unique up to homotopy since ws(BO)=0. There-
fore KO(A)=KO(X), and 5.2(a) follows from 5.1(a).

Since w5(BG)=0, the restriction I’(\G(A)—)KNG(X) is injective. Therefore
w+e in 5.2(b) is injective by 5.1(b). —

Next we prove Sq%e(¢)=0 if £€ KG(A). We may assume w(¢&)=0 (if not,
replace £ by £+ ¢, where &' € I?(j(A) is such that w(&') = w(§); it exists by 5.2(a)).
Then ¢|X®=0 by 5.1(b), and this implies & | X =f*¢, for some f:X— S,
where &, is the non zero element in 1?6(83) =7Z,. Let g:A—> BG and g,:S*>—
BG be the classifying maps of ¢ and &, respectively. Then 0=(g|X)oa =
goofoa. Since foa e my(S?)=Z,(Sy) and go°Sy#0 in m(BG), it follows that
foa=0. Then f: X — S® extends to h:A — S3, and &=h*¢, since KG(A)—
KG(X) is injective. Therefore Sq2e(¢) = Sq’e(h*&,) = h*Sq’e(&,) =0.

It remains to prove that to ue H*(A;Z,) with Sq’u=0 there exists ¢
KG(A) such that e(¢)=u. Choose g:A—>S*Ue® with g*(@)=u and with
g Hs(A)=Hs(S*Ue®). Then Sq°>=0 in H*(S*Ue>;Z,), and since Sq* detects
the non zero element of m,(S>), this implies S*Ue®=S3vS°>. Thus there exists
f:A — S? such that u =f*(®), and we may take & =f*&,.

Now we are ready to prove (b) of Lemma 2.1. Let P be a simply connected
5-dimensional Poincaré duality space with Spivak fibration v, € KG(P). Recall
from Section 2 that the invariants of P are defined by w=w(v,) and e =e(y,).
The following is a special case of the Wu formula:

5.3 PROPOSITION. w U u =Sq?u for all ue HP;Z,), and we H¥(P;Z,)
is uniquely determined by this property.

We may assume P=X U, e° for some simply connected CW comple)’g\g( of
dimension =3 and some « € 7,(X). Then w U e(¢) = Sq°e(¢) =0 for all £ KG(P),
by 5.2(b). Especially, for & = v,, we get w U e =0 which is just (b) of Lemma 2.1.

5.4 Remarks. (a) The proof above shows that the relation wUe(£)=0is not a
special property of the Spivak fibration, but holds for all stable spherical fibrations
over P. And (b) of Lemma 2.1 is essentially the Wu formula.

(b) If e H}(BG;Z,) is the universal first exotic class, then Sq%e#0 [10].
Thus the relation Sq%e(£) =0 for all £ KG(A)isa special property of A in 5.2.

(c) Observe that the full statements of 5.1 and 5.2 are not necessary for the
proof of 2.1(b). However, we’ll need them in Section 8.
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6. The relation between the Stiefel-Whitney class and the linking numbers

Let us first recall some wellknown facts on homotopy groups. We have
m4(S%) =Z,(y°Sy) and m,(S*) =Z,(Sy). I don’t know an explicit reference for the
following proposition, but it is easily proved using 2.1 in [8], 5.4 in [7], and [11],
3.2 and page 261.

6.1 PROPOSITION. Let X(k)=S?U,e*> with k=2. Then myX(k))=
74(X(k)) under suspension and

(a) m(X(k))=0 if k is odd.

(b) ma(X(k)=Z,DPZ, if k=0 mod 4 and =Z, for k =2 mod 4. In both cases,
the following sequence is exact

0 —> 74(§) —Z> my(X(k)) ——> m4(S?) —> 0.

As in Section 5, we denote by X a simply connected CW complex of dimension
=<3. Then to ve H?*(X) there exists a map ©:X — S, unique up to homotopy,
such that #*:H?(S®)— H3*(X) maps the generator of H>(S®) onto v. Let
jx: H*(X) — H3*(X;Z,) be the obvious homomorphism.

6.2 PROPOSITION. There is a natural homorphism A :w3i(X) — H3(X;Z,),
defined by {(jg, v, Aa)={b}oaew5(S*)=2Z, for all ve H*(X) and aecwi(X). If
X =8> then M{Sy}=1>. If X=X(k) and k is even, then A({a}) #0 if and only if
é3oa#0.

The proof is obvious (use 6.1 for the last part). In the following, the composite
74(X) = w3(X) = H5(X;Z,) is also denoted by A : my(X) — H3(X; Z,).
Next we define bilinear forms

H*(X; G)xmy(X)— Hy(X; G) and H*X; G)Xm,(X, G)— Hi(X, G),

both denoted by (x, ) > x Na, as follows. Let A=XU,e’. If xe H'(X;G)=
H'(A; G), where i =2, 3, then xNaeHs_(X; G)=H_;(A; G) is the cap pro-
duct x Ne® of x and the generator e’ € Hs(A). Here, the coefficient group G is
arbitrary, and the cap product is with respect to G®Z — G. Observe that
A =X U, e’ is a Poincaré duality space if and only if () a : H*(X) — H,(X) is an
isomorphism, and then N a=[)[A]

For any aemy(X) we define a bilinear form b, : Tor H*(X) X Tor H*(X) —
Q/Z by b, (x, y)={(x', y Na), where x'e H*(X;Q/Z) is such that 8*x'= x. This is
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motivated as follows. If P=X U, e’ is a Poincaré duality space, then b, (x, y) is
just the linking number of the elements x N[P] and yN[P]. As for linking
numbers one proves that b, is well defined, homomorphic and skew-symmetric.
Furthermore, it is natural: if f: X — X’ and a € m4(X) and u, v € Tor H*(X'), then
bf, (U, v) = b, (f*u, f*v). In the following proposition we identify {0, 3} = Q/Z with
Z,.

6.3 PROPOSITION. b, (z, z) ={jx(z), A(a)) for all z € Tor H*(X).

Proof. Since b, is skew-symmetric, the function z — b, (z, z) is a homomorph-
ism. From this and from naturality it follows that it is enough to prove 6.3 in the
cases X =52 S3 and X(k). The only non trivial case is X(k) with k even, and
here it is enough to consider z =é*e H*(X) and a € m4(X) with é%ca =Sy, see
6.1. Then the right had side of 6.3 is not zero (see 6.2), and so we have to show
that b, (3, é*)=3. Since B*((1/k)t?) = &>, this linking number is (1/k){i* &> Na),
and it is enough to prove the following

Assertion. If a € w,(X(k)) and é*ca =Sy, then é>Na = (k/2).>.

