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Pontryagin forms on homogeneous spaces

Allen Back*

I. Introduction

It has been well known for some time that the differential forms representing
characteristic classes carry extra géométrie information beyond the topological.
(See e.g. [1].) In particular, there is the resuit of Chern and Simons [2] that the

non-vanishing of the dual Pontryagin Form p£ in dimension 4fc is an obstruction
to the isometric (or conformai) immersion of the manifold into Euclidean space
with codimension 2k — 1. On the other hand, effectively using this obstruction is

quite difficult in ail but the simplest cases.

This paper will study the obstruction to immersion in the case of a normal
homogeneous space K/H where K and H are compact Lie groups. The main
resuit is the existence of an effective algorithm for calculating the Pontryagin
Forms in terms of geometrical properties of the roots of K and their projections
into H.

When K/H is a symmetric space with K connected and containing the

géodésie symmetries, then there are no odd dimensional invariant forms and

consequently the vanishing of the Pontryagin forms is implied by their vanishing
as cohomology classes. Examples in this category were studied by Donnelley [4]
generalizing earlier work of Lawson and Heitsch [3]. Somewhat surprisingly, we
find that even for simple non-symmetric homogeneous spaces with vanishing
Pontryagin classes (such as Stiefel manifolds), the forms themselves in gênerai do

not vanish. As corollaries, we obtain minimal codimension results about isometric
immersion of such spaces. (Thm. 9).

In ail géométrie conventions, we shall follow [5]. In using the Chevalley basis,

the conventions of [6] will be followed.

II. Préliminaires and notation

A bi-invariant metric on K induces an orthogonal splitting k h + m where k

and h are the Lie algebras of K and H respectively. Since the metric on K/H is
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induced from such a bi-invariant metric on K, the Riemannian connection is the
fc-invariant connection described by Am(X) ^adX and it is easy to verify (see

[5]) that the curvature form is given by

OJX, Y)Z=-l[Ol(X, Y) + 2O2(X, Y) + n3(X, Y)-O3(Y, X)]Z (*)

where

nx(X, Y) Pmoad[X, Y]

n2(X9 Y) adPH[X,Y]

f23(X, y) adXoPhoad Y

Note O3 is not a differential form although O3(X, Y)-,fi3(Y, X) is.

Of course it is quite mechanical to plug this expression into an invariant
polynomial and find an expression for the Pontryagin forms of the tangent or
normal bundles in this metric. However carrying this out directly leads even in the
calculation of px to extremely messy manipulations with indices.

Let TiCffbea fixed maximal torus with TX&lt;^T where T is a maximal torus
of K. Let Tt and T respectively be the Lie algebras. Then the structure of k is

completely described by the roots of K with respect to T. The isotropy représentation

of H on m may be described as AdK |H - AdH and so is readily computable.
If X« is a root vector in k®c associated to a root a eA(K), then since 7\ &lt;= T, Xa
is also a weight vector for AdK|H. The intrinsic metric on k détermines a

projection TTi.&apos;T—»TX and so we may write a=al + a2 where a1 7r1(a) is the

weight associated to the isotropy représentation of H. Thus the Chevalley basis

for fc immediately gives a weight space décomposition for the représentation
AdK|H and hence for the isotropy représentation.

If Xy and Xy&apos; are in weight spaces (for AdK|H) yt and y[ respectively, then it
is easy to verify that [Xy, Xy] is in weight space 7i + 7i. Consequently the

0-weight space / of AdK|H forms a subalgebra which is the Lie algebra of the
centralizer of T\ in fc®C Let T2 be the torus whose Lie algebra is the orthogonal
complément of T\ in T. Then the orthogonal complément of TX®C in / gives a

subalgebra /®c with associated compact group J&lt;^K (and maximal torus T2)

measuring complementary information from that given by AdK |H. The root
vector X,, of K will become a weight vector of AdK|j with weight a2.

