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Die Resolvente von A auf symmetrischen Ràumen vom
nichtkompakten Typ

Noël Lohoué und Thomas Rychener*

Es sei X ein symmetrischer Raum vom nichtkompakten Typ und A der
zugehôrige Laplace-Beltrami Operator. Ein Hauptgegenstand der harmonischen
Analysis auf X ist die Zerlegung der quasiregulâren Darstellung von G in
irreduzible Darstellungen. Da A mit der Wirkung der Gruppe vertauschbar ist,
lâuft dies auf das Studium des Spektrums von A bzw. seiner Resolvente Rz
hinaus.

Wir untersuchen hier Abbildungseigenschaften von Rz in Lp-Ràumen; unter
gewissen Einschrânkungen an X bestimmen wir diejenigen z, fur die jR2 eine
beschrânkte Transformation von LP(X) ist. Dies fûhrt uns zur Wàrmeleitungs-
gleichung auf X, die in vielen Arbeiten eine Rolle spielt (siehe z.B.
[2, 3,4,13,14,15,16,17] und die dortigen Literaturhinweise).

Im Falle eines symmetrischen Raumes von beliebigem endlichem Rang ermit-
teln wir aile reelen cr, fur die R^ bei festem p in LP(X) beschrânkt ist. Indem wir
uns auf symmetrische Râume vom Rang 1 beschrânken, kônnen wir dièses

Ergebnis auf komplexe z erweitern. Dièse Verschârfung, die insbesondere fur aile

hyperbolischen Râume gilt, wenden wir dann auf zusammenhàngende
Riemannsche Mannigfaltigkeiten an, deren Schnittkrûmmung durch eine négative
Zahl nach oben beschrânkt ist. Mit Hilfe eines Vergleichssatzes, der von Gaveau,
Débiard und Mazet [4] stammt, schâtzen wir die Fundamentallôsung der Wâr-
meleitungsgleichung auf der Riemannschen Mannigfaltigkeit ab und beweisen ein
Analogon zu den oben angekûndigten Ergebnissen.

1. Die Wàrmeleitunglgleichung auf einem symmetrischen Raum

G sei eine einfach zusammenhàngende nichtkompakte halbeinfache Lie-
Gruppe mit endlichem Zentrum and K ein maximale kompakte Untergruppe;

* Der zweitgenannte Autor wurde wahrend seines Forschungsaufenthaltes in Orsay/Paris 1976/77
vom Schweizenschen Nationalfond unterstutzt
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446 NOËL LOHOUÉ AND THOMAS RYCHENER

X G/K ist der zugehôrige symmetrische Raum (siehe Anhang 1.) Wir bezeich-

enen die Elemente von X mit gK oder x ; 0 eK ist der Ursprung von X, und K
erscheint als Stabilisatoruntergruppe bezùglich 0. Jeder Funktion / auf G, die

bezûglich Multiplikation mit Elementen aus K von redits invariant ist, kann in
natùrlicher Weise eine Funktion / auf X zugeordnet werden gemàss /(g) f(gK).
G operiert auf X gemâss x —&gt; g&quot;1*. Die invarianten Masse dix(g) und dix(x) auf
G und X werden so gewâhlt, dass

Sind keine Missverstândnisse zu befûrchten, so werden wir / und / identifizieren.
Fur weitere Bezeichnungen verweisen wir auf den Anhang 1.

A bezeichnet den Laplace-Beltrami Operator auf X, der mit den Transfor-
mationen von G vertauschbar ist, genauer:

fur aile g aus G, x aus X; das A beigefûgte Symbol steht fur die Variable, nach

der differenziert wird.
Das Studium der Resolvente Rz von A fùhrt iiber die Wârmeleitungsgleichung

Der Index t bei u steht fur die Abhângigkeit von der Zeit t. Gleichung W) besitzt
eine Fundamentallôsung pt(x, y); ihre Existenz folgt aus allgemeinen Ueber-
legungen, siehe z.B. [9], S. 162/163. Die Vertauschbarkeit von A mit den

Gruppenoperationen zieht eine wichtige Invarianzeigenschaft von pt(x, y) nach

sich (siehe etwa [9], S. 162):

fur aile g e G, x, y € X. Folgerungen daraus:

1) Die Wàrmeleitungshalbgruppe auf X

p&lt;(x,y)f(y)dn(y)



Die Resolvente von A auf symmetrischen Ratimen von nichtkompakten Typ 447

lâsst sich als Faltungshalbgruppe mit einem Kern pt(g) auf G deuten:

2) Der Kern pt(g) ist bezùglich K bi-invariant.

