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Equivalence élémentaire entre groupes finis-par-abéliens
de type fini

Francis OGER

1. Introduction

Notre étude trouve son origine dans I’article [M], o Guido Mislin a donné, en
1974, une famille d’exemples de deux groupes G et H, nilpotents de classe 2, de
type fini, a groupes dérivés finis, non isomorphes, qui vérifient GXZ=HXZ.
(Rappelons qu’un groupe est dit de type fini s’il admet un syst®me fini de
générateurs.)

Les exemples de Mislin ont été repris par Warfield dans [W] (théoréme 5.9 et
exemple 8.16).

Dés 1971, Zil’ber, dans [Z], a étudié un de ces exemples, selon une perspec-
tive différente. I1 a montré que les groupes considérés sont élémentairement
€quivalents. (Les groupes G et H sont élémentairement équivalents — ce que nous
noterons par G = H -si toute formule ¢ du calcul des prédicats du premier ordre
qui est valable dans I’'un des deux groupes est aussi valable dans I'autre: Gk ¢ si
et seulement si HE ¢.)

Le résultat de Zil’ber parait par la suite avoir été plus ou moins oublié.
Personne ne semble s’en étre inspiré; I'auteur du présent article n’en a eu
connaissance que récemment.

Dans notre article, I’équivalence des propriétés GXZ=HXZ et “G=H" est
prouvée pour les groupes finis-par-abéliens de type fini, et donc, en particulier,
pour les exemples de Mislin.

On montre dans [W1] que, pour les groupes finis-par-abéliens de type fini, la
propriété GxZ = HXZ est équivalente 2 “G et H ont les mémes images finies”,
ou encore, d’aprés [GPS], a2 “G et H ont la méme complétion profinie”.

L’idée principale de notre étude consiste a comparer les extensions
€lémentaires “suffisamment” saturées des groupes que nous considérons aux
complétions profinies de ces groupes.

On trouvera dans [CK] les définitions et les résultats de théorie des modéles
utilisés ici. Pour la théorie des groupes, on se reportera a2 [W] et [R].

Les résultats démontrés dans cet article étant susceptibles d’étre étendus, nous
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470 FRANCIS OGER

présentons toutes les propriétés intermédiaires sous une forme aussi générale que
possible.
Un résumé de cet exposé figure dans [O1].

II Résultats préliminaires

1. Groupes polycycliques-par-finis

Dans cette partie, la plupart des résultats seront donnés sans démonstration.
Le lecteur trouvera dans [GPS] d’utiles précisions.

PROPOSITION 2.1. Soit G un groupe polycyclique-par-fini. Pour tout entier k,
G/G* est fini. De plus, il existe, pour tout entier k, un entier n(k) tel que tout
élément de G* s’écrive x%. .. xkq, avec x, ..., x4 €G.

Démonstration. 11 nous suffit d’établir, pour les groupes polycycliques-par-
finis, la propriété (P): ‘“Pour tout entier k, il existe des entiers n(k) et r(k) et des
éléments a;,...,a,uy de G tels que tout élément de G soit de la forme

k k »
a,-'xl...xn(k) .

Les groupes finis et les groupes cycliques vérifient la propriété (P).

Le lecteur montrera aisément que si le groupe G est extension du groupe H
par le groupe K, H et K vérifiant la propriété (P), alors G vérifie aussi la

propriété (P).

On trouve dans [GPS] la définition de la topologie profinie et de la complétion
profinie G d’un groupe polycyclique-par-fini G.

[GPS] établit que deux groupes polycycliques-par-finis ont la méme
complétion profinie ssi ils ont les mémes images finies, et que toute classe de
groupes polycycliques-par-finis ayant la méme complétion profinie est réunion
d’un nombre fini de classes d’isomorphisme. Cette dernicre propriété généralise
des résultats de [P1] et [P2].

[GPS] exprime aussi G comme limite projective:

G =1im {G/G* | k e N*}=1im {G/G™' | n e N*}
Enfin, [GPS] montre, a la Proposition 2.1, que la topologie de AGA en tant que

complétion de G coincide avec la topologie profinie, définie sur G.
On a, évidemment, [),.n G™' ={1}.
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2. Groupes finis-par-nilpotents de type fini

Si G est un tel groupe, la suite centrale descendante (I';(G));n+ €St station-
naire; on peut donc définir, en la raffinant, une suite décroissante (G;);<;<n.; de
sous-groupes de G pour laquelle:

(a) G,=G et G, est fini
(b) pour 1<i<n, [G, G]]<G,,,
(c) pour 1<isn, G;/G;,, est cyclique.
A chaque entier 1<<i<n, on associe, alors, un entier r; qui vaut 1 si G;/G;
est infini et |G;/G;,4| sinon. On note r=|G,.,|.

