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Die Resolvente von A auf symmetrischen Raumen vom
nichtkompakten Typ

NoEL LOHOUE UND THOMAS RYCHENER*

Es sei X ein symmetrischer Raum vom nichtkompakten Typ und A der
zugehorige Laplace-Beltrami Operator. Ein Hauptgegenstand der harmonischen
Analysis auf X ist die Zerlegung der quasireguliren Darstellung von G in
irreduzible Darstellungen. Da A mit der Wirkung der Gruppe vertauschbar ist,
lauft dies auf das Studium des Spektrums von A bzw. seiner Resolvente R,
hinaus.

Wir untersuchen hier Abbildungseigenschaften von R, in L?-Riumen; unter
gewissen Einschrankungen an X bestimmen wir diejenigen z, fiir die R, eine
beschriankte Transformation von LP(X) ist. Dies fithrt uns zur Warmeleitungs-
gleichung auf X, die in vielen Arbeiten eine Rolle spielt (siche z.B.
[2,3,4,13,14,15,16,17] und die dortigen Literaturhinweise).

Im Falle eines symmetrischen Raumes von beliebigem endlichem Rang ermit-
teln wir alle reelen o, fur die R, bei festem p in L?(X) beschrinkt ist. Indem wir
uns auf symmetrische Riaume vom Rang 1 beschrinken, kOnnen wir dieses
Ergebnis auf komplexe z erweitern. Diese Verscharfung, die insbesondere fiir alle
hyperbolischen Riume gilt, wenden wir dann auf zusammenhidngende
Riemannsche Mannigfaltigkeiten an, deren Schnittkriimmung durch eine negative
Zahl nach oben beschriankt ist. Mit Hilfe eines Vergleichssatzes, der von Gaveau,
Débiard und Mazet [4] stammt, schitzen wir die Fundamentallosung der Wir-
meleitungsgleichung auf der Riemannschen Mannigfaltigkeit ab und beweisen ein
Analogon zu den oben angekiindigten Ergebnissen.

1. Die Wirmeleitunglgleichung auf einem symmetrischen Raum

G sei eine einfach zusammenhangende nichtkompakte halbeinfache Lie-
Gruppe mit endlichem Zentrum and K ein maximale kompakte Untergruppe;

* Der zweitgenannte Autor wurde wihrend seines Forschungsaufenthaltes in Orsay/Paris 1976/77
vom Schweizerischen Nationalfond unterstiitzt.
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446 NOEL LOHOUE AND THOMAS RYCHENER

X = G/K ist der zugehodrige symmetrische Raum (sieche Anhang 1.) Wir bezeich-
enen die Elemente von X mit gK oder x; 0 =eK ist der Ursprung von X, und K
erscheint als Stabilisatoruntergruppe beziiglich 0. Jeder Funktion f auf G, die
beziiglich Multiplikation mit Elementen aus K von rechts invariant ist, kann in
natiirlicher Weise eine Funktion f auf X zugeordnet werden gemiiss f(g) = f(gK).
G operiert auf X gemiss x — g~ 'x. Die invarianten Masse du(g) und du(x) auf
G und X werden so gewahlt, dass

[ 1@ du@=] 70 duco.
G X

Sind keine Missverstindnisse zu befiirchten, so werden wir f und f identifizieren.
Fiir weitere Bezeichnungen verweisen wir auf den Anhang 1.

A bezeichnet den Laplace-Beltrami Operator auf X, der mit den Transfor-
mationen von G vertauschbar ist, genauer:

Axf(g—_lx) = Ag“‘xf(g_lx)

fur alle g aus G, x aus X; das A beigefiigte Symbol steht fiir die Variable, nach

der differenziert wird.
Das Studium der Resolvente R, von A fiihrt iiber die Warmeleitungsgleichung

Au,(x) = augix) (W).

Der Index t bei u steht fiir die Abhingigkeit von der Zeit t. Gleichung (W) besitzt
eine Fundamentalldosung p,(x, y); ihre Existenz folgt aus allgemeinen Ueber-
legungen, siche z.B. [9], S. 162/163. Die Vertauschbarkeit von A mit den
Gruppenoperationen zieht eine wichtige Invarianzeigenschaft von p,(x, y) nach
sich (siche etwa [9], S. 162):

p:(x, y) = p.(gx, gy)

fir alle ge€ G, x, y € X. Folgerungen daraus:

1) Die Wirmeleitungshalbgruppe auf X

Tf(x)= L P V() dus(y)
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lasst sich als Faltungshalbgruppe mit einem Kern p,(g) auf G deuten:

T.f(g) =p~f(g).

2) Der Kern p,(g) ist beziiglich K bi-invariant.

