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Concavity of the Lagrangian for quasi-periodic orbits

John N. Mather

Abstract Percival introduced a &quot;Lagrangian&quot; for finding quasi-periodic orbits For suitable area

preservmg mappmgs, we show that Percival&apos;s &quot;Lagrangian&quot; îs stnctly concave with respect to an

appropriate affine structure on îts domain Consequently, the &quot;Lagrangian&quot; admits a unique maximum
in the case of irrational frequencies

Introduction

In [3, 4], Percival sketched a method of finding quasi-periodic orbits numeri-
cally, by maximizing a function, which he called the &quot;Lagrangian.&quot; Percival was

looking for invariant tori. In the case we study in this paper (area preserving
mappings), the invariant tori would be invariant circles.

It is well known that frequently invariant circles (of a given frequency) do not
exist. But the author proved in [2] that, under suitable hypothèses, PercivaPs
&quot;Lagrangian&quot; always has a maximum, and there is an invariant set associated to
to this maximum. If there is an invariant circle of the given frequency, it contains the
invariant set associated to the maximum; otherwise, the invariant set associated to
the maximum is a Cantor set.

In this paper, we will show that for irrational frequencies, Percival&apos;s &quot;Lagrangian&quot;

is strictly concave with respect to a suitable affine structure on its domam
As a conséquence, we obtain that the maximum of Percival&apos;s &quot;Lagrangian&quot; is

unique.
We impose slightly stronger hypothèses than in [2].

§2. Définitions and main résulte

We retain the notations and hypothèses on / from [2]. In addition, we suppose
that / is C1 and df(x, y)Jdy&gt;0. (Under the hypothèses of [2], this inequality need

not be strict.) We also suppose that p(/o)&lt;û&gt;&lt;p(/i)-
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Concavity of the Lagrangian for quasi-periodic orbits 357

In [2], we proved the existence of quasi-periodic orbits of frequency eo. Thèse

were associated to a maximum of Percival&apos;s &quot;Lagrangian&quot; F^.
Let W dénote the set of weakly order preserving, left continuous mappings

4&gt; : R -» R such that &lt;£(0 -* ±0° as r -» ±00. Define I : W -* W by

(x, y) g graph /(&lt;£&gt;) &lt;£&gt; (y, x) g graph 4&gt;.

In other words,

sup {s :

When &lt;£ is a homeomorphism, I(&lt;f&gt;) &lt;t&gt;~~1. Obviously, I2 id.
We let Y~ I(YO)). Thus, Y~ is the set of weakly order-preserving, left-

continuous mappings ij/:R—&gt;R such that

Obviously, Y&quot; is a convex subset of the space of ail real valued functions of a
real variable.

THEOREM 1. FJ: Y~^R is a concave function.

The statement that FJ is concave means that if fa, ifri e Y~ and 0 &lt; s &lt; 1, then

(l-5)Fû&gt;I(l/r0) + SF&lt;uI(l/r1)&lt;F&lt;uI((l-s)^0+S^1). (2.1)

Let X~ {^ g Y^ : i/r(0) 0}. Then I(X~) c XW and we hâve an identification

where ^eY~ is identified with (^-i/r(0), i/r(0))€X~xR. From the translation
invariance of F,, (cf. [2, §3]), it follows that FJ(if/) FJ{i\f - i/r(0)), for ail &lt;/r g Y&quot;.

We let X^c dénote the set of continuous

THEOREM 2. If a) is irrational, then F^/rX^—&gt;R is strictly concave.

In other words, if fa, fa are distinct members of X^ and 0&lt;s&lt;l, then

(1 - s)FJ(fa) + sFJ(fa) &lt; FJ((1 -s)fa + sfa). (2.2)

For 4&gt;,iffeW, we set

d(&lt;f&gt;9 iff) max {sup inf |f - tj|, sup inf || - tj|},
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where £ ranges over graph &lt;f&gt;, the élément rj ranges over graph ijj, and | | dénotes
the Euclidean norm on R2. This may be infinité. However, we hâve

&lt;f&gt;2)

for (^bfc^eW. In [2], we showed that the restriction of d to YM is always
finite. In view of the conditions which d satisfies, this implies that d is a metric on
Y^. Likewise the restriction of d to Y~ is always finite, and d is a metric on Y~.
Obviously I : Y^ -» Y~ is an isometry.

