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Positive-definite quadratic bundles over the plane

M.-A. Knus, M. OJANGUREN and RAMAN PARIMALA

Introduction

Indecomposable, positive-definite quadratic spaces of ranks 3 and 4 over
R[x, y] have been constructed in [5] and [13]. A natural question to ask is
whether there exist indecomposable quadratic spaces of rank >4 over R[x, y] and
whether the theorem of Krull-Schmidt holds for orthogonal decompositions of
positive-definite quadratic spaces over R[x, y]. (cf [9], p.204.)

In §1 of this paper we prove a Krull-Schmidt theorem for orthogonal sums of
positive-definite quadratic spaces over R[x, y]. In view of [8], Thm. 2.1, it is
enough to prove a similar theorem for positive-definite quadratic bundles over
P&. More generally, we prove that if X is a projective scheme over R and X, the
complexification of X, then the theorem of Krull-Schmidt holds for positive-
definite o-hermitian (resp. quadratic) bundles over X (resp. X). We also deduce
that Witt-cancellation holds for positive-definite quadratic spaces over R[x, y]. In
§2, we exhibit a class of vector-bundles of rank 3 and 4 over P2, associated to a
pair of projective ideals of H[x, y], and show, using results of §1, that these
bundles are stable. (The examples of rank 4 bundles over PZ constructed here are
interesting, particularly in view of the fact that in general it is not easy to decide
the stability of bundles of rank >3.) In §3, we construct an example of a rank 6,
indecomposable quadratic space over R[x, y]. The idea of the construction is to
patch certain rank 3 and 4 quadratic spaces over R[x, y].

We are grateful to R. Sridharan for his contributions to this paper. We also
thank W. Scharlau for explaining to us the content of [15].

§1. Krull-Schmidt theorem for positive-definite bundles over projective schemes

Let X be a projective scheme over R and let X denote the complexification

Spec (SZX“)?( of X. Let o be the involution on X¢ induced by the complex
pec

conjugation on C and 7 the projection of X onto X. For any vector bundle %,
over X we have a natural isomorphism p: 7*%,— o*7*%, since m ° o = 7. For

400



Positive-definite quadratic bundles over the plane 401

any vector bundle ¥ over X we denote by %' the dual bundle and by F* the
pull-back o*#’ of %' through 0. We define a natural isomorphism (cfr. [11])
T (c*F) > F* by

(0*F) =Hom (0*F, w*0x) T2 T2, 9 o n (0*F , a* ¥ 0% ) = 0*F,

In [11] a o-hermitian structure over ¥ was defined as an isomorphism ¢ : ¥ —
o*%' such that the diagram

F—— o*F’

(a""d’)‘\ /

(c*F)

is commutative. It is convenient to give an equivalent definition, using the termin-
ology of [15]. Let IR be the category of vector bundles over Xc. Associating to
every ¥ the bundle ¥* we get a functor *: It — IN. Let, for any &, ig : F — F**
be the isomorphism defined by

F* = og*(F*) = (c*F* — (F) —F.
It is easily checked that i is a natural transformation id>** satisfying
igigs=idg+ Hence * is a duality functor in the sense of [15]. We identify each
bundle ¥ with F** and each morphism ¢ of bundles with ¢**. For ¢ =+1, we
define an e-hermitian structure on % as an isomorphism ¢ :¥ = %* such that
¢™* = e¢. A 1-hermitian structure on % turns out to be the same as a o-hermitian
structure in the sense defined above and in [11] or [8]. If x is a real closed point of
Xc, i.e. a closed point such that o(x)=1x, the fibre ¥, at x of a o-hermitian
bundle # carries a non-degenerate hermitian form. We say that & is positive
definite if the fibre at every real closed point is positive definite. Since the
signature of a hermitian form is locally constant, if Xg is connected, ¥ is positive
definite if and only if the induced form on the fibre of some real closed point of
Xc is positive definite.

We assume, from now on, that X has at least one real closed point.

