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Integral means of derivatives of monotone slit mappings

ALBERT BAERNSTEIN I and J. E. BROwN®

1. Introduction

Let A denote the unit disk {z:|z| <1} and S the class of functions f analytic
and univalent in A with f(0)=0, f'(0)=1. In [1, p. 139], Baernstein proved that
the Koebe function k(z)=z(1—2z)? is extremal for a large class of problems
about integral means. We denote by K the class of all convex increasing functions
®(x) defined on (—o, ),

THEOREM A. For feS,®cK, and re(0, 1],
Jﬂ d(xlog |f(re®®)|) do = j1r ®(xlog |k(re')|) de.

In particular, the Koebe function has the largest L” means

51;‘[ |f(re®®) > d6, 0<p<co,

among all the functions in S.
In the corresponding problem involving derivatives the Koebe function ceases
to be extremal, at least for small values of p. Indeed,

1+z

e =

belongs to the Hardy space H" if p <3, whereas Lohwater, Piranian, and Rudin
[15] have constructed a function in S whose derivative belongs to no H” class.

* Work of the authors was supported by grants from the National Science Foundation.
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332 ALBERT BAERNSTEIN II AND J. E. BROWN

In this paper we show that if we restrict attention to support points of S then
the Koebe function is restored to its extremal position, at least in terms of order
of magnitude, in problems about integral means of derivatives. A function fe S is
called a support point if there exists a continuous non-constant linear functional L
on the space of functions analytic in A such that

Re L(f) = max Re L(g).
gE€

Here, and throughout the paper, the space of functions analytic in A is endowed
with the topology of uniform convergence on compact subsets.

Denote by o the set of support points of S. By a theorem of Pfluger [17] and
Brickman and Wilken [4], each f € o is a monotone slit mapping. That is, C—f(4)
is a Jordan arc I' with one endpoint at  and the other at a finite point w,, called
the tip, which intersects each circle |w|=R at most once. Furthermore, I is an
analytic arc which is asymptotic to a straight line at « and at the tip, and I" has the
mr/4-property: at each point on I' the angle between the tangent vector and the
radius vector from the origin is in absolute value smaller than 7/4, except possibly
at the tip, where it might be equal to +m/4.

Our results apply more generally to functions f for which C—f(4) is a not
necessarily analytic monotone slit having the property analogous to the /4
property for any number A strictly less than 7r/2. We define a subclass #((A)<= S as
follows. fe M(A) if C—f(A) is a Jordan arc with parametrization w(t), to <t <o,
so that w(e) =0 and 0<|w(ty)| <|w(t))| <|w(t,)| <® whenever t,<t; <t, <o, and
such that

lim |arg w(t) —w(t) <A, Iim
t—t} w(t,) t—t;

w(ty) —w(t) -
arg ——w(tl) =A (1)

for every t; € (ty, ). The first inequality should hold also for t, = t,.

It is a simple exercise to show that a C' curve for which the angle between the
tangent vector and the radius vector always has magnitude less than or equal to
A, 0< A < /2, satisfies (1). In particular, o < M(w/4).

According to a theorem of Brickman [3], if f is an extreme point of S then
C—-f(4) is a monotone slit. However, it is not known whether extreme points
must be sufficiently monotone to belong to a class #(A) for A <a/2. On the other
hand, if feS is an extreme point of the closed convex hull of S, it is known
([5],[13] that f must belong to the closure of o. The classes #(A) are closed sets.



Integral means of derivatives 333

(This point is discussed in §2.) Consequently, we have the inclusions

£(c s>cacm(§). )

Here €(A) denotes the extreme points of a set A.
Now we can state our results. In the following C(A) denotes a positive
constant depending only on A, not necessarily the same in different occurrences.

THEOREM 1. For fe #(A), ®e K, re(0,1] and X (0, 7/2),

J“ ®(xlog | f'(re'®)|) do < ‘[w @ (+log |C(A)k'(re®)|) deo (3)
and

i rf'(re'®) [ rk’(re'®)

_LT @(ilog e )d()__j~1T CP(ilog C(A) K (re®) )dG. 4)

COROLLARY 1. For fe M(A),0<A<m/2,re(0,1], and p € (—o, =),

J‘" |f'(re®)|P dg < C(A)” J.w |k'(re*®)|” do (5)
and

™ Nrf'(re'®)|? _ o [ |k (re®)|?