Notice that the terms in (*) hâve a simple interprétation with respect to this

décomposition. Let R(al) {f$€A(K):($l a1} where ax is a root of H with
associated root vector Yai. Similarly, set S(at) span {X^ :0 €#(&lt;*!)}, S

©&lt;*ieA(H&gt; S(«i) and S; span{X3:X3^S}. Then PhXp^0 implies XpgS and on
each Sfax), the range of Ph is the one dimensional Une in the direction Yttl.
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Recall also that by means of Newton&apos;s formula for symmetric functions, the
calculation of pt is reduced to Computing Tr fln. (The p, correspond to elementary
symmetric functions; Tr/2n to symmetric sums.)

in. Regular élément case

Although the above point of view is helpful in ail cases, it becomes especially

easy to work with in the case that 7\ contains a regular élément of K. Throughout
this section, we will work under this assumption. Now the spaces S(cti) are
one-dimensional and the projection Ph is to easy to keep track of. For a eA(K),
define

0 if a2^0

and P2(o) l-P1(a). Thus PhXa P1(a)Xol and
We&apos;re now ready to obtain a fairly neat formulation of how the complexifica-

tion of ÎÎ,(X, Y) acts on root spaces. Since the Pontryagin forms are deflned in
terms of traces, we shall only be interested in spécial combinations; e.g.

p^X^,..., Xa4t) 0 unless Y.t=i a, 0. Using the Chevalley basis, we can estab-

lish the following. Hère a, (3, yeA(K)-A(H) and ZeT2.

LEMMA 1. I. Ifaf-P and
(a) a + p£-y, then O^Xa, X*)Xy P2(« + P + y)Na
(b) a + (3 -y, then O^X,., Xe)Xy -iNaSPm(Hy).

IL Ql(Xm X_B)X, -
LEMMA 2. I. Ifa£-p and
(a) a + /3^-7, then n2(Xat XB)XY P1

(b) a + /3 -7, then Û^X», X^X, 0

IL

LEMMA 3. I. If P^-y and
(a) o?fe-0 + 7), ihenihiX^
(b) o =-0 + 7), then n3(Xa, Xe)Xy 0.

IL O3(Xa, X3)X_3

LEMMA 4. I. // a^-ft then

IL ÛriXa, X_JZ 0
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LEMMA 5. /22(Xa,

LEMMA 6. /

Thèse lemmas may be translatée! into statements about when f2i(Xa, X&amp;)Xy

and ilx{Xa, Xp)Z can be nonzero.

PROPOSITION 7. I. For flxtX», X3)Xy fo be nonzero, it is necessary that
(a) a + peA(K)U{0} and
(b) Either

(1) a^-|8, a + 0 + YGZl(JO and (a + 0 + 7)2^O
or (2) y -(a + j3) and y2 f 0

or (3) a -j3 and 7(Ha) ^ 0.

IL For !22(Xa, X3)Xy to be nonzero, it is necessary that
(a) «
(b) a
(c) Ifa=-fr
III. For /îsCXa, X3)Xy fo be nonzero, it is necessary that
(a) p + yeA(H)U{0}
(b) a
(c) I/

PROPOSITION 8. For O^X^ X0)Z^O, if is necessary that
(a) a + j3e4(K) and
(b)

With somewhat more cumbersome notation, similar formulas can be written
down in the non-regular case. However the réduction of ail trace computations to
one dimensional spaces does not apply; now the spaces S(ax) are the basic

components.

IV. Stiefel manifolds

In this section, we will illustrate the above technique to prove the following
theorem.

THEOREM 9. The normal homogeneous space SU(n)/SU(k) does not im-
merse isometrically in codimension less than 2M where M min ([fe/2], [(n - fc)/2]).
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The above does not represent anywhere near the limit of this approach. It is

simply the outcome of calculating Pontryagin forms under assumptions designed
to minimize the intricacy of applying Propositions 7 and 8. It is natural to
conjecture for this example (and other homogeneous spaces without symmetric
factors) that nonzero obstructions to isometric immersion are obtained from ail
nonzero Pontryagin forms which are not zéro for dimension reasons.

The roots of SU(n) are given by A(SU(n)) {±(0l-6J):l&lt;i&lt;j&lt;n} and
â(SU(k)) {±(Ol-OJ):l&lt;i&lt;j&lt;k}. Our Killing form is normalized so that
#i • 0, =8,,-l/n. For l&lt;i&lt;n, let at be the root 0,-0n+1_r The roots at are
mutually orthogonal; sums and différences of distinct a, are never roots. Theorem
9 follows immediately from:

PROPOSITION 10. For r^M, p\(X^ X_ai, X«2, X_tt2,..., X^, X_aJ^0
for SU(n)/SU(k).

To prove Proposition 10, we shall need the following straightforward conséquences

of Proposition 7 for SU(n)/SU(k).

LEMMA 11. (1) O.iX^ X_JX€*O:»€ ±(0J-0n+1_l) or €

with p&gt;fc + l.
(2) Û2(A^, X^)K j=0d&gt;e ±(0p- «,) with p &gt; k +1.
(3) a3(Xax, X-ai)X.ï0^e 0,-0n+1-l with
(4) fh(X^

LEMMA 12. (1) For p 1 or 2 and i£j, /^(X^, Xttj) 0.