For any bundle ¥ we denote by H(%¥) the hyperbolic bundle associated to %.
This is the bundle F @ * with the hermitian structure defined by the matrix

(0 1)
1 0/

LEMMA 1.1. Let ¥ be an indecomposable vector bundle over X¢ such that
N=N* Then N carries a o-hermitian structure.



402 M.-A. KNUS, M. OJANGUREN AND RAMAN PARIMALA

Proof. By Proposition 2.5 of [15], ¥ carries a (1)- or a (—1)-hermitian form. If
¢ : N — N* is (—1)-hermitian, i¢ is hermitian.

THEOREM 1.2. Let (¢, ¢) be a positive-definite o-hermitian bundle over X_.
Then, there is a unique orthogonal decomposition

(g’ ¢) - —E— (gb (\bi),

where ¥, are the isotypical components of the vector bundle & (i.e. £, @ N, where
N; are indecomposable and for i# j, N; 7> N ;). Each €; carries a positive-definite
o-hermitian structure which is unique up to isometry.

Proof. Since X is a projective scheme, the category I with the duality functor *
defined above satisfies the assumptions (i)—(iii) of [15], page 272. Hence, by
Theorem 3.2 of [15],

(g’ ¢)E(£1a ¢1)-L e -L(gna ¢n)7

where each &, is a direct sum of vector bundles isomorphic to a fixed indecompos-
able N; or to its “dual” N*%. By Theorem 3.3 of [15], if #;#N%, &, contains a
hyperbolic orthogonal summand. Since, by assumption, & is positive definite, this
cannot happen and hence each &; is isotypical. Since the orthogonal decomposi-
tion written above is unique, it suffices to prove the uniqueness for an isotypical
vector bundle.

Let € be an isotypical vector bundle of type & and let £ = & N. We show that
if &€ carries a positive-definite o-hermitian structure, then it is unique. Since X is
indecomposable, the ring E =End & is a local finite-dimensional C-algebra. Let
E =E/rad E. Then E is a finite-dimensional division algebra over C and hence
E> C. One reduces the study of o-hermitian structures on € to the study of
hermitian-forms over a certain vector space M over E defined as follows (see
[15], 2.2, 2.4). Let ¢:&€—&* be a o-hermitian structure on &. Then,
@, ¥ > @, N* and by the Krull-Schmidt theorem the vector bundles & and ¥*
are isomorphic. Hence, by Lemma 1.1, there exists an isomorphism ¢ : N = N*
which defines a o-hermitian structure on A. In what follows, we shall fix this
o-hermitian structure ¢, on N. The isomorphism ¢, induces an involution 7 on
E =End & defined as

f=f0=¢g' o f* o ¢,

The map f— f° satisfies (fg)°= g°f°, (f°)°=f and for A €C, (Af)° = Af°, A denot-
ing the complex conjugate of A. This involution passes down to an involution on
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E=E/rad E=C which is just the complex conjugation on C. Let M=
Hom (W, &). Then M is a right E-module and the isomorphism ¢ : & — £* induces
an isomorphism ¢,: M — Homg (M, E) which is semilinear with respect to the
involution 7. The map ¢, is in fact defined as ¢,(f)(g) =o' o f*og for f, ge M. It
is easily verified that ¢, defines a hermitian form on the E-module M with
respect to the involution 7 on E. Going modulo the radical of E, we obtain on
M = M/(rad E)M a hermitian form over C.

Two o-hermitian structures on & are isometric if and only if the corresponding
hermitian forms on M are isometric ([15], 2.2). If the form on & is positive-
definite, then the form on M is either positive or negative-definite. In fact, if M
represents zero, then M contains a hyperbolic summand and so does € by [15], Prop.
2.4.If ¢ and ¢’ are two positive definite forms on &, the corresponding forms on
M are either both positive-definite or both negative-definite: otherwise the form
corresponding to ¢ L ¢’ on € L € would be isotropic. Since, up to isometry, there is
a unique positive or negative-definite hermitian form on M, it follows that there is
a unique positive definite o-hermitian structure over &. This proves Theorem 1.2.

COROLLARY 1.3. A vector bundle over X carries at the most one positive-
definite o-hermitian structure.