L e | 40=COY) L ey | 6)

Note especially that for support points f these inequalities hold with absolute
constants C = C(m/4).

Since
1+ k' 1+
K'(z) = z zk'(z) z

(1-2z)* k(z) 1-z°

Corollary 1 shows that, for fe#(A),f belongs to H” for p<3, while
1/f', zf'(z)/f(z) and f(z)/zf'(z), belong to H® for p <1. In each case the norm is
bounded above by a constant depending only on p and A, and for support points
the constants depend only on p. Since support points are analytic in the closed
disk except for a double pole at the point on |z| =1 where f(z) =, and f'(z) has
no zero except for a simple one at the point on |z| =1 corresponding to the finite
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tip of the slit, the statement about membership in H” classes for support points is
clearly true. However, the statement about uniform boundedness of norms seems

to be new.
Another case of particular interest is that of p =2 in (6). We state this as a
separate corollary.

COROLLARY 2. For fe M(A), A €(0, w/2) and re(0, 1),

2 1

do=C(\) 7— (7)

=

Inequality (8) is equivalent to the statement that the functions log[f(z)/z],
f € M(A), belong to the mean smoothness class A3, [8, p. 78], and, moreover, for
fixed A €(0, 7/2), actually form a bounded set in this class. In particular, the
support points form a bounded set in A%/,. J. Cima and K. Petersen [7] noted that
log [f(z)/z]e A}, for f € a, but they did not state or prove the uniform bounded-
ness assertion.

For a long time it was conjectured on the basis of the behavior of the Koebe
function that log[f(z)/z] would belong to A3, for every fe S. However, W. K.
Hayman [11] has recently constructed a function f€ S for which

Thus, the simple estimate [18, p. 130]

L 2
I d9=O( : log 1 )

1-r 1=r
is best possible in the full class S. Hayman has also constructed (unpublished) a
monotone slit mapping in S for which the integral above is not

rf'(re'®)
f(re™)

= 1 1
de+ 0O log , r—1.
1—r 1-r

rf'(re®)
f(re®)

1 1 )
O(l__rloglogl_—r .

This shows that Corollary 2 and Theorem 1 become false in the limiting case
A=m/2. P. L. Duren and Y. J. Leung [10] showed that log f(z)/z belongs to A%,
if feS has positive Hayman index, that is, grows sufficiently rapidly. It is not
known whether log f(z)/z belongs to A%/, for extreme points of S, but our results
and (2) show that this is indeed the case for fe €(co S).
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Corollary 2 has an interesting reformulation. For fe S write
lo gﬁ—z—z=2 Z ¥.Z"
n=1

The “2” is inserted so that vy, =1/n when f=k.

COROLLARY 3. For fe (L), Ae(0, w/2), and n=1,2,3,...,
Y iFlylP=cn.
i=1

A well-known argument (see, e.g., [10, p. 38]) shows that coefficient estimates
of this form are equivalent to means estimates of the form (7). Hayman’s examples
show that Y, j%ly;]>’=0O(n) is false in the full class S, and even false for
monotone slit mappings not belonging to a class #(A) for some A < /2.

Corollary 3 may have some bearing on the coefficient problem in the class S.
Writing C = C(w/4), we have

COROLLARY 4. For feogand n=1,2,3, ...
Y PlyP=cn (8)
i=1

I. M. Milin proved [16], [18, §3.5] that in the full class S,

n

i < 1
Z ] Iv;lzs_zl;%,
]:

where 0<8<0.312. It is known that one cannot take 6 =0 here, so that the
Koebe function is not extremal for this inequality. However, Milin has conjec-
tured that perhaps the Koebe function is sharp for a smoothed-out version.

MILIN’S CONJECTURE. For feS,

T Mx-

n n k 1
Z ] l’YJIZS Z Z N
k=1 K=1i=1d
An inequality of Milin and Lebedev (see [9, p. 897]) shows that Milin’s

conjecture implies Bieberbach’s conjecture. In fact, to prove Bieberbach’s conjec-
ture for the full class S it would be sufficient to prove Milin’s conjecture for
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support points. Our inequality (8), which holds for support points but not for the
whole class S is encouraging since it indicates that maybe the <, are better
behaved for support points than they are in general.