Proof. Let [e3, 1?*]e m(X(k), S?) be the relative Whitehead product of e’e
m3(X(k), S?) and 12e m,(S?). Let b=(k/2)[e>, 1*]—e3°9 'y € my(X(k), S?) where
9:14(D?3, §%) = 15(S?). Then b = (k2/2)[?, 1*]— (k) oy =0 in 5(S?), therefore b
has a counterimage B in m4(X(k)). From 6.1 it follows that 8 =« mod 7*($?), and
since [)(t?cyoSy)=0, we may assume B=a Thus a has image b in
m4(X(k), S?). This easily implies the formula

Eoa=a +'125[L3, 2]+ 28y

where é&3: X(k) — X(k)v S>3, from which the assertion follows by naturality (since
N[e3, 2]: H3(S%v S?) — H,(S*v S®) maps > onto ?).
Now we return to Poincaré duality spaces.

6.4 PROPOSITION. Let a € m,(X) be such that P=X U, e’ is a Poincaré
duality space, with second Stiefel-Whitney class we H*(X;Z,). Then wNa=
Ala).

Proof. By definition of A we must show that (jxv, w Na) = doa for all v € H*(X).
We have

(i, w Na) = (jxv, w N[P]) =(jxv U w, [PD = (Sq*jxv, [P,
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using the Wu formula 5.3. Extend 6: X — S> to f:P— S?>Uge® with B=t°a
such that fg:Hs(P)=H(S*Uge®). Then Sq?%jsv =Sq*f*(i®)=f*Sq*(r>) and
(jxv, w Na) =(Sq*(?), e*). Thus we have to prove that 8 =Hca =0 if and only if
Sq*=0in H*(S® U,z e°; Z,). This is true since Sq” detects the non zero element in
774(83)-

Now we are ready to prove (a) of Lemma 2.1. Let P be a simply connected
5-dimensional Poincaré duality space, as usual P=X U, e>. If x € Tor H,(P), let
z € Tor H*(P) be the element with z N[P]=x. Then, using 6.3 and 6.4, we get (a)
of 2.1 as follows:

b(x, x) = b,(z, z) =(jxz, Aa) =(jxz, w Na) = (jxz, w N [P])
={(jgz Uw, [P])=(w, zN[P])=(w, x).

6.5 Remarks. (a) Observe that 6.4 may be formulated as follows. If P =
X U, e° is a Poincaré duality space and D =(\[P]: H*(X;Z,)=H,(X;Z,), then
the Stiefel-Whitney class is given by w = D™'A(a). Especially, w only depends on
the stable class {a}e 7m5(X).

(b) For closed smooth simply connected 5-manifolds Lemma 2.1(a) is proved
in [17], but the proof does not generalize to Poincaré duality spaces.

7. Calculations in homotopy groups

In this section we study the group m,(X), where X is a simply connected CW
complex of dimension =3. We start with a definition. If a € 7,(X), then, by 6.3,
the homomorphism () a : H*(X) — H,(X) and the element {a} € 73(X) are related
by b, (z, z) ={jsz, A{a}) for all z € Tor H*(X). By definition of b, this is equivalent
to (x, B*(x)Na)={(jxB*x, Ma})=(x, BgA{a}) for all xe H*(Y;Q/Z), where
Bx: H3(X;Z,) = H,(X) is the Bockstein corresponding to 0 > Z —>Z —>Z, — 0.

More generally, we consider pairs (f,a) with f:H*(X)— HyX) a
homomorphism and with a € w3(X), such that

(x, {B*(x))=(x, BgAa) for all xe H*(X; Q/Z). (7.1)

These pairs form a subgroup of Hom (H*(X), Hy(X)) ® m4(X) which we denote
by A(X). Then we have a homomorphism ¢ : m4(X) —> A(X) by a = (N &, {a}).

7.2 PROPOSITION. There is an exact sequence

2() ® 1(X) ® Zp ® 1,(X) ® 1,(X) ® 15(X) ——> m(X) —> A(X) —> 0
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where the homomorphism ¢' is induced by a @ b® 1+ [a,b]eSyand a® bR c—
[a,[b, c]] for a, b, c € mo(X).

The proof will be finished after 7.9 below. Let us first show that 7.2 is true if
X =82 8% or X(k). From [i2,¢?]eSy =[t% [ ¢*]]=0 in m4(S?) it follows that
¢' =0 in these cases, and we must prove that ¢ is bijective. This is trivial in the
first two cases, so let X = X(k). By 6.1 it is enough to show that the projection
A(X)— m5(X) is injective. Given f:H?*(X)— Hy(X), we have f(é3)=m? for
some meZ,. If (f,0)e A(X), then, by taking x =(1/k)t* in 7.1, we get 0=
((1/k)i%, me*) = m/k in Q/Z, hence m =0 in Z,, which implies f=0.

In the following we’ll prove that 7.2 is true for X v Y, if it is true for X and Y;
then 7.2 is true in general. Thus we have to study how the groups in 7.2 change if
X is replaced by Xv Y.

Let B(X,Y) be the group of pairs (f,f"), with f':H3*(Y)— H,(X) and
f": H*(X) — H,(Y) homomorphisms such that

(x, f'B*y)=(y, f"B*x) forall xeH*X;Q/Z), yeHXY;Q/Z). (7.3

From 7.1 it follows that A(XvY)=A(X)® A(Y)D B(X, Y), with the last
summand imbedded by (f', f")— (f"+f',0). Given ve Hs(XAY), consider the
homomorphisms induced by the (cohomology) slant product [4]

\v:H¥Y)—> HyX) bw—>b\v
\tx0: H}(X)— H(Y) a=a\tyv

where t: XAY — YAX permutes the factors. The pair (\v, \ t4v) satisfies 7.3,
and so we get H{(XAY)—> B(X,Y)cA(XVY).

7.4 PROPOSITION. A(XvY)=AX)DA(Y)DH,(XAY), with the last
summand imbedded by v > (\ tyxv +\ v, 0).

Proof. Consider the following commutative diagram with exact rows:

0— ) H(X)®H;s_,(Y)— Hs(XAY) 5 Tor (H,X, H,Y) >0

i=23
lp' 1 l\ lid

0— H,(X)® H;(Y) — Hom (H?Y, H,X) — Tor (H,X, H,Y) — 0.

The first row is exact by the Kiinneth formula. The second is obtained by applying
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the cofunctor Hom (—, H,X) to the split exact sequence

0— Ext(H,Y,Z)*% H*(Y)— Hom (H;Y,Z)— 0,
using the identifications (observe that H;(Y) is free abelian)

Hom (Hom (H3Y, Z), H,(X)) = Hy,(X) ® H3(Y)
Hom (Ext (H,Y,Z), Hy(X))=Tor (H,X, H,Y).