Beide Behauptungen ergeben sich mit der Setzung p,(0, y) =p,(h), y=h"'0 aus
der Invarianzeigenschaft von p,(x, y). 2) zieht eine Vereinfachung nach sich: wir
zerlegen g gemiss g = kak’, k, k'€ K mit a € A (Anhang 1.); p, erscheint dann als
Funktion von a allein: p,(g) = p,(a).

2. Die Resolvente von A auf einem symmetrischen Raum von beliebigem end-
lichem Rang

X sei ein symmetrischer Raum vom nichtkompakten Typ, und R, bezeichne
fiir komplexes z die Resolvente von 4; sie ist durch

R, = J e T, dt

0

gegeben. Setzen wir fiir K-bi-invariantes f T,f=p, *f, so ist

r.(g)= fe‘z‘p,(g) dt

der Kern der Resolvente; wie p, ist auch er K bi-invariant.

SATZ 1. X sei ein symmetrischer Raum vom nichtkompakten Typ, o ein reeller

Parameter und 1<p <. R, ist genau dann eine beschrinkte Transformation von
LP(X), wenn

a>—4|p*/pp'.

Beweis. Zuvor eine Vorbereitung: fiir die spharische Fouriertransformation
p.(A) von p,(g) gilt (Anhang 2) wegen

AD, = — (A +|pP),
die einfache Beziehung

p(A) = e 1P+l
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Nun zum Beweis:

1

2)

f, g seien stetige Funktionen auf X (bzw. auf G) mit kompaktem Trager. Wir
schiatzen (R, f, g) ab. Nach dem ersten Abschatzungsprinzip (Anhang 3) gibt es
Funktionen U, V in LP(K/M), L? (K/M) mit

KR.f, g)ISJ; e 7(p. *|fl, gl dt=L e (gl *|f], p.) dt
< Lme—m dtj (Dia-2/p3 (MU, V)p,(h) du.(h)
G
<IUl, IV, | e (C2/p~110) d

L

also ist R, fiir o +4 |p|*/pp’ >0 beschrinkt.
Wir nehmen jetzt an, R, sei beschrankt in L?(X); es gibt also eine Konstante
C,., so dass fiir f in LP(X), g in L?(X) gilt:

I(Rcrf’ g>| <G “f”p ”g"p"

Nach dem zweiten Abschétzungsprinzip (Anhang 3) lésst sich @,,,_,(g) durch
Koeffizienten der reguliren Darstellung approximieren:

d)2/p-—1(g) = lim Vn * Un(g)

mit positiven Funktionen U,, V,, |U,|, | V.ll,y = 1, gleichméssig auf kompakten
Teilmengen von G. Es folgt:

(R,U,, V,)= L e " (p, * U, V,)dt =L e "V, = U, p,) dt.

Sei M;cM,c... eine Folge kompakter Teilmengen von G mit |J M, =G
und h, =1,(V, * U,) (1, ist die charakteristische Funktion von M,). Wegen
der gleichmissigen Konvergenz von h, gegen 1, @,,,_; folgt:

ﬁ (Ro-Um Vn>>L e‘m<d)2/p-—11m pt) dt-
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Fir n — o« erhalten wir wegen der monotonen Konvergenz von (1, @,,,_1, p,)
gegen (P, 1, p.)

1?1’1- (R(,Un, V")?J e—(o+4lp|2/pp') dt,

0

n —»oo
und aus

lim Cp,O' " Un“p “Vn“p' = CD-"

n—»co

folgt o+4 |p|*/pp’>0.
Zusatz zu Satz 1: aus dem ersten Teil des Beweises kann man leicht die
Beschrinktheit von R, in LP(X) fiir alle z mit Re z>—4 |p|*/pp’ ableiten.

Satz 1 kann wie folgt veranschaulicht werden: o ist als Funktion von 1/p
aufgetragen; das schraffierte Gebiet stellt den Bereich in der (1/p, o)-Ebene dar,
in dem R, beschriankt ist.

0 L 1 1/p

Fig. 1

3. Der Fall Rang X =1

X habe Rang 1. Unter dieser Voraussetzung konnen wir Satz 1 préazisieren,
und zwar fiir alle komplexen z. Gleichzeitig zeigt uns ein Teil des Beweises, dass
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sich eine Richtung von Satz 2 auch fiir symmetrische Riume von beliebigem
endlichem Rang aufrecht erhalten lidsst; die andere Richtung bleibt hier indessen
noch offen.

Aus der nachfolgenden Berechnung der Fundamentallosung von (W) ermit-
teln wir eine Formel fir den Kern der Resolvente und gewinnen hieraus die
notigen Abschiatzungen in den Umgebungen des Ursprungs und des Unendlichen.

