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The module of a 2-component link

J. LEVINE

The most prominent algebraic invariant of a link L in 3-space is the funda-
mental group II of the complement. One might try to extract “abelian’ invariants
from I1. The most obvious candidate: II/IT', where IT' is the commutator subgroup
of II, is not very useful since, by Alexander duality, this is just the free abelian
group with rank the multiplicity (i.e. number of components) of L. A reasonable
next candidate is A(L)=IT'/IT", considered as a module over II/IT". If L is
oriented, a canonical basis of II/IT' is defined by the meridians of L. Thus A(L)
has a well-defined structure as modulue over A, =2Z[t, 600, 0]
(u = multiplicity of L). We refer to this as the module of L. An alternative
description can be given by considering the universal abelian covering X of the
complement X of L. The group of covering translations of X is canonically
identified with II/IT" and then H,(X)=~ A(L), as a IT/IT'-module.

A closely related invariant of L is what is sometimes called the Alexander
module of L, A(L). This is classically defined as the A, -module presented by the
Jacobian matrix of any presentation of II. Equivalently A(L)=H,(X, %), where ¥
is the inverse image of a base-point * of X. Thus we have an exact sequence:
0— A(L)— A(L)— M — 0, where M is the “augmentation ideal” of A, gener-
ated by 1,—1,...,¢,—1.

A classical collection of invariants considered by Fox [F] is the sequence of
elementary ideals, or Fitting invariants, E,(L), i=0. E,(L) is defined to be the
icjeal of A, generated by the (n—i)-order minors of a presentation matrix of
A(L) obtained from n generators. One also considers the greatest common
divisior 4,(L) of E,(L)-note that E,,,(L)2 E,(L), and so 4;,,(L)|4,(L). Fur-
thermore Eo(L)=0=4,(L): 4,(L) is the Alexander polynomial of L. One can
define E;(L) and A,(L) from A(L) in the same way; then Ai(L):—- A,.,(L), but
E,(L)# E,,,(L), in general. If =1, then E;(L) = E;, (L), in fact, A(L) = A(L)®
Ay, and Ey(L) is principal and non-zero.

See [C], [F], [H], [H1], [L], [M] for details and more information.

The torsion submodule tA of A= A(L) carries a sesqui-linear Hermitian
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378 J. LEVINE

pairing { , ) with values in S(A)= Q(A)/A (Q(A) is the quotient field of A),
referred to as the Blanchfield pairing (see [B], [L1]). If B: A - Hom, (A, S(A)) is
the adjoint of ( , ), (A is the conjugate of A, defined by changing the action of A
on A via the anti-automorphism f(x, y) = f(x~', y~!)) then Kernel B is referred
to as the null-space of ( , ) and cokernel B as the conull-space. If u=1, the
pairing is non-singular. See [B], [H] for more information.

The problem of giving a purely algebraic characterization of A(L), with the
Blanchfield pairing, has been solved in the case u =1 (see [L1]). Bailey [By] has
given a characterization of A(L) in terms of the presentation matrix, when u = 2.
The present paper is devoted to a further examination of A(L) when u =2; in
paricular the identification of some of its algebraic properties and a characteriza-
tion of certain natural “parts” of A(L).

We write A=A,=Z [x,x',y,y '], and use the notation G=m/n', A=
A(L), B=H,(X)-note that H,(X)=0, for i>2. We begin by presenting the
main results.

A. r=rank A =rank B=1. B is a free A-module. If [ is the linking number
of the link components, then r=1 implies [=0. A®Z = Z]/I.

B. If [#0, then A has projective dimension one, (we will say A is one-
dimensional), the Blanchfield pairing is non-degenerate (i.e. null-space =0) and
the conull-space =A/I;, where I, is the ideal generated by

(xy)' -1
xy—1 "

(x—1)(y—1) and

C. If =0, we define longitudinal elements &,, £ € A by lifting into X “lon-
gitudinal” circles parallel to the x and y components of L which link neither
component (§,, &, are, therefore, determined up to multiplication by elements of
I/Ir'). & (resp £,) generates the submodule of elements invariant under x
(resp. y). The annihilator ideal of & (resp. ¢,) is generated by x—1 (resp. y—1)
and one more element w(y) (resp. A(x)). Thus w(y) (resp. A(x)) is well-defined up
to unit multiple in Z [y, y~'] (resp. Z[x, x~']); A(x), u(y) will be called the
longitudinal orders of L and depend only on A.

D. If =0 and r=0, then A(x)=0=u(y) and A is one-dimensional and
contains an element a such that (y—1) a=¢ and (x—1) a=§,. Thus the
annihilator ideal of a is generated by (x—1)(y—1). The null-space of ( , ) is
generated by a, while the conull-space= A/(x—1)(y—1). In fact, A/(a) is one-
dimensional and the pairing on A/(a) induced by the Blanchfield pairing is
non-singular.

E. If r=1, then, we may choose A(1)=1=u(1) and, in fact, A(x)| A(x) and
p(y)| A(y), where A(x), A(y) are the Alexander polynomials of the individual
components of L considered as knots.
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Furthermore, tA®Z =0 and fA = A/tA is isomorphic to an ideal I of A. I
may be uniquely specified by demanding that its greatest common divisor be 1; in
that case, [+ M = A. Another ideal J < I can be defined from L; J is generated by
(x=1)(y—1) I and an element o(x,y)el, which is well-defined modulo
(x—=1)(y—1) I Then o(x, y)=A(x"")+ u(y " )—1mod (x—1)(y—1) and so o(x, y)
defines a slightly sharper invariant of L than the pair (A(x), u(y)), since I/(x—1)
(y=1) I- A/(x—1)(y—1) has kernel

INx-1)(y-1A
(x-D(y—DI

F. If r=1, the null-space of ( , ) is the “pseudo-null” submodule P(A) of A
(i.e. the set of all elements whose annihilator ideal has greatest common divisor 1
see [Bo]. P(A) contains the submodule P, generated by £, £, which coincides
with the submodule generated by & = £, + £, whose annihilator ideal is generated
by o(x,y) and (x—1)(y—1). P, is the submodule of elements annihilated by
(x—1)(y—1). P(A)/P,=~e'(I)-we use the notation e'(R)=Ext} (R, A) for any
A-module R. In fact, P(A)=~e!(J). The conull-space C is isomorphic to the
kernel of a homomorphism e?(I) = A/J, whose cokernel is isomorphic to e*(tA).
A and tA have projective dimension =2.