If ve H(XAY) and \ v =0: H?*(Y) — H,(X), then v is in the image of H5(X)®
H,(Y) in Hy(XAY). Similarly if \ tyv =0: H?*(X) — H,(Y), then tyv is in the
image of H;(Y)® H,(X) in Hs(Y AX), and v is therefore also in the image of
H,(X)®@ H5(Y) in H(XAY). Both facts imply v=0 and so Hs(XAY)—
A(XVvY) is injective.

Next let (f', f")e B(X, Y). By the diagram (and by the same diagram with X
and Y permuted) there exists v’, v"€ Hs(X A Y) such that f'=\v" and "=\ t,0v".
Then 7.3 says that

(x Ap(y), v'— 0" =0 | (7.5)

for all xe H*(X;Q/Z)=Hom (H,(X), Q/Z) and yeExt(H,(Y),Z). From the
commutative diagram

Hom (H,X, Q/Z)® Ext (H, Y, Z) — Hom (Hy(X A Y), Q/Z)

Hom (Hom (Ext (H,Y,Z), H,X), Q/Z) == Hom (Tor (H,X, H,Y), Q/Z)

and 7.5 we see that gx(v'—v") =0 for all homomorphisms g:Tor (H,X, H,Y) —
Q/Z. This implies «(v'—v")=0 and therefore v'=v"+a+b with ae Hy(X)®
H;(Y) and b € H3(X) ® H,(Y). Now define v = v'—b. Then it follows that \v =f"
and \ tyv = f". This shows that Hs(X A Y) — B(X, Y) is surjective and thus proves
7.4.

Next we compute m,(XvY), using the Hilton-Milnor formula. We may
assume that X =SA and Y =SB are suspensions, where A and B are connected
CW complexes of dimension <2. Let [i, j]: S(AAB)— X v Y be the Whitehead
product of the inclusions i: X— XvY and j: Y — Xv Y. The direct summands
of m,(XvY) which correspond to the basic triple Whitehead products are easily
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identified with the groups in (b) below, by connectivity arguments. So we get:

7.6 PROPOSITION. m,(XVvY) is the direct sum of m,(X), w,(Y) and the
following subgroups: ,

(a) m4(S(A AB)), imbedded by a—>[i, j]ca.

(b) (X)) ® (X)) ® m,(Y) and m,(Y) ® m,(X) ® m,(Y), both being imbedded
by a®@b®cw+[a,[b,clle mi(XVY).

Concerning the summand in (a), we have an exact sequence ([16], page 558)

0 — my(X) @ my(Y) ®Z; — [i, jloma(S(A AB)) > Hs(X A Y) >0 (7.7)

with the homomorphisms defined by a® b® 1+—[a, b]eSy and [i, j]Jca —> Sh(a)
where 7,(S(A AB)) & H,(S(A AB)) 3> Hy(X AY). Using the fact that XX Y is
the mapping cone of [i,j], it is not difficult to prove that the cap product
N [, jlea): H}(XVvY)— Hy(X VvY) is given by the formulas

{x N([i, jlea)=x\ Sh(a) x e H3(X) (7.8)
yN(ijlea)=y\txSh(a)  ye HX(Y) T
With the notations of 7.2 and 7.4 this says

& ([i, jlea) = (\ txSh(a) +\ Sh(a), 0)e A(X VY). (7.9)

Now we are ready to finish the proof of 7.2: from 7.4, 7.6, 7.7 and 7.9 it easily
follows that the sequence in 7.2 is exact for X Vv Y, if it is exact for X and Y.

7.10 Remark. With 7.6 we may calculate the kernel of ¢’ in 7.2, as follows.
Let G be an abelian group. Define L(G)= A% (G®Z,), the second exterior power
on the Z, vector space G®Z,. Define M(G) to be G® G® G, with the

following relations added (where a, b, c € G):

a@bQc+bQ®c®a+c®a®b=0 (Jacobi identity),
a®bB®c—a®c®b=0 (commutativity of Whitehead products),
a®a®a=0 (triple Whitehead products are zero in m,(S2).

Then we get the following short exact sequence:

0— L(m,(X)) ® M(m,(X)) ~— ma(X) > A(X)— 0.

In general, this sequence (which will not be used in the following) does not split.
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Having calculated the group m,(X), we now study its automorphisms which
are induced by homotopy equivalences of X. Given u € H*(X; m5(X)), there exists
a map f, : X — X, unique up to homotopy, such that f, | X® = id and such that the
difference cochain of the maps f,, id : X — X represents the cohomology class wu.
Let a € m,(X) and consider

uNa e Hy(X; m3(X)) = m( X) @ m3(X) = 7 4(X)

u® A e H3(X; m:(X)) @ Hy(X; Z,) —2 5 Z, ® m3(X) 2 my(X)

where o(a ® b)=[a, b] and £(1® b) = boSy. With these notations we have:

7.11 PROPOSITION. (a) f,ca=a+o(uNa)+eu, A(a)).

(b) If u is contained in the image of the coefficient homomorphism
H3(X; m5(X®@)) — H3(X; 75(X)), then f, induces the identity in all homology and
cohomology groups. Especially, f, is a homotopy equivalence.

7.12 Remark. Let e3, ..., e be the 3-cells of X, and ay, ..., a, € m3(X). Let
f:X — X be the composite

(id,al,...,a )

X& XvSiv---vS3:— "5 X

where g pinches the boundary of a 3-ball in e; to the base point (i=1,...,n).
Then f=f,, where u e H3*(X; m(X)) is the cohomologv class represented by the
cochain e?— ;. In the following, we call f the map which is induced by the
assignment e+ ;. It is a homotopy equivalence if all a; € m3(X®).

Proof of 7.11. As (b) is obvious, we only prove (a). Let e>< X be a fixed cell
and consider é*: X — X v S3. From 7.6 we have

(X Vv 33) =1my(X) D 77'4(53) @D m,(X)
and the image of aecmy(XVvS? in the last summand is just the image of
PeH3*(XvS? under Na:H*(XvS? — Hy(XvS?=m(X). Applying this to
a =¢&%*oa (and recalling the definition of Aa in 6.2) gives

Soa = a +{jxé>, Aa)i*-Sy+[e*Na, >].

By repated application of this formula, we get:

goa=a+ (jx €, Aa)itoSy+ ) [63Na, ]
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with g from 7.12. Applying the map (id, a4, ..., a,) to this equation, where
a; =(u, e?), gives (a) in 7.11.