PROPOSITION 2.2. Un groupe fini-par-nilpotent de type fini G est
polycylique-par-fini.

Démonstration. G est poly-(cyclique ou fini), d’aprés ce que nous venons de
voir, et donc polycyclique-par-fini (voir [R] page 65).

PROPOSITION 2.3. Soit G un groupe fini-par-nilpotent de type fini. Avec les
notations que nous venons d’introduire, si x est un élément de G et k un entier,

Hye G|y =xY<r...1,
Cette propriété reste vraie pour tout groupe élémentairement équivalent a G.

Démonstration. Choisir un élément y tel que y* = x, c’est préciser successive-
ment ses classes modulo G4, ..., G,.q, {1}

Si 1<i<n, la classe de y modulo G; étant donnée, on a, au plus, r; choix
possibles pour la classe de y modulo G,,: si x=y*=(ay)* avec a€ G, on a,
modulo G,,,, y* =(ay)*=a*y*, d’ou a*=1. Or, {a € G/G,,,| a* = 1} comporte,
au plus, r; éléments.

La classe de y modulo G, ., étant donnée, on a, au plus, |G, .| choix possibles
pour y.

COROLLAIRE 2.4. Si G est un groupe fini-par-nilpotent de type fini, I’en-
semble t(G) des éléments de torsion de G est un groupe fini.

Démonstration. D’aprés le théoréme 3.25 de [W], 'ensemble des éléments de
torsion d’un groupe nilpotent est un sous-groupe. Cette propriété passe naturelle-
ment aux groupes finis par-nilpotents.
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D’autre part, avec les notations de la Proposition 2.3, pour tout entier k,
Hye G| y*=1}=<r,---r, - r 1l existe donc un entier k tel que, pour tout entier I,
{yeG|y'=1}c{yeG|y*=1}. On a alors: t(G)={yeG|y*=1}, dou le
résultat.

PROPOSITION 2.5. Soit G un groupe fini-par-nilpotent de type fini. Pour tout
entier | =1, il existe un entier k =1 tel que tout élément de G* soit de la forme x'
avec x € G.

Démonstration. Soit ¢ un entier pour lequel I'.,,(G) est fini. Puisque
Nnen G™ ={1}, il existe un entier n=1 pour lequel G"NTI_ ,(G)={1}. Le
groupe G" est alors nilpotent de classe c.

D’aprés le lemme 2 de [Ma], tout élément de (G™)" est de la forme x' avec
x € G". Ainsi, 'entier k =n - I° est tel que tout élément de G* < (G")" est de la
forme x' avec x€ G.

III. Groupes polycycliques-par-finis

On consideére, ici, un groupe polycyclique-par-fini G et une extension
élémentaire S de G.

On définit le sous-groupe Eg des x€ S qui sont tels que, pour tout entier
n =1, il existe un entier k et des éléments a,,..., a, de S tels que x=a? - ay;

ES = ﬂneN* Sn'
D’aprés la Proposition 2.1, il existe, pour tout entier k, un entier N, tel que
tout élément de G* s’écrive: a% - - ak, avec a,,...,an €G. Les entiers N,

seront fixés pour le présent chapitre.

LEMME 3.1. Pour tout entier k, tout élément de S* s’écrit sous la forme

x¥ .- xk avec xy,...,xy €S.

Démonstration. Pour tout entier n, G vérifie I’énoncé:
(VO)[@x, - - Ax)(x=x5 - - x5) = @xy - - - Ixn )X = x5 - - x%)];

donc, S vérifie ce méme énoncé quel que soit n. D’ou le lemme.

PROPOSITION 3.2. Eg est un sous-groupe caractéristique de S. D’autre part,
Es N G - {1}.
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Démonstration du second résultat. Soit x € G N Eg. Pour prouver que x =1, il
suffit d’établir que x € G* pour tout entier k.

Pour tout entier k, x€ S* et donc il existe un entier n et des éléments
a,,...,a, de S tels que x=at - ak

De SE@x, - - 3x,)(x=x¥---x¥), on déduit GE@x; - - - Ix, N x=x5---x}),

d’ou le résultat cherché.

DEFINITION. Une extension élémentaire de G est dite G-saturée ssi elle
réalise tous les 1-types a paramétres dans G.