Concerning integral means inequalities like those of Theorem 1, we mention
that Leung [14] has proved the sharp inequalities

e 1 4

f d(log |f'(re™))) dOSJW D(log |k'(re*?)|) d6 (9)

for f close-to-convex. Brown [6] has solved the corresponding problems for close-
to-convex functions of order B. In the full class S, standard results show that

J" |f'(re*®)|° d6 < C(p) ‘r |k'(re*®)|” d6

1

holds for 3 < p <. Such an estimate still holds for 2<p <<, ([18, p. 130], [21, p.
2107), and possibly also for 3 <p =<2, but this is not known. The best constant C(p)
is not known either, except that C(x) =1, by the distortion theorem. It would be
very interesting to prove or disprove that C(p)=1 for various other values of p.
For example, if the smallest C(2) is larger than one, then Bieberbach’s conjecture
is false.

Sharp order of magnitude estimates for L means of the logarithmic derivative
zf'/f do not seem to be known in the full class S except when p = (the distortion
theorem) and p =2 (discussed above). An estimate for the case p =1 appears in
[18, p. 129].

Our proof of Theorem 1 is based on a representation theorem for the
logarithmic derivative of functions in #(A). This is obtained in §2. In §3 we use
this representation to prove that if f € #(A) then zf'/f belongs to the space “weak
H"’. From this and some considerations involving *-functions it is easy to
conclude the proof of Theorem in §4.

2. A representation theorem

Let us denote by A(A), 0<A <m/2, the subclass of #M(A) consisting of func-
tions for which the omitted arcs are analytic except at infinity and their finite tips,
where they have well-defined linear asymptotic directions. A function fe A(A)
has a meromorphic extension to the closed unit disk A. Its only pole there is a
double one at the point on |z|=1 where f(z)=. The only zero of f in A is a
simple one at the point on |z| =1 corresponding to the finite tip. At each point on
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the omitted arc it follows from (1) that the angle between the tangent vector and
the radius vector is at most A in absolute value.

W. E. Kirwan and R. Pell [13] proved that the closure of A(mx/4) is contained
in M(w/4). Conversely, they also proved that certain functions in #(A) are in the
closure of A(A),0<A<m/2. The Kirwan-Pell arguments, together with a few
embellishments which we leave to the reader, show that

The closure (in the topology of local uniform
convergence) of A(X) is M(N), O< A\ <m/2.

To state our representation theorem we introduce the class 4(A) of functions g
which are analytic and zero free in A, and satisfy

larg g(z)|=A, Vzed

1g(0)| = 1.

It is also convenient to introduce a bit more special notation. Since f € M(A) is
a monotone slit mapping there are unique real numbers ¢ <¢,<¢;+2m7 such
that

fle**) =0,  f(e'x)=w,,

where w, is the finite tip. Define

e—2

Sp(z) = e (@22 (10)

e —z°

Then S; is a conformal mapping of A onto the upper half plane. S; is negative
real on the arc {€ : ¢, < ¢ < @,} on which |f(e**)| is decreasing and is positive real
on the arc {€*°: ¢, < ¢ < ¢, +27} on which |f(e*®)| is increasing

PROPOSITION 1. For fe M(A), 0<A <m/2, we can write

izf'(z)
f(z)

=S:(2)g(z), zeMQ),

where S; is defined by (10) and ge 4(A). Moreover

T=2A =@y~ @1 =m+2A. (11)
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For A =m/4 and fe A(w/4) this is a result of W. Hengartner and G. Schober
[12, p. 211]. Inequality (11) asserts that the points on dA corresponding to « and
the finite tip are separated by at least a certain distance which depends only on A.

Proof of Proposition 1. Suppose first that fe A(A). If 0# ¢,, ¢, then

izf(z) _ 1 of
f(z) f(z)o6

(2)

exists at z =e®. The argument of this number represents the angle between the
properly sensed tangent vector to the omitted arc and the radius vector. Hence,
the number lies in the sector

K(A\)={z:|arg z|=A}

if p,<0<¢@;+2m and in —K(A) if ¢, <0< e,.
Define

1 i
8D =55 @) -

Then g is analytic and zero free in A and maps 84 into K(A). By the Poisson
representation, g maps 4 into K(A) as well. Since |g(0)|=1 it follows that
g€ %9(A). Since

i = g(0)S;(0) = g(0)e’(®=—*)/2

and |arg g(0)|=<A, (11) holds.