3.1. Berechnung von p,

Da X Rang 1 hat, konnen wir A mit Hilfe eines reellen Parameters ¢
beschreiben (Anhang 4.1). p, kdnnen wir als Funktion von a = a, allein auffassen,
und ausserdem folgt aus der K Bi-Invarianz von p,, dass p, als Funktion von ¢
gerade ist. Aus den im Anhang gemachten Festsetzungen folgen

AD, = —(u*+p*) D,

--t(u2+p2)

ijt(u) =ée

Unter Verwendung der Abelschen Transformation wird (Anhang 4.2)
p(u)= j F,(ay)e™ d¢ = ZL F, (a;) cos u{ dg,

also
F, (a;) = (4t) V2 e~ @40
P

und schliesslich unter Zuhilfenahme der im Anhang 4.2 bewiesenen
Unkehrformel

HILFSSATZ 1. G habe Rang 1 und n,p, d, D, dieselbe Bedeutung wie im
Anhang 4.1. Bezeichnen wir mit ch den Cosinus hyperbolicus, so lautet die
Fundamentallosung von (W) wie folgt:

1. Ist G die verallgemeinerte Lorentzgruppe, so ist fiir gerades n und c,=
(~1)2@m)

o D;‘/2e_yzl4t

i V(chy —ch?)

pi(a;) = c,(4mt) 2" shy dy
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und fiir ungerades n und c, =(—1)""V?Q2x)"°
D (a;) =c, (47”)—1/26—pZthn—l)/2e—{2/4t_

2. In den anderen Fillen entsprechend d =2,4,8 gilt fiir gewisse von t und {
unabhdngige Konstanten ay, a,, . .., ap

d/r2 © h—d+i+1 Di+(d(n—1))/2 —=y2 4t
J £ yDy ¢ 1% ihy dy
(4

pa)=(4m) e ¥, a, Jch?y = ch?)

i=1

3.2. Die Resolvente

Mit den in Hilfssatz 1 gewonnenen Formeln fiir p, kann man den Kern der
Resolvente bestimmen. Setzen wir fiir K bi-invariantes f

T.f(g)=p. * f(g),

SO ist

r.(a)) = L e~*p,(a,) dt,

und wir haben den

HILFSSATZ 2. Unter denselben Setzungen wie in Hilfssatz 1 gelten folgende
Formeln:
1. fiir die verallgemeinerte Lorentzgruppe und gerades n

Dn/2 e-—(z +p2)1/2y
y

V(chy —ch?)

rz(ac)=cn(z+p2)-"2/2j shy dy,
(4

und fiir ungerades n

r, (ac) = C"(Z + pz)—'1/2/2 D((n-—l)/Ze—(z+pZ)1/2.

2. In den anderen Fillen wird

shy dy.

d/2 IW ch—d+i+1D;+d(n~—1)/2e-—-(z+p2)1/2y
(4

(a)=(z+p)7" 2 Lch?y —chD)

i=1
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Mit Hilfe dieser Formeln lasst sich Satz 1 wie folgt erweitern:

SATZ 2. X habe Rang 1. Wir setzen z = o +it und

={p(2/p——1) fir 1<p<?2
p(2/p'—=1) fir 2<ps<om,

Die Resolvente R, ist genau dann eine beschrinkte Transformation von LP(X),
wenn

12> —4a*(o +4p?/pp)).

Beweis:

1. R, sei in LP(X) beschriankt. Wir konnen uns auf 1<p=<2 beschrinken
(Dualitatsargument). f sei eine auf X stetige Funktion mit kompaktem Trager
und U, V stetige Funktionen auf K/M. Die Funktionen

T A
F(w)=(R.f(W)U, V),  G(w)=(f(w)U, V)
(" bezeichnet die Fouriertransformation auf G, siche Anhang 2.) sind auf
Grund eines in [11] bewiesenen Satzes im Streifen |Re w| < a analytisch und in
jedem abgeschlossenen Teilstreifen |Re w|<a —¢ (& positiv) beschriankt.

Rf(w)=(w2—p*—z)"'f(w)

zieht deshalb die Beschrinktheit von (w?—p?—2z)"! in jedem solchen Teil-
streifen nach sich. Ihre Pole (beziiglich der Variablen w = u +iv) sind durch

ul—v’=o+ p2
2uv=r
gegeben; wir konnen u# 0 annehmen. Sonst wire =0 und damit z =0, und

wir befinden uns in der Situation von Satz 1. Setzen wir k =0 + p?, so wird
v =7/2u und damit

u?=(k+vVk*+17%)/2.

Die Beschrianktheit von (w?—p?—2z)! in jedem Teilstreifen der angegebenen
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Art zieht notwendig |u|=a nach sich, also ist

Vk2+12=2qa2—k.

Die rechte Seite ist genau dann nicht negativ, wenn
o<p*(1-8/pp");

wir unterscheiden zwei Fille:
1) o<p*(1—-8/pp’): es folgt k*+12=(2a’—k)? oder

2
= —4a2(0' +ie—;)
pp

2) o> p*(1—8/pp’): hier ist sowieso
4 2
2= ~4a2(0' + —B-,—),
pp

(siehe Fig. 2).