THEOREME 3.3. Si S est G-saturée, alors S/E; est isomorphe a la complétion
profinie G de G.

Démonstration. On définit I'isomorphisme comme suit:

A chaque x € G, on associe une suite d’éléments de G, (x,)nen, tendant vers x
dans G, telle que, pour tout entier n et tout entier p=n, x, - x;'e G".

On note 3,(v) ’ensemble constitué par les formules & une variable v a
parametres dans G:

(Fuy - - - Jun v =x, ut' -+ ul).

Tout sous-ensemble fini de ¥, est satisfaisable dans G, donc, 3, est satisfaisa-
ble dans ’extension G-saturée S de G.

Soit y€ S tel que SEX3. (y).

Pour tout z€ S, SE3, (z) ssi, pour tout entier n, z€ S™ - y; donc, pour tout
z€ S, SE3, (z) ssiy-z 'eE;,.

On note f I’application obtenue en associant a tout élément x de G 1la classe
modulo Eg des ye S qui vérifient SE3, (y).

I1 convient, tout d’abord, d’observer que la classe associée a chaque élément x

de G ne dépend pas de la suite (x,),cn choisie.
Soient (x, ),,GN et (x.),.n deux suites, dans G, qui tendent vers le méme
élément x de G, et qui sont telles que, pour tout entier n et tout entier p=n,

x,x, e G™ et x,x,7'e G™.
(x,X7 Y,en tend vers 1 dans G et donc aussi dans G.

Pour tout entier n, il existe, par conséquent, un entier k=n tel que x, x} le
G™. 1l en résulte que x,x.'= (XX )(xeXr (xnxi ") e G™.
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Ainsi, dans toute extension élémentaire de G,
(Fu, - - - Juy ) o=2x, - ul'- - uy)

équivaut a
(Buy -+ - Jun No=x, - ul' - ul).

On achéve la démonstration du Théoréme 3.3 en établissant successivement
trois lemmes:

LEMME 3.3.1. f est un homomorphisme de groupes.

Démonstration. On considére deux éléments x,x' de G avec des suites
associées (x,)nen €t (X,)ncn définies comme précédemment. x,x, tend vers xx'.

De plus, pour tout n et tout p>n, a =x,x,”' € G™, donc, il existe b e G™' tel
que x,a=bx,, dol (x,x,)(x,x,)""'=x.%x.%, 'x;'=x,ax," =bx,x, € G": Ainsi,
(XX, nen €St associé a xx'.

Soient y, y’ des représentants dans S de f(x), f(x"). Nous devons montrer que
yy' est un représentant de f(xx’) dans S.

Pour tout entier n,yex, - S*' et y'ex, - S™ et comme S"' est normal dans
S, yy'€ x,x, - S™'. Le Lemme 3.1 donne, alors, le résultat cherché.

LEMME 3.3.2. f est injective.

Démonstration. Pour la démonstration des Lemmes 3.3.2 et 3.3.3, nous note-
rons Y. (x, y) la formule:

Quy - - Juy )y =xul' - ukl).

Dans G, cette formule équivaut 3 xy~ '€ G*'. Dans S, d’aprés le Lemme 3.1,
elle équivaut a xy e S*".

Pour montrer le Lemme 3.3.2, on considére un élément x de G qui est tel que
f(x)=1.

On se donne, comme précédemment, une suite (x,),.n associée a x.

Pour tout n, du fait que f(x)=1,

SEY,.(1,x,), etdonc GEY,(1,x,).

Par conséquent, pour tout n, x, € G, et x=1.
n



Equivalence élémentaire entre groupes finis-par-abéliens 475

LEMME 3.3.3. f est surjective.

Démonstration. A chaque élément y de S, nous allons associer une suite
(X4)nen d’é1éments de G telle que, pour tout n, SE,(x,, y).

Nous aurons, alors, nécessairement, pour tout n et pour tout p>n, Sk
¢, (x,, x,) et donc GEY,(x,, x,). )

Ainsi, (x,),cn convergera dans G vers un élément x qui vérifiera f(x)=y.

Il reste a établir I’existence des x,,.

Nous devons prouver que, pour tout y € S et tout entier k, il existe un élément
x € G tel que SEY(x, y).

G/G*' est fini, donc, il existe un entier r tel que

GE@x, - ax,>[ A G x) AR XDV - - v x,»]

I=si<j<r
S vérifie ce méme énoncé, donc, il existe: x,,..., x, dans G tels que tout x
dans G soit équivalent a un et un seul des x; modulo G*', y,,...,y, dans S tels

que tout x dans S soit équivalent 3 un et un seul des y; modulo S*'.