Next suppose that f is any function in #(A). Since #(A) is the closure of A(A)
there is a sequence {f,} in A(A) which converges to f uniformly on compact
subsets of A. Write

izf .(z)
fx(2)

= an(Z)gn('Z), &n € Cg(A)

The left-hand side approaches izf'(z)/f(z) as n—», z€ A. Since 4(A) is a
normal family, a subsequence of {g,} converges locally uniformly to a function g,
which also belongs to %(A). The S; for this subsequence converge locally
uniformly to a function S(z) which is either a conformal mapping of the disk onto
the upper half plane or is constant. We need to verify that S(z) = S;(z). One way
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to do this is to observe that the assumption A <m/2 forces the sequence of
continua C—(1/f,)(4) to be uniformly locally connected [18, p. 283]. It follows
that the normally converging sequence {f.} in fact converges uniformly on A in
the spherical metric. Monotonicity considerations now imply that the zero e*®z» of
S;. converges to the zero e**: of S; and similarily for the poles, so that S =, as
required. This argument shows also that (11) holds for f, since it holds for each f,.

We close this section by considering an example. Suppose f(z)=z(1—2z)" 17",
—m <a <. Then f maps A onto the complement of a logarithmic spiral for which
the angle between the tangent vector and the radius vector is constantly a/2. The
corresponding representation is

iZf’(Z) — piaf2  —(7w—a)/2 ei(‘""a) —2
fz) 1~z

Thus ¢,—¢@;=m—a and g(z) is the constant e*/>.

3. A weak-type inequality

The symmetrization theorem [1, p. 143] implies that L? means of functions
g € 4()\) are majorized by those of the conformal mapping [(1+ z)/(1~2z)*™. In
particular, if g€ 9(A) then ge H® for p <m/2A.

Consider now an analytic function F in A of the form

e,

F(z)=e™ ¢

er1—z

g(2) (12)

where a, @1, ¢2€R and ge %(\). Holder’s inequality implies that this function
belongs to H? for p<(1+2A/a)~', and the example

1 + 2 1+Q2A/)
1—2)

F(z)=(

shows that nothing better is true in general. If, however, we impose the additional
condition

F@l== a3

then it will turn out that F belongs to H” for every p<1, and even more. In the
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case of interest to us F will be the logarithmic derivative of a function in #(A) and
the distortion theorem will imply that (13) holds.
We define a Hardy-type space called weak H' as follows. Feweak H' if
(i) FeN* and
(i) [{e®€dA:|F(e®)|>t}|<bt™, Vt>0.
In (i), N* denotes the uniform Nevanlinna class [8, p. 25]. In (ii), |E| denotes
the Lebesgue measure of a set E on d4 and b is a constant depending on F.
Define the weak H' “norm” b(F) of F by

b(F) =inf {b: (ii) is valid}. (14)

Clearly, H' = weak H'. We will prove in the next section that weak H'< H”
for every p < 1. The function (1—2z)~"' is typical of those which belong to weak H*
but not to H'.

PROPOSITION 2. Suppose F has the form (12) where A < /2, and that (13)
holds. Then Feweak H' and |b(F)|<C(A).

The gist of the proposition is that (13) forces the F of (12) to grow no faster on
average than its linear fractional part. However, as A 1 #/2 the perturbation term
g(z) can become more influential, and for A = 7/2 the proposition is almost surely
false, although we have not constructed any counter examples. The ““2” in (13) is
for convenience. Any bound A would do, and then the constant C(A) bounding
|b(F)| would have to depend on A as well.

Proof of Proposition 2. We noted above that functions of the form (12) belong
to H” for small p and hence to N*. Thus the radial limit function F(e') exists a.e.
Without loss of generality we may assume that a = ¢, =0, so that F has the
form
ie __

F(2)="—"8(2) (15)

where 0<¢ <27 and ge M(A) for some A € (0, 7/2).
Fix t >0 and define

E(t)={e":0<0<¢ and |F(e')|>1t}.
We will prove that

|IE()l=C(A)t™. (16)
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A similar analysis proves the same estimate for the arc {e?:¢ <0<2mw}, so
that the proof will be finished once (16) is proved.