G. Realization: Let A(x), w(y) be polynomials and I an ideal of A satisfying:
(i) A(1) =1= n(1); (ii) greatest common divisor of I is 1 and (iii) A(x ")+ pu(y™") -
l1e L Then there exists a 2-component link whose module A has longitudinal
orders A(x), n(y) and fA =1 Note (i), (i) and (iii) are necessary conditions (see
(C) and (E)).

We refer the reader to work of Hillman [H],[H1],[H2] and Sato [S] for
related and overlapping results.

§1

We begin by considering the Cartan-LeRay spectral sequence of the covering
X X. E%=H,(G; H,(X))=0 for p>2 or q¢>2 and so E}, = Ej,. Straightfor-
ward examination obtains an exact sequence: H,(X)-> H,(G)> A®Z—0
where ¢ is induced by the map X — K(G, 1) corresponding to the covering X.
Now H,(X)= H,(G)= Z and ¢ = multiplication by [; thus A® Z is infinite cyclic,
if I =0, and cyclic of order [, if /# 0. Now a standard Nakayama lemma argument
allows us to construct 4 € A such that AA =0 and A(1,1) =1 for some integer
k>0: if {o;} generate A, then we may write lo; = 3 A;a;, where A; € M, and, thus,
4 =det (16, — A;;) annihilates A. This shows that A is a torsion module if [#0.

That rank A =rank B follows from consideration of the Euler characteristic:
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rank B —rank A = y,(X) = x(X)=0. (x, is the Euler characteristic using rank as
a A-module.) To see that rank B=<1, choose a finite 2-dimensional cellular
structure on X (actually a compact-deformation retract of X) and let Cy, Cy
denote the corresponding chain complexes of X and X. If D; and d; are matrix
representatives, with respect to the cell basis, of the boundary maps C,(X)—
Ci(X) and Cy(X)— Cy(X), then d;=D;(1,1). Now rank B=null, (D;)=<
null, (D;(1,1)) =rank H,(X)=1. Note that this argument shows rank H,(X)=
p—1 for a w-component link.

§2

We now define the Blanchfield pairing ( , ) on tA with values in S(A).

Let K be a triangulation of X and K’ the dual triangulation —let K and K’ be
the induced triangulations of X. If a, B € tA, choose representative cycles z of a
in K and w of B in K'. If Aa =0, A € A, choose a chain ¢ in K such that dc = Az.

Now define (a,B)=%v—V mod A. Standard arguments (see [L1]) show this is

well-defined. Furthermore (a, B)={(B, a), using the usual symmetry properties of
intersection. An alternative definition of the adjoint B of ( , ) is obtained by
composing the maps:

tH,(X) < Hy(X) 2> H,(X, 0X) 2 HA(X; A)
> e'(Hy(X))— e'(tH,(X)) ~ Hom, (tH,(X), S(A)) (1)

D is the Reidemeister—-Milnor duality isorr_lgiphism ([M]) and p is a “‘universal
coefficient” homomorphism defined on DjgtH,(X) which will be explained below.
We are now taking X to be a compact manifold, the complement of an open

tubular neighborhood of L.
It is not hard to equate this definition with the following reformulation;

H,(X) <— Hy(X; S(A))—> H,(X, 0X; S(A)) R H'(X; S(A))
—£>Hom, (H,(X), S(A)) «—Hom, (tH;(X), S(A)) )

where p is the standard Kronecker map on cohomology, and a4 is the Bockstein
from the coefficient sequence 0 > A — Q(A) — S(A) — 0 Note that Image 4=
tH,(X) and so any element a of tH,(X), can be pulled back to a'e H,(X; S(A)).
Any two pull-backs ', a” differ by the image of an element of HZ(X : Q(A)).



The module of a 2-component link 381

Using naturality of the maps of (2) with respect to the homomorphism Q(A)—
S(A), we see that a’'—a” passes to an element of Hom, (tH,(X), S(A)) which
comes from Hom, (tH,(X), Q(A))=0. Thus the composition defined by (2) is
well-defined on tH,(X). This reformulation is seen to be equivalent to our first
definition using the definition of D via the intersection pairing.

§3

To understand the maps p, p used in our definitions of the Blanchfield pairing
we need a “universal coefficient” consideration of the relation between homology
and cohomology. Recall the universal coefficient spectral sequence (see [Mc]):
Given a free left chain complex Cy over a ring A and a left module N, there exists
a spectral sequence “‘converging” to H*(C; N), with E>-terms given by E2, =
Extq (H,(C), N), and differential d, in E” of degree (1—r, r). There is a filtration

H™(C;N)=J, 02 n-112" 21 m-12Jom

where J/J, 1 ..1=E}, To define p, we simply consider H™(C; N)=J,, o —>>
EZ,< E%,=Hom, (H,(C),N). To define p (on Kerp), we take Kerp=
Ju-11—>> Ep_11€ E%_,,=Exti(H,_,(C), N). Looking back at (1), we see that p
is well-defined on elements coming from tH,(X), since p is obviously zero on any
torsion element when N=A (and A is a domain).

We will consider the universal coefficient spectral sequences for C=C*X) and
C=C*X, 8X), with N= A. In each case the spectral sequence can be reduced to
one or more exact sequences. This reduction is straightforward and we omit the
details. The exact sequences obtained are the following:

0— HY(X;A) 5 A*—> Z - J,,5e'(A)>0 3)
0—J,, = H¥X; A)2>B*— e*(A)—> 0 (4)
e3(A)=e'(B) ()
0— e'(A,) = HX(X, 8X; A)— B — e*(A,) —> H¥(X, 6X)

— e'(By) = €*(Ay) = 0 (6)
A¥=H'(X,8X; A) (7)

where we use the notation A =H,(X), B=H,X), (as before) A,=
H,(X, 6X), B,= H,(X, 8X), ¢ =Ext, ( , A) and *=e°=Hom, ( , A).
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We also note the exact homology sequence:
0— B — B,— H,;(3X) > A = A, — H,(3X) = Hy(X)— 0. (8)

It is easy to see that Hy(3X) depends only on the linking number [ and is given as
follows:

Ho(0X)=Al(x—1,y'-1)®A/(y—1,x' - 1) 9)
Hl(aX)={0 170 (10)
Alx-1)®A/(y-1) 1=0

In (10), when [ =0, generators are given by the two longitudes, lifted into X.

