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Equivalence élémentaire entre groupes finis-par-abéliens
de type fini

Francis Oger

I. Introduction

Notre étude trouve son origine dans l&apos;article [M], où Guido Mislin a donné, en
1974, une famille d&apos;exemples de deux groupes G et H, nilpotents de classe 2, de

type fini, à groupes dérivés finis, non isomorphes, qui vérifient GxZ HxZ.
(Rappelons qu&apos;un groupe est dit de type fini s&apos;il admet un système fini de
générateurs.)

Les exemples de Mislin ont été repris par Warfield dans [W] (théorème 5.9 et
exemple 8.16).

Dès 1971, Zil&apos;ber, dans [Z], a étudié un de ces exemples, selon une perspective

différente. Il a montré que les groupes considérés sont élémentairement
équivalents. (Les groupes G et H sont élémentairement équivalents - ce que nous
noterons par G s» H - si toute formule &lt;/&gt; du calcul des prédicats du premier ordre
qui est valable dans l&apos;un des deux groupes est aussi valable dans l&apos;autre: G\=&lt;f) si

et seulement si H !=&lt;/&gt;.)

Le résultat de Zil&apos;ber paraît par la suite avoir été plus ou moins oublié.
Personne ne semble s&apos;en être inspiré; l&apos;auteur du présent article n&apos;en a eu
connaissance que récemment.

Dans notre article, l&apos;équivalence des propriétés GxZ=HxZ et &quot;G=e H&quot; est

prouvée pour les groupes finis-par-abéliens de type fini, et donc, en particulier,
pour les exemples de Mislin.

On montre dans [Wl] que, pour les groupes finis-par-abéliens de type fini, la

propriété GxZ HxZ est équivalente à &quot;G et H ont les mêmes images finies&quot;,

ou encore, d&apos;après [GPS], à &quot;G et H ont la même complétion profinie&quot;.

L&apos;idée principale de notre étude consiste à comparer les extensions
élémentaires &quot;suffisamment&quot; saturées des groupes que nous considérons aux
complétions profinies de ces groupes.

On trouvera dans [CK] les définitions et les résultats de théorie des modèles
utilisés ici. Pour la théorie des groupes, on se reportera à [W] et [R].

Les résultats démontrés dans cet article étant susceptibles d&apos;être étendus, nous
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470 FRANCIS OGER

présentons toutes les propriétés intermédiaires sous une forme aussi générale que
possible.

Un résumé de cet exposé figure dans [Ol].

II Résultats préliminaires

1. Groupes polycycliques-par-finis

Dans cette partie, la plupart des résultats seront donnés sans démonstration.
Le lecteur trouvera dans [GPS] d&apos;utiles précisions.

PROPOSITION 2.1. Soit G un groupe polycyclique-par-fini. Pour tout entier k,

G/Gk est fini. De plus, il existe, pour tout entier k, un entier n(k) tel que tout
élément de Gk s&apos;écrive xk... x£(k) avec xu xn(k) e G.

Démonstration. Il nous suffit d&apos;établir, pour les groupes polycycliques-par-
finis, la propriété (P): &quot;Pour tout entier k, il existe des entiers n(k) et r(fc) et des

éléments au..., ar(k) de G tels que tout élément de G soit de la forme

„ vfc vk ilax Xi... An(k)
Les groupes finis et les groupes cycliques vérifient la propriété (P).
Le lecteur montrera aisément que si le groupe G est extension du groupe H

par le groupe K, H et K vérifiant la propriété (P), alors G vérifie aussi la

propriété (P).

On trouve dans [GPS] la définition de la topologie profinie et de la complétion
profinie G d&apos;un groupe polycyclique-par-fini G.

[GPS] établit que deux groupes polycycliques-par-finis ont la même

complétion profinie ssi ils ont les mêmes images finies, et que toute classe de

groupes polycycliques-par-finis ayant la même complétion profinie est réunion
d&apos;un nombre fini de classes d&apos;isomorphisme. Cette dernière propriété généralise
des résultats de [PI] et [P2].

[GPS] exprime aussi G comme limite projective:

Enfin, [GPS] montre, à la Proposition 2.1, que la topologie de G en tant que
complétion de G coincide avec la topologie profinie, définie sur G.

On a, évidemment, PUn* Gnf {l}.
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2. Groupes finis-par-nilpotents de type fini

Si G est un tel groupe, la suite centrale descendante (r,(G))ieN* est station-
naire; on peut donc définir, en la raffinant, une suite décroissante (Gl)l3S:l^n+l de

sous-groupes de G pour laquelle:

(a) G1 G et Gn+1 est fini
(b) pour l^i^n, [G,GJcGI+1
(c) pour l^i^n, GJGl+l est cyclique.