(2) For i + U n3(Xat, X_ai) /23(X_tti, Xa) 0.

(3) For ifU O3(X±tXi, X±aj)X€^O4&gt;€ ±(0n_J+1-0l)
and the range of Q3 is a multiple o/X±(e_en +l).

Let A {X±ttt ; 1 &lt; i &lt;2M}. The above show it is not easy for Op(vu v2)X€ £ 0
when vl9 t)2eA. If e 6a- 0b, let à min (a, n +1 - a) and b min (6, n +1 - b).
Then ux and u2 must be distinct root vectors associated to roots in the set
Y(e) ={±aà, ±as). But Y(e) has only four éléments and in ail cases, Op(vu v2)X^
will be a multiple of X^ with Y(e&apos;) Y(e). So we hâve proven the following very
helpful corollary.

PROPOSITION 13. For vp distinct éléments of A, At(t?i, v2)Ol2(v3, v4)ni3(v5,

This means that ail Tr Or(r &gt; 3) evaluated on éléments of A will be zéro. Thus
to détermine pt on éléments of A, we really only need to know Tr û2.
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LEMMA 14. (1) For vpeA, TrOAO(vl9 v2, v3, v4) 0 unless {vlf v2, v3,
U4J \Xa|, X_ttt, X^, X_aj}.

(2) For i£j, TrÙAfliX^ X_tti, Xaj, X_aj)^0 and is independent of i and j.

Proof. Statement (1) follows since ÙAÙ{Xa, Xb, XC9 Xd) 0 if
a + fc + c + d^O. The proof of (2) is not difficult once we hâve the réductions
indicated in Lemmas 11 and 12. For the remainder of this proof, we shall let

a=at and /3=a, with i^j. The table below summaries the compilation. The
&quot;important roots&quot; are the roots e with Tr(!ÎA,fi) getting a potentially nonzero
contribution from Xe.

In obtaining the last column of Table 1, we must use appropriate Chevalley
basis identities. In (3) and (5), N_3,€N3,e_3 =(\p-e\2/\e\2)Nfi^fiN^~e
-|N3&gt;€_3|2 -1 by noting that e-|3 is at the bottom of a /3-root string. Similarly
in (7), (N_a,€Na&gt;€

To fully utilize the results in Table 1, one should rember that the A(Xa, Xb)
are skew symmetric matrices for i l,2 and /21(Xa, Xb) i73(Xb, Xa). And, of
course, if A is skew symmetric Tr AB -Tr B*A -Tr ABX Tr BA.

Thus

192Tr/2A/2(Xa, X_a, X3, X_3)

64[Tr/2(Xa, X_J/2(Xa, X_3)

3, X_J+Trf2(Xa, X3)I2(X_3, X_J]

+ 4

+ 2 Tr fl3(Att, X3)fi3(X_3, X_J -2 Tr fl3(A^, X3)f2^(X_3, X_J 24 + 0.

We are now ready to prove Proposition 10.

Proof of Proposition 10. Let sm dénote the differential form Tr/Î2m. By
Proposition 13, sm =0 for m&gt;l. By Lemma 14, it is easy to see that (s1)r(Xotl,

X_ai,..., X^^, X_tt2r) ^ 0 for r&lt;M since ail nonzero terms in the skew symmetri-
zation hâve the same sign.

When ail symmetric sums above sx are zéro, the Waring formula (or an easy
direct argument from the Newton formulas) shows that the fe&apos;th elementary
symmetric function ak is 1/fc! times (st)k. Thus for the Pontryagin classes of the

tangent bundle of KlH, pr (-l)r[(si)7r!] when r&lt; m -thèse hâve generating
function e~tei. The dual Pontryagin forms pt are deflned by (l + pi + p2+
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Table 1

Term Important Roots e Contribution
Numerical

Value

(1) «. &quot;«„+!-,)

(2) Tr fl^X*. X_ 3, X_3

(3) Tr O.
(4) Tr
(5) Tr n
(6) Tr r2

(7) Tr O3(Xa, X3)/23(X_a, X_3)

X_3)
3, X_3)

X_Jf23(X3, X_p)
X_J

None
0, -0n+l_
6, - 0n+I_

None

• • •) 1. So for r&lt;M, the generating function for
0. This proves Proposition 10.

is etSi and

It is interesting to note that the algorithm described herein could easily be
carried out on a computer. Experiments in this direction might suggest stronger
non-vanishing theorems as well as other situations in which gênerai calculations
can easily be made.
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