Da die Resolventenmenge eine offene Teilmenge der komplexen Ebene ist,
muss = durch > ersetzt werden.

. Es sei jetzt umgekehrt

2
2> -—4a2(0 +£'£7),
pp

wir unterscheiden wieder die beiden Fille von oben
1) o> p*(1—8/pp’): es gilt

und die Behauptung folgt aus dem Zusatz im Anschluss an Satz 1.
2) o<p*(1—-8/pp’): wir schitzen zuerst den Kern r,(a;) der Resolvente fiir
{—> 0 und { — » ab. Fiir { — o ist

r.(a;)=0(exp —[p+Re vz +p?])
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und fiir { -0

r(a )_{0({2‘“) fur die Lorentzgruppe
N 0(>%) in den iibringen Fillen.

Wir zeigen: unter der gemachten Voraussetzung liegt r, in L9(X) fiir ein
1=<gq<p. Die Behauptung folgt dann durch Anwendung des Phanomens von
Kunze-Stein fiir K bi-invariante Konvolutoren.

In der fiir K bi-invariante Funktionen f giiltigen Formel

[t duter= fﬂa)sh'c sh*2¢ d
G

(r, s haben die im Anhang 4.1. gegebene Bedeutung) verhalt sich das Gewicht
sh'{ sh®2¢

fiir  — o wie exp 2p{ und fiir { — 0 wie {~¥**2. Hieraus entnimmt man: r,(a,)
liegt sicher dann in L4(X), wenn folgende Bedingungen erfiillt sind:

—q(p+ReVz+pA)+2p < O (1)

—q(2—dn)+1-dn < 1 2)

setzen wir k = p>+ o, so ist die Bedingung (1) dquivalent zu

k+Vk+ 72|
dp+|—=—| )>2

oder
Vk2+72>2a2-k.
Die rechte Seite ist fiir 1 <q<p nicht negativ, denn

2a%*-k=p*(1-8/qq")— o> p*(1-8/pp’)— o =0;
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Es folgt

eine Ungleichung, die man sicher fiir ein q mit 1 <q <p erfiillen kann. Nun
zur Bedingung (2): sie ist dquivalent zu

dn
dn—?2

q<

und ist gleichzeitig mit (1) erfilllbar. r, liegt also in L9(X) fiir ein q mit
1< q <p, und die Behauptung folgt aus dem Phidnomen von Kunze-Stein fiir K
bi-invariante Konvolutoren. Satz 2 ist in Fig. 2 veranschaulicht; = ist also
Funktion von o aufgetragen; die Gerade o = p*(1—8/pp’) ist zudem einge-
zeichnet; sie spielt beim Beweis eine Rolle. R, ist im schraffierten Gebiet
beschrankt.

= -4p%/pp"

(¢]
|

p?(1-8/pp')

[oN
it

RTINS

A )

T t(0) 12{g) = -4a2(0+402/PP')

Fig. 2
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4. Anwendung der Ergebnisse von 2, 3 auf Riemannsche Mannigfaltigkeiten mit
negativer Schnittkrimmung

Es sei X eine einfachzusammenhingende n-dimensionale Riemannsche Man-
nigfaltigkeit, deren Schnittkrimmung durch eine negative Konstante nach oben
beschrankt sei. Wir nehmen der Einfachheit halber an, diese sei —1, was keine
wesentliche Einschrankung der Allgemeinheit bedeutet. A sei der Laplace-
Beltrami Operator auf X und R, seine Resolvente. Mit X bezeichnen wir den
symmetrischen Raum, der zur verallgemeinerten Lorentzgruppe G = SQO(1, n)
gehort. Als Modell fiir X wihlen wir den Teil des Hyperboloids

xi—xi—-x3—---—x2=1

entsprechend x,>>0. Ursprung von X sei é=(1,0,...,0); setzen wir g = ka,k’
mit k, k' in K und a; in A, so ist

gé=x%x=(ch{,0,...,0),

und der Abstand zwischen é und % ist {. Mann kann nun X und X isometrisch
aufeinander beziehen. Dazu fixiere man ein festes e in X, dem é entsprechen soll.
Die Tangentialebenen an X und X in e und é werden identifiziert und dienen via
Exponentialabbildung als Koordinatenebenen fiir X und X (siche dazu [13]).