§4

In the case r=0, it follows from (8) that rank A,=rank B,=0 also. Thus
A*=B*=A*=B¥*=0. From (3) and (7) we conclude B,~H'(H: A)=0 and
B=~HYX,9X; A)=0. From (4) and (5), we conclude e¢*(A)=0=e3(A) and so A
is one-dimensional (note e? = 0 for q > 3, since A has homological dimension 3).

The Blanchfield pairing B:A — Hom, (A, S(A))=~e'(A) can be written as the
composition (according to (1)):

A—- A,=~H*X;A)=1J,,— e'(A).

If P denotes the null-space of B, and C the conull-space, we can deduce from (3)
and (8) an exact sequence:

0->H@GX)>P>Z->K—>C—0 (11)

where K =Kernel {H,(0X) = Hy(X)~ Z_} — from (8).
In order to analyze the map Z — K< H,(3X), we first recall that the edge
homomorphism

EXt?\ (HO(C)’ N) = qu—*) Er)oq'__ JOq = JqO = Hq(C7 N)

is equivalent to the homomorphism induced by a chain map Cy — Fy, where Fy is a
free resolution of H,(C), which induces the identity map on Hy(C)= Hy(F). In
case A = Zm and Cy = C4(X), where X is a regular m-covering of X, this coincides
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with the homomorphism Ext4 (Z, N)=H4(w; N)— H4X, N) induced by the
classifying map X — B of the covering X — X. Now our map Z — K < H,(3X)
is the composition

Z =eX(Z)—=> H*(X; A)~ H,(X, 0X) > Hy(5X),

where ¢’ is the edge homomorphism of the universal coefficient spectral sequence
of H *(X; A), which coincides with the composition Z=eX2Z)55H2(X: A) =
H,(6X), where &' is the edge homomorphism of the universal coefficient spectral
sequence of H*(X; A). Now the map 3X — BG, which classifies the covering
3X — 9X, is an I-fold covering on each component of 8X (X is the disjoint union
of two tori and BG a single torus). Therefore the induced map H*(G; A)—
H?(0X;A)~A/(x-1,y'-=1)®A/(y—1,x'—1) maps a generator onto

(di(y), Bi(x)), where ¢,(x>=" —.

Hl(aX) 0 (see (10)), we conclude P = 0. Furthermore we now see that Cok {Z —
K< Hy(6X)) has a presentation {a, B:(x—1)a=0=(y—-1)8, ¢,(y)a = ¢,(x)B},
and it, therefore, follows from (11) that C corresponds to the submodule of
elements Aa + uB (A, u € A) satisfying:

A1, )+ (1, 1)=0.

It is not hard to see that C will, therefore, be generated by y = a — 3, subject to
the relations

(x=D(y -1y =0=(di(y)+di(x)=1)v.

To complete the protf of (B) it suffices to check that:
di(xy) = $i(x) + y(y) — I mod (x —1)(y —1).

But this follows from the easy fact that, for any f(x, y)€ A:

f(x, y)=f(x, D+f(1, y)=f(1,1) mod (x - 1)(y —1).

§5

The longitudinal elements &, ¢, of (C) are the generators of the image
H,(3X)— A in (8). According to (10) (x—1)¢,=0=(y—1)§,. If r=0, then B,=0
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and, from (10), we see that x—1 (y —1) generates the annihilator of £,(¢,). Note
that our computation of Z — K, in the preceding paragraph, shows that it is zero,
when [ =0, and, therefore, (11) contains the short exact sequence: 0 > H,(8X)—
P—>Z—0.

If we can show that P= A/(x —1)(y — 1) (with generator «), then it follows that
we may choose & =(y—1a, § =(x—1)a as longitudinal elements, i.e. they are
images, under H ,(6X) — N, of generators of the respective summands (see (10)).
Since we have already proved C= A/(x —1)(y — 1), the remaining assertions of (D)
follows from the Hermitian property of the Blanchfield pairing together with:

LEMMA. Let A be a one-dimensional torsion A-module equipped with a
sesquilinear Hermitian pairing ( , ) with null-space K and conull-space C. Then
K=e'(C) and, if A'= A/K, the induced pairing on A’ is non-degenerate with
conull-space ~ e*(C). If e3(C)=0, then A' is one-dimensional.

Proof of Lemma: _
Denote the adjoint of { , ) by ¢: A — e'(A); we have, by hypothesis an exact
sequence: 0—>K—> A%e'(A)—>C—>0. The transpose of ¢:A—

e - e : s 5y o
e'e! A ——> e' A coincides with ¢ (this is what Hermitian means), where A —
e'e' A is a standard “double dual” map. Since A is one-dimensional this double
dual map is an isomorphism. Now consider the diagram of exact sequences:

«— O

0>DK—>A—->A'—>0

O(—-—O(—-—>|<——

From this we derive the diagram of exact sequences:

0
_ ! _
0— e (C) > e'e'(A)— e'(A') > e*(C) = e?e'(A)=0
i s |

A el(A)



The module of a 2-component link 385

as well as the isomorphism e'(A") x_e‘“(C), i=2. We immediately see that
K =e'(C), the cokernel of the map A’— e'(A’), induced by e'¢ = ¢, is *(C),
and that A’ is one-dimensional if ¢*(C)=0.

§6

From now on we will assume r =1, since all the statements for r =0 have been
proved. We first point out that B~ H'(X, 8X; A), by duality, and, by (7), we then
conclude B =~ A%, which is free — over a unique factorization domain, R* is free
for any module R of rank =1.