Beide Behauptungen ergeben sich mit der Setzung pt(0, y)==pt(h), y h~A0 aus
der Invarianzeigenschaft von pt(x, y). 2) zieht eine Vereinfachung nach sich: wir
zerlegen g gemâss g kakf, k,k&apos;eK mit aeA (Anhang l.);pt erscheint dann als

Funktion von a allein: pt(g) pt(a)-

2. Die Resolvente von A auf einem symmetrischen Raum von beliebigem end-
lichem Rang

X sei ein symmetrischer Raum vom nichtkompakten Typ, und Rz bezeichne
fur komplexes z die Resolvente von A; sie ist durch

Rz=[ e~ztTtdt

gegeben. Setzen wir fur K-bi-invariantes / Ttf=pt*f, so ist

der Kern der Resolvente; wie pt ist auch er K bi-invariant.

SATZ 1. X sei ein symmetrischer Raum vom nichtkompakten Typ, a ein reeller

Parameter und l^p&lt;&lt;*&gt;. R&amp; ist genau dann eine beschrânkte Transformation von
LP(X), wenn

*&gt;-4\p\2/pp&apos;.

Beweis. Zuvor eine Vorbereitung: fur die sphârische Fouriertransformation
pt(À) von pt(g) gilt (Anhang 2) wegen

die einfache Beziehung
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Nun zum Beweis:

1) /, g seien stetige Funktionen auf X (bzw. auf G) mit kompaktem Trâger. Wir
schâtzen (R, f, g) ab. Nach dem ersten Abschâtzungsprinzip (Anhang 3) gibt es

Funktionen U, V in LP(K/M),LP&apos;(K/M) mit

&lt;«(pt*\fl\g\)dt ^ e-&quot;&lt;|g|*|/|,pf&gt;df

&lt;Dl(1_2/p)p(h)l7, V)pt(h)

also ist R^ fur cr + 4|p|2/pp&apos;&gt;0 beschrànkt.
2) Wir nehmen jetzt an, R&amp; sei beschrànkt in LP(X); es gibt also eine Konstante

Cp_m so dass fur / in LP(X), g in LP&apos;(X) gilt:

Nach dem zweiten Abschâtzungsprinzip (Anhang 3) làsst sich &lt;f&gt;2/P-i(g) durch
Koeffizienten der regulâren Darstellung approximieren:

*2/p-i(g)=lim Vn*l7n(g)
n—*»

mit positiven Funktionen Un, Vn, \\Un\\p \\Vn\\p&gt; 1, gleichmâssig auf kompakten
Teilmengen von G. Es folgt:

Tn, Vn&gt; ^e^(pt * LTn, Vn) dt ^e-&lt;«(Vn * Ûn, pt) dt.

Sei Mx c M2 &lt;=... eine Folge kompakter Teilmengen von G mit U Mn G
und f^ ln(Vn * t/n) (ln ist die charakteristische Funktion von Mn). Wegen
der gleichmâssigen Konvergenz von f^ gegen ln &lt;£2/p-i folgt:

n, Vn)^ flim &lt;J^l/n, Vn)^ fe-&lt;rt&lt;*2/p-1ln, r&gt; dr.
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Fur n -&gt;oo erhalten wir wegen der monotonen Konvergenz von (ln &lt;t&gt;2/p-u Pt)

gegen &lt;*2/P-i, Pt)

lim

und aus

dt,

folgt o- + 4|p|2/pp&apos;&gt;0.

Zusatz zu Satz 1: aus dem ersten Teil des Beweises kann man leicht die
Beschrânktheit von Rz in LP(X) fur aile z mit Re z&gt;-4 |p|2/pp&apos; ableiten.

Satz 1 kann wie folgt veranschaulicht werden: cr ist als Funktion von 1/p
aufgetragen; das schraffierte Gebiet stellt den Bereich in der (1/p, &lt;r)-Ebene dar,
in dem R^ beschrânkt ist.

-2p -

1/p

Fig. 1

3. Der Fall Rang X=l

X habe Rang 1. Unter dieser Voraussetzung kônnen wir Satz 1 prâzisieren,
und zwar fur aile komplexen z. Gleichzeitig zeigt uns ein Teil des Beweises, dass
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sich eine Richtung von Satz 2 auch fur symmetrische Ràume von beliebigem
endlichem Rang aufrecht erhalten lâsst; die andere Richtung bleibt hier indessen
noch offen.

Aus der nachfolgenden Berechnung der Fundamentallôsung von (W) ermit-
teln wir eine Formel fur den Kern der Resolvente und gewinnen hieraus die
nôtigen Abschâtzungen in den Umgebungen des Ursprungs und des Unendlichen.