Chaque x; est équivalent & un et un seul y, modulo S*'.

Pour établir que tout élément de S est équivalent 4 un x; modulo S*', il nous
suffit donc de voir que, pour i# j, xx;'¢ S .

Or, pour i#j, S ne peut pas vérifier la formule 4 (x;, x;) puisque G ne la
vérifie pas.

COROLLAIRE 3.4. Soient G, H deux groupes polycycliques-par-finis, S une
extension élémentaire G-saturée de G, et T une extension élémentaire H-saturée de
H. Si f:S — T est un isomorphisme, la restriction de f a Eg est un isomorphisme de
Eg vers Er, et f induit par passage au quotient un isomorphisme de G vers A

Démonstration. 11 résulte de la définition de Eg et de E; que f(Es) est contenu
dans E; et f"'(Ey) dans Eg. Donc, la restriction de f a Eg est un isomorphisme de
Eg vers Er. )

Par passage au quotient, f induit un isomorphisme de G=S/Eg vers H=
T/E.

Remarque. 1l résulte de ce corollaire que deux groupes polycycliques-par-finis
élémentairement équivalents ont des complétions profinies isomorphes. Ils ont,
alors, les mémes images finies d’aprés le corollaire 2.3 de [GPS].

Ainsi, conformément au théoréme donné dans I'introduction de [GPS], toute
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classe de groupes polycycliques-par-finis élémentairement équivalents est obtenue
par la réunion d’un nombre fini de classes d’isomorphisme.

IV. Groupes finis-par-nilpotents

THEOREME 4.1. Soient G un groupe fini-par-nilpotent de type fini et S une
extension élémentaire de G. Pour tout entier n=1, tout élément de Eg admet dans
Eg une racine n-iéme et une seule (un groupe possédant cette propriété sera dit
radicable avec unicité).

Démonstration. D’aprés la Proposition 3.2, ENt(G)={1}. Ainsi, Eg est un
groupe nilpotent sans torsion. Il résulte alors du théoréme 4.10 de [W] que, pour
tout entier k =1, lapplication x — x* est injective dans Eg,

Nous allons, maintenant, démontrer la surjectivité de cette application.

Si G est tel que, pour deux entiers k, [, tout élément de G* soit de la forme x/,
alors, pour tout entier r, G vérifie ’énoncé:

(V)[(Fx; -+ x)(x=xF- - %) —> Fy)(x = y")].
Comme S vérifie les mémes énoncés que G, tout élément de S* est de la forme x'
avec x€ S.

Il résulte, maintenant, de la Proposition 2.5, que, quel que soit ’entier / =1, tout
élément de Eg= (. cn+ S* s’écrit sous la forme x' avec x€S.

Soient k=1 un entier et x un élément de Egs. D’aprés la Proposition 2.3,
{yeS|y*=x} est fini. On note vy, ...,y les éléments de cet ensemble.

On choisit, d’autre part, pour tout entier [, un élément x, de S tel que x; "' = x.

Chaque x}' est égal a I'un des éléments y,,...,Y,. Donc, il existe un i€
{1,...r} tel que {IeN|x}'=y,} soit infini; pour cet i, y;€ () ;en+ S' = Es.

Ceci montre que x admet une racine k-ieme dans Ej.

On trouve dans [GS] des exemples de groupes nilpotents de classe 2, sans
torsion, de type fini, non isomorphes, qui ont les mémes images finies.

D’aprés le théoréme 3 de [H2], si G et H sont deux des groupes considérés
dans n’importe lequel de ces exemples, G et H ne peuvent vérifier GXZ=HXZ.

Il n’existe pas, non plus, un entier n=1 tel que X"G = X"H, puisque cette
propriété impliquerait GXZ=H xZ d’aprés [H3] (voir aussi [H1] pour la
réciproque de cette implication).

D’autre part, on montre dans [O2] que G et H ne sont jamais
élémentairement équivalents.

On établira cependant au chapitre V que deux groupes finis-par-abéliens de
type fini qui ont les mémes images finies sont élémentairement équivalents.
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V. Caractérisation algébrique de I'équivalence élémentaire pour les groupes finis-
par-abéliens de type fini

Dans ce chapitre, G est un groupe fini-par-abélien de type fini et S une
extension élémentaire G-saturée de G.

La proposition suivante reprend, pour I’essentiel, un résultat classique de P.
Hall (cf. [W] page 12).