COROLLARY 1.4 (Krull-Schmidt theorem). Any o-hermitian positive-
definite bundle (£, ¢) over X has a decomposition

(&, ¢)= LNy )

into indecomposable o-hermitian bundles. The summands (¥, v;) are unique up to
isometries and permutations.

COROLLARY 1.5. The Krull-Schmidt theorem holds for positive-definite
o-hermitian spaces over C[x, y].

Proof. By (3.1) of [8] any positive-definite o-hermitian space over C[x, y] has,
up to isometry, a unique extension to PZ. Hence the assertion follows from 1.4.

The following theorem and corollaries give the corresponding results for
positive-definite quadratic bundles.

-

THEOREM 1.6. Let (&, ¢) be a positive-definite quadratic bundle over X.
Then, there is a unique orthogonal decomposition

(8, 6)= L (£, $)
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where €; are the isotypical components of the vector bundle €. The components &;
carry a positive-definite quadratic structure, unique up to isometry.

A proof on the same lines as of Theorem 1.2 can be given. Let now IR be the
category of real vector bundles over X and, for any such bundle & let £*=#&"=
H om (€, Ox) be the dual of £. By Theorem 3.2 of [15] one reduces immediately to
the case of an isotypical bundle € = @V, & indecomposable. Since &> £*, we
have ¥ > ¥* and since End & is local, ¥ carries either a quadratic or a
symplectic structure ¢,: N > N*. Then ¢, gives rise to an involution 7 of
E =End &, which passes down to an involution of E = E/rad E. It is clear that
ESR, C, or H. If E =R, the involution is trivial. If E =C, the involution must be
complex conjugation. And if E-H, the involution on H is either trivial or is a
conjugate of the canonical involution. The isometry classes of quadratic structures
on & correspond to isometry classes of positive-definite or negative-definite forms
on M = Mj(rad E)M, where M =Hom (W, ). The existence of orthogonal bases
for hermitian forms shows that there is unique positive- or negative-definite
r-hermitian form on M. It follows that there is a unique positive-definite
quadratic structure over &.

COROLLARY 1.7. A vector bundle over X carries at the most one positive-
definite quadratic structure.

COROLLARY 1.8. The Krull-Schmidt theorem holds for positive-definite
quadratic bundles over X.

COROLLARY 1.9. The Krull-Schmidt theorem holds for positive-definite
quadratic spaces over R[x, y].

§2. Some stable bundles of rank 3 and 4 associated to projective ideals of H[x, y]

We recall that a bundle £ over Pg is said to be stable if, for every coherent
subsheaf % #0 of & such that &/% is torsionfree we have c¢,(%¥)/rank % <
c,(¢)/rank £. In [8] to each non-free projective ideal P of H[x, y] was associated a
rank 2 stable bundle £(P) with a positive-definite o-hermitian structure. We recall
the construction of these bundles, which in [8] were called B-bundles. Let
¢ :C ®H — M,(C) be the isomorphism given by

ps®uto)=s_" YJuvec

7]
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Let H=H[x, y] and C=Cl[x, y]. For any projective ideal P of H C® P is an
M,(C)-module via ¢. Hence, there is a ¢-semilinear isomorphism ¥p:C®
P> M,(C). We shall call such a map a splitting of P. By Galois cohomology, we
associate to the splitting ¥ the cocycle

ap=0¥p(c ® 1)V¥p'(1)e GL,(C)