3.1. Berechnung von pt

Da X Rang 1 hat, kônnen wir A mit Hilfe eines reellen Parameters £
beschreiben (Anhang 4.1). pt kônnen wir als Funktion von a ac allein auffassen,
und ausserdem folgt aus der K Bi-Invarianz von pt, dass pt als Funktion von £
gerade ist. Aus den im Anhang gemachten Festsetzungen folgen

Unter Verwendung der Abelschen Transformation wird (Anhang 4.2)

pt(u) J FPt(ac)eluCdC 2 [ FPt(ac)&lt;

also

cos

und schliesslich unter Zuhilfenahme der im Anhang 4.2 bewiesenen

Unkehrformel

HILFSSATZ 1. G habe Rang 1 und n, p, d, Dy dieselbe Bedeutung wie im
Anhang 4.1. Bezeichnen wir mit ch den Cosinus hyperbolicus, so lautet die

Fundamentallôsung von (W) wie folgt:

1. Ist G die verallgemeinerte Lorentzgruppe, so ist fur gerades n und cn

R(«t)-c(4«)-&lt;V.f|g^
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und fiir ungerades n und cn (-l)(n~1)/2(27r)~p

Pt(ac)

2. In den anderen Fàllen entsprechend d 2,4, 8 gilt fur gewisse von t und £

unabhângige Konstanten au a2,..., adJ2

ch~~d+

a,[

3.2. Die Resolvente

Mit den in Hilfssatz 1 gewonnenen Formeln fur pt kann man den Kern der
Resolvente bestimmen. Setzen wir fur K bi-invariantes /

so ist

rz(ac)= I e~ztpt(ac) dt,

und wir haben den

HILFSSATZ 2. Unter denselben Setzungen wie in Hilfssatz 1 gelten folgende
Formeln:
1. fur die verallgemeinerte Lorentzgruppe und gerades n

[ JU,*a shydy&apos;

und fur ungerades n

rM &lt;n(z + p2)&quot;1/2/2 Dr
2. In den anderen Fàllen wird
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Mit Hilfe dieser Formeln lâsst sich Satz 1 wie folgt erweitern:

SATZ 2. X habe Rang 1. Wir setzen z=a + ir und

fp(2/p-l) fur Kp**2
U

lp(2/p&apos;-l) fur 2&lt;p^œ.

Die Resolvente Rz ist genau dann eine beschrânkte Transformation von LP(X),
wenn

Beweis:
1. jR2 sei in LP(X) beschrânkt. Wir kônnen uns auf l^p^2 beschrânken

(Dualitâtsargument). / sei eine auf X stetige Funktion mit kompaktem Trâger
und U, V stetige Funktionen auf K/M. Die Funktionen

F(w) (RJ(w) 17, V), G(w) &lt;/(w) U, V)

C bezeichnet die Fouriertransformation auf G, siehe Anhang 2.) sind auf
Grund eines in [11] bewiesenen Satzes im Streifen |Re w|&lt;a analytisch und in
jedem abgeschlossenen Teilstreifen |Re wj^a-e (e positiv) beschrânkt.

zieht deshalb die Beschrânktheit von (w2-p2-z)~~1 in jedem solchen
Teilstreifen nach sich. Ihre Pôle (bezûglich der Variablen w w-f iv) sind durch

2uv t

gegeben; wir kônnen u=£0 annehmen. Sonst wâre r 0 und damit z =a, und
wir befânden uns in der Situation von Satz 1. Setzen wir fc er + p2, so wird
v t/2m und damit

Die Beschiânktheit von (w2—p2—z)&quot;1 in jedem Teilstreifen der angegebenen



Die Resolvente von A auf symmetrischen Raùmen von nichtkompakten Typ 453

Art zieht notwendig |u|^a nach sich, also ist

Die rechte Seite ist genau dann nicht negativ, wenn

wir unterscheiden zwei Fàlle:
1) a^P2(l-8/pp&apos;): es folgt fc2 + T2s*(2a2-fc)2 oder

4p2\
pp&apos;

2) &lt;r&gt;p2(l-8/pp&apos;): hier ist sowieso

pp

(siehe Fig. 2).
Da die Resolventenmenge eine offene Teilmenge der komplexen Ebene ist,
muss ^ durch &gt; ersetzt werden.

2. Es sei jetzt umgekehrt

T2&gt;-^

wir unterscheiden wieder die beiden Fâlle von oben
1) cr&gt;P2(l-8/pp/):esgilt

PP

und die Behauptung folgt aus dem Zusatz im Anschluss an Satz 1.