A chaque entier l^i^n, on associe, alors, un entier r, qui vaut 1 si GJGl+1
est infini et |Gt/Gl+1| sinon. On note r=|Gn+1|.

PROPOSITION 2.2. Un groupe fini-par-nilpotent de type fini G est

polycylique-par-fini.

Démonstration. G est poly-(cyclique ou fini), d&apos;après ce que nous venons de

voir, et donc polycyclique-par-fini (voir [R] page 65).

PROPOSITION 2.3. Soit G un groupe fini-par-nilpotent de type fini. Avec les

notations que nous venons d&apos;introduire, si x est un élément de G et k un entier,

Cette propriété reste vraie pour tout groupe élémentairement équivalent à G.

Démonstration. Choisir un élément y tel que yk x, c&apos;est préciser successivement

ses classes modulo Gl5..., Gn+1, {1}.
Si 1^/^n, la classe de y modulo G, étant donnée, on a, au plus, rt choix

possibles pour la classe de y modulo GI+1: si x yk (ay)k avec aeGt, on a,

modulo Gï+1, yk (ay)fc « akyk, d&apos;où ak « 1. Or, {a e GJGl+1 \ ak 1} comporte,
au plus, rx éléments.

La classe de y modulo Gn+1 étant donnée, on a, au plus, |Gn+1| choix possibles

pour y.

COROLLAIRE 2.4. Si G est un groupe fini-par-nilpotent de type fini, Ven-

semble t(G) des éléments de torsion de G est un groupe fini.

Démonstration. D&apos;après le théorème 3.25 de [W], l&apos;ensemble des éléments de

torsion d&apos;un groupe nilpotent est un sous-groupe. Cette propriété passe naturellement

aux groupes finis par-nilpotents.
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D&apos;autre part, avec les notations de la Proposition 2.3, pour tout entier k,

|{y e G \ yk 1}| ^ rx • • • rn • r. Il existe donc un entier fc tel que, pour tout entier /,

{yeG|y&apos; l}c:{yeG|yk l}. On a alors: t(G) {y e G \ yk 1}, d&apos;où le
résultat.

PROPOSITION 2.5. Soit G un groupe fini-par-nilpotent de type fini. Pour tout
entier 1^1, il existe un entier k ^ 1 tel que tout élément de Gk soit de la forme xl
avec xeG.

Démonstration. Soit c un entier pour lequel JTC+1(G) est fini. Puisque
fln€N*Gn {l}, il existe un entier n^l pour lequel Gn nFc+1(G) {l}. Le

groupe Gn est alors nilpotent de classe c.

D&apos;après le lemme 2 de [Ma], tout élément de (Gn)jc est de la forme xl avec

x e Gn. Ainsi, l&apos;entier fc n • Ie est tel que tout élément de Gk c (Gn)&apos;c est de la
forme xl avec xeG.

TH. Groupes polycyciiques-par-finis

On considère, ici, un groupe polycyclique-par-fini G et une extension
élémentaire S de G.

On définit le sous-groupe Es des xeS qui sont tels que, pour tout entier
n ^ 1, il existe un entier k et des éléments au ak de S tels que x a&quot; • • • a£;
-Es MneN* S&quot;.

D&apos;après la Proposition 2.1, il existe, pour tout entier k, un entier Nk, tel que
tout élément de Gk s&apos;écrive: a\ - • • a%k avec al9..., aNk e G. Les entiers Nk
seront fixés pour le présent chapitre.

LEMME 3.1. Pour tout entier fc, tout élément de Sk s&apos;écrit sous la forme

x\ ••• x%k avec xu...,xNkeS.

Démonstration. Pour tout entier n, G vérifie l&apos;énoncé:

donc, S vérifie ce même énoncé quel que soit n. D&apos;où le lemme.

PROPOSITION 3.2. Es est un spus-groupe caractéristique de S. D&apos;autre part,
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Démonstration du second résultat. Soit xe GDES. Pour prouver que x 1, il
suffit d&apos;établir que x e Gk pour tout entier k.

Pour tout entier fc, xeSk, et donc il existe un entier n et des éléments

au an de S tels que x ak • • • ak.

De Sh(3*i • &apos; * 3*n)(jc xj • • • x*), on déduit GH3*i • • • 3jcJ(x xf • • • x*),
d&apos;où le résultat cherché.