We examine the longitudinal elements. We can define §,, ¢, € A, when [ =0,
by choosing translates of the components K,, K, of L into X which have 0 linking
number with their associated components —since ! =0 these translates lift into X
defining ¢,, ¢ up to multiplication by a unit of A. Clearly §,, §, generate
Image {H,(6X) — H,(X)}, and we have (x—1)¢,=0=(y - 1)¢, (this distinguishes
& from ¢;). We now show the existence of A(x), u(y), as in (C).

Consider the infinite cyclic covering X, of X defined by the homorphism
I1 - G — Z, which sends x — 1 and y — 0. Thus X is an infinite cyclic covering
of X,, and in fact, Cy(X,) = Cx(X)/(y — 1) C4(X). We obtain, by tensoring C(X) with
the short exact sequence:

0> ALXS5A—> A(y-1)—0
the following exact homology sequence:

0— H,(X)2 Hy(X) — Hy(X,) = Hy(X) X Hy(X)
— H,(X,) = Ho(X) 2= Hy(X) (12)

Now X, is closely related to the infinite cyclic covering Y, of the complement of
K.. In fact Y. - X, is the union of translates, by powers of x, of the solid torus
formed by lifting a tubular neighborhood of K, into Y,. Thus H(Y,, X,)=
Al(y =1), if i =2, 3, and zero otherwise. By considering the exact sequence of the
pair (Y,, Y,) and the facts that H;(Y,)=0 if i=2, we see easily that H,(X,)=
A/(y—1) and obtain an exact sequence:

0— A/(y—1)— Hy(X,) = Hy(Y;) = 0. (13)
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The sequence (12) can now be put in the simpler form:
0—>Ally-1)— Al(y-1)=> A5 A — H(X,)—> Z—0 (12')

since H,(X)=B =~ A. The image of a generator, under the injection A/(y—1)—
A/(y—1) is represented by a non-zero polynomial A(x). Since a generator éy of
H,(X,)=~ A/(y—1) is represented by the boundary torus of a tubular neighbor-
hood of K, (lifted into X,), it is straightforward to check, from the definition of
the boundary homomorphism H,(X,)— H (X)= A, that £ — ¢ € A. It follows
immediately that A(x) and y—1 generate the annihilator ideal of £,. A similar
argument establishes the existence of w(y).

Note from (12') that &, generates the submodule of elements invariant under
y. Thus A(x) is defined, purely algebraically, up to unit multiple, by the property
of being a generator, together with y—1, of the annihilator ideal of this
submodule - similarly for w(y).

We now show A(x) | A(x), where A(x) is the Alexander polynomial of K, — this
will imply A(1)==1. Let T be the torsion sub-module of A. We first derive from
(12") and (13) an exact sequence:

0>R>TXHT—S—0 (14)

where R=A/(A(x),y—1), S H,(Y,) is the image of T under A — H,(X,)—
H,(Y,). The only point not immediately obvious is: Ker{T — S}c(y-1)T.
Suppose a €T and a — 0 in S. If « = 0 in H (X,), then « =(y—1)B for some
B € A, by exactness of (12'). But then a € T implies B € T. To see a — 0 in H,(X,)
it suffices by (13) to show f(x)a — 0 for any non-zero f(x). But, since a €T,
f(x, y) @ =0 for some non-zero f(x, y). If we write f(x, y)=f(x)+(y—1) g(x, y),
then 0= f(x) a+(y—1) g(x, y)a. Since (y—1) A — 0 in H,(X,), so does f(x)a. If
f(x) =0, then, by (12), A(x) g(x, y) @ =0. But this would be impossible if we had
chosen f(x, y) with the smallest number of y—1 factors.

Now recall that A(x) = A(H,(Y,)), where A(A), for any A,-module A(A, =
z[x, x"']= A/(y — 1)) is the greatest common divisor of the order ideal of A (see
[L]). We also recall the following property of A(A):if0>A'"> A —> A"—0isa
short exact sequence of A,-modules, then A(A)=A(A") A(A") (see [L] for a
proof). Thus, for example, A(S)|A(x) and, so, it suffices to prove that A(x)
(=A(R), R considered as a A,-module) divides A(S). Define

__oT
¢i+lT ’

,Ker ¢i+1
" Ker¢'

and T¢
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where ¢: T — T is multiplication by y— 1. These are A,-modules and we have a
family of short exact sequences: 0 — T,,, > T, = T' - T*' =0, for i=0 (see
[L2]). From (14) we see that T,=R and T°~S. From the above-mentioned
multiplicative property of A we have A(T,,)A(T")=A(T,) A(T'*") for i=0.
Therefore, we see that A(T,,)| A(T**") would imply A(T;)|A(T')-note that
these are all non-zero, since A(T,,,)| A(T;), A(T**") | A(T*) and A(T,), A(T®) are
non-zero. Thus it suffices to show A(T;) | A(T?) for some value of i. But T; =0, for
large enough i, since {Ker ¢;} is an increasing sequence of submodules in a
finitely-generated module over a Noetherian ring. This completes the proof.

Of course, by a similar argument, we can show u(y)|A(y).

We can now show that P, the submodule of A generated by &, and £, is the
submodule of elements annihilated by (x —1)(y —1). Suppose (x—1)(y—1) a =0;
then (y —1)a = f¢, for some fe A. So u(y)(y—1)a =0 which means u(y) o = gé,.
Since w(1)=1, we may write u(y)=1+(y—1)u'(y) and so a+(y—1Du'(y) a=
g€, or a +pu'(y) fé = g€, Thus a € P,

