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Treue einfach zusammenhangende Algebren I

KLAUS BONGARTZ

Die in den letzten Jahren entwickelte Ueberlagerungstheorie fiihrt viele
Fragen iber darstellungsendliche Algebren zuriick auf die Untersuchung
sogenannter einfach zusammenhingender Algebren, deren Studium daher von
Interesse ist. Eine Algebra heisst einfach zusammenhédngend, wenn sie endlich-
dimensional iiber einem algebraisch abgeschlossenen Korper ist, nur ein-
dimensionale einfache Moduln hat (d.h. sauber ist) und einen endlichen einfach
zusammenhangenden Darstellungskocher besitzt.

In dieser Arbeit und der folgenden klassifizieren wir die unzerlegbaren Mo-
duln iiber einfach zusammenhéingenden Algebren. In der vorliegenden Arbeit
geben wir eine Liste von einfach zusammenhidngenden Algebren mit treuen
Unzerlegbaren an, die alle derartigen Algebren enthélt bis auf endlich viele
Ausnahmen in kleinen Dimensionen. Wir beweisen anhand der Liste, dass die
Dimensionen der Unzerlegbaren einer darstellungsendlichen Algebra A durch ein
lineares Polynom in dim A beschrinkt sind. Als weiteres Hauptergebnis zeigen
wir, dass die Dimensionen der Unzerlegbaren an den einzelnen Punkten fur eine
einfach zusammenhingende Algebra 6 nicht iiberschreiten. Beide Ergebnisse
zusammen ermoglichen es, den Darstellungstyp einer Algebra und im endlichen
Fall den Darstellungskdcher zu bestimmen, wenn man eine schone Ueberlagerung
kennt.

Die Arbeit enthdlt kaum neue Begriffe. Die Klassifikation beruht auf der
induktiven Konstruktion einfach zusammenhangender Algebren ([8]) und auf den
Resultaten der Kiev-Schule iiber darstellungsendliche geordnete Mengen ([17],
[18], [20]). In einzelnen Fillen sind bereits mehrere Autoren dhnlich vorgegangen
([19], [7], vor allem [23]). Bemerkenswert ist aber, dass man mit diesem
theoretisch einfachen Verfahren zum Endergebnis gelangt. Allerdings tibersteigt
die Zahl der Fallunterscheidungen sicher die Geduld der meisten Leser, so dass
wir die naheliegende Losung verworfen haben, alle Ergebnisse auf einen Schlag in
einer einzigen Induktion zu beweisen. Stattdessen haben wir die Arbeit folgender-
massen aufgebaut, wobei sich nun verschiedene Teile uberlappen. Im ersten
Abschnitt erinnern wir an die Ergebnisse iiber darstellungsendliche geordnete
Mengen. Danach bestimmen wir die moglichen Baume extremaler Algebren und
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Treue einfach zusammenhangende Algebren I 283

klassifizieren anschliessend diese bis auf endlich viele. Der vierte Abschnitt
cnthalt den Beweis, dass die Dimensionen Unzerlegbarer an den einzelnen
Punkten =6 sind. Die Beweise in den Paragraphen 3 und 4 bestehen meistens in
der sorgfiltigen Untersuchung von Einzelféllen, die einander dhneln. Deshalb
erlautern wir das dabei angewandte Prinzip jeweils an einem Beispiel genauer und
geben danach dem Leser nur noch eine zweckmissige Gliederung in die ver-
schiedenen Fiélle und die dabei erhaltenen Ergebnisse an. Im letzten Absatz
zeigen wir, dass eine darstellungsendliche saubere Algebra der Dimension n nur
Unzerlegbare der Dimension <2n+ 1000 besitzt.