Es seien p, p, die Fundamentalldsungen von (W) auf X, X, die wegen all-
gemeinen Zusammenhingen immer existieren (siche z.B. [1], S. 229). Ist die
Schnittkriimmung von X hochstens —1 (Schnittkrimmung von X), so lassen sich
die Fundamentallosungen auf Grund von [4] miteinander vergleichen: sind
x({), x({) einander entsprechende Geoditische durch e und é, so gilt

p(x, e)<p,(X, &) = p,(a;) *)

Zusammen mit der in Hilfssatz 1 gewonenen Formel ergibt sich aus Gleichung (*)
der

HILFSSATZ 3. Es gibt von t und x unabhdngige Konstanten C,, C, mit
ple, x)<Ce™, t=1 (1)

ple,x)<Ct™? 0<t<l1 2)
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Aus Hilfssatz 3 lisst sich ein den Satzen 1, 2 entsprechendes Ergebnis herleiten:

SATZ 3. X sei eine einfachzusammenhdngende Riemannsche Mannigfaltig-
keit, deren Schnittkriimmung hochstens —1 sei; wir setzen z=0o+ir,n=
dim X, p=(n—1)/2.

1. Die Resolvente R, ist eine beschrinkte Transformation von LP(X), falls

1<sp<2 und o>-2p%/p
oder
2<p<o und o>-2p%p.

2. Unter der Voraussetzung 1<p=<?2 ist der Kern der Resolvente r,(x,y), als
Funktion von x oder y, in L?(X), sofern die fogenden Bedingungen erfiillt sind:

o>-2p%p" und p<

n—>2

Der erste Teil des Satzes lésst sich wie folgt veranschaulichen: ¢ ist als Funktion
von 1/p aufgetragen, und das schraffierte Gebiet stellt den Bereich dar, in dem R,
beschrinkt ist.

1/p

Fig. 3
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Beweis
1. Wir kOnnen uns auf 1=p =<2 beschranken (Dualititsargument und gehen von
den Ungleichungen aus:

1Tl < flls 3)
I Tl =<1l (4)

also fiir alle 1=<p =<ox;

ITAll, <IIfllo (5)

Um das Verhalten von T,f fir t— o zu untersuchen, gehen wir von der
Spektralzerlegung von T, aus (siche [13]):

oo

’I; == j e—kt dEA.
(4

2

Hieraus ergibt sich
(Taf, = e dlEsf e[ d(B, = I,
02

oder

ITfl.<e™®* ||fll. (6)
und mit Interpolation zwischen (3) und (6)
ITAll, < e " £,

Fur die Resolvente R, wird mit z =0 +it:

1 oo
IRA <|[ T + [ e anin,
P 1
<(1+[ e a)in,

der in Klammer stehende Ausdruck ist nach Voraussetzung endlich.
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2. Nun zum Kern der Resolvente: wegen (2) und ||p,(:, y)|l; =1 gilt die fiir alle
1=<p=w giiltige Abschatzung

lpe(x, A, < Ce™2w". (7)
Die Abschétzung fiir t=1 erfordert eine Fallunterscheidung:

1. Fall: nln—2=<?2
Nach (1) wird

Ipe(x, B = L 2%, V)23, %) din(y) = par(x, x) < Cre =% ®)

Zusammen mit ||p,(x, ‘||, = 1:
P, (x, M, < C'e """ )

Aus (7) und (9) resultiert mit gewissen Konstanten K, K:

1

I, My <Ko [ 072 ik, [ e ar
0

1

o0

die rechte Seite dieser Ungleichung ist fiir n <2p’' und o >—2p?/p’ endlich.
2. Fall: 2<n/n—-2

(dieser Fall ist nur fir n =2, 3 moglich) p<2 ist im ersten Fall enthalten. Es
sei also 2 <p <n/n—2. Interpolation zwischen (1) und (8) liefert

lp: (x, ), < Cie™™. (10)

Wegen (10) ist |r,(x, -)||, fiir o >—p? endlich; diese Bendingung folgt aber aus
o>-2p%/p’ und 1<p=2.

Schlussbemerkungen

Man kann mit denselben Methoden, wie sie in dieser Arbeit verwendet
wurden, auch Aussagen iiber die Riesz-Potentiale I, machen; I, ist durch

I == 1/F(z/2)L t 122, dt

definiert. Wir beschrinken uns hier auf einige Resultate; die in 1 aufgefiihrten
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Ergebnisse wurden von Lohoué [12] in einer noch nicht veréffentlichten Arbeit
auf eine wesentlich allgemeinere Klasse Riemannscher Mannigfaltigkeiten er-
weitert. Die in 2 gegebenen Resultate lassen sich auf Grund expliziter Formeln
fiir den Kern k, von I, gewinnen; die hieraus abgeleiteten Abbildungseigenschaf-
ten von I, wurden in [21] auf anderem Wege bewiesen.

1.

X sei ein symmetrischer Raum vom nichtkompakten Typ oder eine
einfachzusammenhéngende Riemannsche Mannigfaltigkeit, deren
Schnittkrimmung durch eine negative Konstante nach oben beschriankt sei.
Setzen wir wieder z =o +it, so ist I, eine beschrankte Transformation von
L?(X), wenn 1<p <o und o >0. Der Kern k,(x, y) von I, bei veranderlichem
x oder vy, liegt in L?(X) fiir 0<o<n und 1<p<n/n—o.