§7

We now examine fA and prove fA®, Z is infinite cyclic. (over Z) We already
know A ®, Z is infinite cyclic, which implies fA ®, Z is cyclic. If fA®,Z were
finite of order k >0, then fA ®, Z/p =0, for any p relatively prime to k. If so, by
Nakayama’s lemma, A - fA =0 for some A¢ M,, where M, =ker {A — Z/p}. But
fA is torsion-free. If we define I to be the ideal of A with greatest common
divisor 1 which is isomorphic to fA, then I+M=A. To see this choose A€l
which generates I/MI~IQ® Z~Z —we will show A(1,D)==x1. M(I/(A))=1I/(A),
which implies, by Nakayma’s lemma, that 4 - I/(A)=0, i.e. AI<(A), for some
A=1mod M-i.e. A(1,1)==1. Since I has greatest common divisor one, 4 € ()
and so A(1, 1)=+1. To see that tA®, Z =0 (when r=1) consider the short exact
sequence 0—tA—> A —fA—0 and apply®,Z to obtain Tor'(fA, Z)—
IA®RZ > A®Z—>fA®Z—0. Since ARZ=Z~fA®Z, it suffices to show
Tor! (fA, Z) Tor' (I, Z) = 0. Now Tor' (I, Z) = Tor? (A/L, Z) which can be consi-
dered to be the submodule of invariant elements of A/I-i.e. of elements «
satisfying xa = ya = a. But Aa =0, where A€ I satisfying A(1,1)=1 has been
found in the preceding paragraph, and so 0=(1+(x=DA'+(y—1)A")a=
a+A(x—1a+A"(y-1) a=a.

By the results of §7, we may break (8) up into two shorter exact sequences (for
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r=1):
0—>B—By— Al(x—1)®A/(y—-1)—0 (15a)
0= Allp,(x-1)(y—-1)>A—->A;—> A/(x-1)(y-1)—>0 (15b)

where p=A(x)+ u(y)—1 (choosing A(1)=1= u(1)). Note that the quotient of
Al(x—1)® A/(y—1) by the submodule generated by (u(y),0) and (0, A(x)) is
isomorphic to A/(p, (x —1)(y — 1)), using the generator (1, 1), and the kernel of the
epimorphism A/(x—1)® A/(y —1) — Z is isomorphic to A/(x—1)(y—1), using the
generator (1, —1). Applying Hom ( , A) to (15a) yields an exact sequence:

0—>Bf—>B*—> A/(x—-1)DA/(y—1) > e'(B,) = ¢'(B).
Now e!(B) =0, since B is free. From (3), we conclude that B,~ H'(X; A) is free
or isomorphic to M (the ideal in A generated by (x—1, y—1)), since A* is free.

But (15a) is possible only if B,~M. Thus e!(B,)~ Z. We, therefore, have the
exact sequence:

0— B§—>B*> A/(x—-1)(y—-1)—0 (16)

We now apply Hom ( , A) to (15b) and obtain exact sequences:

0> Af> A > Al(x—-1)(y—1)—> e'(Ay) = e (A)—=> 0 (17a)
0— e?(Ag) = e*(A) = Al(p, (x = 1)(y — 1)) = €*(Ay) = 0. (17b)
Note that

e'(A(p, (x-1)(y-1))=0
e?(Al(p, (x—1)(y = 1)) = Al(p, (x = 1)(y — 1))

and e*(A)=0 (by (5), since B is free).

We now examine the homomorphisms tA — tA, and fA — fA,, using (15b).
Denoting the kernel and cokernel, respectively, by K;, K, and C,, C,, we can
apply the snake lemma, using (15b) to obtain an exact sequence: 0 — K, —
Al(p,(x—=1)(y-1))=> K,—> C,—=> A/(x—1)(y—1)— C,— 0. Since K, is torsion-
free and C,; torsion, we see that K, = 0. For some ideal S 2(x—1)(y — 1), we have

Ci=S/x-1)(y-1), GC=A/S
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and we have:

0> Allp,(x—1)(y—1) > tA—>tA;—> S/(x—1)(y-1)—0

0— fA > fA,— A/S — 0.

§8

We now deduce some facts from (3)-(6) and duality:

tA=e'(A,).

This follows from (6), since e'(A,) is torsion and B} is free.

0— B,— A*—> Z — tA,— e'(A) = 0.
This is just (3), since J, =tA, from (4).

0— fA,— B*— e*(A) — 0.

This follows from (4).

0— fA— B¥— e2(Ag) =0, e3(Ag)=Z/k,  (some k>0).

389

(18a)

(18b)

(19)

(20)

(21)

(22)

This follows from (6), since H3(X, 8X)~ Z and e3(A,) cannot be isomorphic

to Z, since e*(Z)# 0 but e%e>=0 over A (see [Ba)).

We use the map X — (X, 9X) to map (22) — (21). Using (18b), (16) and (17b),

we obtain a commutative diagram:

0 0 0
! ! !
0> fA - B} — e(Ao) -0
! ! !
0— fA, — B* — e*(A) — 0
! ! !
AIS  Allx—-1)(y-1) Allp,(x—1)(y—1))
! ! i
0 0 e3(Ay)
!

0

(23)
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From the snake lemma we deduce an exact sequence:
0> A/IS— Al(x—1)(y—1)—= Al(p, (x —1)(y—1)) > e*(A,) = 0. (24)

From this sequence we may deduce: e*>(A,) =0 and S = (x—1)(y —1). The first
of these follows from the fact that any epimorphism A — Z/k is of the form
f(x, y)— af(1, 1), where a € Z is relatively prime to k, and p(1, 1) =1. To see the
second, let a € A represent the image of 1 under A/S — A/(x—1)(y—1). Then
(o, x—1)(y—-1)=(p, (x—1)(y—1)) and so a(1,1)==x1. But &S if and only if
(x—1)(y—1)|]aB and so Sc<(x—1)(y—1). Since we already know S2
(x=1)(y—1), we have S=(x—1)(y—1).

Now define J to be the ideal of A, with greatest common divisor 1, isomorphic
to fA,. We can rewrite (23) as follows:

0 0 0
! l y
0— I 5 A — e2(A,) — 0
I ! !
0— J - A — e*(A) -0 (25)
! & J
0= A/x-D(y-1)—=>Ax-D)(y-1)—=>A/(p,(x-D(y-1)— 0
! ! l
0 0 0

The maps indicated by 7, 7, 7" and 7, are all multiplication by elements of
Q(A)-we also use 1, 7', 7", 7, to denote these elements. Obviously 7,€ A and is a
unit multiple of (x—1)(y—1) and, since I and J have greatest common divisor
one, v and 7" are also in A. Now e?(A,) and e?(A) are pseudo-null since they are
grade =2 (see [Ba]) and grade =2 means pseudo-null (see [R]). Therefore 7' and
7" must be units of A; so 7€ A and is a unit multiple of 7, or (x —1)(y —1).

