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Pontryagin forms on homogeneous spaces

ALLEN Back*®

1. Introduction

It has been well known for some time that the differential forms representing
characteristic classes carry extra geometric information beyond the topological.
(See e.g. [1].) In particular, there is the result of Chern and Simons [2] that the
non-vanishing of the dual Pontryagin Form p; in dimension 4k is an obstruction
to the isometric (or conformal) immersion of the manifold into Euclidean space
with codimension 2k —1. On the other hand, effectively using this obstruction is
quite difficult in all but the simplest cases.

This paper will study the obstruction to immersion in the case of a normal
homogeneous space K/H where K and H are compact Lie groups. The main
result is the existence of an effective algorithm for calculating the Pontryagin
Forms in terms of geometrical properties of the roots of K and their projections
into H.

When K/H is a symmetric space with K connected and containing the
geodesic symmetries, then there are no odd dimensional invariant forms and
consequently the vanishing of the Pontryagin forms is implied by their vanishing
as cohomology classes. Examples in this category were studied by Donnelley [4]
generalizing earlier work of Lawson and Heitsch [3]. Somewhat surprisingly, we
find that even for simple non-symmetric homogeneous spaces with vanishing
Pontryagin classes (such as Stiefel manifolds), the forms themselves in general do
not vanish. As corollaries, we obtain minimal codimension results about isometric
immersion of such spaces. (Thm. 9).

In all geometric conventions, we shall follow [5]. In using the Chevalley basis,
the conventions of [6] will be followed.

I1. Preliminaries and notation

A bi-invariant metric on K induces an orthogonal splitting k = h +m where k
and h are the Lie algebras of K and H respectively. Since the metric on K/H is
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induced from such a bi-invariant metric on K, the Riemannian connection is the
k-invariant connection described by A,,(X)=3ad X and it is easy to verify (see
[5]) that the curvature form is given by

0,.(X, Y)Z=—3(X, Y)+20,(X, Y)+ 25X, Y)- (Y, X)]Z (*)
where

2,(X, Y)=P,cad[X, Y]
ﬂ2(X7 Y) =ad Ph [X:» Y]
Q,(X, y)=ad XoP,oad Y

Note (2, is not a differential form although 2;(X, Y)—2;(Y, X) is.

Of course it is quite mechanical to plug this expression into an invariant
polynomial and find an expression for the Pontryagin forms of the tangent or
normal bundles in this metric. However carrying this out directly leads even in the
calculation of p, to extremely messy manipulations with indices.

Let T, < H be a fixed maximal torus with T, < T where T is a maximal torus
of K. Let T, and T respectively be the Lie algebras. Then the structure of k is
completely described by the roots of K with respect to T. The isotropy represen-
tation of H on m may be described as Adk |y — Ady and so is readily computable.
If X, is a root vector in k® ¢ associated to a root a € A(K), then since T, < T, X,
is also a weight vector for Adg|y. The intrinsic metric on k determines a
projection m,:T— T, and so we may write a = «a, +a, where a,; = m;(a) is the
weight associated to the isotropy representation of H. Thus the Chevalley basis
for k immediately gives a weight space decomposition for the representation
Adg|y and hence for the isotropy representation.

If X, and X, are in weight spaces (for Adg|y) v, and v{ respectively, then it
is easy to verify that [ X, X ] is in weight space <y,+vy}. Consequently the
0-weight space j of Adg|y forms a subalgebra which is the Lie algebra of the
centralizer of T; in k® C. Let T, be the torus whose Lie algebra is the orthogonal
complement of T, in T. Then the orthogonal complement of T,®C in j gives a
subalgebra j®c with associated compact group J< K (and maximal torus T,)
measuring complementary information from that given by Adg|g. The root
vector X, of K will become a weight vector of Adg; with weight a,.

Notice that the terms in (%) have a simple interpretation with respect to this
decomposition. Let R(a,)={BecA(K):B,=a,} where a, is a root of H with
associated root vector Y, . Similarly, set S(a;)=span{Xg:BeR(a,;)}, S=
D caan S(a;) and S’ =span{X;: X ¢ S}. Then P, Xz # 0 implies Xg €S and on
each S(a,), the range of P, is the one dimensional line in the direction Y,,.
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Recall also that by means of Newton’s formula for symmetric functions, the
calculation of p; is reduced to computing Tr 2". (The p; correspond to elementary
symmetric functions; Tr 2" to symmetric sums.)

II1. Regular element case

Although the above point of view is helpful in all cases, it becomes especially
easy to work with in the case that T contains a regular element of K. Throughout
this section, we will work under this assumption. Now the spaces S(a;) are
one-dimensional and the projection P, is to easy to keep track of. For a € A(K),
define

0 if a,#0
Pl(“)‘{l it a,=0
and P,(a)=1-P;(a). Thus P, X, = P,(a)X, and P, (X,) = Py(a)X,.