We let tt : Y~ —» X~ dénote the mapping defined by

We call 7T the projection of Y~ on X~. The subspace X~ of Y~ is not closed. For
this reason, the induced topology and metric on X~ are not convenient; instead,
we provide X~ with the quotient topology associated to this projection and the

quotient metric d defined by

a,beR

The triangle inequality for d is an easy conséquence of

(^i + a, ife) inf d(if/l9 i/r2 + a),
aeti aeR

which, in turn, follows from the obvious translation invariance of d:

It is easily verified that the quotient topology on X&quot; (associated to the projection
tt) is the underlying topology of the metric d.

Provided with the metric d, the space X~ is compact. For, tt! : X^ -» X~ is a

continuous surjective mapping, and we proved in [2, §5] that Xw is compact.
In [2, §6], we proved that F^ : Y^ -»R is continuous. Since IiY^-^Y^ is an

isometry, it follows that F^I: Y~-^R is continuous. Since F^Itt F^I, it follows
that RJ:X~—&gt;R is continuous.
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To summarize, F^IrX&quot;-»!! is a concave, continuous function on a compact,
convex set, and it is strictly concave on X~c when &lt;o is irrational.

Since FJi takes its maximum only in X~c, this proves the uniqueness of the
maximum, when (o is irrational.

§3. Outline of the Proof of Theorem 1

We will say that ty e Y~ is smooth if ifr is C2 and its first derivative never
vanishes. We let Y~s dénote the set of smooth members of Y~. We will prove in
§§4, 5 that Y~s is dense in Y~. Since F^I is continuous on Y&quot;, and Y~s is dense in
Y~, (2.1) will follow if we verify it whenever i/r0, t/^e Y~s.

Suppose «fo, faeYZs. Set ifc sifo + (l-s)*fc i^ ^i-^0&gt; &lt;t&gt;s ^71- We hâve

)dt. (3.1)

As we observed in [2, §1], h is a C1 function on B. We set

Mx, *&apos;) T1 (x, x&apos;), Mx, x&apos;) 7^ (x, xf).

Since i/f0, ^ are C2, we hâve that tfe(x) is a C2 function of xeR and se[0,1].
Since the first derivatives of i/r0 and i/^ never vanish and both ifo and i^x are

weakly increasing, we hâve

everywhere. Hence, &lt;f&gt;s(t) is a C2 function of teR and se[0,1]. Consequently,

Obviously,

where x 6Àt). Hence
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since t ij/s(x). Changing the independent variable from Ho x in the first
summand of the above intégral, we obtain

(&apos;m

Jq

x(x, x&apos;(s, x)) -J[ hi(x,x&apos;(s,x))ijr(

where x&apos;(s, x) &lt;t&gt;s(il/s(x) + &lt;û)). Similarly, the change of variables x &lt;t&gt;s(t +
gives

lok2

x), x) |J£ dt -£ h2(x(s, x), x)*(x) dx,

where x(s, x) &lt;t)s(il/s(x) — o))). Note that when we change variables, we may take
0 and 1 as the limits of intégration, since everything under the intégral signs in
periodic (in x and t) of period 1. From the formulas which we hâve just derived,
we obtain

£ FJfa) -£ [ht(x, x&apos;(s, x)) + h2(x(s, x), x)J&lt;Kx) dx. (3.2)

From the fact that / is C1 and d/(x, y)Jdy &gt;0, we obtain that the functions g
and g&apos;, defîned in the introduction of [2], are C1 on B. In view of the définition of
h given in [2, §1], it follows that h is C2 on the interior of B and the second

partial derivatives of h extend continuously to the boundary of B. We set

d2h
h(&apos;) (&apos;)h12(x,x) f(x,x).

oX dX

Set /(x, y) (x&apos;, y&apos;). Taking x and y as independent variables, our &quot;twist&quot;

condition on / states Bx&apos;/dyX). Recall that the &quot;twist&quot; condition implies that for
(x, x&apos;) € B, there exists unique y, y&apos; e [0,1] such that /(x, y) (x&apos;, y&apos;). Thus, we may
take x and x&apos; as independent variables, and the condition dx&apos;/dyX) becomes

dxf
_ay
~~dx&apos;
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Since dh(x, x&apos;)/dx g(x, x&apos;), by the définition of h, it follows that

Wx,x1&gt;0, (3.3)

for ail (x,x&apos;)eB.