where o is the complex conjugation on C and the transported action ¢(oc ® 1)¢*
on M,(C). The map ¥p can be chosen such that ap is positive-definite hermitian
of determinant one. Such a splitting is called a normalized splitting. Hence, ap
defines a o-hermitian structure on AZ. This structure can be uniquely extended to
P2 ([8] and the extension is the complex bundle €(P). Notice that by (1.2) £(P)
carries a unique positive-definite o-hermitian structure. Let now P and Q be two
projective ideals in H. The reduced norm Nr introduced in [6] defines a quadratic
form on the R[x, y]-module of rank 4 Homg (P, Q). If ¥p:C® P=M,(C) and
Y5:C® Q> M,(C) are normalized splittings of P and Q, then, for any fe
Homy (P, Q), Nr (f) =det ¥5(1® f)¥5'(1). This quadratic space is indecomposa-
ble if P and Q are non-free and not isomorphic. If P=Q and P is non-free, then
this space decomposes as (1) L g, where g is the orthogonal complement of the
submodule R[x, y] of Endy (P) for the reduced norm on the algebra Endy (P). It
is shown in [6] that g is indecomposable. These indecomposable quadratic spaces
of ranks 3 and 4 extend uniquely to indecomposable quadratic bundles over Pg,
denoted respectively by #(P, Q) and %(P). Let 7 :PZ — P be the projection and
let #*%(P, Q)=%9(P, Q) and 7*%(P)=%(P). We shall show that these bundles
are stable.

THEOREM 2.1. The bundle 4(P, Q) is isomorphic to £(P)®¥%(Q).

COROLLARY 2.2. We have c,(9(P, Q)=2(c,(8(P)+c,(8(Q)) and
¢2(9(P)) = 4c,(&(P)).

Proof. For 2-bundles € and & on Pg, if ¢1(&) =ci(¥)=0, then c,(£®F) is
given by 2(c,(8) + co(F)).

Theorem (2.1) is a consequence of the following results. The first one is
implicitly contained in [7], (1.12).

LEMMA 2.3. Let P be a projective ideal of H, ¥p a normalized splitting of P
and ap € GL,(C) the corresponding cocycle. Then there is a basis e,, e; of P as a
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C-module such that the matrix of the o-hermitian form ap on P defined by

ap(e;, &) =(¥p(e), Vple)) i=1,2
ap(ey, e;) = (Wpley), Vpler) —i(Wele,), Prliey))

where, for u, v e My(C), (u, v) =3(det (u+v)—det u —det v), is ap.
Let ap =a+iB with a, B € My(R[x, y]). Then the symmetric matrix ( * B)
- a
represents the reduced norm on P with respect to the basis e, e,, ez =ie,, e, =ie, of
P over R[x, y].

The next lemma is an immediate consequence of (2.3) and of the definition of
the reduced norm on Homy (P, Q) by means of the splittings ¥p and V¥,

LEMMA 2.4. Let fe Homy (P, Q) and ap, ag the hermitian forms given in
(2.1). Then, for any u,veP

aq(f(u), f(v)) =Nr (f)ap(u, v).

The module P'=Homc (P, C) is a projective right H-module (with the action
(fAA)(x)=f(Ax), A € H). We now compute its cocycle.

LEMMA 2.5. Let ¥p be a splitting of P with cocycle ap. Then, there is a
splitting Wp of P’ with cocycle ap =ap’.

Proof. Let T:M,(C)=> Hom (M,(C), C) be the isomorphism given by the
trace, i.e. T,(b)=Tr (ab), a, be M,(C). Let P’ = Homg, ,1 (P, R[x, y]). Then the
map ¥e=T (W) (where ~means dualization with respect to R[x, y]) is a
splitting of P" and one computes that the corresponding cocycle is ap'. Let now
t: P' S P be the isomorphism (of H-modules) induced by the trace C — R. Then
the map ¥p = ¥p-o (1® 1) is a splitting of P’ such that ap =ap=ap'.

Let now ap: be the hermitian structure on P’ given by

apel, ej') = 'lz‘(ap')j,i = %(al—’l)j,ia
where e{, i =1, 2 is the dual basis of the basis ¢, i =1, 2 given in (2.3). Let S be

the o-hermitian space obtained by extending the reduced norm Nr on
Homy (P, Q) to C ®; Homy (P, Q), i.e. SA®f) =AA Nr ().
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LEMMA 2.6. The map p:C®Homy (P, Q)= Hom(P,Q)> P' ®-Q
where the first map is the multiplication and the second is the canonical map, is an
isomorphism of o-hermitian spaces p:S—= ap ® ag.