Now choose an element o € J which maps onto a generator of A/(x —1)(y—1).
Therefore J=(x—1)(y—1)I+ (o). From the left-most vertical row of (25) we see
that fo e (x—1)(y—1)I if and only if (x—1)(y—1) | f. If f=(x—1)(y — 1), this says
o€l and so Jc I If ¢’ is another element such that J=(x—1)(y—1)I+(o'), then
a straight-forward computation shows ¢'=ao mod (x—1)(y—1) I, where a =
umod (x—1)(y—1) for some unit u of A. Since oe€l, we have o¢'=
uo mod (x—1)(y—1) I and so o is well-defined up to unit multiple, mod (x —1)
(y—1) L Finally, it follows from (25) that (o, (x—1)(y—1))=(p, (x—1)(y - 1)),
which implies o= u’'p mod (x —1)(y — 1) for some unit u’ of A.
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§9

We now determine the null-space N and co-null space C of the Blanchfield
pairing. Its adjoint tA — e'(tA), whose kernel and cokernel are N and C, can be
described as the composition:

tA— e'(Ay) = el(tA,) — el(tA) (26)

where the first homomorphism is the isomorphism of (19) and the others are
induced by inclusion tA,c A, and A — A,. By its Hermitian property this
coincides with the composition;

tA— tA,— e (A)— el(tA). (27)

The middle map comes from (20).

In (26), the last map is also an isomorphism - this follows from (18a), since
S=(x-1)(y—1) and e°(A/(p, (x—1)(y-1))=e'(A/(p, (x—1)(y—1))=0. Thus N
and C are isomorphic to the kernel and cokernel, respectively, of e'(A,) —
e'(tA,). From the short exact sequence 0 — tA,— A,— fA,— 0, we conclude
N=e'(fAy)=e'(J). Since e'(tA)=~Hom, (tA, S(A)) is pseudo-null free, and
i(])z e*(A/J) is pseudo-null, it follows that N is the pseudo-null submodule of
tA.

We show that the map tA,— e'(A) in (27) is an isomorphism. Referring to
(20) we have already seen that A* — Z is non-trivial, since B,=~M and A* is
free. It remains to show that tA, cannot contain a submodule isomorphic to Z/k,
unless k =0 or 1. But we have seen e¢*(A,) =0 and an inclusion Z/k - A, would
induce an epimorphism e3(A,) — e*(Z/k)= Z/k (if k>0).

From the short exact sequence 0 - tA - A — fA — 0 we deduce an exact
sequence.

0—el'(I) > e'(A) > e'(tA) = e*(I) = e*(A) = e*(tA) > 0 (28)

since fA=1I and e*(I)=e*(A/I)=0. From (28) and (18a), we can deduce exact
sequences:

0—> A/(p,(x—1)(y-1)) > N—e'(I)>0 and
0— C— e*(I)— e?(A)— e*(tA) — 0.

Recall S=(x—1)(y—1). Since e*(A)=A/J from (25), we have completed the
proof of (F).
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§10
To prove (G) we will use the following special case of a result of Bailey [By]
THEOREM. Let (\;) be an (n X n)-matrix over A satisfying (i) A,;=0; (ii)

Aij = Apifn=i, j>1 (i) Ay =(x""=1) (y"'=1) Ay for L<j=n (iv) A;(1, 1) = 3§,
if n=1, j> 1. Then there exists a link, with | = 0, whose module A has presentation

j

Since a proof this theorem has not appeared in a journal, we present one in
the Appendix. We point out that our proof is very different from Bailey’s. Also
see [N]. ((A;) is referred to as a presentation matrix of A.) We prove two lemmas.

LEMMA 1. Let A be a link module with a presentation matrix (A;) satisfying
(i)-(iv). Suppose (o;) is an (n X 1)-row vector, whose entries are relatively prime,
such that )7, oA; =0 forj=1,..., n. Then oy(s, 1) and o(1, y) are the longitud-
inal orders of A.

The next lemma deals with a more general situation.

LEMMA 2. Let (A;) be an (nXn) matrix over a domain A, a presentation
matrix of a module A of rank one. Let M be the (n—1) X (n—1)-matrix (A;),2<
i,j<n and suppose A=det M#0. Let (p;)=A-M"'(2<i,j=n), the cofactor
matrix of M and set p;=Y7 , p;Aj;. Then fM is isomorphic to the ideal of A
generated by (4, py, . .., p,)-

Proof of Lemma 1. Let 0— W — F,%>F, — A 0 be the resolution defined
by (A;), i.e. F, and F, are free modules of rank n with bases {o}{B;} with
d(B;) =Y;Aja; Since rank A =1 and projective dimension A =2, W is free of
rank one. If a generator of Wc F, is }; oiB;, then o= uo;, for some unit u in
A. Let A, = A/(y—1): then Torf{ (A, A,) is the submodule of elements of A anni-

hilated by y—1 (using exact sequence 0> AL — A, — 0) which, by (C),
is isomorphic to A,/(A(x)). Using the resolution of A given above Tor{
(A, A,) is the homology of the chain complex:

WRALF®ASF® A,
A A A
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where the modules are free over A, and d’, d" are represented by the matrices:
(0:(x, 1) and (A;(x, 1)), respectively. Since A;(x, 1) =0, for all j, and A;(1, 1) = £§;
for i,j=2, it follows easily that kernel d” is the free submodule of F,®, A,
generated by B;®1. Thus, since Image d'c kernel d", o; (x,1)=0 for i>1, and
Torf (A, A,)= Al(o,(x, 1)).

A similar argument for u(y) completes the proof.