. X habe Rang 1. Der Kern k, des Riesz-Potentials ist fir 0<o<n vom

schwachen Typ n/n — o (fiir die Bezeichnung ‘“‘vom schwachen Typ” siehe z.B.
[18], S. 121). Insbesondere folgt hieraus, dass I, eine beschrinkte Transforma-
tion von LP(X) ist, sofern 1<p<o und 1/q=1/p—a/n. I, ist also sowohl
beschriankt in L?(X) (siehe 1) als auch von L?(X) nach L%(Z). Die letztere
Eigenschaft und nur diese gilt auch fiir den euklidischen Raum (siehe [18], S.
119).

Der Fall komplexer halbeinfacher Lie-Gruppen bietet keine wesentlichen
Schwierigkeiten. Zunachst kann man p, auf einfache Weise berechnen, da die
Umkehrung der Abelschen Transformation im wesentlichen eine Differentia-
tion ist und die sphéarische Fouriertransformation auf die gewohnliche (euk-
lidische) hinauslauft. Der explizite Ausdruck fiir p, ist in [2] und in [3] zu
finden. r, kann damit leicht bestimmt werden, und der Beweis unseres Satzes 2
zeigt, dass seine Aussage auch fiir beliebige komplexe halbeinfache Lie-
Gruppen gilt.

Anhang

1. Bezeichnungen

G zusammenhingende halbeinfache und nichtkompakte Lie-Gruppe
mit endlichem Zentrum

K maximale kompakte Untergruppe von G

X=G/K zugehoriger symmetrischer Raum

gt Lie-Algebren von G, K

(,) Killingsches Produkt auf g

g=1Dp Cartan-Zerlegung von g:p ist der zu t bez. ( , ) orthogonale

Unterraum von g.
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|V|=(V, V)"? Lénge eines Vektors V aus p; ( , ) ist auf p positiv definit.

a,a’ maximaler Abelscher Unterraum von p, zugehériger Dualraum

Ec komplexe Erweiterung des reelen Vektorraumes E

a, ausgezeichnete Zusammenhangskomponente eines reguliren
Elementes von a (positives Weylzimmer)

3. Menge der (bez. a,) positiven eingeschrinkten Wurzeln

m, Multiplizitdt von a€ 3,
2p = Z m,a p ist die halbe Summe der Elemente von 3.
ael,
A die zu a gehdrige zusammenhingende Abelsche Untergruppe von
. G; wir schreiben fiir a€ A auch a =exp H mit H aus a
9o der zu a € 3, gehorige Eigenraum von ad H, Hea
n= 2 ga
aeX,
N die zu n gehorige zusammenhingende Untergruppe von G
H(g) das in der Iwasawa-Zerlegung von g eindeutig bestimmte Ele-
ment aus a, fiir das gilt: g=kexp H(g) n,k in K und n in N
M Untergruppe aller mit sdmtlichen a € A vertauschbaren k aus K
K/IM Fiirstenbergrand von X; G operiert auf K/M via kM — g~' kM

unter Beriicksichtigung der Isomorphie von K/M und G/MAN
(siehe [22]).
do (kM) K-invariantes Mass auf K/M
Fiir A in o’ sei H, in a so bestimmt, dass A(H) = (H,, H) fiir alle H aus a; ferner
wird das Killingsche Produkt auf o' iibertragen gemiss (A, u)=(H,, H,), und o
wird mit der Setzung |A|*= (A, A) ein euklidischer Vektorraum. Die Erweiterung
von ( , ) auf a¢ erfolgt wie iiblich.

2. Die Darstellungen D,, A € a¢

Ist C(K/M) der Raum der auf K/M stetigen Funktionen U, so setzen wir fiir
A Eag:

D, (8)U(kM) = e~ ?HE"OU (g™ kM)

Die Operatoren D, definieren eine Darstellung von G im Raume C(K/M), die
sich fiir A €a’ zu einer unitiren Darstellung in L?*(K/M) fortsetzen lésst. Fiir
weitere Eigenschaften dieser Darstellungen siehe z.B. [22]. Ist A in ag, so ist die
Fouriertransformierte einer auf G stetigen Funktion f mit kompaktem Triger
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durch

fn=| 1@Die) dute)

definiert. Ist f beziiglich K bi-invariant, so kann man sich auf spharische Fourier-
transformation beschrinken: an die Stelle von D, tritt die elementare sphirische
Funktion

@)= [ oM du ().

K

Nach [8] gilt: A®, =—(|A|*+|p|>)®,. Fiir 1<p<oo und A =i(2/p—1)p wird

DA (g) U(kM) — e—(2/p)p(H(g”1k)) U(g_lkM).

Diese Operatoren sind Isometrien von L?(K/M) und spielen in der harmonischen
Analysis von X eine wichtige Rolle, wie der folgende Abschnitt zeigt.