From (3.2), we obtain

^2 Fo,^s) &quot;J

From the définition of x&apos;(s, x), we obtain

v &quot;

àx&apos;js, x)
t f ,3x(5,x)] ;/ wx&apos;(s, x)) ———4- fc12(x(s, x), x) ———Ji^(x) dx.

dt

Moreover,

so

~
Hence

hl2(x, x&apos;(s, x)) !— ij/(x) dx

hl2(x, x&apos;(s9 x)) ——

From the définition of x(s, x), we obtain

x))].
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Hence,

h12(x(s, x), x) — i/f(x) dx
Jo dsds

h12(x(s, X), X)—— (lfc(x)~û&gt;)[^(x)-i/r(x(s, x))]l/r(x) dx
Jo dt

i12(x, x&apos;(s, x)) —* (ùJx) + &lt;o)[é(x&apos;(s, x))-d/(x)]é(x&apos;(s, x)) dx,
dt

since

dx dt s / dt s

Combining the above intégrais, we get

72FJ(^S) - h12(x, x&apos;(s, x)) —r1 (i(js(x) + o))[ip(x&apos;(s9 x)) — ip(x)]2dx.
ds Jq dt

(3.4)

In view of the fact that h12 and d&lt;f&gt;s/dt are everywhere positive, we get

Since this is satisfied for O^s^l, we obtain (2.1).
The only thing which remains to be done in order to finish the proof of

Theorem 1 is to prove that Y~s is dense in Y~.

§4. Proof that Y~s is dense in Y^

DEFINITION. We let Y^ dénote the set of continuous tpe Y&quot;.

DEMMA. There exists a homeomorphism i{feY~ and 8 &gt; 0 such that

+ 8 ^
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Proof. When o&gt; is irrational, let go p*(fo + e), gi p*(/i~e), where p is a

bump function, Le., p is infinitely difïerentiable, p&gt;0 everywhere, Jp l, and

supp p is contained in a small interval [-8, 8] above the origin. Hère, u *u dénote
the convolution of m and v, i.e.,

We suppose e &gt; 0 and then choose 8 &gt; 0 such that

i=0,l. Then g, is infinitely difïerentiable, gl(x + l) gl(x)+l, and dgJdx&gt;0

everywhere, for i 0,1. Moreover, go&gt;/o&gt; gi&lt;/i5 by our hypothèses on ô and
the assumption that supp p &lt;= [-6, 5]. Obviously, g,-»/,, uniformly as e~&gt;0, so

In view of our standing assumption that p(/o)&lt;û&gt;&lt;p(/i), we may choose e

and the bump function p such that p(go)&lt;^&lt;p(gi)-
Let gj (1 —s)go + sgi. Then p(gs) is a continuous function of s, so there exists

s(0), satisfying 0&lt;s(0)&lt;l, such that p(g) o), where g gs(o). Clearly, g is a C°°

difïeomorphism and g(x +1) g(x) +1, so there exists a homeomorphism i/r : R -*
R satisfying i/r(x + l) ^(x) + l, and

for ail xeR, by Denjoy&apos;s theorem [1].
From the construction of g, it is obvious that there exists 8x&gt;0 such that

for ail x g R. Since i/r is a homeomorphism and tt/(x +1) iKx) +1, it follows that
there exists 8 &gt; 0 such that

&gt; *(x) + S,

for ail xgR. Then

proving our assertion.
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Proof when w is rational. Let o&gt;0, (ot be irrational numbers such that

p(f0) &lt; &lt;o0 &lt; o)&lt; ù)1

By what we hâve just proved there exist homeomorphisms i/r0, ^ e Y~ and 8 &gt; 0,
such that

Let À be such that

û) (1 — À)û)0 + ÀCOi.

Then i/r (l — À)i|ro + Ài/r1 has the required properties.