2) cr^p2(l —8/pp&apos;): wir schâtzen zuerst den Kern rz(ac) der Resolvente fur
C -* 0 und l -* oo ab. Fur Ç -&gt; » ist

r2 (ac) 0(exp - [p 4- Re Vz + p2])
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und fur £ -» 0

0(£2~n) fur die Lorentzgruppe
0(l2~dn) in den ùbringen Fâllen.

Wir zeigen: unter der gemachten Voraussetzung liegt rz în Lq(X) fur ein
1 ^ q &lt; p. Die Behauptung folgt dann durch Anwendung des Phànomens von
Kunze-Stein fur K bi-invariante Konvolutoren.

In der fur K bi-invariante Funktionen / gûltigen Formel

| f(a)shr£shs2Çd£

(r, s haben die im Anhang 4.1. gegebene Bedeutung) verhâlt sich das Gewicht

$hr£shs2Ç

fur £ -» oo wie exp 2p£ und fur £ -» 0 wie f~dn+2. Hieraus entnimmt man: rz(ac)

liegt sicher dann in Lq(X), wenn folgende Bedingungen erfûllt sind:

q &lt; 0 (1)

-q(2-dn) + l-dn &lt; 1 (2)

setzen wir k p2 + a, so ist die Bedingung (1) équivalent zu

&lt;P+L—2—J )&gt;2p

oder

Die rechte Seite ist fur Kq&lt;p nicht negativ, denn

2a2- k p2(l -8/qq&apos;)-a&gt; p2(l -8/pp&apos;)- a^0;
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Es folgt

T2&gt;-4

eine Ungleichung, die man sicher fur ein q mit \&lt;q&lt;p erfûllen kann. Nun
zur Bedingung (2): sie ist âquivalent zu

q&lt;
dn

dn-2

und ist gleichzeitig mit (1) erfûllbar. rz liegt also in Lq(X) fur ein q mit
1&lt; q &lt; p, und die Behauptung folgt aus dem Phânomen von Kunze-Stein fur K
bi-invariante Konvolutoren. Satz 2 ist in Fig. 2 veranschaulicht; r ist also

Funktion von o* aufgetragen; die Gerade o- p2(l-8/pp&apos;) ist zudem einge-
zeichnet; sie spielt beim Beweis eine Rolle. JR2 ist im schraffierten Gebiet
beschrânkt.

T T(O)

c -4p2/pp&apos;

d p2d-8/pp&apos;)

x2(a) -4a2(a+4p2/pp&apos;)

Fig. 2
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4. Anwendung der Ergebnisse von 2, 3 auf Riemannsche Mannigfaltigkehen mit
negativer Schnittkrùmniung

Es sei X eine einfachzusammenhângende n-dimensionale Riemannsche Man-
nigfaltigkeit, deren Schnittkrûmmung durch eine négative Konstante nach oben
beschrânkt sei. Wir nehmen der Einfachheit halber an, dièse sei -1, was keine
wesentliche Einschrânkung der Allgemeinheit bedeutet. A sei der Laplace-
Beltrami Operator auf X und Rz seine Resolvente. Mit X bezeichnen wir den

symmetrischen Raum, der zur verallgemeinerten Lorentzgruppe G SO0(l,n)
gehôrt. Als Modell fur X wâhlen wir den Teil des Hyperboloids

V2 — Y2 —- Y2 — — V2 — 1Xo Xi X2 Xn— 1

entsprechend xo&gt;0. Ursprung von X sei ë (1, 0,..., 0); setzen wir g kack&apos;

mit k, fc&apos; in K und ac in A, so ist

und der Abstand zwischen ë und x ist £. Mann kann nun X und X isometrisch
aufeinander beziehen. Dazu fixiere man ein festes e in X, dem ë entsprechen soll.
Die Tangentialebenen an X und X ine und ë werden identifiziert und dienen via

Exponentialabbildung als Koordiriatenebenen fur X und X (siehe dazu [13]).
Es seien pt,pt die Fundamentallôsungen von (W) auf X, X, die wegen ail-

gemeinen Zusammenhângen immer existieren (siehe z.B. [1], S. 229). Ist die
Schnittkrûmmung von X hôchstens —1 (Schnittkrûmmung von X), so lassen sich
die Fundamentallôsungen auf Grund von [4] miteinander vergleichen: sind

x(£), x(C) einander entsprechende Geodâtische durch e und ê, so gilt

Zusammen mit der in Hilfssatz 1 gewonenen Formel ergibt sich aus Gleichung (*)
der

HILFSSATZ 3. Es gibt von t und x unabhàngige Konstanten Cl9 C2 mit

t^l (1)

2, 0&lt;r^l (2)
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Aus Hilfssatz 3 lâsst sich ein den Sâtzen 1, 2 entsprechendes Ergebnis herleiten:

SATZ 3. X sei eine einfachzusammenhângende Riemannsche Mannigfaltig-
keit, deren Schnittkrummung hôchstens -1 sei; wir setzen z=a + iT&gt;n

dimX,p (n-l)/2.
1. Die Resolvente Rz ist eine beschrânkte Transformation von LP(X), falls

und cj&gt;-2p2/p&apos;

oder

und or&gt;-2p2/p.