We’re now ready to obtain a fairly neat formulation of how the complexifica-
tion of (2,(X, Y) acts on root spaces. Since the Pontryagin forms are defined in
terms of traces, we shall only be interested in special combinations; e.g.
(X, -5 X,,)=0 unless Y%, o, =0. Using the Chevalley basis, we can estab-
lish the following. Here a, B, ye A(K)—A(H) and Z€T,.

LEMMA 1. 1. If a#—B and
(@) a+B#—y, then Q,(X,, X)X, = Py(a+B+v)N,gNyr8Xarp+y
(b) a+B=—y, then (X, X3)X, =—iN,gP.(H,).

IL 0,(X., X_)X,=—v(H.)X,

LEMMA 2. 1. If a#—B and
(@) a+BF—y, then 2y(X,, Xp)X, = Pi(a+ BN, gNoip v Xa+8+y
(b) a+p=-—v, then 2,(X,, X3)X,=0

IL 2,(X., X )X, =-v(H)X,

LEMMA 3. 1. If B#—v and
(@) a#—(B+7y), then 2;5(X,,, XB)X-y =P(B+ 'Y)NB,yNa,3+yXa+a+y
(b) & =—(B+7), then Qx(X,, X,)X, =0.

II. 24X, XB)X—B = al(HB)Xa

LEMMA 4.1 If a#-B, then (X,, Xg)Z=—iP,(a+B)(a+B)2))

Na,BXa+B
II. (X, X_,)Z=0
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LEMMA 5. 2,(X,, Xg)Z=0
LEMMA 6. (X, Xg)Z =0

These lemmas may be translated into statements about when 2,(X,, X3)X,
and 2,(X,, Xg)Z can be nonzero.

PROPOSITION 7. 1. For £,(X,, Xg)X, to be nonzero, it is necessary that
(a) a+BecA(K)U{0} and
(b) Either
(1) a#—-B, a+B+veA(K) and (a+B+v),#0
or (2) y=—(a+B) and v, #0
or (3) a=—-B and y(H,) #0.
II. For 2,(X,, X3)X, to be nonzero, it is necessary that
(a) a+BeA(H)U{0}
(b) a+B+vyeA(K)
(¢) If a =—B, then v,(H,)#0.
III. For 2;(X,, Xg)X, to be nonzero, it is necessary that
(a) B+vyeA(H)U{0}
(b) a+B+yeA(K)
(c) If B=—, then a,(Hg) #0.

PROPOSITION 8. For 0,(X,, Xg)Z#O0, it is necessary that
(@) a+BeA(K) and (a+B),#0
(b) (a+B)Z)#0

With somewhat more cumbersome notation, similar formulas can be written
down in the non-regular case. However the reduction of all trace computations to
one dimensional spaces does not apply; now the spaces S(a,;) are the basic
components.

IV. Stiefel manifolds

In this section, we will illustrate the above technique to prove the following
theorem.

THEOREM 9. The normal homogeneous space SU(n)/SU(k) does not im-
merse isometrically in codimension less than 2M where M =min ([k/2], [(n — k)/2]).
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The above does not represent anywhere near the limit of this approach. It is
simply the outcome of calculating Pontryagin forms under assumptions designed
to minimize the intricacy of applying Propositions 7 and 8. It is natural to
conjecture for this example (and other homogeneous spaces without symmetric
factors) that nonzero obstructions to isometric immersion are obtained from all
nonzero Pontryagin forms which are not zero for dimension reasons.

The roots of SU(n) are given by A(SU(n))={+(6,—6,):1=i<j=<n} and
A(SU(k))={%x(6,—6,):1=i<j=<k}. Our Killing form is normalized so that
0;-6;,=8;—1/n. For 1=<i=n, let ; be the root 6,—86,.,_;. The roots «; are
mutually orthogonal; sums and differences of distinct ¢; are never roots. Theorem
9 follows immediately from:

PROPOSITION 10. For r=M, p7(X,, X o, Xop, X a5 Xey» X 0, )F0
for SU(n)/SU(k).

To prove Proposition 10, we shall need the following straightforward consequ-
ences of Proposition 7 for SU(n)/SU(k).

LEMMA 11. (1) &(X,, X_ )X #0>€e==%(6,—0,.1-;) or €= =x(0,—6,)
with p=k +1.

(2) 2,(X,, X o)X F0>€==%(6,—6;) withp=k—+1.

(3) 23(X,, X o)X #0>€=06,—0,,,_; with 1=j=<k.

@) 25(X_o, X)X 0> €=0,.,,_—0, with 1=j=k.

LEMMA 12. (1) Forp=1 or 2 and i#j, 2,(X.,, X,)=0.
(2) Fori#j, (X, X_,)=02(X_,, X,)=0.
(3) For 17(: J 03(X:|:ai9 Xtai)Xe 7£ 0=>e= i(On—i"-l_ei)

and the range of (25 is a multiple of X .o

h—1+1)*

Let A ={X,,; 1=i=2M]}. The above show it is not easy for £, (v,, v,)X,# 0
when v,, v,€ A. If e =6, —6,, let a=min (a, n+1—a) and b =min (b, n+1-b).
Then v, and v, must be distinct root vectors associated to roots in the set
Y(e) ={xa;, *oz}. But Y(€) has only four elements and in all cases, £,(v,, v,) X,
will be a multiple of X_. with Y(e') = Y(¢). So we have proven the following very
helpful corollary.