JBnd o/ proof that Y~s is dense in Y~c. Let t^ € Y^ and let i|r be as in the
lemma. Let ij/s =(l — s)il/ + sil/l. Then i/rs is a homeomorphism in Y~c, satisfying

A(/bW) + (l-s)8^ifc(x) + o&gt;^*l(/1(x))-(l-s)S. (4.2)

If p is a bump function (as above), it is clear that p*ife is C°° and has

non-vanishing derivative everywhere. Moreover, as suppp—»{0}, we hâve

P * *l*s ~~* fa uniformly; in particular, we hâve p*ij/seY~s, when supp p is small

enough. Since fô -» i/r as s —&gt; 1, this finishes the proof.

§5. Proof that Y~c is dense in Y&quot;

Let feY;. Let i£eY~ be as in the lemma of §4. Let ifc =(l-s)^r + si^i.
Obviously, ifc satisfies (4.2) and is strictly increasing. If t/f&apos;:R-»R is left continu-

ous, weakly order preserving, satisfies il/f(x + l) il/f(x) + l, and |i^&apos;(x) —tfc(x)|&lt;

(1 — s)8/2, then tp&apos;e Y~. Obviously, there exists such a i/r&apos; such that t^r&apos; has only
finitely many discontinuities in [0,1), and is strictly order preserving. Since we

may take i|rs arbitrarily close to i^ and $&apos; arbitrarily close to fô, it follows that any
member of Y~ may be arbitrarily well approximated by a member which has only
finitely many discontinuities in [0,1) and which is strictly order preserving.

So, we suppose from now on that i/^ has only finitely many discontinuities in

[0,1) and is strictly increasing.
One of the conditions for $x to be in Y~ is
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This implies the two conditions

faifoW) - «&gt; * faW =s faifôHx)) + a) (5 1)

fa(K\x)) + co &lt; ifc(x) &lt; fa(h(x)) - &lt;* (5 2)

This leads us to mtroduce the followmg two quantities

U(fa, x) max (iAi(/0(x) + - «, faif&apos;Ax) + + o&gt;)

LEMMA 5 1 Lef x0 be a point of discontinuity of fa Let ^&gt;8&gt;0, and
suppose x0 is the only point of discontinuity of ifri in [x0 — 8, xo + 8] Then there exists
$&apos; e Y~ arbitranly close to fa, such that if/f is stnctly increasing, \p&apos; fa on
[xo + 8, xo+l-8], and the followmg holds If U(il/1,x0)^L(il/ux0), then i(/&apos; is
continuous in [xo~8, xo + ô] If L(fa, xo)&lt; U(fa, x0), then x0 is the only point of
discontinuity of i// in the intentai [x0 — 8, xo + ô], and

ilf\xo-) L(fa,xo), itff(x0 + )=U(fa,x0) (5 3)

Proof Consider i// which is left-continuous, stnctly order preserving, and
satisfies ifr&apos;ix +1) ^&apos;(x) +1 and t//&apos; fa on [xo + 8, xo+1 - 8] For if/&apos; to be m Y;,
ît is enough that (5 1,2 - with i/^ replaced by i/f&apos;) be satisfied for x g [x0- 8, xo + 8]
When /0(x0)-x0^Z and /1(x0)-x0^Z, ît is possible to alter fa m a small
neighborhood of x0 without changmg ît near /0(x0) or /i(x0) Conditions (5 1, 2)
then become

faifoto) ~ û&gt; =£ *&apos;(x) ^ ^(/ïHx)) + &lt;o (5 4)

- o&gt; &lt; (/r&apos;(x) &lt; ^(x)) - o&gt;, (5 5)

where ît is enough that thèse conditions should be satisfied in the set of x where
&amp;&apos; differs from fa, which may be taken to be an arbitranly small neighborhood of
x0 It is easy to see that there exists such a i// which is continuous on [xo-8, xo +
8] except possibly at x0, is continuous at x0 if U(fa, xo)^L(fa, x0), and satisfies
(5 3), otherwise