Proof. For any basis {¢;} of P, p is given by p(A @ f) =Y, ¥ ® f(Ae;). Choosing
the basis given in (2.3), we have, using (2.4),

(ap® a0)( L ¢i® f(he) ) = L ap(el ehao(fire), fike)

=Nr ()AX ) ap(e}, e)ao(e, ) =Nr (f)AX.
ij
This shows that p is an isometry.
Theorem (2.1) now follows from (2.6) noting that the extension of a positive
definite o-hermitian form from A2 to P2 is unique and that £(P*)=¥(P).
To show that the bundles ¥(P, Q) and ¥(P) are stable, we begin with

LEMMA 2.7. Let K be a field of characteristic #2 and let (€, ¢) be a quadratic
bundle of rank 2 over P%. If (&, ¢) is anisotropic, (&, ¢) is extended from K. If
(€, @) is isotropic, then (&, d) = H(O(n)), a hyperbolic space.

Proof. The first part of the lemma is proved in ([8],2.4). If (¥, ¢) is isotropic,
then restricted to each affine piece D(x;), the quadratic form can be given by the

matrix ((1) 3) One then easily checks that (£, ¢) = H(O(n)) for some n.

LEMMA 2.8. Let K be a field of characteristic #2 and let € be an indecom-
posable anisotropic quadratic bundle over P%. Then € has no non-zero section.

Proof. Evaluating the quadratic form on a global section one gets a global
function on P%, hence a constant. This constant must be zero, since the bundle is
indecomposable as a quadratic bundle. The section has to be zero since the form
Is anisotropic.

For any bundle € over PZ the “type” of & is the pair of Chern classes (c,(¥),
C,(%)).

THEOREM 2.9. The bundles $(P) are stable rank 3 bundles of type (0, 8n),
where c,(&(P)) = 2n, €(P) denoting the B-bundle associated to a non-free projective
ideal P of H[x, y]. The bundles £(P, Q) are stable rank 4 of type (0, 4(m + n)) if P
and Q are non-isomorphic, non-free, €(P) of type (0,2n) and &(Q) of type
0,2m).
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Proof. Since £(P) supports a quadratic form it follows that ¢,(£(P)) = 0. If we
consider global sections, we have H°(P2,%(P))>CQ H°® (P, %(P))=0 by
Lemma 2.7, since % (P) supports an anisotropic indecomposable quadratic form.
Further, being a quadratic bundle, ¥(P) = 4(P)'. Hence %(P) is stable by [12],
1.2.6.