PROPOSITION 13. For v, distinct elements of A, £; (v1, v2)€2;, (v, V)42, (vs,
U(,) =(.

This means that all Tr 2"(r = 3) evaluated on elements of A will be zero. Thus
to determine p* on elements of A, we really only need to know Tr 2.
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LEMMA 14. (1) For v, € A, Tr 2 AQ(vy, v,, V3, V4) =0 unless {v,, v,, v;.

U4}={Xa,9 X——a,a Xap X——a,-}'
(2) For i#j, Tr Qnd(X,, X_, X, X_,)#0 and is independent of i and j.

Proof. Statement (1) follows since QAQ(X,, X,, X, X;)=0 if
a+b+c+d#0. The proof of (2) is not difficult once we have the reductions
indicated in Lemmas 11 and 12. For the remainder of this proof, we shall let
a=a; and B=q; with i#j. The table below summaries the computation. The
“important roots” are the roots € with Tr (2 A2) getting a potentially nonzero
contribution from X..

In obtaining the last column of Table 1, we must use appropriate Chevalley
basis identities. In (3) and (5), N_gNg. s=(B—¢€l’/|€|)Ng_c_sNgep=
~|Ng.—gl>=—1 by noting that € — B is at the bottom of a B-root string. Similarly
in (7)’ (N—a,eNa,e-—a)(NB,v-a—ﬂN—B,E*a) = lNa,e~a|2 INB,E-Blz =1,

To fully utilize the results in Table 1, one should rember that the Q,(X,, X,)
are skew symmetric matrices for i =1,2 and 23(X,, X,)=025(X,, X,). And, of
course, if A is skew symmetric Tr AB =—Tr B‘'A =—Tr AB' =Tr BA.

Thus

192Tr QAQ(X,,, X_,, Xg, X_g)
=64[Tr 2(X,, X_)2(Xg, X )
—Tr Q(X,, X_g)2(Xs, X_,)+Tr (X, X)X 45, X )]
=Tr 2,(X,, X_,)2(Xa, X_g)+4 Tr 2,(X,, X_,)2,Xs, X g)
+4 Tr Q,(X,, X_)Q3(Xs, X_g)+8Tr (X, X_,)02:(X, X )
+2 Tr 25(X,, Xa)2:(X g, X_o)—2Tr 2:(X,, X)23(X_g, X_o)=24#0.

We are now ready to prove Proposition 10.

Proof of Proposition 10. Let s,, denote the differential form Tr 2°™. By
Proposition 13, s,, =0 for m>1. By Lemma 14, it is easy to see that (s;)"(X,,,
X g s Xay» X o, ) # 0 for r=M since all nonzero terms in the skew symmetri-
zation have the same sign.

When all symmetric sums above s, are zero, the Waring formula (or an easy
direct argument from the Newton formulas) shows that the k’th elementary
symmetric function oy is 1/k! times (s,)*. Thus for the Pontryagin classes of the
tangent bundle of K/H, p,=(—1)"[(s,)"/r!] when r=m —these have generating
function e™*:. The dual Pontryagin forms p; are defined by (1+p,+p,+...)
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Table 1
Numerical
Term Important Roots € Contribution Value

(1) Tr,(X,, X )0,(Xa, X ) £(6,~6,,,_;) Y e(H,)e(Hg) 2

:t(em»l—i ~0n+1-j) €

i(6n+!—z - 01)
(2) TI’ ﬂl(xa, X,a)oz(XB, X__B) :t(ej - 0"+1,_‘) Z E(Ha )GI(HB) 2
(3) Tr ‘Ql(Xa’ X_a)ﬂ3(XB, X—B) ei - 6n+l—i —E(Ha)N—B.eNB,G—B 1
(4) Tr (X, X_)(Xg, X_g) None 0 0
(5) Tr 2x(X,, X_o)25(Xg, X_g) 6;—0,41; —(H,)N_g Ng. g 1
(6) TI' ﬂ3(Xa, XB)‘Q3(X—'B’ X—-Q) 0]‘ - 9n+l—i NB,:-a —-BNa,s—aN-a,eN—B.e-a 1
(7) Tr 25(X,, X)) (X_,, X_g) None 0 0

(1+pi+pz+...)=1. So for r=M, the generating function for p; is e*™ and
pt=(s,)"/r!#0. This proves Proposition 10.

It is interesting to note that the algorithm described herein could easily be
carried out on a computer. Experiments in this direction might suggest stronger
non-vanishing theorems as well as other sittations in which general calculations
can easily be made.
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