K fo(xo)-xoeZ, then /o(xo)-^o p(/o)&lt;^ In view of the penodicity condition

on fa, condition (5 1), for i// in place of fa, may be rewntten as

&amp;&quot;1(x)) + «/, (5 6)
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where /o /o~&quot;p(/o) and (of (o-p(f0). Then x0 is a fixed point of /o and û&gt;&apos;&gt;0

When f1(x0)-x0^Z, then we must satisfy (5.5) and (5.6), when «// is an altération
of i/^x in a sufficiently small neighborhood of x0 (and its translates). In this case, it
is easy to see that we can make the altération so that $&apos; is continuous in
[xo-8, xo + ô], no matter what L^, x0) and U(ij/U x0) are. (Of course, we could
also arrange for (5.3) to hold, if we prefer.)

There are two more cases to be considered* namely, /i(xo)-xoeZ,
/o(xo)~xo^Z and /i(x0) —xoeZ, fo(xo) — xoeZ. But thèse may be treated in
exactly the same way as the case which we just studied.

Now consider the foliowing procédure. Let xu..., xn be the points of
discontinuity of ty\ in the interval [0,1). Use Lemma 5.1 to change i/fx in a small

neighborhood of xt. This gives i(/2e Y~ which may be taken arbitrarily close to ty\-

The new élément has discontinuités only at x2,..., xn and at xx. The jumps at

*2&gt; ¦••,xn are the same as before. The jump at xx is no larger than before.
Next use the lemma to change if/2 in a small neighborhood of x2, getting a new

élément ij/3, just as before. Continue this process, making altérations successively

at x3,..., xn, getting new éléments iff4,..., ^n+1. If ^n+1 still has discontinuities,
start over at xx and then run through x2,..., xn, just as before, getting
il/n+2,..., ifen+i- H i^2n+i still has discontinuities, start over again at xu etc.

LEMMA 5.2. If &lt;o is irrational, this procédure stops after finitely many steps,

and gives a continuous $£ Y&quot;, arbitrarily close to i/^.

Proof. Let K, *(R), t/,=R\K;, Jv =(A(^-), &amp;(*, +)), / l,...,n. For
fixed i, we hâve that 17, is the disjoint union of the Tk(Jt]), where / 1,..., n,
where k ranges over ail integers, and T is translation by one.

Consider a positive integer l and write Z qn + r, where r, q e Z and 1 &lt; r &lt; n.

From the construction we hâve given of i/rI+1, it is clear that

SUBLEMMA. If either r + û&gt;£ Ui or t-&lt;*&gt;£ Uh then

Proof. If L(ift, xr)&gt; U(il/h Xr), then /I+ltr= 0. So, we may suppose
x,). Since /0(x)&lt;/!(x), we hâve
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Since fï1(x0)&lt;fii1(x0)9 we hâve

Since L(if/b xr)&lt;U(il/b xr), we must hâve one of the following two possibilités:

or

(5.7)

(5.8)

Suppose (5.7) holds and t — œ^U^ Since teJln we hâve that i/^j(xr+)&gt;t. By
(5.1), with fa replaced by ifo, we hâve

Since t-o)^Ub this implies

Since t + co^ L/{, we hâve

Hence, L(ifo, xr)&gt;U and t^/l+lr, by construction of ift+i.
Next, suppose (5.7) holds and t + co^ Uh Since te Jir, we hâve tfo(xr-)&lt;f. By

(5.1), with i^! replaced by *ft, we hâve

Hence, l/(ifa, xv) &lt; r, and r^JI+lif, by the construction of
We hâve thus proved the sublemma when (5.7) holds. The case when (5.8)

holds may be treated in the same way.

End of the proof of Lemma 5.2. Kt has non-empty interior, because fa has

only finitely many jumps and is strictly increasing. Since c*&gt; is irrational, it follows
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that there is a positive integer N such that for any feR, there exists aeZ,
|a|&lt;N, such that t + aœeK^ Then teK^+x, by the sublemma. Hence KnN+1

R, and our procédure stops after finitely many steps, as we asserted.

By Lemma 5.2, Y^ is dense in Y~, when o&gt; is irrational. Now we will prove
that Y^ is dense in Y&quot;, when &lt;o is rational, using the fact that it is dense when co

is irrational.
Suppose a) is rational, and let i^gY&quot;. Let i^€Y~ satisfy (4.1). Let i(/s

(l-s^ + siK. Then

ifeeY-s for |o&gt;&apos;-&lt;o|&lt;(l-s)S.