7.13 PROPOSITION. Let a, a'c€ w,(X) be elements such that ¢a =da’ in
A(X) and Aa = Aa' =0. Suppose further that (| a =()a' is an isomorphism. Then
there exists a homotopy equivalence f: X — X such that foa =o' and f | X® =id.

Proof. a'—a lies in the image of the homomorphism ¢’ in 7.2. From the
relation

[a, b]eSy=[a, bey]+[b,[a, b]] (a, b e m(X)) (7.14)

(which holds since it is true in the universal example S*v S?) it follows that the
image of ¢’ is contained in the image of

m(X) ® 77'3(X(2)) — m(X) @ m3(X) 2 my(X).

Therefore a’ = a +a(z) for some z € m,(X) ® 73(X®). Since

Na 3H3(X; m3(X)) = Hy(X; m5(X)) = ma(X) ® (X)

is an isomorphism too, there exists u € H*(X; m3(X)) such that uNa =z, and u
lies in the image of H>(X; m3(X®)) — H3(X; m3(X)). Then, by 7.11, we get 7.13
by defining f=f,.

7.15 PROPOSITION. Let a, a’' € w(X) be elements such that Aa = Aa' and
Na=Na':H*X)— HyX) is an isomorphism. Then there exists a homotopy
equivalence f: X — X with f| X® =id, such that a'—fea is a sum of elements of
the form aovy°Sy and [b, c]o Sy, where a, b, c € w,(X).

Proof. From Aa=Aa’ and 6.1, 6.2 it follows that {a'}={a+B} in 7i(X),
where B is a sum of elements of the form acyoSy. Then ¢(a’)=¢d(a+B) in
A(X), and therefore a'=a+B+0(z) for some zem(X)® 73(X?). If f is
defined as in the proof of 7.13, then

fera=a+o(uNa)+elu, Aa)) =a’'— B +e((u, Aa)),

and a' —foa is therefore a sum as stated above.
We close this section with the following splitting principle which is an
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important step in the proof of the classification theorem:

7.16 LEMMA. Let ae w,(XVvY) be an element such that

(@) Na:H (XVY)— HyXvY) maps H (X) and H3(Y) isomorphically onto
H,(X) and H,(Y), respectively.

(b) Aae Hy(X Vv Y;Z,) lies in the subgroup H5(X;Z,) of Hy(XVv Y;Z,).
Then there exists a homotopy equivalence f:XvY — XvVvY, restricting to the
identity on the 2-skeleton, such that foa € w(X)D m,(Y).

Proof. Let [i, j]loB with B € m,(S(A A B)) be the image of a under the projec-
tion onto the summand (a) in the direct sum decomposition in 7.6 (where
X =S8SA, Y =SB). From assumption (a) and 7.8 it follows that the slant products

\Sh(B): H*(X) — H,(Y) and \Sh(B):H*(Y)— Hy(X)
are zero. Therefore, by 7.9, the element [i,j]leB lies in the kernel of

¢ :my(XVvY)—> A(XVvY), and from the exact sequence 7.2 (with X replaced by
XvY) and 7.6, 7.7 we get that, in the obvious notation,

a € T4 X) D 7, (Y) D [, X, m Y] Sy @ [mX, [7, X, m, Y]]
@ [172Y, [7T2X, 71'2Y]]

Thus we may write

a=axt+tay+r+s+t
with the elements on the right hand side lying in the corresponding subgroup of
m4(XvY) above. Let W(X,Y)cm3(XvY) be the image of the Whitehead
product m,(X)® m,(Y) = m3(X v Y). Then we have

s=o(s') for some s em(X)® WX Y)
t=o(t') forsome t'em(Y)® W(X Y),

where ¢ is as in 7.11, o(a ® b) =[a, b]. The assumption (a) implies (compare the
proof of 7.13) that there exists

u'e H3(X; W(X,Y)) suchthat u'Na=s".

Since the cohomology class u’ takes values in W(X, Y), it follows that the element
e((u', Aa)), with € as in 7.11, lies in [7,X, 7, Y]oSy. From the relation 7.14 (with
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X there replaced by XvY) we get
[mX, m, Y] Sy c[mX, m3(YP) B[, Y, [mX, m, Y]

Therefore r+e({u’, Aa)) lies in that subgroup, and so we may write
r+e(u’, Aa)) =o(r)+o(r’)

for some r'e 7X(X)®m3(Y®) and r'e m(Y)® W(X, Y). Again by assumption
(a) there are elements

v e H3(Y; W(X,Y)) such that v'Na=r+t
v"e H3(X; m3(Y?®) such that v"Na=r".

Now we define, with the obvious identifications,
u=—u'—-v-v"eH}XVvY;mXVvY)),

and consider the corresponding map f=f,: XvY—XvY. By 7.11(b) it is a
homotopy equivalence, since W(X, Y)< m((Xv Y)®). From 7.11(a) and the
equations above we get (observe that 2&((, )) =0):

fea=a+a(uNa)+elu, Aa))
=a+(—s—o(@)—t—oc(@))+e((—u'—v' —v", Aa))
=a—(r+s+t)+e(lv’, Aa))+e({v", Aa))
=ax +ay+e(v’, Aa))+ e((v", Aa)).

The cohomology class v’ lies in the subgroup H*(Y; W(X,Y)) of H*(Xv
Y; m3(X v Y)), and, by assumption (b), the homology class Aa lies in the subgroup
H,(X;Z,) of Hy(XVvY;Z,). Both facts imply (v’, Aa)=0. The cohomology class
v” takes values in 5(Y), therefore £((v", Aa)) € m,(Y). Thus the last equation says

feae my(X)® my(Y).

8. Calculation of the exotic class

By the Wu formula, the Stiefel-Whitney classes of a Poincaré duality space P

are determined by the action of the Steenrod algebra on H*(P;Z,). It is not
known whether or not there exists a “Wu formula’ which describes the exotic
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characteristic classes of P by certain (higher, twisted) cohomology operations in P.
So we have to look for other methods.

Let P be a Poincaré duality space of the form P=SA U_e", with A a
connected CW complex of dimension =n-3, and aem,_,(SA). Let
B:KG(SA)— {A, S° be the canonical bijection, and let

Y i M (SA)—>{S",A™} (rrm=2and A"=AA---AA)

be the stable Hopf invariant (see below). The following is one of the main results
of [14]:

8.1 THEOREM. The restriction n =vp | SA € I?é(SA) of the Spivak fibration
of P onto SA is uniquely characterized by the following equation in {S" 2, A}:

{a}+ Y GidaInBMA- - ABM)) oy, (a)=0.

mz=2

Thus if we know the attaching map of the top cell and its Hopf invariants, we may
calculate the Spivak fibration vp | SA and hence its exotic characteristic classes.