3. Zwei Abschitzungsprinzipien

Diese gehen auf C. Herz zuriick und wurden in [10] systematisch eingesetzt. Die
Formulierung iibernehmen wir aus [10].

Erstes Abschdtzungsprinzip

Sind f, g stetige Funktionen auf G mit kompaktem Tréager, 1<p <o, so gibt
es positive und stetige Funktionen U, V auf K/M, so dass gilt:

1) |g * f(h)|<(Dicajp—1)o (W)U, V), fiir alle h aus G,
2) ul, <lifll,, IVl <llgll,~

Zweites Abschdtzungsprinzip

Sind U, V stetige Funktionen auf K/M, 1<p <o, so gibt es Folgen stetiger auf
G definierter Funktionen f,, g, mit kompaktem Triger, so dass gilt:

1) l_i-m—n—»w "fn"p “gn"p'snljnp "V"p”
2) g, * f. konvergiert gleichmaissig auf kompakten Teilmengen von G gegen den

Koeffizienten

(Dio2ro-»(MU, V).
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4. Die Abelsche Transformation fiir Rang X =1

4.1. Allgemeines

G bzw. X habe Rang 1, d.h. dim a = 1. Die den einzigen Elementen von 3., «
und 2a, entsprechenden Multiplizititen bezeichnen wir hier mit r und s, so dass
2p=(r+2s)a. Wir wihlen H, in a so, dass a(H,)=1. Jedes ae A lisst sich
darstellen als a = a,=exp {H, mit eindeutig bestimmtem {e R. Um gréssere
Uebersichtlichkeit der Formeln zu erreichen ersetzen wir A durch |a|™2 A und
schreiben fiir r+2s p (urspriinglich p =(r+2s)a). Fir A ea, gibt es we C mit
A = wa, und es gilt:

AD, = —(W?+p?H)D,.

Die zur Diskussion stehenden Gruppen und symmetrischen Raume lauten:

SO,(1,n), X=80,(1,n)/ O(n), p=(n-1)2
SU(1,n), X=SUQ,n)/U(n), p=n
Sp(1,n), X =Sp(1,n)/Sp(1)Sp(n) p=2n+1
Fa-20) X = Fy420)/Spin(9) p=15

Die ersten drei Fille lassen sich einheitlich behandeln, der letzte geh6rt zu den
Ausnahmegruppen und erfordert ein etwas anderes Vorgehen.

G sei eine der drei ersten Gruppen, K stehe fiir einen der Koérper R, C oder
die Quaternionen H und d sei die reelle Dimension von K. Die Konjugation in K
bezeichnen wir mit @. I sei die Diagonalmatrix der Ordnung n+1, deren erstes
Element 1 und deren iibrige Diagonalelemente —1 sind; G ist die Gruppe der
Matrizen g der Ordnung n+ 1 mit Elementen aus K, fiir die gilt: g~'Ig = I sowie
det g=1 in den Fillen K=R, C. Ihre Lie-Algebra g enthilt alle Matrizen Z der
Ordnung n+1 mit Koeffizienten aus K, fiir die gilt: Z'1+1Z =0 sowie SpZ=0
fir K- R,C. In der Cartan-Zerlegung von g besteht p aus den Z €g mit Z'=2Z
und f aus den Z eg mit Z'=—Z. a ist hier der von

HO:(I 1)

erzeugte Unterraum von p. 3, kann wie folgt beschriecben werden: fir x=
(%1, X3, ..., %,—1)€K" ' und y K mit y =—§ seien U(x), V(y) folgende Matrizen
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aus g (O, ist die Nullmatrix der Ordnung n—1):

0 X 0 y -y
U(x)= x‘ On—l _xt)’ V(Y)= On—l )
0 X 0 y -y

Dann ist g,={U(x): xeK"™ "}, @g.={V(y): yeK,y=—F} und a(H,)=
1,dimg,=d(n-1),dimg,, =d-1, p=d(n+1)/2—1. Wegen N =exp (g, +92,)
lassen sich die Elemente n aus N wie folgt darstellen:

1+(y +xx/2) x —(y+xx'2)
n=n(x,y)=exp (U(x)+ V(y)) =( x' 1,4 —Xx' )
y +xx'/2 x —(y+xx'/2)

Wie man direkt zeigen kann, ist das invariante Mass du(n) auf N zum euklidi-
schen auf n proportional, fiir das wir zur Abkiirzung schreiben: dx dy anstelle von
dx A dx' A dy A dy.

4.2. Die Abelsche Transformation

f sei eine K bi-invariante Funktion auf G, stetig mit kompaktem Triger. Ihre
spharische Fouriertransformation

-~

Fou = L #(2), (2) du(e)

lasst sich auf eine gewohnliche euklidische Fouriertransformation zuriickfiihren;
fiir {>0 setzen wir:

Fy(a,) = ePCL flan) du(n) = epcj J

9a 92

f(amn(x, y)) dx dy.