2. Unter der Voraussetzung l^p^2 ist der Kern der Resolvente rz(x, y), als
Funktion von x oder y, in LP(X), sofern die fogenden Bedingungen erfùllt sind:

a &gt; —2p2lp&apos; und p &lt;

n-2*

Der erste Teil des Satzes làsst sich wie folgt veranschaulichen: cr ist als Funktion
von 1/p aufgetragen, und das schraffierte Gebiet stellt den Bereich dar, in dem JR2

beschrânkt ist.

-p

p &gt; 2 p &lt; 2

1/P

Fig. 3
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Beweis
1. Wir kônnen uns auf l^p^2 beschrânken (Dualitâtsargument und gehen von

den Ungleichungen aus:

(4)

also fur aile 1 ^ p «£ oo:

(5)

Um das Verhalten von TJ fur t—»oo zu untersuchen, gehen wir von der
Spektralzerlegung von Tt aus (siehe [13]):

Hieraus ergibt sich

&lt;T2t/, f) e-2»2&gt;^e-2&quot; d(EK+Q*f, f) ^ e&apos;2&quot;2&apos;^ d(EJ, f) e&quot;2&quot;2&apos; ||/|g,

oder

||e-p2&apos;|l/ll2. (6)

und mit Interpolation zwischen (3) und (6)

Fur die Resolvente Rz wird mit z =a + ir:

WRJl ^ \[T,/dt[ + JY&lt;-

der in Klammer stehende Ausdruck ist nach Voraussetzung endlich.
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2. Nun zum Kern der Resolvente: wegen (2) und ||pt(-, y)||i 1 gilt die fur aile
1 ^ p ^ 00 gûltige Abschàtzung

/2p&apos;. (7)

Die Abschàtzung fur t ^ 1 erfordert eine Fallunterscheidung:
1. Fall: n/n-2^2
Nach (1) wird

IIPt(*&gt; OUI Pt(*, y)Pt(y, x) dix(y) p2t(x, x) =^ Cxe~2p2t. (8)

Zusammen mit ||pt(x, Olli 1*

Aus (7) und (9) resultiert mit gewissen Konstanten Kl9 K2:

||r2(x,-)||P^^if rn/2pfdt + K2\ e-((T+2p2/pf)tdt;

die rechte Seite dieser Ungleichung ist fur n&lt;2p&apos; und cr&gt;-2p2/p/ endlich.
2. Fall: 2&lt;n/n-2
(dieser Fall ist nur fur n 2, 3 môglich) p^2 ist im ersten Fall enthalten. Es
sei also 2&lt;p&lt;n/n-2. Interpolation zwischen (1) und (8) liefert

\\pt(xr)l^C[e-p2\ (10)

Wegen (10) ist ||rz(x, )||p fur cr&gt;-p2 endlich; dièse Bendingung folgt aber aus
cr&gt;-2p2/p&apos; und

Schlussbemerkungen

Man kann mit denselben Methoden, wie sie in dieser Arbeit verwendet
wurden, auch Aussagen ûber die Riesz-Potentiale Iz machen; Iz ist durch

t~1+z/2Ttdt

definiert. Wir beschrânken uns hier auf einige Resultate; die in 1 aufgefûhrten
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Ergebnisse wurden von Lohoué [12] in einer noch nicht verôffentlichten Arbeit
auf eine wesentlich allgemeinere Klasse Riemannscher Mannigfaltigkeiten er-
weitert. Die in 2 gegebenen Resultate lassen sich auf Grund expliziter Formeln
fur den Kern kz von Iz gewinnen; die hieraus abgeleiteten Abbildungseigenschaf-
ten von Iz wurden in [21] auf anderem Wege bewiesen.
1. X sei ein symmetrischer Raum vom nichtkompakten Typ oder eine

einfachzusammenhàngende Riemannsche Mannigfaltigkeit, deren
Schnittkrummung durch eine négative Konstante nach oben beschrânkt sei.