DÉFINITION. Une extension élémentaire de G est dite G-saturée ssi elle
réalise tous les l-types à paramètres dans G.

THÉORÈME 3.3. Si S est G-saturée, alors S/Es est isomorphe à la complétion
profinie G de G.

Démonstration. On définit l&apos;isomorphisme comme suit:

A chaque xe G, on associe une suite d&apos;éléments de G, (xn)neN, tendant vers x
dans G, telle que, pour tout entier n et tout entier p^n, xn • x~le Gn!.

On note Xx(v) l&apos;ensemble constitué par les formules à une variable v à

paramètres dans G:

Tout sous-ensemble fini de Xx est satisfaisable dans G, donc, Xx est satisfaisa-
ble dans l&apos;extension G-saturée S de G.

Soit yeS tel que Sh2x(y).
Pour tout zeS, SfcZx(z) ssi, pour tout entier n, zeSni - y; donc, pour tout

zeS,St2x(z) ssi y • z^eEg.
On note / l&apos;application obtenue en associant à tout élément x de G la classe

modulo Es des yeS qui vérifient S\=2x(y).

Il convient, tout d&apos;abord, d&apos;observer que la classe associée à chaque élément x
de G ne dépend pas de la suite (xn)neN choisie.

Soient (xn)neN et (x^)neN deux suites, dans G, qui tendent vers le même

élément x de G, et qui sont telles que, pour tout entier n et tout entier p^n,

xnx-xeGnr et x^eG&quot;1.

(vi~1)n€N tend vers 1 dans G et donc aussi dans G.

Pour tout entier n, il existe, par conséquent, un entier fcs* n tel que xkxÇxe
Gn\ II en résulte que x^-MWV
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Ainsi, dans toute extension élémentaire de G,

équivaut à

On achève la démonstration du Théorème 3.3 en établissant successivement
trois lemmes:

LEMME 3.3.1. f est un homomorphisme de groupes.

Démonstration. On considère deux éléments x, x&apos; de G avec des suites
associées (xn)neN et (x^)neN définies comme précédemment. xnx&apos;n tend vers xxf.

De plus, pour tout n et tout p &gt; n, a x^Cp1 £ Gn\ donc, il existe b e Gn&apos; tel

que xna bxn, d&apos;où (xn*n)( V^)&quot;&quot;1 xn^&apos;P~1^ ^ax&apos;1 bxnx~1 e Gn1 : Ainsi,
(XnX&apos;n)«€N est associé à xx1.

Soient y, y&apos; des représentants dans S de f(x), f(x&apos;). Nous devons montrer que
yy&apos; est un représentant de f(xx&apos;) dans S.

Pour tout entier n,yexn- Sn&apos; et y&apos;ex&apos;n- Sn&apos; et comme Sn&apos; est normal dans
S, yy&apos;exnx&apos;n- Sn\ Le Lemme 3.1 donne, alors, le résultat cherché.

LEMME 3.3.2. / est injective.

Démonstration. Pour la démonstration des Lemmes 3.3.2 et 3.3.3, nous noterons

«M*, y) la formule:

Dans G, cette formule équivaut à xy~1£ Gk\ Dans S, d&apos;après le Lemme 3.1,
elle équivaut à xy~1GSfcf.

Pour montrer le Lemme 3.3.2, on considère un élément x de G qui est tel que
/(x) l.

On se donne, comme précédemment, une suite (xn)neN associée à x.

Pour tout n, du fait que f(x) 1,

^n(l,xn), et donc

Par conséquent, pour tout n,xneGn\ et x 1.
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LEMME 3.3.3. / est surjective.

Démonstration. A chaque élément y de S, nous allons associer une suite
(xJneN d&apos;éléments de G telle que, pour tout n, Sf=i/rn(xn, y).

Nous aurons, alors, nécessairement, pour tout n et pour tout p&gt;n, S\=

il&gt;n(xn, xp) et donc G N i/rn(xn, xp).

Ainsi, (xn)neN convergera dans G vers un élément x qui vérifiera /(x) y.

Il reste à établir l&apos;existence des xn.
Nous devons prouver que, pour tout y g S et tout entier fc, il existe un élément

xeG tel que SN^k(x, y).
GjGk} est fini, donc, il existe un entier r tel que

A
Kj^r

S vérifie ce même énoncé, donc, il existe: xl9..., xr dans G tels que tout x
dans G soit équivalent à un et un seul des xt modulo Gk!, yl9..., yr dans S tels

que tout x dans S soit équivalent à un et un seul des yt modulo Sk\
Chaque xt est équivalent à un et un seul y, modulo Sk\
Pour établir que tout élément de S est équivalent à un xt modulo Sk!, il nous

suffit donc de voir que, pour ifj, Jc,jcJ&quot;1^Sfc?.