Choose irrational numbers w0 and g^ such that p(fo)&lt;o)0&lt;ù)&lt;û)1&lt;p(f1) and
|a&gt;, —o&gt;|&lt;C(1-5)0, for i 0,1. By what we hâve just finished proving, there exist
i^o, \\f[ arbitrarily close to tfc such that

*ie Y-(0)c, i\f[e Y^(1)c.

Define A by &lt;o (1-A)û&gt;o + Aco1. Then O&lt;A&lt;1. Set i/f&apos; (l-A)^o + Ai/f;. Obvi-
ously i/r&apos; g Y^c-

Since we may choose ij/s arbitrarily close to *jfl9 and i/tq, i/f{ arbitrarily close to
i/rs, it follows that this procédure produces if/&apos; arbitrarily close to ifo.

This finishes the proof that Y~c is dense in Y~. D

In §3, we showed that if Y~s is dense in Y~, then Theorem 1 is true. In §4, we
showed that Y~s is dense in Y~c. In this section, we showed that Y^ is dense in
Y&quot;. We hâve thereby completed the proof of Theorem 1.

§6. Outline of the Proof of Theorem 2

We set

.«.f. o) ~ d &quot; s)FJ(^)] dx.

This is the area bounded by the graph of the function s »-^Fft)/(i/fs) and the graph
of the function s ^sFO)I(i/r0)4-(l-s)Fa)I(^1). By Theorem 1, A(i/ro?^i)^0 and

the necessary and sufficient condition for (2.2) to hold is that A(i/r0,
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Suppose i/f0, «Ai e Y~s. Intégration by parts gives

369

A second intégration by parts gives

Using (3.4), we obtain

- h12(x, x&apos;(s, x))^ dxds.

Recall that x&apos;(s, x) &lt;/&gt;s(

solution of the équation
In other words, x&apos; x&apos;(s, x) is the unique

î.e.,

s)tl/0(xr (6.1)

We wish to express the intégral in terms of independent variables x and x&apos;.

Observe that (6.1) is équivalent to

s =-
&apos;) + (o

(6.2)

Hence

&apos;(S, X)) ^ (fc(X) + Û))[*(X&apos;(S, X)) - «îr(x)F

[/(x, x&apos;)h12(x, x&apos;)^ (*( dx&apos;

dx&apos;, (6.3)
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where s is given by (6.2), and

^-, ifO&lt;s&lt;l,

0, otherwise.

Of course, we must assume i^(x&apos;)^ *j/(x) for this to make sensé.
Note that for any fixed xeR, there are three possibilités, according to

whether x&apos;(0, x) &gt; x&apos;(l, x), jc&apos;(O, x) &lt; x&apos;(l, x), or x&apos;(0, x) x&apos;(l, x). In the first case.

l/(x, xf)j=0 is équivalent to x&apos;(l,x)&lt;xf&lt;x&apos;(0,x). For xf in this range,

so we obtain i^(x;)&gt;^(x). Moreover, s is a strictly decreasing function of x&apos;, for
x&apos;(l,x)&lt;x;&lt;x&apos;(0, X), in view of (6.2). This justifies our change of variables in
(6.3), in the first case.

In the second case, U(x, x&apos;) ^ 0 is équivalent to x&apos;(0, x)&lt;x&apos;&lt; x&apos;(l, x). For x&apos; in
this range, we hâve

&lt;Ao(*&apos;) &gt; &lt;to(*&apos;(0, x)) faix) + a&gt;

so we obtain i^(x&apos;)&lt;«M*)- Moreover, s is a strictly increasing function of x&apos;, for
x&apos;(0, x)&lt;x&apos;^x&apos;(l,x), in view of (6.2). This justifies our change of variables in
(6.3) in the second case.

In the third case, U(x, x&apos;) 0 except for x&apos; x&apos;(0, x) x/(l, x), where it is

undefined. Then

so we obtain *js(x&apos;) *jf(x). Moreover, ife(x&apos;) tfc(x) + &lt;u, for ail 0&lt;s&lt;l, so we
obtain x&apos; x&apos;(s, x). It follows that the intégral on the left side of (6.3) vanishes.