Setzen wir wieder z a 4- ît, so ist Iz eine beschrànkte Transformation von
LP(X), wenn Kp&lt;°° und a &gt; 0. Der Kern kz(x, y) von Iz, bei verânderlichem
x oder y, liegt in LP(X) fur 0&lt;&lt;r&lt;n und l&lt;p&lt;n/n — cr.

2. X habe Rang 1. Der Kern kz des Riesz-Potentials ist fur 0&lt;cr&lt;n vom
schwachen Typ n/n-cr (fur die Bezeichnung &quot;vom schwachen Typ&quot; siehe z.B.
[18], S. 121). Insbesondere folgt hieraus, dass Iz eine beschrànkte Transformation

von LP(X) ist, sofern Kp&lt;oo und 1/q 1/p — cr/n. Iz ist also sowohl
beschrânkt in LP(X) (siehe 1) als auch von LP(X) nach Lq(Z). Die letztere
Eigenschaft und nur dièse gilt auch fur den euklidischen Raum (siehe [18], S.

119).
3. Der Fall komplexer halbeinfacher Lie-Gruppen bietet keine wesentlichen

Schwierigkeiten. Zunâchst kann man pt auf einfache Weise berechnen, da die

Umkehrung der Abelschen Transformation im wesentlichen eine Diflferentia-
tion ist und die sphârische Fouriertransformation auf die gewôhnliche (euk-
lidische) hinauslâuft. Der explizite Ausdruck fur pt ist in [2] und in [3] zu
finden. rz kann damit leicht bestimmt werden, und der Beweis unseres Satzes 2

zeigt, dass seine Aussage auch fur beliebige komplexe halbeinfache Lie-
Gruppen gilt.

Anhang

1. Bezeichnungen

G zusammenhângende halbeinfache und nichtkompakte Lie-Gruppe
mit endlichem Zentrum

K maximale kompakte Untergruppe von G
X GJK zugehôriger symmetrischer Raum

g, î Lie-Algebren von G, K
Killingsches Produkt auf g

g î©p Cartan-Zerlegung von g:p ist der zu f bez. orthogonale
Unterraum von g.
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|V|=(V, V)m Lange eines Vektors V aus p; ist auf p positiv définit.
a, a&apos; maximaler Abelscher Unterraum von p, zugehoriger Dualraum
Ec komplexe Erweiterung des reelen Vektorraumes E
o+ ausgezeichnete Zusammenhangskomponente eines regulâren

Elementes von a (positives Weylzimmer)
2+ Menge der (bez. a+) positiven eingeschrânkten Wurzeln
ma Multiplizitât von ae2+
2p- 2- maa p ist die halbe Summe der Elemente von X+.

A die zu a gehôrige zusammenhângende Abelsche Untergruppe von
G; wir schreiben fur aeA auch a exp H mit H aus a

ga der zu aeX+ gehôrige Eigenraum von ad H, Hea

aeX+

N die zu n gehôrige zusammenhângende Untergruppe von G
H(g) das in der Iwasawa-Zerlegung von g eindeutig bestimmte Elé¬

ment aus a, fur das gilt: g fc exp H(g) n, k in K und n in N
M Untergruppe aller mit sâmtlichen aeA vertauschbaren k aus K
KlM Fûrstenbergrand von X; G operiert auf KlM via kM-* g&quot;1 kM

unter Berûcksichtigung der Isomorphie von K/M und GjMAN
(siehe [22]).

dcr(kM) K-invariantes Mass auf KlM
Fur A in a&apos; sei Hx in o so bestimmt, dass A (H) (Hx, H) fur aile H aus a; ferner
wird das Killingsche Produkt auf a1 ûbertragen gemâss (A, [x) (HK,Htl), und o&apos;

wird mit der Setzung |Ap (A, A) ein euklidischer Vektorraum. Die Erweiterung
von auf ûé erfolgt wie ûblich.

2. Die Darstellungen DA, A e a&apos;c

Ist C(K]M) der Raum der auf KlM stetigen Funktionen U, so setzen wir fur
kea&apos;c:

DK(g)U(kM) e(lX-p)Hi*~lk)U(g-lkM)

Die Operatoren Dk definieren eine Darstellung von G im Raume C(KJM), die
sich fur A g a&apos; zu einer unitâren Darstellung in L2(KIM) fortsetzen iâsst. Fur
weitere Eigenschaften dieser Darstellungen siehe z.B. [22]. Ist A in ûc, so ist die
Fouriertransformierte einer auf G stetigen Funktion / mit kompaktem Trâger



462 NOËL LOHOUE AND THOMAS RYCHENER

durch

/(A)=f f(g)Dk(g)dlx(g)
Jn

definiert. Ist / bezûglich K bi-invariant, so kann man sich auf sphârische Fourier-
transformation beschrânken: an die Stelle von DA tritt die elementare sphârische
Funktion

Nach [8] gilt: A&lt;Pk -(|À|2 + |p|2)4&gt;A. Fur l^p^œ und A i(2/p-l)p wird

Dk(g)U(kM)

Dièse Operatoren sind Isometrien von LP(K/M) und spielen in der harmonischen

Analysis von X eine wichtige Rolle, wie der folgende Abschnitt zeigt.