To apply this result to our case, we’ll need some facts on Hopf invariants. First
recall its definition, as given in [14]. Choose k>r and consider the inclusions
i:SA — SAvS* and j:S* — SA v S*. Given a e, (SA), the element [icq, jle
1, +—1(SAv S¥) may be uniquely written as

[ice, j1=[i, jloS*a +[i, [i, jTlov5(e) +[i, [i, [i, j1lov5(a) +- - - (8.2)

using the Hilton—Milnor formula. Then 1v,,(«) is defined to be the stable class of
vi(a) € 1 —1(S*A™). This defines homomorphisms v,, as above. If A is a
suspension, then v,,(a) is up to some sign just the stable class of the Hopf
invariants A,,(a) in [3].

Here is a first application of 8.1:

8.3 LEMMA. Let a =[t2, 3]+ m(iZoyoSy)+n(t3-Sy) in m(S?vS?), where
m, n€Z,. Then the Poincaré duality space P=(S*v S?) U, e’ has exotic charac-
teristic class e=m(n+1)(.>?® 1) in H,(P)QZ,.

Proof. This is the case A =S'v S?in 8.1. The Hopf invariants of a are easy to
compute, either directly by the defining equation 8.2, or with [3]. It results that
Yem(@) =0 if m=3 and

vo(@) ={* A} —{ 2 A+ m{ctAte{y} in {S? AAA}
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Thus 8.1 reduces to {a}+ ({id }A B(n))° yo(a) =0 in {S>, A}. Using the formulas
for a and y,(a), and applying the retraction A — S, gives the following equation
in {S2, S°%:

m{S~?y°S7'y}+B(n) | S>+m(B(n) | S"){S~'y}=0.

From Aa =ne H5(S?v S3;Z,), see 6.2, and from 6.4 and 5.1 it follows that
B(n)|S'=ne{S?, S°}=Z,. Therefore the last equation gives B(n) | S>=m +mn
in {S?, S°%=Z,, hence n|S*=m+mn in KG(S?) =7Z,, and this proves 8.3.

For our second application of 8.1 we need some preparations. In the follow-
ing, n=2 is a fixed integer, and we set A =S’ U, e2, thus SA = X(n)=S?U,, >,
and

AvA=(SiUue?)v(Siued), X=SAvSA=(S2Ued)v(SIUed).

Let i;,i,;:A—>AVA and j,,j,:SA — X be the inclusions. We first note the
following:

8.4 PROPOSITION. There exists a map uy:S>— AAA representing the
homology class of the cycle .' Ae*+e* AL, This map is a duality map in the sense
of Spanier—Whitehead duality, and therefore induces an isomorphism D,:{A, S°} —
{S?, A} by Dy(a) =({id}Aa)°{uy}. Finally, this isomorphism maps {S 2y°S 'yo
€%} onto {t'oS 1yoy}.

Proof. Since A AA is simply connected, u, exists. Since all slant products
\uo: H(A)— H,_;(A) are isomorphisms, it is a duality map. By homology
arguments, the map (ids Aé%)ouy:S>— AAS*=8%2A =S3Ue* is the inclusion;
this gives the final statement in 8.4.

Next, consider the following bijections (see 5.1 and 6.1):

w+e

H2(SA:;Z,)® H*SA; Z,) < RG(SA) & {A, S% 25 {S?, A}=m,(SA).

From 8.4 it follows that «*cy°Sy e m,(SA) corresponds to &> under these bijec-
tions. So we get from 6.1 and 6.2:

8.5 PROPOSITION. If n is even, there exists a unique element 8,¢€ mw,(SA)
such that, under the bijections above, the elements 0, —8,, t>cy°Sy and t*>oyoSy—
8o in m4(SA) correspond to the elements 0, i*, & and i*+é&> in H(SA;Z,)®
H3(SA;Z,), respectively. This element satisfies the equations é>°8,= Sy, A(8,) = e>
and &N &,= (n/2n>
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The last equation is just the assertion in the proof of 6.3. Observe that, by 6.1,
we have the following two cases. If n# 2 mod 4, then 2 8, =0, the sequence in 6.1
splits, and B is an isomorphism of groups. If n =2 mod 4, then 2 §, = ¢?cy- Sy, the
sequence in 6.1 does not split, and 3 is a bijection of sets, but no homomorphism.

8.6 PROPOSITION. Let [jj,j,]:S(AAA)— X be the Whitehead product,
and define 1o=[j, j2]oSuo€ m4(X). Then é&3N1o=—13 and é3N1y,=12

This follows from 7.8 and the homological properties of u, in 8.4 (the sign
results from [4], page 191, (2.12)). Observe that 8, and 7, depend on the choice
of the element u, in 8.4. However, we have:

8.7 PROPOSITION. The elements 7, and 74+ j,°8, in w,(X) are unique up to
homotopy equivalences f: X — X with f| X® =id.

Proof. For 7, this follows from 7.13, using 8.6 and Sty =0. Observe that 7,
and 8, only depend on Su,, and, by the exact sequence 7.7, Su, is unique up to
SW'AtY)oSye m,(S(AAA)). If we replace Sug by Sug+S(t'At)oSy, then 7, is
replaced by 74 =1o+[t3, t5]oSy. The isomorphism D, in 8.4 must be replaced by
Dj(a) =Dg(a)+({e}Aa | Y)o{y}, and therefore 8, and 85=8y+t%cy°Sy. Now
let f: X — X be the map induced by e; — —(t?°y) and e3 —[i3, 3], see 7.12.
Then it follows from 7.11, 7.14, 8.5 and 8.6 that f is a homotopy equivalence such
that f| X®=id and fo(ry+j,°80) = ThH+j.1°8h.