Die nachfolgende Arbeit soll die Klassifikation der treuen einfach zusammen-
hiangenden Algebren in kleinen Dimensionen enthalten. Die dabei auftretende
Vielfalt erfordert den Einsatz eines Computers. Mit einem ersten provisorischen
Programm, dessen Kapazitiat nich ausreicht, haben wir bereits etwa 10 000
Algebren bestimmt. Immerhin ersieht man aus dieser unvollstandigen Liste, dass
der Trager eines Unzerlegbaren U iiber einer einfach zusammenhingenden
Algebra A gesittigt ist, d.h. fiir jeden Weg x; — x, — * - -+ — x,, im Kocher von A
mit U(x,) #0# U(x,) gilt auch U(x;)#0, 1=i=<n.

Mein herzlicher Dank gilt meinem Lehrer Peter Gabriel, der mich mit den in
dieser Arbeit angewandten Techniken vertraut machte.

Zeitweilig wurde ich bei dieser Arbeit durch ein Stipendium der Deutschen
Forschungsgemeinschaft unterstiitzt.

1. Unterraumkategorien

Dieser einfithrende Abschnitt fasst die Ergebnisse von Kleiner, Nazarova und
Roiter iiber darstellungsendliche geordnete Mengen zusammen, damit wir spater
bequem darauf verweisen konnen. Unsere Formulierung folgt einem Vorschlag
Gabriels.

Wir halten uns wihrend der gesamten Arbeit eng an die in [8] eingefiihrten
Bezeichnungen und verweisen jeweils beim ersten Gebrauch eines Symbols oder
Begriffes auf die entsprechende Stelle. Insbesondere steht k immer fiir einen
algebraisch abgeschlossenen Korper und mod A fiir die Kategorie der endlich-
dimensionalen A-Rechtsmoduln iiber einer endlichdimensionalen Algebra A, die
wir oft als endliche k-Kategorie ([8], 2.1) auffassen.

1.1 Eine Vektorraumkategorie (V, F) iber k besteht aus einer k-Kategorie V'
und einem k-linearen Funktor F: ¥ — mod k. Dabei setzen wir folgendes voraus:
Jedes Objekt in V ist endliche direkte Summe Unzerlegbarer mit lokalen Endo-
morphismenringen. Ferner gibt es in V' nur endlich viele Isomorphieklassen
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Unzerlegbarer. Die zu (7, F) gehOrige Unterraumkategorie Vi hat als Objekte die
Tripel (W, ¢, V) bestehend aus Wemod k, Ve V' und ¢ € Hom, (W, FV). Ein
Morphismus (W, ¢, V) = (W', ¢, V') ist ein Paar (a, B) mit « € Hom, (W, W’)
und B eHomy (V, V'), so dass ¢'ca=FB°¢. In V¢ ist jedes Objekt endliche
direkte Summe Unzerlegbarer mit lokalen Endmorphismenringen. Der Name
Unterraumkategorie rithrt daher, dass ¢ stets injektiv ist, wenn nicht (k, 0, 0)
direkter Summand von (W, ¢, V) ist. Uns interessiert folgendes Beispiel einer
Unterraumkategorie: Sei A eine lokalbeschrinkte Kategorie ([8], 2.1) mit einer
Senke s (d.h. A(s,t)=0 fir t#s). Sei B die volle Unterkategorie von A
bestehend aus den Objekten, die von s verschieden sind. Ferner sei R der
B-Modul A(?,s)|B und F:mod B— mod k der Funktor Homg (R, ?). Falls B
darstellungsendlich ist, bildet das Paar (mod B, F) eine Vektorraumkategorie iiber
k. Die zugehorige Unterraumkategorie (mod B)g ist Aquivalent zu mod A. Denn
ein A-Modul M ist gegeben durch M |B,M(s) und durch ein ¢e
Homg (M(s) ®« R, M| B)=Hom, (M(s), Homg (R, M| B)), also durch das
Tripel (M(s), ¢, M | B).

1.2 Eine besonders schone Situation liegt vor, wenn alle Unzerlegbare in V'
nur den Grundkorper k als Endomorphismenalgebra haben. Dann muss namlich
dim FV =1 fiir alle Unzerlegbaren in 7' gelten, wenn V¢ nur endlich viele
Unzerlegbare besitzt.