Or, pour i^j, S ne peut pas vérifier la formule &lt;M*I5 */) puisque G ne la
vérifie pas.

COROLLAIRE 3.4. Soient G, H deux groupes polycycliques-par-finis, S une
extension élémentaire G-saturée de G, et T une extension élémentaire H-saturée de

H. Si f:S-+ T est un isomorphisme, la restriction de f à Es est un isomorphisme de

Es vers ET, et f induit par passage au quotient un isomorphisme de G vers H.

Démonstration. Il résulte de la définition de Es et de ET que f(Es) est contenu
dans ET et /&quot;1(ET) dans Es. Donc, la restriction de / à Es est un isomorphisme de

Es vers ET.
Par passage au quotient, / induit un isomorphisme de G S/ES vers H

T/ET.

Remarque. Il résulte de ce corollaire que deux groupes polycycliques-par-finis
élémentairement équivalents ont des complétions profinies isomorphes. Ils ont,
alors, les mêmes images finies d&apos;après le corollaire 2.3 de [GPS].

Ainsi, conformément au théorème donné dans l&apos;introduction de [GPS], toute
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classe de groupes polycycliques-par-finis élémentairement équivalents est obtenue

par la réunion d&apos;un nombre fini de classes d&apos;isomorphisme.

IV. Groupes finis-par-nilpotents

THÉORÈME 4.1. Soient G un groupe fini-par-nilpotent de type fini et S une
extension élémentaire de G. Pour tout entier ns* 1, tout élément de Es admet dans

Es une racine n-ième et une seule {un groupe possédant cette propriété sera dit
radicable avec unicité).

Démonstration. D&apos;après la Proposition 3.2, Esnt(G) {l}. Ainsi, Es est un

groupe nilpotent sans torsion. Il résulte alors du théorème 4.10 de [W] que, pour
tout entier fc ^ 1, l&apos;application x —&gt; xk est injective dans Es.

Nous allons, maintenant, démontrer la surjectivité de cette application.
Si G est tel que, pour deux entiers fc, /, tout élément de Gk soit de la forme x&apos;,

alors, pour tout entier r, G vérifie l&apos;énoncé:

(Vx)^ ¦ • • xr)(x xk - • • xk) -» (3y)(x y1)].

Comme S vérifie les mêmes énoncés que G, tout élément de Sk est de la forme x1

avec xeS.
Il résulte, maintenant, de la Proposition 2.5, que, quel que soit l&apos;entier / ^ 1, tout

élément de Es f|keN* Sk s&apos;écrit sous la forme x1 avec xeS.
Soient k^l un entier et x un élément de Es. D&apos;après la Proposition 2.3,

{y € S | yk x} est fini. On note yl5..., yr les éléments de cet ensemble.
On choisit, d&apos;autre part, pour tout entier l, un élément xx de S tel que xk v x.

Chaque xi&apos; est égal à l&apos;un des éléments yl9...,yr. Donc, il existe un ie
{1,... r} tel que {/ e N | x|&apos; y,} soit infini; pour cet i, yleÇ) IeN* S1 Es.

Ceci montre que x admet une racine fc-ième dans Es.

On trouve dans [GS] des exemples de groupes nilpotents de classe 2, sans

torsion, de type fini, non isomorphes, qui ont les mêmes images finies.
D&apos;après le théorème 3 de [H2], si G et H sont deux des groupes considérés

dans n&apos;importe lequel de ces exemples, G et H ne peuvent vérifier G x Z H x Z.
Il n&apos;existe pas, non plus, un entier n^l tel que xnG= xnH, puisque cette

propriété impliquerait Gx/sJfxZ d&apos;après [H3] (voir aussi [Hl] pour la

réciproque de cette implication).
D&apos;autre part, on montre dans [O2] que G et H ne sont jamais

élémentairement équivalents.
On établira cependant au chapitre V que deux groupes finis-par-abéliens de

type fini qui ont les mêmes images finies sont élémentairement équivalents.
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V. Caractérisation algébrique de l&apos;équivalence élémentaire pour les groupes finis-
par-abéliens de type fini

Dans ce chapitre, G est un groupe fini-par-abélien de type fini et S une
extension élémentaire G-saturée de G.

La proposition suivante reprend, pour l&apos;essentiel, un résultat classique de P.
Hall (cf. [W] page 12).