8.8 PROPOSITION. The Hopf invariants of to€ w4(X) are given by the
following formulas:

(@) v2(10) = (i nigt—{izAni D o{uo}
(b) v3(79) =0 if n#2 mod 4; otherwise

n
73(70)=§({L%Mi/\té}ﬂc}/\ciAc%}+{t%/\b%/\ci})-

Proof. By the defining equation 8.2 we have to calculate the following
Whitehead product

[iOTo, .’] = [l o[ila j2]°su03 .’] = [[l’ l]9 j]osk(il N i2)°Sku0

where now i:S(AAA)vS* and j:S* — S(AAA)vS* The idea is to express it
by Whitehead products as in 8.2, using the Jacobi identity and commutativity. The
problem is that A =S U, e? is not a suspension, so it is not obvious that the
reduced diagonal d: A — A A A is null homotopic. But this is what is needed in
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the proof of the Jacobi identity. Now it is not difficult to show that d is null

homotopic if n¥2 mod 4, while if n =2 mod 4 it is homotopic to the composite of

é2: A — S? and (n/2)(t*ALY):S?*— A AA. If with this information we copy the

usual proof of the Jacobi identity (see e.g. [3], especially the Witt identity on page

192 of [3]) we get a generalization of it which together with 8.2 implies 8.8.
Now we are ready for our second application of Theorem 8.1:

8.9 LEMMA. With the notations above, let P=X U, e’ with
a =T1o+]1(ado+r(t?>oyoSy))+s(jot?0yoSy)

in m4(X), where r,s€Z, and a=0 or a=1 (of course a=r=s=0 if n is odd).
Then P is a Poincaré duality space; its oriented homotopy type does not depend on
the choice of u, in 8.4; and its invariants are given by w = aize HX(P;Z,) and
e=s(a—1)éi+résec H*(P;Z,), or, equivalently, e=r(ti®1)+s(a—1)(3®1)e
H,(P)®1Z,.

Proof. P satisfies Poincaré duality by 8.5 and 8.6. From 8.7 it follows that the
oriented homotopy type of P does not depend on the choice of u, in 8.4. From
S7o=0 and 8.5 we have A(a)=ae3, therefore w =ai3 by 6.4 and 8.6.

It remains to calculate the exotic class of P. Let n=wp | X and B =B(n)e
{A VA, S°%. By connectivity arguments, Theorem 8.1 reduces to

{a}+{id}AB)ov2(a) +{id} A B AB)ovs(a) =0.

From (b) in 8.8 and from vy;(j;°8,) ={i; Ai; Ai }°v5(8,), which is true by naturality
properties of the Hopf invariants, it follows that y;(a) is a sum of elements of the
form (]} Atj Ak, where j=1 or k=1. Since (w, 1) =0, the fibration n is trivial
over S7c X (recall 5.1), so Bot; =0. Both facts imply that the third summand
above is zero, hence

{a}+({id}AB)ovx(a)=0. (8.10)
From the definition of a and 8.8 (a) we get (since y,(y)=1):

{a}=a{i;oS7' S} +r{tic S yoy}+s{izo S yoy}
vala) = {i; Ait—{ioA i1})°{uo}+ afiy Aiytoy,(8p)
+r{viacite{y}+s{ezazte{y}.



The structure of 5-dimensional Poincaré duality spaces 503

Defining B, = B°i, €{A, $% for k=1, 2, it follows that (recall Boi!=0)

{id} A B)eya(a) = {is}A B2 —{itA B1)o{uot+a({is} AB1)ov2(8o)
+s{tanBou'o{y}.

Therefore 8.10 is the following equation in {S3, Av A}):

afiyo S o+ r{Lio ST yoyt+s{ie ST yoy}l =
{idAB2—{i} A By o{uot+a({i} AB1)ova(8p) +s{esA 62°01}°{’Y}-

Applying the retractions ry, r,: Av A — A gives two equations in {S3, A}, which
may be written as follows (recall D, in 8.4):

Dy(B,) = “a{s—l 8ot —a{i} A B1)ov2(8o) +{’~1°S*1'Y°'Y} (8.11)
Do(B1) =s{v'e S \yoy}+s{t! AByou'}o{vy}. (8.12)

Suppose a=0. Then 8.11 and 8.4 imply B,=r{S 2y-S 'y-é?. Furthermore,
(w,3)=0, hence m is trivial on S3 and so B,°t'=0. Therefore 8.12 gives
B, =s{S2yoS 1yoé?}. Both facts imply e = sé; +ré3, as stated.

Finally, let a=1. Then {(w, (3)=1, so n#0 on S and B,°¢! ={S ?v}. There-
fore 8.12 gives Dy(B;)=0, hence B;=0, and therefore (e, e1)=0, as stated.
Furthermore, 8.11 reduces to Dy(B,) =—8,+r(t>cyoSy), where we have iden-
tified {S3, A} and m,(SA). From this and from 8.5 we get that n|S3Ue3 has
Stiefel-Whitney class i3 and exotic class ré3, and 8.9 is proved.

9. The Poincaré duality spaces and the proof of the classification theorem

We first describe models for Poincaré duality spaces which generate the
semigroup OHP°. These models are divided into five classes.

Class I. It only contains the sphere S° with system of invariants I(S>) =0.

Class II. It contains the unique Poincaré duality space P such that H,(P) # 0 is
a finite cyclic group.

Proof of existence: Take P =(S*U,e*)Ue’ with the 5-cell attached by §,¢
m,(S? U, e3), see 8.5.

Proof of uniqueness. By 3.1 we have H,(P)=Z,, hence P=(§*U, e U, e°
for some a € m,(S? U, ) such that é&Na =2 By 6.1, this element is unique up
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to t?oyoSy. Since by 7.11 there exists f: X =X such that foa =a +¢%oy°Sy, we
see that P is uniquely determined. Following [1], we write P = X_;. The invariants
are

T_,=I(X_))=(Z,(x), b, w,0) with b(x, x)=(w, x)=3

and (i, j, k)= (1, 0,0); for we must have b# 0, and w and e are then determined

by 2.1.
Class III. It contains the Poincaré duality spaces P such that H,(P)=Z. There

are precisely three such spaces:

M.,.=(S?v S?) U e’ with e’ attached by [i?, *]
X..=(S*v S?) Ue® with e attached by [¢2, *]+ ¢3Sy
M. =(S*vS* Ue® with e’ attached by [i?, ¢*]+12cyoSy.

The invariants are as follows (use 6.4, 6.2 for w and 8.3 for e):

Se=I(M,)=(Z,0,0,0) and i=j=k=0
T.=1(X.)=(Z,0,w,0) with w#0 and i=x, j=k=0
S:,=I(M.)=(Z,0,0, e) with e#0 and i=k =0, j=oo.

These spaces are wellknown. M., is simply S% X S>. By [9], X, is the total space of
the non trivial S>-bundle over S?, and M. is the total space of the non trivial
S2-fibration over S> [5]. This gives other proofs that e# 0 for M. (Since M., — S°
is not stably equivalent to some bundle, its total space is not a manifold (Theorem
4 of [18]), and therefore has non zero exotic class. Compare also page 32 in [10].)
There is one further candidate with H, =Z, namely (S*v S>)U e’ with the 5-cell
attached by [¢?, ¢*]+¢%0y0Sy+¢32Sy. But the homotopy equivalence ¢?+> 3,
2> 3 +1%0y of S?v S3 shows that it coincides with X...