We shall now show that ¢(P, Q) is stable for P, Q non-isomorphic, non-free.
We show that for every subsheaf # of ¥ =%(P, Q) with the quotient (P, Q)/%
torsion free, ¢,(¥)/rank ¥ <c,(9)/rank 4. Since PZ is regular of dimension 2,
such a sheaf is locally free. Hence it suffices to show that for any locally free
subsheaf # of ¥, ¢,(¥)<0. If ¥ is a line bundle with ¢,(¥) = n, necessarily n <0
since, otherwise, # and hence ¥ would have a non-zero global section. If ¥ is of
rank 3 we have a surjection ¥' — %' — 0 whose kernel is a line bundle £. Since
%' = ¢ also does not admit of global sections, it follows that c¢,(¥)<0. Hence
c,(F')>0 so that ¢,(F)=—-c,(¥')<0. Let ¥ be of rank 2. The bundle ¥
restricted to a real line L of P is trivial, since ¢ supports an anisotropic quadratic
form ([16], Prop. 5). The restriction of & to L is isomorphic to O(n) @ O(m).
Since %|, is a subsheaf of 4|.= ®O|,, we have c¢,(¥)=n+m=<0. Suppose
that ¢,(¥)=0. Then % is a rank 2 bundle with no global sections and with
¢,(¥)=0. Hence ¥ is a stable bundle ([12], 1.2.5). The quadratic structure on
% (P, Q) extends to a positive-definite o-hermitian structure, denoted by ¢, on
%(P, Q). The restriction of ¢ to ¥ induces a map ¥ — o*%* =% *. This map
cannot be zero since ¥ is anisotropic (positive-definite). By the corollary to
Lemma 1.2.8 of [12], ¢ is an isomorphism and (%, ¢ | &) splits off as an orthogonal
summand of (¥, ¢). Then, ¥ > % L %,. The bundle ¥ supports a quadratic form,
namely the extension of the quadratic structure on (P, Q). The bundle ¥ cannot
support a quadratic structure, since, otherwise, ¥ = H(O(n)) by Lemma 2.7
contradicting the stability of . Thus, by the uniqueness of the quadratic structure
on ¥, it follows that = H(%¥) and hence ¥,>%'>%. In fact, by the
uniqueness of the positive-definite structure (see (1.6)) (%, ¢ |F1) > (F, ¢ |F)
and (4, ¢) > (%,¢ | F)L(F,d|F). Since F is a rank 2 stable bundle with a
positive-definite o-hermitian structure, it follows by [8] that & is a $-bundle, i.e.
F > &(P,), where P, is some non-free projective ideal of H[x, y]. By [8],
Prop. 3.2, G > E(Py) D E(Py) > wrme8(Py) = (FH[x, y]), Py)). Since
End (£(P,) ® &(P,)) = M,(C), the isomorphism classes of vector-bundles on Pg
with 7*(&) = &(P,) ® &€(P,) are classified by H'(Z/2Z, GL,(C) for an action on
GL,(C) which is the restriction of an action on M,(C). Since 7*(&) = &(P,) ®
&(P,) is C-linear, Z/2Z acts on C < M,(C) =End (&(P,) +&(P,)) by conjugation,
and hence the action on M,(C) is of the form a — uau™' for some fixed
u e GL,(C). It is easily checked that in this case H'(Z/2Z, GL,(C))=0. Hence,
there is a unique descent for €(P,) @ &(P,), i.e. #(P, Q) > F(H[x, y], P,). By the
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uniqueness of the positive-definite quadratic structure on a vector-bundle over P3
[(1.7)], it follows that %(P,Q) is isomorphic as a quadratic bundle to
% (H[x, y], Py). By restricting these bundles to A3 and using ([6], Thm. 4.6), it
follows that P or Q is free, a contradiction. The statement in the theorem
regarding the second Chern classes of 4(P) and 9(P, Q) was proved in (2.2).

§3. An example of an indecomposable quadratic space of rank 6 over R[x, y]

LEMMA 3.1. Let R be a local domain in which 2 is invertible and let q,, q, be
quadratic spaces over R[x] such that q, L q, is anisotropic. If q,(v)+ q,(w) is a unit
of R[x], then q,(v) or q,(w) is a unit of R[x].

Proof. Let K denote the quotient field of R. Since R is local, if bar denotes
reduction modulo x, one has §; = (A, ..., An)s o= M1y« - -5 Bm)s Aiy i € U(R).
By a theorem of Harder, we have, over K[x], q; =\, ..., A,
q2=>{p1, - .., ). Thus, there exist 6, ¢;€ K[x] such that g,(v)=Y A,8? and
q(w) =Y w;d?. Since the forms q; and g, are anisotropic over K[x], if ¢q,(v)=
ag+a;x+---+ax’, then qy(w)=by—a,;x—---—ax", and a,=Y AcZ=-y \d7,
where ¢, d; denote the leading coefficients of 6, and ¢; respectively. Then, g, 1 g,
represents zero over K and hence g, 1 g, represents zero over K[x], contradicting
the assumption that g, L q, is anisotropic.

The next lemma is a generalization of Proposition 1.1 of [13].

LEMMA 3.2. Let A be a normal ring in which 2 is invertible. Every quadratic
space of rank 2 over A[Xj, ..., X,] is extended from A.