3. Zwei Abschâtzungspriiizîpien

Dièse gehen auf C. Herz zurûck und wurden in [10] systematisch eingesetzt. Die
Formulierung ûbernehmen wir aus [10].

Erstes Abschâtzungsprinzip

Sind /, g stetige Funktionen auf G mit kompaktem Trâger, 1 =^ p &lt; °°, so gibt
es positive und stetige Funktionen U, V auf X/M, so dass gilt:

1) |g*M)l^&lt;A(2/p-i)p(fc)t/, V), fur aile h aus G,
2)

Zweites Abschâtzungsprinzip

Sind U, V stetige Funktionen auf KlM, 1 ^p &lt;œs so gibt es Folgen stetiger auf
G definierter Funktionen /n, gn mit kompaktem Trâger, so dass gilt:

pppugn * fn konvergiert gleichmâssig auf kompakten Teilmengen von G gegen den
Koeffizienten

V).
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4. Die Abelsche Transformation fur Rang X 1

4.1, Allgemeines

G bzw. X habe Rang 1, d.h. dim o 1. Die den einzigen Elementen von X+9 a
und 2 a, entsprechenden Multiplizitâten bezeichnen wir hier mit r und s, so dass

2p (r + 2s)a. Wir wâhlen Ho in a so, dass a(H0)=l. Jedes aeA lâsst sich
darstellen als a- ac exp £Ho mit eindeutig bestimmtem £6R. Um grôssere
Uebersichtlicbkeit der Formeln zu erreichen ersetzen wir A durch |a|~2 4 und
schreiben fur r + 2s p (ursprûnglich p (r + 2s)a). Fur Àeac gibt es wgC mit
A wa, und es gilt:

Die zur Diskussion stehenden Gruppen und symmetrischen Râume lauten:

SO0(l,n), X S0o(l,w)/0(fi), p

SL/(1, n), X Sl/(1, n)IU(n), p

Sp(l, n), X Sp(l, n)/Sp(l)Sp(n) p

F4(-20), X F4(-20)/Spin(9) p 15

Die ersten drei Fâlle lassen sich einheitlich behandeln, der letzte gehôrt zu den

Ausnahmegruppen und erfordert ein etwas anderes Vorgehen.
G sei eine der drei ersten Gruppen, K stehe fur einen der Kôrper R, C oder

die Quaternionen H und d sei die réelle Dimension von K. Die Konjugation in K
bezeichnen wir mit à. I sei die Diagonalmatrix der Ordnung n + 1, deren erstes

Elément 1 und deren ûbrige Diagonalelemente -1 sind; G ist die Gruppe der
Matrizen g der Ordnung n + 1 mit Elementen aus K, fur die gilt: g~*Ig I sowie
det g 1 in den Fâllen K R, C. Ihre Lie-Algebra g enthâlt aile Matrizen Z der

Ordnung n + 1 mit Koeffizienten aus K, fur die gilt: ZtI+IZ 0 sowie SpZ 0

fur K= R, C. In der Cartan-Zerlegung von g besteht p aus den Z e g mit Z% Z
und î aus den Zeg mit Z1 -Z. a ist hier der von

M. &apos;)

erzeugte Unterraum von p. 2+ kann wie folgt beschrieben werden: fur x

(*i, *2, • • • &gt;

xn_1)€Kn&quot;1 und y €K mit y -y seien U(x), V(y) folgende Matrizen
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aus g (On_i ist die Nullmatrix der Ordnung n-1):

(0
x 0 \

X&apos; a-! -A
0 x 0 /

U(x)=\x&apos; On_x -x&apos;|, V(y) On^

Dann ist ga ={U(x): xgK&quot;&quot;1}, g2tt {V(y): y gK, y -y} und a(H0)
l,dimga d(n-l),dimg2a d-l, p d(n + l)/2-l. Wegen N exp (ga+g2j
lassen sich die Elemente n aus N wie folgt darstellen:

(l
+ (y+xx72) x -(y + xx72)\

X1 ln_x -X1 ]

x -(y + xx72)/

Wie man direkt zeigen kann, ist das invariante Mass d^{n) auf N zum euklidi-
schen auf n proportional, fur das wir zur Abkiirzung schreiben: dx dy anstelle von
dx a dx* a dy a dy.