Class IV. It contains all Poincaré duality spaces P such that H,(P)=Z,DZ,
for some n=2 and such that w=0. We may assume that P=X U_e® with
X=(S2U,e3))v(S2U,e3) and b(e2,H)=1/n, b(:?,¢})=0 for i=1,2 (compare
the arguments following 9.1 below). Furthermore, if n is even and e# 0, we may
assume that e=¢3® 1. It follows that (| « = () 7,, where 7, is from 8.6, and

(since Aa =0 by 6.4)
{a}={ro+r(tioyoSy)+s(3ey°Sy)te wi(X)

for some r, s € Z,. Therefore, by 7.13, there exists a homotopy equivalence of X
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sending a to this sum, and so we may assume

a =710+ r(tioyeSy)+s(t30y°Sy) e my(X).

From 8.9 it follows that r=s=0if e=0, and r=1, s=0 if e#0. Thus class IV
contains precisely the following spaces (recall 8.7):

M, =(S7 U, e}))v(SZ U, e3)Ue> with e® attached by 7,
M., =(STU, e})v(S3U,e3)Ue’ with e’ attached by 7o+¢20yoSy.

The spaces M), are only defined if n is even. The invariants are as follows:

S, =1IM,)=(Z,(x)DZ,(y), b, 0, 0)
Si=IM)=Z,(x)DPZ,(y),b,0,x®1)

where in both cases b(x, y)=1/n and b(x, x)=b(y,y)=0. Thus i=j=k =0 for
M, and i=k =0, j=t for M, where n=2's with s odd.

Class V. This class consists of all spaces P such that H,(P)=2Z, ©Z,, for some
even integer n =2, and such that w# 0. Again we may assume that P=X U,_ e’
with X as above, and b(:3,¢2)=1/n, b(:?, ?)=0 and b(.3, 3) =1. This gives the
following formulas (recall 6.4):

53

elﬂa= 02

- 3
-3, eNa=.3 w=1i3, Aa=ej.

NS

From 8.5 and 8.6 it therefore follows that () a= () (1o+]j.:°8,) and Aa =
A(79+j1°8,). Then, by 7.15, we may assume that

a=70+j1080+r(t3eyoSy)+s(3oyoSy)+ [}, 3]Sy

for some r, s, t € Z,. The homotopy equivalence f in the proof of 8.7 adds the term
tioyoSy+[i3,12]oSy to the right hand side, so we may assume t=0. Let
g: X =X be the map induced by e3 — 2oy and e3 — (n/2)(15°7), see 7.12. Then,
by 7.11, 8.5 and 8.6, g adds the summand t3°y°Sy, and hence we may also
assume that s =0. Finally, the coefficient r is determined by the exotic class: from
8.9 we have r =0 if and only if ¢ =0. Thus class V contains for each even integer
n =2 precisely the following two spaces (recall 8.7):

X, =(82 U, ed)Vv(S3 U, e3)Ue’® with e’ attached by 7o+j;°8,
X1, =(S2U, e))v(SZ U, ed) Ue® with 3 attached by 7o+ j1°(8p+12eyeSy)
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The systems of invariants are

T,=I1(X,)=Z,(x)®Z,(y), b, w,0)
T,=I1(X;)=@Z,(x)DZ,(y), b, w,x®1)

where in both cases b(x, y)=1/n, b(x, x) =0 by b(y, y)=3. Thus if n =2's with s
odd, we get (i, j, k) = (¢, 0, 0) in the first and (i, j, k) =(t, ¢, 1) in the second case.
The following table shows all spaces together:

P IP) H,(P) e
S5 0 0 0 0
M, S. y/ 0 0
X, T. y/ 40 0
M, S, y/ 0 #0
X, T, 1Z, 0 0
M, S, Z,®Z, 0 0
M, S, Z,®Z, 0 0
X, T, Z,®Z, #0 0
X T Z.®Z, #0 0

Now it is easy to prove that the function OHP> — J in Theorem 2.2 is surjective.
In fact, from Proposition 3.2 it follows that the systems of invariants in the table
above generate the semigroup J. Since all of these are realized by Poincaré duality
spaces, it follows that OHP® — J is surjective.

To prove injectivity of OHP® — J, we first observe that the discussion of the
five classes above has shown the following:

9.1 PROPOSITION. Given the dates in the last three columns of the table
above, there is one and only one Poincaré duality space with these dates (namely the
space in the left column and in the corresponding row).

Now let P be an arbitrary simply connected 5-dimensional Poincaré duality
space. We are going to prove that P is uniquely determined (up to oriented
homotopy type) by its system of invariants I(P) = (H,(P), b, w, e), or, equivalently,
by H,(P) and its invariants ip, jp and kp.

Following 3.2, we choose a special basis {x; | —s <i =2t + 1} of H,(P) such that
the following holds:

9.2 |x;|= for i=<0; if ip =, then x, is the w-exceptional element.
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93 For j=1,3,...,2t—1 we have |x|=|x.,l=k =k, and b(x, x;,1) =
=b(x;41, X)) = 1/k;. All other linking numbers between these elements are
zero, except b(x,, x,) =3 in the almost symplectic case.

9.4 x5, with |x5,4 =k, =2 is the w-exceptional element in the quasi-
symplectic case.

9.5 If jp#0, we denote by j, the unique index between —s and 2t such that x; is
the e-exceptional element (Lemma 2.1(b) implies j,# 2t+1).

If H,(P) is free resp. finite, forget x;,..., X541 T€SP. X_g, . .., Xo; if we don’t
have the quasi-symplectic case, forget x,,.,; and if H,(P)=0, forget all: then
P=S>

Let X be the wedge of the following spaces:

X, =SivS! (i=0)
X, =(StUed)v(S?, Vel (7=1,3,...,2t-1)