PROPOSITION 5.1. GIZ(G) et S/Z(S) sont des groupes finis isomorphes.

Démonstration: Z(G) et Z(S) sont définis par la formule (Vy)(xy yx). Ainsi,
G/Z(G) et S/Z(S) sont élémentairement équivalents, donc isomorphes puisque
GIZ(G) est fini.

PROPOSITION 5.2. Es est contenu dans le centre de S.

Démonstration. Sinon, ES/(ES H Z(S)) serait non trivial, fini d&apos;après la Proposition

5.1, et radicable, puisque Es Test conformément au Théorème 4.1, ce qui
serait absurde.

THÉORÈME 5.3. Il existe un sous-groupe K de S tel que G c X, KHES {1},
et (K, Es) S; il est possible de définir un isomorphisme de S sur G x Es qui fixe les

points de Es et ceux de G et envoie K sur G.

Démonstration. Compte tenu de ce qui précède, nous savons déjà que Es est
dans le centre de S et que EsflG {l}. Nous avons construit un isomorphisme de
G vers S/Es qui laisse fixes les éléments de G. D&apos;autre part, Es est radicable
d&apos;après le Théorème 4.1. Le Théorème 5.3 résulte alors du lemme suivant:

LEMME 5.3.1. Soit M un groupe tel que M/t(M) est abélien; soit R un

sous-groupe radicable de M, contenu dans le centre de M, et tel que R H f(M) {1};
soit N un sous-groupe de M, contenant f(M), et tel que NC\R {1}. Il existe un

sous-groupe P de M qui contient N et pour lequel il y a un isomorphisme

f:Rx(M/R)-»Mtelquef\R idR, f(M/R) P et f(x) x pour tout xeN.

Un tel P sera dit supplémentaire de R dans M.

Démonstration. L&apos;existence, dans M/t(M), d&apos;un supplémentaire T de R qui
contient N/t(M) résulte du théorème 2 de [K] et de sa démonstration.
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L&apos;image réciproque de T par l&apos;homomorphisme canonique de M vers M/f(M)
est un supplémentaire de R dans M.

PROPOSITION 5.4. Es est muni naturellement d&apos;une structure d&apos;espace

vectoriel sur Q.

Démonstration. Un groupe abélien divisible avec unicité est muni naturellement

d&apos;une structure d&apos;espace vectoriel sur Q.

THÉORÈME 5.5 Pour des groupes finis-par-abéliens de type fini G et H, les

propriétés suivantes sont équivalentes:

1. G et H ont les mêmes images finies.
2. G/Gn H/Hn pour tout entier n s* 1.

3. Il existe un entier n^l tel que xnG xnH.
4. GxZ HxZ.
5. Il existe un groupe L, tel que L/Ln est fini pour tout entier n^l, et pour lequel

6. G H.
1. G et H sont élémentairement équivalents.

Démonstration. L&apos;équivalence des propriétés 1., 2., 3., 4., 5., 6. résulte des

théorèmes 1.2 et 2.1 de [Wl].
7. ^&gt; 6. découle de la remarque qui suit le Corollaire 3.4.

Afin de prouver 6.^7., on établit que, pour tout ultrafiltre Xi-incomplet u

sur N, GU HU.

On peut, évidemment, supposer que G et H sont infinis.

Compte tenu du Théorème 5.3, il nous suffit de démontrer que G H et

G H est vrai par hypothèse.
D&apos;après la Proposition 5.4, les groupes EGu et EHu sont munis naturellement

de structures d&apos;espaces vectoriels sur Q.
Nous devons montrer que ces espaces vectoriels ont même dimension. Or, la

dimension d&apos;un espace vectoriel non dénombrable sur Q est égale à son cardinal.

Il suffit donc de démontrer que EG« et EHu ont même cardinal non
dénombrable:

LEMME 5.5.1. JEG« et EHu ont même cardinal que Nu. Ce cardinal est égal à
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Démonstration, (pour EG») EG« est contenu dans Gu qui est équipotent à Nu
puisque G est dénombrable

II reste à définir une injection de Nu dans EGu. Pour cela, on se donne un
élément x de G-t(G), et on associe à chaque suite (an)neN de NN la suite
(xann&apos;)neN dans GN. L&apos;injection de Nu dans EGu est obtenue par passage au
quotient.

COROLLAIRE 5.6. Les exemples de groupes de type fini ayant les mêmes

images finies considérés dans [Ba] (page 249), [Br], [D] (page 146) et [M] sont des

exemples de groupes élémentairement équivalents.
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