Proof of Lemma 2. Suppose (p;;), 1 =i, j=<n, is any matrix over A; consider
the module A’ presented by the product matrix (p;)(A;)-ie. A'=
{Bi)- - s Bat XjsPishs; Bij=0,i=1,...,n}. If {o;} are the generators of A, subject

to relations };A;e;=0 (i=1,...,n), then B,— a; defines an epimorphism
¢:A’'— A. The kernel of ¢ is generated by {v;}, where v, =3} ,A;8; (i=1,...,n),
and the {y;} are subject to relations },;p,y;=0 (i=1,...,n). We apply these

observations to the matrix (p;) given by

M i, ‘22
Pij = : .] )
5ij i=1 or j=1.

The matrix (o) = (p;)(A;;) is given by

Ajj i=1
g =\ =1, i>1
Ad; L,j=2.

Now det (p;) = A # 0, which implies, since (p;) is a relation matrix for Ker ¢,
that Ker ¢ is a torsion module. Thus ¢ induces an isomorphism fA =fA’. To
compute fA’, we define a homomorphism ¢: A'— A by ¢(B,) =—A4, ¥(B;) = p; for
i=2. This is well-defined since it preserves the relations given by all the rows of
(0, except perhaps the first — but, since rank A’'=1, the rows of (o;;) are linearly
dependent and, therefore, the relations given by the first row must also be
preserved (note that rows 2 through n are linearly independent). Since rank
A’=1, ¢ induces an isomorphism fA'~Image ¥ =(4, p,, ..., p,). This completes
the proof of lemma 2.

§11

We can now prove the realization theorem (G). Let oa(x,y)=
A(x Y +pu(y")—1 and choose elements 7y,..., 7 €I so that (o, 7,...,7) =1L
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Define the (n X n)-matrix (A;), where n=2k+1 as follows:

0 i=1=j
&Ti_l 2s‘l$k+1,]=1
Tiok—1 k+l<i=sn,j=1

A= (x - 1)(y = 1oTi, i=1,2<j<k+1
x ' =Dy - D7Fp i=1L,k+1<j=n
b

(9

n=i=k+1.

This matrix satisfies the conditions of Bailey’s theorem and is, therefore, the
presentation matrix of a 2-link module A.

We can define a row-vector (o;) satisfying the hypothesis of lemma 1 by
setting:

(4 i=1
O-i = (x—l—l)(y_l—l)ﬂ-l 2Sl—<—k+1
—(x "=y '-1)T_k_y k+1<i=n.

Since o, 7,,... 7, are relatively prime, and o(1,1)=1, the {o;} are relatively
prime. Clearly o(x, 1) = A(x), o1(1, y) = n(y) and so, by lemma 1, these are the
longitudinal orders of A. To show fA = I, we apply lemma 2. For our matrix (};),
A =(-od)* and (u;) is given by:

_{ﬁo&V*&j 2<i=<k+1
ij =

Then
(—o) ek, 2=<i<k+1
pi = Z MijAjr = K .
i (—o0) T, _k_1 k+1<i=n.

Thus fA =~ideal generated by {(— o0)*, (—a)* '¢*r,(1=i<k), (-od)*r,(1=i<k)}.
If we divide out +o*"'G* from these elements, we find fA ~ideal generated
by {0, 7, or;}={o, 1;} =L
This completes the proof of (G).
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Appendix

We outline a proof of Bailey’s Theorem as stated in §11. The construction of
the desired link proceeds, in the spirit of [L], by surgery on the complement of the
“unlink”, i.e. the link formed by the boundary of two disjoint 2-disks in 3-space.

Let X, be the complement of the unlink —then H,(X,) is free of rank one.
Choose a generator e of H,(X,) and let {o;} 2=<i=<n) be disjoint imbedded
circles in X, which lift to imbedded circles {¢;} in X, such that &; represents A;,e.
We would also like {o;}, considered as a link in 3-space, to be the (n—1)-
component unlink. If we give each o; the normal framing which winds once
around and do surgery on $°>, using these framed imbedded circles, the result Y,
as in [L], is again diffeomorphic to S>. The desired link L will be the original
unlink regarded, now, as a link in 3.

Let Y be the complement of the {o;} in X, and X be the complement of L in
3. Y and X will be the coverings of Y and X inherited from X,; X is the
universal abelian covering of X. To compute H,(Y) we examine the homology
sequence of (X,, Y). From this we conclude that H (Y) is generated by elements
{e', s, ..., €,} where ¢’ — e under the inclusion Y — X,, and ¢, is represented by
a small circle which links &; simply. There is a single relation }!_, a;¢; = 0, where
a; = E - &, the intersection in A of a generator E of Hz(X'O) with &, Since &;
represents A;;e, we have

a; = )::1(E - e).

Finally, one may calculate E-e=(x—1)(y—1) by a direct computation: E is
represented by a 2-sphere separating the components of the unlink and e is
represented by the loop 7 as follows:

=

So the relation is (x —1)(y —1) ¥, A& = 0.

To compute H,(X) we now examine the homology sequence of (X, Y). From
this we conclude that H,(X) has generators e”,e5,..., ¢, the images of
e, e,,..., ¢, under the inclusion Y — X, with the relation:

(x=1)(y=1) ¥, Kyei=0

4
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and, in addition, new relations

(*) )\ile”+z Aje;=0, for some {A}}.
]

Aije' +Y; Mg € H,(Y) is the class represented by the circle &} obtained by
translating &; along one of the vector fields of the normal framing of &; used in
the surgery. That the coefficient of e’ is A;; follows from the fact that &; represents
Mie in H,(X,). We show that the correct original choice of e’ results in the
following properties:

(i) Ai=Aj

(ii) d’()\fj) =&y
where ¢: A — Z is the usual augmentation f(x, y) = f(1, 1).

LEMMA. Suppose X is a compact oriented 3-manifold, X — X a regular
covering with T as the group of covering transformations. Let T,,..., T, be tori
components of 3X which lift to T, = X trivially covering T,, for each i. Let a;, B; be
the canonical generators of H,(T,) represented by meridian and longitude circles.
Satisfying oye;=0=B,B; and a; - B; = 8;j- {f Zi Ajis(a)) +2; wyux(B;) =0, i=
1,..., m, is any set of relations in H,(X), i: T; < X, then, for any i, |

Z Aisﬁjs = Z ”‘isxjsa

where p — p is the usual conjugation in Zm.