The intégral on the right side of (6.3) also vanishes, since the integrand vanishes

everywhere except at one point, where it is undefined. Thus, (6.3) holds in this

case, too, even though the change of variables argument does not apply.
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From ifc(x&apos;)-&lt;fc(x) û&gt;, we obtain

when x is held constant. Moreover, since ifc &lt;£s~1, we hâve

Hence

ds_

dx&apos;

Hence the right side of (6.3) equals

f ^
U(x,x&apos;)h12(x,x&apos;)\&lt;j,(x&apos;)-ijf(x)\dx&apos;.

J/o(x)

Substituting this in the équation we obtained previously for A(i//0, &lt;Ai), we get

[J
X ||[J ] (6.4)

The possibility that ip(x&apos;) ij/(x) for some values of x and x&apos; causes no difficulty,
since in the above calculation, both sides contribute 0 on the set of (x, x&apos;) for
which ijj(x&apos;) ip(x).

In order to finish the proof of Theorem 2, two further steps are enough. First,
we will show that (6.4) is valid for ail i/r0, faeFZ- (So far, we hâve shown it only
for ^ijfxeFZs.) For this it is enough to prove that the right side of (6.4) is

continuous on f^xf^;. For, we hâve proved that Y~s is dense in Y~ (§§4,5).
Moreover, the left side of (6.4) is continuous in (&lt;/r0, tf/Je Y~x Y&quot;, in view of the
définition of A(i/&gt;0, \\fx) and the fact that FJ is continuous on Y~ (§2). The proof
of the continuity of the right side of (6.4) will be carried out in §7.

Second, we will show that (6.4) implies that if A(^o^i) 0 and $0 is

continuous then i/^ i/fo + constant (§8). This will finish the proof of Theorem 2.
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§7. Proof of (6.4) for ail &lt;fo, fa e Yl

As we just observed, it is enough to prove that the right side of (6.4) is

continuous in i/f0 and fa.
Let 0&lt;ô&lt;10~3. Let fcfe^UieY;. We suppose that d(ift,^î)&lt;S, for

î=0,l.
Let 81 Jô + 8. If ^;(x)-^(x)&gt;Ô!, then ift(x + 8)&gt;ift(x)W8. At a point x

where *l/[(x)-i(fl(x)&gt;81, the variation of ifo over the interval [x, x + 8] is &gt;Vô.

Since the total variation of ifo over the interval [0,1] is &lt;1, it follows that
{xg[0, l]:^;(x)-^l(x)&gt;Ô1} can be covered by at most [Ô~1/2]+l intervais of
length 8. Hence, we hâve the following estimate for its measure:

Hère, jul dénotes Lebesque measure. Likewise,

o(0), Ad)] : «h(x) ~ #(x) &gt; SJ =s N8t,

where N is the smallest integer greater than |/i(l)-/o(0)|.
Let 4ff ^[-^&apos;Q. If

| - |*&apos;(xO - *&apos;(x)| | &gt; 48,,

then we must hâve at least one of the four inequalities

\^(x)-fa(x)\^8u î=0orl,

or

I*(xO-*:(xOI^«i, î=0orl.

The Lebesque measure of the set il of (x, x&apos;)e[0, l]x[/o(0),/!(l)] where one of
thèse four inequalities holds is &lt;8NSi.

Let U&apos; be defined in terms of ^o and fa in the same way as U was defined in
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terms of i^0 and if/1. In other words,
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0, otherwise,

where

Then

?{Mx&gt;)l

where C is an upper bound for |i/fo(x)-^o(x&apos;) + ^|, for xe[0,1] and x&apos;g

[/o(0), /i(l)]. In view of the fact that if/Q is weakly increasing and satisfîes
il*ô(x +1) i/fo(x)4-1, such a bound exists and is independent of ipQ. From this, we
obtain

9 (7.1)

i and |A(x&apos;)-*:(x&apos;)l^«i, î 0,1 (7.2)

(7.3)

and

Let M max{fi12(x, x&apos;):0^x^l,/o(0)^x&apos;^/i(l)}. This maximum exists and
is finite because h12 is continuous (§3) and fc12(x + l, x&apos; + l) h12(x, x&apos;).