For n=0,1,2,... define

I ={e?: 2" lp<<2 ¢}, E,=E(t)NI,

One verifies easily that for ee I,

eiq:___ei()
1___ei0

<A2"

The letter A will stand for an absolute constant whose value can change from
line to line. From (15) it follows that

E,c{e®cI,:|g(e®)|> A2"t}. (17)

Let a, €A denote the point such that 1—|a,|=(1/27)|IL,| and a,/|a,| is the
center if I,. Also, let u, denote harmonic measure relative to A for a,. A simple
estimate for the Poisson kernel (see, e.g., [2, p. 8]) shows that for every
measurable set B < I, we have

|B|=A |L| w.(B).

From (17) it follows that

|E.|=A |L| p.({e”:|g(e)|>A2"1}). (18)

To estimate the right-hand side we need a lemma. For a € A let u, denote the
harmonic measure at a relative to A.

LEMMA. Suppose that a€ A and that g€ M(A), 0<A <. Then
w({e”:1g(e®)|>sh<A(gla) s™H™*,  s>0. (19)

Proof. Suppose first that A = /2 and that a =0. Then Re g =0, so that

1 Iw Re g(Re*) d§ =Re g(0)=¢g(0)| =1,
2m ),

for 0< R <1. An application of Kolmogorov’s weak 1—1 inequality [20, p. 134]
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to the function Re g(Re™) gives

|{e* :|Im g(Re*®)—Im g(0)|>s}| < As™.
Since also |Im g(0)|<1 and

e :Re g(Re®) > s} <2ms ™!

it follows easily that
) . 1 . )
po({e® :|g(Re™)|>s}) = oy {e®:|g(Re*)| > s} < As™'.

A passage to the limit R =1 shows that (19) holds when A = /2 and a =0.
For the general case, let g,(z)=g((z+a)/(1+az)). By the conformal in-
variance of harmonic measure

a0 1g(e> s} =5 He®: (e > s}

The function g,(z)=[g,(z)]"**|g(a)|"™** belongs to ¥(w/2), and (19) follows

from the special case proved above.
Continuing now with the proof of Proposition 2, we see from (19) and (18)
that

|E.|=C)(g(a,)| 2"t )™} |L,].
Now we use hypothesis (13). It implies that

2
1-|z|’

1-z

lg(2)| =

e—z

It is easy to see that |1—a,|<A(1—|a,|) and that |e**—a,|> Ae. Hence

g(a.)|=Ae™".

Since A <#/2 we can write /2A =1+¢ where £ >0. Also |I,|=2""""¢. So, it
follows from (20) and (21) that

|E.J=C)e™2™17'™%,  n=0. (22)
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If t¢<1 then, since |E(t)|<¢, estimate (16) is true as long as C(A)=1.
Suppose t¢ =1. Let v be the positive integer satisfying

to =2V <2te.

Then, from (22),

v—1 0o

[E@0)|= X |EJsCWe ™t X 2"+ ¥ |L].
n=0 n=0 n=v

The first term on the right equals

2= —1

28 -1

CMet7'7° =C\)e "t *(2p)"

=C\)t,

while the second term on the right equals

Y 2 =21 =2t7"

n=v

Thus |E(t)|=C(A)t™, as asserted by (16).

4. Completion of the proof

We first show that a function in weak H' can behave no worse on the average
than the function 1/(1—z). Because of the way Theorem 1 is stated it is more
convenient to use

1+z zk'(z)
1—-z  k(2)

as comparison function.

PROPOSITION 3. Suppose Feweak H'. Then

)as

1+re
1—re®

E, e(log |F(re'))) desj_: cp(log b(F)

for every ¢ € K and re (0, 1].

Here b(F) is the weak H' norm defined by (14).
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Proof. Since Fe N*,|F(z)| is majorized by the outer factor in its canonical
factorization, while |F(e*®)| equals its outer factor a.e. Hence, we may assume F is
an outer function. Also, we may assume that b(F)= 1. This can be verified by a
homogeneity argument and the observation that for each constant a ®(x+a)
belongs to K whenever ®(x) does. Thus, we are assuming that

He:|Fe®)|> =1, 0<t<c, 24)
Write

1+
u(z)=log|F(2)l,  v(z)=log |1

Let A" denote the upper half of the closed unit disk with the origin deleted,
A*={z:|z|=1,Imz=0, z#0}.