Proof. YVrite 2 Ao+ pB;) =040, for some @€ H,(X,T) where
9y Hy(X, T) — H,(T) is the boundary homomorphism. Then, using the property:
If @cH(T), 0 Hy(X, T), then 840 @ =0 - iya we conclude that 6, - ig(a;)=
—Wij5 6; - ix(B;) = A;;. Now

0=8¢,- (i*a*ﬂj) =9, ; (Ajki*(ak)+ Mikix(Br))
=§ (Xjkei *ig(ay ) + ﬁ'jkoi + ig(Bx))

= Z ('—Xjk“'ik + ﬂjkkik)o
k

We have the equality ¢}=A;e'+}; A in H,(Y). If we remove a tubular
neighborhod of the loop 7, representing e’, from Y to obtain a new manifold W,
we obtain new equations: G4;=A;;eh5+Y Ao+ wC in Hy(W) where C is rep-
resented by a meridian of the newly removed tube, e is represented by a
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translate 7 of 7 into W, and £oj = €, 00;— o}. We apply the lemma to these
relations and conclude:

Af— )‘nﬂ; = Afi‘ Ili)\jl

assuming that {¢;} and C are oriented correctly. We now replace our original
choice of e’ by e'+};u;e; and check that A} is replaced by A{—A;;u; Now
property (i) is satisfied.

To verify property (ii), we need to add to the above argument the constraint
that 7' be chosen to have linking number 0 with 7 in S>. If we now project
everything to W< S3, the above equations imply:

(@) @(w)=1(r,—o; + d(Aiy)7)

(b) Sy =10}, oh— (A7)

where | denotes linking number in S>. Since I(r, 7') =0 by choice, and l(o}, 0}) =
8; by definition of ¢/, (a) and (b) imply:

05()\?,-) = 3;'; + d)(Ail)d)(“’j)

or ¢(Aj;— A ;) =y, as desired.

We finally propose to alter the {o;} in order to change the {Aj} to the
prescribed {A;} for 2=<i, j=n. As a preliminary consideration we show how to
make certain elementary changes in the {A}}. Choose g€ G, and 2=4q,b=n; we
will change o, to effect the change:

'/\;,-d:g i=a,j=b,a#b
/ -1 | — ] —

N> AGEg i=b,j=a,a#b
Ax(g+g™h) i=j=a=b
(A (i, j) # (a, b) or (b, a).

Choose an arc ¥ in X, from &, to g, avoiding all lifts of o;, 7, and use y to
form a connected sum of o, with a small circle linking o}, as in the following
picture:
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To see that the {A}} are changed as claimed, we use the following characteriza-
tion: given chains 6, in X, such that &;—A,;7 =46, then Aii=0; ;. If we now
make the obvious change in 6, to accompany our change of o,, it is straight
forward to verify the new values of {A;}. The ambiguity in sign is achieved by the
ambiguity in the connected sum, as in the picture.

Note that this construction will destroy the property that {o;} should form a
trivial link in S°, as well as property (ii) of {A;}. The elementary changes in {A/}
which would generate an arbitrary change preserving properties (i), (ii) are of the
following type: give ge G and 2<a,b=n:

(Ajx(g—1) i=a,j=b,a#b
/ -1 __ : -
/\i’j*—NA"ji(g 1) i=bj=a,a#b.
Aix(g+g'-2) i=j=a=b
(A (i, j) # (a, b) or (b, a)

But this change is realized by a pair of changes of the original type and,
therefore, we will be done if such a pair can be effected without changing the link
type of {o;} in S>. To see this it is merely necessary to choose the two arcs from o,
to o, so that, in §°—{a;}, they will be isotopic rel boundary, as suggested by the
following picture.

Perb) )

P
V="
o, \ob

REFERENCES

[B] BLANCHFIELD, R. C. Intersection theory of manifolds with operators with applications to knot
theory, Annals of Math. 65 (1957), 340-56.

[Ba] Bass, H. On the ubiquity of Gorenstein rings, Math. Zeit. 82 (1963), 8-28.

[Bo] BourBaki, N. “Elements de Mathematiques,” XXVII, Algebre Commutative Ch. VII, Her-
mann, Paris, 1968.

[By] BAILEY, J. Alexander invariants of links, Ph.D. dissertation, U. of British Columbia, 1977.



[C]
[F]
[H]

[H1]
[H2]
(L]
(L1]
[L2]
[M]
[Mc]
(N]

(R]
[S]

The module of a 2-component link 399

CroOWELL, R. Corresponding group and module sequences, Nagoya Math. J. 19 (1961), 27-40.
Fox, R. Free differential calculus II, Annals of Math. 59 (1954), 196-210.

J. Hillman, Knots and links in low dimensions, Ph.D. dissertation, Austrialian National Univer-
sity 1978.

HiLLMAN, J. Alexander polynomials, annihilator ideals and the Steinitz—Fox~Smythe invariant,
Proc. London Math. Soc. (to appear).

HiLLMAN, J. Alexander ideals, longitudes, etc., Abstracts 80T-G110, Abstracts Amer. Math.
Soc., 1 (1980), 595.

J. Levine, A method for generating link polynomials, Amer. J. Math. 89 (1967), 69-84.

J. Levine, Knot modules, Trans. A.M.S. 229 (1978), 1-50.

LEVINE, J. “Algebraic structure of knot modules,” Lecture Notes in Mathematics Number 772,
Springer-Verlag, New York.

MILNOR, J. A duality theorem for Reidemeister torsion, Annals. of Math 76 (1962), 137-47.
MAcLANE, S. “Homology”, Academic Press New York, 1963.

NakANiIsHI, Y. A surgical view of Alexander invariants of links, Math. Sem. Notes, Kobe U. 8
(1980), 199-218.

REES, D. The grade of an ideal or module, Proc. Camb. Phil. Soc. 53 (1957), 28-42.

SATO, N. On the Alexander modules of links, Illinois J. Math. 25 (1981), 508-19.

Brandeis University
Waltham, Mass. 02153

Received May 5, 1981/May 7, 1982



	The module of a 2-component link.