PROPOSITION 5.1. G/Z(G) et S/Z(S) sont des groupes finis isomorphes.

Démonstration: Z(G) et Z(S) sont définis par la formule (Vy)(xy = yx). Ainsi,
G/Z(G) et S/Z(S) sont élémentairement équivalents, donc isomorphes puisque
G/Z(G) est fini.

PROPOSITION 5.2. Eg est contenu dans le centre de S.

Démonstration. Sinon, Eg/(Es N Z(S)) serait non trivial, fini d’apres la Proposi-
tion 5.1, et radicable, puisque Eg I’est conformément au Théoreme 4.1, ce qui
serait absurde.

THEOREME 5.3. Il existe un sous-groupe K de S tel que G < K, K N Eg = {1},
et (K, Eg)=S; il est possible de définir un isomorphisme de S sur G X Eg qui fixe les
points de Eg et ceux de G et envoie K sur G.

Démonstration. Compte tenu de ce qui précede, nous savons déja que Eg est
dans le centre de S et que Es N G ={1}. Nous avons construit un isomorphisme de
G vers S/Es qui laisse fixes les éléments de G. D’autre part, Eg est radicable
d’aprés le Théoréme 4.1. Le Théoréme 5.3 résulte alors du lemme suivant:

LEMME 5.3.1. Soit M un groupe tel que M/t(M) est abélien; soit R un
sous-groupe radicable de M, contenu dans le centre de M, et tel que RN t(M) ={1};
soit N un sous-groupe de M, contenant t(M), et tel que NN R ={1}. 1l existe un
sous-groupe P de M qui contient N et pour lequel il y a un isomorphisme
f:RX(M/R)—> M tel que f| R = idg, f(M/R)=P et f(x)=x pour tout x € N.

Un tel P sera dit supplémentaire de R dans M.

Démonstration. L’existence, dans M/t(M), d’un supplémentaire T de R qui
contient N/t(M) résulte du théoréme 2 de [K] et de sa démonstration.
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L’image réciproque de T par ’homomorphisme canonique de M vers M/t(M)
est un supplémentaire de R dans M.

PROPOSITION 5.4. Eg est muni naturellement d’une structure d’espace vec-
toriel sur Q.

Démonstration. Un groupe abélien divisible avec unicité est muni naturelle-
ment d’une structure d’espace vectoriel sur Q.

THEOREME 5.5 Pour des groupes finis-par-abéliens de type fini G et H, les
propriétés suivantes sont équivalentes:

1. G et H ont les mémes images finies.

G/G"™ = H/H" pour tout entier n=1.

Il existe un entier n=1 tel que X"G = xX"H.

GXZ=HXZ.

Il existe un groupe L, tel que L/L" est fini pour tout entier n = 1, et pour lequel
GxXxL=HXL.

G=H.

. G et H sont élémentairement équivalents.

-l ol

~

Démonstration. L’équivalence des propriétés 1.,2.,3.,4.,5.,6. résulte des
théorémes 1.2 et 2.1 de [W1].

7. 6. découle de la remarque qui suit le Corollaire 3.4.

Afin de prouver 6. = 7., on établit que, pour tout ultrafiltre N,-incomplet u
sur N, G*= H"

On peut, évidemment, supposer que G et H sont infinis.

Compte tenu du Théoreme 5.3, il nous suffit de démontrer que G=H et
Eg.=Ey..

G =H est vrai par hypothése.

D’aprés la Proposition 5.4, les groupes Eg« et Ey. sont munis naturellement
de structures d’espaces vectoriels sur Q.

Nous devons montrer que ces espaces vectoriels ont méme dimension. Or, la
dimension d’un espace vectoriel non dénombrable sur Q est égale a son cardinal.

Il suffit donc de démontrer que Eg. et Ey. ont méme cardinal non
dénombrable:

LEMME 5.5.1. Eg. et Ey. ont méme cardinal que N*. Ce cardinal est égal a
2%,
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Démonstration. (pour Eg.) Eg. est contenu dans G* qui est équipotent 2 N*
puisque G est dénombrable.

Il reste a définir une injection de N* dans Eg.. Pour cela, on se donne un
élément x de G-t(G), et on associe a chaque suite (a,),.n de NN la suite
(x*"™),en dans GN. L’injection de N* dans Es. est obtenue par passage au
quotient.

COROLLAIRE 5.6. Les exemples de groupes de type fini ayant les mémes
images finies considérés dans [Ba] (page 249), [Br], [D] (page 146) et [M] sont des
exemples de groupes élémentairement équivalents.
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