Proof. By [3, 4.15, Remark 4] we may assume that A is local. Let K be the
field of fractions of A and M a quadratic space of rank 2 over A[X], X denoting
(Xi,. .., X,). If the signed discriminant of M is trivial, by [2, Proposition 5.1] M
is of the form H(I), where I is a projective ideal of A[X]. Since Pic A=
Pic A[X], M is extended. If the signed discriminant d of M is not a square in K|
put L = K[vd] and B = A[Vd]. Then B is the integral closure of A in L hence is
a normal semilocal ring. The signed discriminant of Mg is trivial and hence Mp is
of the form H(I), where I is a projective ideal of B[X]. Since Pic B[X]=Pic B =
0, Mg=H(B[X]). This shows that M is represented by an element of
H'(Gal (L/K), O,(B[X])). But O,(B[X]) = O,(B) (compare [11], §1) and hence
M is in the image of H'(Gal(L/K), O,(B)) in H'(Gal (L/K), O,(B[X])). This
shows that M is extended from A.
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Given a pair f, g of polynomials in R[x, y], let a;, (respectively B;,) denote
the rank 3 (rank 4) quadratic spaces over R[x, y] defined as the orthogonal
complement of the identity in End (P;,) (respectively reduced norm on P;,),
where P, is the projective ideal of H[x, y] defined as the kernel of the H[x, y]-
linear map H[x, y]* — H[x, y] given by (1,0)— f+1i, (0,1) — g+ ([8], 1.2). Then
a =a,, is an indecomposable quadratic space over R[x, y]. This space remains
indecomposable over R[x];,,z[y]. In fact, if it decomposes as a' 1l a”, then the
ranks of '’ and «” are 1 or 2 and hence, by Lemma 3.2, a is extended from
R[x)1+x7. Since over R[x, 1/1+x*][y], P, is free ((7], §5), a is=(1,1, 1) over
this ring. Therefore by [3, 4.15, Remark 4], a is extended from R, contrary to the
assumption. The form B=p,,,, is an indecomposable quadratic space over
R[x, y] which is isometric to (1,1, 1, 1) over R[x, 1/2+x*][y]. We claim that B
remains indecomposable over R[x],.,»[y]. Suppose that B=pB'LB" over
R[x]2+x3[y] If rank B’=rank B”=2 the same argument as above shows that B is
extended from R, which is absurd. If rank B’'=1, then B represents a unit over
R[x]+x»[y] and therefore, by [6], (3.19) P,.,, is free over H[x],.,>[y] and, in
particular, extended from H. Since it is also free over H[x, 1/2+ x*][y] ([7], §5), by
Quillen’s theorem P, s, ,=H[x, y], contrary to the assumption.

We define a quadratic space over R[x, y] of rank 6 as follows: we consider the
covering

SpecR[x, y]=Spec R[x, y][1/1+x*]U Spec R[x, y][1/2 + x?].

We take the space BL1.11 over SpecR[x, y][1/1+ x?*] and the space a 1L a over
SpecR[x, yI[1/2+x?*] and some patching isometry ¢d:ala=>B1L111 over
SpecR[x, y][1/(1+ x?)(2+ x?)] (note that both quadratic spaces are equivalent to
the identity over this intersection) to get a quadratic space y of rank 6 over
Spec R[x, y].

We show that y is indecomposable. Suppose that y represents a unit of
R[x, y]. Since y=> a L a over R[x],,»[y], it follows that a L a represents a unit
of R[x];..»[y] and since a L a is anisotropic, by Lemma 3.1, a represents a unit
of R[x]+.»[y] contradicting the indecomposability of a over R[x];,,»[y]. Since
by (3.2) any quadratic space of rank <2 over R[x, y] is extended from R and
hence represents units, we assume now that y=+y, L y,, where y, and vy, are
indecomposable rank 3 spaces. Over R[x],,»[y], we have y; Ly, > B L111,s0
that if y,(v)+ y,(w)=1, we have by Lemma 3.1 that y,(v) or y,(w) is a unit.
Suppose that y,(v) is a unit. Then y; = (y;(v)) L v; and the orthogonal comple-
ment of y,(v)+ y,(w) in y; Ly, is y; L v5, where vy, is the orthogonal complement
of y,(v)+ vy,(w) in (y,(v)) L v,. We therefore have y; L y; = B L 1. Repeating the
arguments over again, we get that B is decomposable over R[x],,,>[y], which is a
contradiction.
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