— Q2 3
X2t+1 - SZt+1 U €2:+1

Here, for 1=n=2t+1, the 3-cell e} is attached by a map of degree k,. We may
assume that P = P® U, e” for some B € m,(P?). There exists a homotopy equival-
ence f:X—P® such that fe(t?)=x, for all —s=n=2t+1, and such that
f*(D'x;)=1? for i=0, where D:H?(P)— H,(P) is Poincaré duality. If a =
f£'(B)e my(X), then XU, e’ and P have the same oriented homotopy type.
Therefore we may assume that P =X U, e°, that the basis above is the geometric
basis, i.e. x,, =2 for all n, and, furthermore, that iy Na =7 for i <0. From this
and from 9.3 and 9.4 it follows that (| a maps H>(X;) isomorphically onto H,(X;)
fori=Qori=1,3,...,2t+1. Furthermore, since wNa = A(a) by 6.4, we have
AMa)=0 (if w=0) or A(a)=13 (if ip =, by 9.2) or A(a)=e} (in the almost-
symplectic case, by 9.3) or A(a)=e3,., (in the quasi-symplectic case, by 9.4). In
any case, we have all assumptions we need to apply the splitting principle 7.16,
and by induction it follows that there exists a homotopy equivalence f: X — X
with | X® =id such that fya =Y a; with o; € m,(X;). Therefore we may assume,
without changing the properties of the basis x; =7 above, that

a =a_s+' . '+a0+a1+a3+‘ . '+a2t_1+a2,+1
where «; € m4(X;). This means that P splits as a connected sum

P=P_  #: - -#PyH# P #Ps# - # Py 1 #Priq
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where P,=X,Ue” with e® attached by «;. Furthermore, the elements of the
special basis x,, = ¢2 which lie in H,(P;) form a special basis of H,(P,). Therefore
we get from 9.2-9.5 and from Proposition 9.1 the following:

(a) P,=M, for i<0 and i# j,; if i =j,<O0, then P, = M..

(b) Py=X, if jp = (then we must have j,#0). If jp <o, then P,=M,, or
P, = M, according as j,# 0 or j,=0.

(c) Py=X,, in the almost-symplectic case, if jo#1, and P,=Xj}, in the
almost-symplectic case if j,= 1. If we do not have the almost symplectic case, then
P, =M, or P,=M;, according as jo¢{1,2} or joe{l, 2}.

(d) For j=3,5,...,2t—1 we have P,=M, if jo¢{j,j+1} and P;=M; if
jO € {jo ] + 1}

(€) Pp1=X_4.

It follows that P is uniquely determined by the special basis above, hence by
its invariants, and this completes the proof of the classification theorem.

10. A complete list of the Poincaré duality spaces
We now give a third version of our main theorem:

10.1 CLASSIFICATION THEOREM. The following is a complete list of
(oriented) homotopy types of simply connected 5-dimensional Poincaré duality
spaces and their numerical invariants (i, j, k):

P (0,0,0)
P#X_, (1,0,0)
P # Xom forl=m=ow (m, 0,0)
P # M} forl1=n<w (0, n, 0)

P#HX # M, forlsn=ow (1, n,0)
P#Xom # M, forl=mn=<owo (m,n,0)
P # X5, forl=sn<w (n,n 1)

Here P=M_# - - # M. # M # - -#M, (s times M,) with prime powers
ki,...,k, and r,s=0 (if r=s=0, then P=S°).

Proof. Replacing the model spaces by their systems of invariants and using
2.2, this reduces to an easy algebraic exercise. Any system of invariants splits as a
direct sum I =1I'+1", where I' has a free and I" a finite group. I’ is a direct sum of
copies of S, T, and T%, and I" is a direct sum of the other generators in Section
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9. In both cases it depends on (i, j, k) which summands can occur. Using this and
the obvious isomorphisms (n =2 even)

SL+T,=SL+T,
SL+S,=8SL+8,
T.+T.,=S.+T,
To+T,=S.+T,
T+ T.=T_,+S.

one gets the list above. It is complete since it members have different invariants
(i, j, k) or different second homology group.

Remarks. (a) The summands in the list above are all indecomposable in the
semigroup OHP?, except X,: we have X,=X_, # X_,, since obviously T,=
T_,+T_;.

(b) Here is an example for the importance of the linking order: the spaces
X! # M, and X, # M’ (n=2 even) have the same second homology group, the
same Stiefel-Whitney order and the same exotic order, but they have different
linking order.

(c) Our notation differs from that in [1]: the spaces M,- and X,. are denoted
by M, and X,, respectively, in [1].

REFERENCES

[1] D. BARDEN, Simply connected five-munifolds, Annals of Math. 82 (1965) 365-385.
[2] W. BROWDER, Surgery on simply connected manifolds, Ergebn. Math. Band 65, Springer Verlag
Berlin-Heidelberg-New York (1972).
[3] J. M. BOARDMAN and B. STEER, On Hopf invariants, Comment. Math. Helv. 42 (1967) 180-221.
[4] A. DoLD, Lectures on Algebraic Topology, Grundl. Math. Wiss. Band 200, Springer Verlag
Berlin-Heidelberg-New York (1972).
[5] S. GrTLER and J. STASHEFF, The first exotic class of BF, Topology 4 (1965) 257-266.
[6] U. HaNuscH, Einfach-zusammenhdngende Poincaré-Komplexe der Dimension S, Dissertation
Frankfurt (Main) (1968).
[7] P. J. HiLTON, Calculation of the homotopy groups of A2-polyhedra II, Quart. J. Math. Oxford 2
(1951) 228-240.
[8] 1. M. JAMES, On the homotopy groups of certain pairs and triads, Quart. J. Math. Oxford 5 (1954)
260-270.
[9] I. M. JAMES and J. H. C. WHITEHEAD, The homotopy theory of sphere bundles over spheres, Proc.
London Math. Soc. 4 (1954) 196-218.
[10] I. MADSEN and R. J. MILGRAM, The classifying spaces for surgery and cobordism of manifolds,
Annals of Math. Studies 92, Princeton University Press (1979).
[11] G. F. PAECHTER, The groups w,(V, ) I, Quart. J. Math. Oxford 7 (1956) 249-268.
[12] M. Spivak, Spaces satisfying Poincaré duality, Topology 6 (1967) 77-101.



510 RALPH STOCKER

[13] R. STOCKER, Zur Topologie der Poincaré-Rdiume, Habilitationsschrift Bochum (1974).

[14] R. STOCKER, Thom complexes, Hopf invariants and Poincaré duality spaces, To appear.

[15] R. STOCKER, On a theorem of Barden, To appear in Math. Z.

[16] G. W. WHITEHEAD, Elements of homotopy theory, Graduate Texts in Math. Band 61, Springer
Verlag Berlin-Heidelberg-New York (1978).

[17] C. T. C. WALL, Killing the middle homotopy group of odd-dimensional manifolds, Trans. Amer.
Math. Soc. 103 (1962) 421-433.

[18] C. WisseMANN-HARTMANN, Spherical fibrations and manifolds, Math. Z. 177 (1981) 187-192.

Abteilung fiir Mathematik
Ruhr-Universitdt Bochum
D 463 Bochum

Received July 27, 1981/June 25, 1982



	On the structure of 5-dimensional Poincaré duality spaces.