Writing A*(i/r0, i^^ for the right side of (6.4), we find

r
f

&apos;

[ ffl(X

W ~ t&apos;WÏÏ dx&apos;] dx

&apos;)| \&lt;P(x&apos;)-&lt;jf(x)\ dx;] dx,
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in view of M&gt; h12&gt;0 and 0&lt; £/&apos;&lt;f, everywhere. We estimate the first summand

on the right side by breaking it into two parts: the intégral over 17 and the intégral
over the complément ^77 of 17.

Our hypothesis that d(ift, i//t)&lt; 8 &lt;1CT3 implies that

for ail xgR, in view of the fact that i/f, and $[ are strictly order-preserving and

satisfy the periodicity properties ifo(x +1) i^(x) +1, \\f\{x +1) t^î(x) +1. Conse-

quently, the integrand Jx is the first intégral is &lt;4M, everywhere. Since the

Lebesque measure of II is &lt;8N8U we obtain

Jldxdx&apos;&lt;32NM81.

n

By définition of 17, (7.2) holds on ^17. Hence /1&lt;2M61 and

J \J1dxdx&apos;&lt;2MN81.

We estimate the second summand on the right side by breaking it into three
parts: the intégral over 77, the intégral over the set Ux of (x, xf)e^II such that

liKxViM*)!, (7.4)

and the intégral over the set 172 of (x, x&apos;)e %U such that (7.4) does not hold.
It is easily seen that

\ij/(xf) - ijf(x)\ &lt; 2, everywhere,

in view of i^r(x +1) iKx), and the fact that the variation of *{/ over [0,1] is &lt;2.

Hence the integrand J2 of the intégral in the second summand is &lt;2M

everywhere. It follows that

ll

If (x, x&apos;) € 77l5 then (7.3) holds by (7.4) and the fact that Ô1&lt;1. Moreover, (7.2)
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holds because (x, x^e^II. Hence, (7.1) holds. From (7.1) and (7.4), we get

on IIi. Hence

J2 dx dx&apos; &lt; MN(CJ8X + 8t).

fia

On II2, we hâve J2^8M&gt;/S1. Hence

n2

Combining ail thèse estimâtes, we get

where Ci (59 + C)NM Hère we use the fact that 8X&lt;J8U since S^l.
Since this was obtained under the hypothesis that d(ifc, il/[)&lt;8, i=0,1, and

y/S1 (&gt;/S + ô)1/2 -^ 0 as 8 -&gt; 0, it follows that the right side of (6.4) is continuous
in t/r0 and i/^.

Hence (6.4) holds for ail i/r0, i/^ g Y~.

§8. End of the Proof o! Theorem 2

Suppose ù) is irrational.
Suppose that there exists (x, x&apos;) € B such that

«M*&apos;)&gt;*i(x) + o&gt; and ^o(x&apos;)&lt;^o(x) + a&gt; (8.1)

or

and ^&apos;)&gt;4U) + ^. (8.2)

In this case, we hâve U(x, x&apos;)&gt;0 and |^(x)-^(x&apos;)|&gt;0, and thèse inequalities still
hold everywhere in a sufficiently small neighborhood of (x, x&apos;). It follows that
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Suppose that there is no (x, xr) e B such that (8.1) or (8.2) holds. Let &lt;f&gt;t

i 0,1. (See §2 for the définition of /.) Since neither (8.1) nor (8.2) ever holds and
ij/0 is continuous,

&lt;t&gt;o(to) =&gt; &lt;h(*i + &lt;») &lt;t&gt;o(to

Since &lt;f&gt;l(t + ï) &lt;f&gt;l(t) + l, and co is irrational, we obtain that &lt;j&gt;i &lt;t&gt;oTa, for some

aeR, where Ta(x) x + a. Hence, ^i ifo + a- K «fo, ij/oeX~c, we must hâve

We hâve proved: if i^0, ^i e X~c and co is irrational, then either A(^o, i/^i) &gt; 0 or
=^i- So, Theorem 2 holds.
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