For z=re?ce A" define

u*(z)= sup j u(re®) do
E

|E|=26

where the supremum is taken over all measurable subsets of dA whose measure is
exactly 26. The function v* is defined analogously. By [1, p. 150] the desired
conclusion (23) is equivalent to

u*(z)=v*(2), VzeA™. (25)

Now u* is subharmonic in the interior of A™ [1, p. 141]. Also, u™ is
continuous on A™. This is easy to deduce using the fact that u is the Poisson
integral of its boundary values. Since v(re‘®) is a symmetric decreasing function of
6 for each r it follows as in [1, p. 153] that v™ is harmonic in the interior of A™,
and continuous on A*. Both u™* and v* are bounded in A%, so, applying the
extended maximum principle [19, p. 77] to the subharmonic function u*—0v™* in
the upper half of the unit disk with exceptional boundary set {0}, we see that it
suffices to establish (25) for z€dA™.

We have u*(r)=v*(r)=0 for 0<r<1. Since u and v are harmonic in 4
(recall F is outer), the mean value property and continuity give, for 0<r<1,

27u(0) = u*(re’™) = u*(e'™), v*(re’™) =v*(e'™).

Hence, it suffices to establish (25) for z=¢€", 0<=0=.
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Let ii(e) denote the symmetric non-increasing rearrangement of u(e®) [1, p.
149]). From (24) we have, for t >0,

Ke:u(e®)y>t} ={e”:da(e®)>t}{<e™
Take 0€ (0, 7]. Let y =ii(e*®). Then
20=<{e:i(e®)=y}|=e™,

so that
&(ei"):ySlog—l—, 0=<=0=<m.
20
Since cot x >1/4x for x € (0, w/4) it follows from the last inequality that

. 0 .
L't(e'e)SlogcotE-——v(e“’), 0<0<§.

Hence, for 0<0</2,

iae®)de < J v(e™) do = v*(e").

-0

u*(e®) = J:

For w/2=60 <, it follows from (26) that

. o 1 e 1
*(e') < log——dop = (1 —+1 —>_<_
u*(e') L) ogz“pldcp 26 og2 ogo 0,

while

1+e*
1—e™

de =0.

v¥(e) = v*(e™) = j log

We have thus shown that u*(e'®)=v™*(e'®) for 0€[0, 7], and the proof of
Proposition 3 is complete.

Proof of Theorem 1. Suppose fe M(A), 0<A <m/2. Let

izf'(z)

Fa ==y
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By Proposition 1, F has a representation of the form (12) and by the distortion
theorem [18, p. 21] F satisfies (13). Hence, by Proposition 2, Feweak H' with
norm |b(F)| less than or equal to C(A). Proposition 3 now asserts that conclusion
(4) of theorem holds for the positive sign. To see that it holds for the negative sign
as well, apply the above reasoning to F(z)=f(z)/izf'(z) and note that

1+z zk'(z) k(—2z)
1-z k(z)  zk'(-z)’

so that log |zk'(z)/k(z)| and —log |zk’(z)/k(z)| have the same integral means.
To obtain (3) from (4) we use an idea of Leung’s [14].

LEMMA. Suppose that u, and u, are real-valued functions defined in A and
integrable on circles |z|=r. Then, for ze A",

(us +ux)™(2) =ui(z) +ui(z),

and equality holds if u, and u, are either both symmetric increasing or both
symmetric decreasing functions of 6 for each r.

The proof follows easily from the definitions of the *-function.
Write

log |f'(z)| =log ff((:;) +log ftz) :
We have

zf'(z) zk'(z)
(l"g f(z) ) ‘C(A @) )

by (4) and the equivalence between *-function inequalities and ¢ mean in-
equalities [1, p. 150], while from Theorem A it follows that

0] o 2

k()
Z
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The lemma implies that

(log[fD*(z)=(og |CMKkD*(z),  zed™,

and this is equivalent to (3) with the positive sign. The same reasoning, with
negative signs inserted, shows that (3) also holds with the negative sign. Here one
uses the fact that

zk'(2)
k(z)

1—-z
142

E(Z—Z) =log|1—z|?

—log =log and -log

are both symmetric increasing functions.
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