4.2. Die Abelsche Transformation

f sei eine K bi-invariante Funktion auf G, stetig mit kompaktem Trâger. Ihre
sphàrische Fouriertransformation

lâsst sich auf eine gewôhnliche euklidische Fouriertransformation zurûckfûhren;
fur £&gt;0 setzen wir:

(x, y)) dxdy.f(ac) e«\ /(acn)dft(n) e^f f f(a,n

Ff heisst Abelsche Transformation aus Griinden, die sofort klar werden (siehe
auch [19] und [7]). Da / K bi-invariant ist, hângt sie nur vom Betrag des

Matrixelementes [%n(x, y)]n von acn(x, y) ab, also nur von

\ch( + e&apos;y + e* |x|2/2| ((ch£ + ec |x|2/2)2

Schreiben wir fur f(acn(x, y))
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so wird

F/(a,) ep4 f

Wir benôtigen eine explizite Umkehrformel fur dièse Transformation, eine Auf-
gabe, die schon in der Abelschen Integralgleichung auftritt. Im Falle der verall-
gemeinerten Lorentzgruppe wurde sie in [19] gelôst; fur die ùbrigen Rang-1 Fâlle
ist eine explizite Formel u.a. in [9a] enthalten. Wir geben hier eine fur unsere
Zwecke geeignete Formel an:

HILFSSATZ. / sei eine auf G definierte stetige Funktion mit kompaktem
Trâger, die bezùglich K bi-invariant sei. Setzen wir abkûrzend

D — —y shy dy
&apos;

so gelten folgende Formeln:

1. Ist G die verallgemeinerte Lorentzgruppe, so wird fur gerades n

und fur ungerades n

f(ac) (-ir/2(2^r(n-l)/2D(r1

2. Ist G eine der ùbrigen Rang l-Gruppen entsprechend d 2,4, so ist mit
absoluten Konstanten aua2,..., adl2

Beweis. Fur 1 ist das Résultat bekannt [19]. Nun zu 2. Zunâchst folgt durch
Variablentransformation :

f
-l JjRd(n 1)
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Wie setzen &lt;£(*

g(w)

also:

FM

r

H-
1

W,(V

?(«¦?

1 jRd(n~1

NOËL LOHOUÉ

*) und

\y\2)dy,

+ |x|2/2)dx.

AND THOMAS RYCHENER

/2)2 + |y|2)dxdy

Da d(n-l) gerade ist, folgt mit Ff(chO Ff(ac):

g(cfiC) (-l/27r)d(n&quot;1)/2Ffn-1)/2(ch£) (1)

Die Ableitung bezieht sich hier auf ch£. Wir miissen nun &lt;f&gt; durch g ausdrùcken

und das Ergebnis mit (1) kombinieren; dazu setzen wir h(u) g(Vû) und erhalten;

f hw-1)(u + |z|2)dz=f f *«&quot;»

jRa-. jRd-i jRdi

oder

also

f&quot; g(V^4V) «,. (2)

Um die gewùnschte Formel zu erhalten, berechne man die Ableitung unter dem

Intégral, setze (1) ein, substituiere u ch2Ç und berùcksichtige die Identitàt

Ff(chy) (1/shy dldy)%(a,



Die Resolvente von A auf symmetnschen Raumen von mchtkompakten Typ 467

Es bleibt noch der Ausnahmefail entsprechend G F4(_2o). Hier setzt man K 0,
den Kôrper der Oktaven, also d 8. Da 0 nicht assoziativ ist, stellen sich
zusâtzliche Problème. Die hierzu erforderlichen Schritte sind in [20] enthalten; X
wird dort als das Innere des Einheitskreises der Oktavenebene gedeutet. Die
Formel fur Ff ist nach Wahl geeigneter Parameter der bereits gefundenen vôllig
analog; hier ist p 15, Qa und g2« sind zu R8 und R7 isomorph, und die im
Hilfssatz, 2. angegebene Formel behàlt ihre Gùltigkeit.

Die hier angegebene Umkehrformel der Abelschen Transformation bezieht
sich nur auf K bi-invariante Funktionen. Im allgemeinen Fall haben Gelfand und
Neumark fur die komplexen halbeinfachen Lie-Gruppen in [5] und fur die

Gruppe der unimodularen reelen n-n Matnzen in [6] das allgemeine Um-
kehrproblem gelôst; im letztgenannten Fall ist die Lôsung skizziert, und die
Beweisidee fur die reellen halbeinfachen Liegruppen lâsst sich daraus ableiten.
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