F; heisst Abelsche Transformation aus Griinden, die sofort klar werden (siehe
auch [19] und [7]). Da f K bi-invariant ist, hingt sie nur vom Betrag des
Matrixelementes [a,n(x, y)];; von a,n(x, y) ab, also nur von

|ch{ + ety + e* |x|?/2| = ((chg + €* |x[*/2)* + &% |y|*) "2,

Schreiben wir fiir f(a,n(x, y))

fiV(chg + € [x['[2)%+ e [yP),
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so wird

Fi(a,) = e"gj J fi(V(ch + ef [x[P)* + €% [y[?) dx dy.

Qa Q2a

Wir bendtigen eine explizite Umkehrformel fiir diese Transformation, eine Auf-
gabe, die schon in der Abelschen Integralgleichung auftritt. Im Falle der verall-
gemeinerten Lorentzgruppe wurde sie in [19] gelost; fiir die iibrigen Rang-1 Fille
ist eine explizite Formel u.a. in [9%] enthalten. Wir geben hier eine fiir unsere
Zwecke geeignete Formel an:

HILFSSATZ. f sei eine auf G definierte stetige Funktion mit kompaktem
Trager, die beziiglich K bi-invariant sei. Setzen wir abkiirzend

_1d
Y shydy’

so gelten folgende Formeln:

1. Ist G die verallgemeinerte Lorentzgruppe, so wird fiir gerades n

© D;t/ZP‘f(ay)
(chy —ch{)'?

f(ac) — (__1)n/2(277,)~—(n-—1)/2£ shy dy

und fiir ungerades n
f(a{) — (__1)n/2(21r)—(n—1)/2D2n-—1)/21_-;~f(ac)_

2. Ist G eine der iibrigen Rang 1-Gruppen entsprechend d =2,4, so ist mit
absoluten Konstanten aq, a,, ..., a4

d/2 o h—d+i+1 D j+d(n-1)/2F
Zajj- - y(D,) f(ay)shydy.
(4

f(aC)=i=1 (chzy—ch2{)1/2
Beweis. Fir 1 ist das Resultat bekannt [19]. Nun zu 2. Zuniachst folgt durch
Variablentransformation:

Riao=[ [ RTPTTIT) dxdy.

Rd—-l
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Wie setzen ¢(*) = f,(+/*) und

ew = swhPay

also:

o

Ei(ap) = j S((chg +|xP/2)+1yP) dx dy
Rd"l Rd(n—'l)

_ g(ch¢ +|x|?/2) dx.

JR4-
Da d(n—1) gerade ist, folgt mit f*}(ch{) = Fy(a;):
g(ch{) — (—1/217)‘“"‘1)/2F?("'1)/2(ch§) (1)

Die Ableitung bezieht sich hier auf ch{. Wir miissen nun ¢ durch g ausdrucken
und das Ergebnis mit (1) kombinieren; dazu setzen wir h(u) = g(x/?t) und erhalten;

Ld_l h@=D(y +|z[?) dz:J

Rd—‘l

[ ser@rtyprizP) dyde
=(—m)*"'d(u),

oder

() = (—1/m)* j R@D(y +|2?) dz

—_ (___]‘/,n_)dlz.[<>° hd/2(u+n2) d,n’
also
o(u)= (—~1/7r)“’2r (dldu)¥*g(Vu +n?) sn. (2

Um die gewiinschte Formel zu erhalten, berechne man die Ableitung unter dem
Integral, setze (1) ein, substituiere u = ch?{ und beriicksichtige die Identitét

F{¥(chy) = (1/shy d/dy)“Fy(a,).
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Es bleibt noch der Ausnahmefall entsprechend G = F,_,,,. Hier setzt man K=0,
den Korper der Oktaven, also d=8. Da 0 nicht assoziativ ist, stellen sich
zusitzliche Probleme. Die hierzu erforderlichen Schritte sind in [20] enthalten; X
wird dort als das Innere des Einheitskreises der Oktavenebene gedeutet. Die
Formel fiir F; ist nach Wahl geeigneter Parameter der bereits gefundenen vollig
analog; hier ist p=15, g, und g,, sind zu R® und R’ isomorph, und die im
Hilfssatz, 2. angegebene Formel behilt ihre Giiltigkeit.

Die hier angegebene Umkehrformel der Abelschen Transformation bezieht
sich nur auf K bi-invariante Funktionen. Im allgemeinen Fall haben Gelfand und
Neumark fiir die komplexen halbeinfachen Lie-Gruppen in [5] und fiir die
Gruppe der unimodularen reelen n—n Matrizen in [6] das allgemeine Um-
kehrproblem geldst; im letztgenannten Fall ist die Ldsung skizziert, und die
Beweisidee fiir die reellen halbeinfachen Liegruppen lasst sich daraus ableiten.
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