Ist die Bedingung dim FV <1 fir alle Unzerlegbaren V aus V' erfillt, so
wihlen wir Repriasentanten der Unzerlegbaren U mit FU#0 und ordnen sie
vermoge “U=V & FV(U, V) #0” partiell an. Zu den gewihlten Reprisentanten
fugen wir noch formal ein kleinstes Element @ hinzu und nennen die so erhaltene
geordnete Menge S =S(V, F). Wir betrachten Funktionen w:S—N und ver-
sehn deren Trager S, mit der von S induzierten Ordnung. Wir nennen w eine
Multiplizitdtsfunktion, wenn (S,, u | S) eine der folgenden Gestalten hat:

4
T
1 1. 4 1
¢ ’\f \f/4 4\‘?/4 4‘\1’{/4
1 1 1 2 2
A
4 1 14 1 1 1 Ae 4 4 A T
ro1 tof T 1 Nt f 1t
A1 4 4_ 1 4 2 14 4 A 1 4 4 1 4
N1/ Nt/ N1/ Nt/ ./
3 3



285

T T e

Treue einfach zusammenhingende Algebren I

~Ne— T — T

T~ T T
N

<e— Té— ¥

T T e~ T T

N ¢

e T 44!4/

LA.IIAIA' n

T~ T AiAIlﬁl./

.LA.I.A#.S

4A|4T4A|4./

~é— Ne— 10

Ne— N9

v V€ TE&

NE— N9

N~ 4A|.1/

Ne— Ne—9

cé e -
Né—v

< ¢

6 TE- T

v v I

T~

T T -
Té- T T

Tl T & X,

/

Ne— T

T
4

e«

T T ¥

N v &~ >

< &~



286 KLAUS BONGARTZ
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Dabei bedeutet x — y, dass x <y ist, und dass dazwischen keine Punkte mehr
liegen. Die Zahlen geben jeweils den Wert von u an. Die untere Zahl ist der
Wert an der Stelle w. Fir jedes unzerlegbare Objekt X =(W, ¢, V) aus ¥ mit
¢#0 definieren wir eine Funktion u = pux :S—N durch w(w)=dim W und
V=@ U*"Y, wobei die Summe iiber alle U e S\{w} l4uft.

SATZ. Sei (V, F) eine Vektorraumkategorie mit dim FV <1 fiir alle Unzerleg-
baren Ve V.

(a) (Nazarova-Roiter, Kleiner) Genau dann gibt es nur endlich viele Isomor-
phieklassen Unzerlegbarer in Vi, wenn S keine der geordneten Mengen [1,1,1, 1],
[2,2,2], [1,3,3], [1,2,5] oder [N, 4] enthdlt, die wir der Reihe nach durch ihr
Hasse-Diagramm definieren.

N

) [ 3 [ ]

¢ —d>e —e —e—>e
e =P @ P bape

@ ey e
o —Be

s —>e —3e

D1

o —e

e o o o T

(b) (Kleiner) Ist Vg darstellungsendlich, so liefert die Abbildung X > ux eine
Bijektion zwischen den Isomorphieklassen Unzerlegbarer X =(W, ¢, V) in Vi mit
¢ # 0 und den Multiplizitatsfunktionen auf S.

1.3 Die in 1.2 geschilderte Situation liegt vor, wenn im Beispiel von 1.1 die
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Algebra A einfach zusammenhéngend ist. Sei dann M =(W, ¢, V) ein unzer-
legbarer A-Modul mit ¢ # 0 und Multiplizititsfunktion w. Das Gerippe von M ist
die geordnete Menge S, \{w}. Wir sind im folgenden stark am Dimensionsvektor
Dim M = (dim M(a)),. 4 interessiert. Offenbar gilt:

dim M(b)= )  w(U)dim U(b) fir beB und

UeS, \{w}

dim M(s) =dim W.

Diese Formeln spielen eine entscheidende Rolle in der gesamten Arbeit.

2. Extremale Algebren

2.1 Wir verwenden die Bezeichnungen von [8], 6. Dabei unterscheiden wir
meistens nicht zwischen einem darstellungsendlichen graduierten Baum (T, g)
([8], 6.3) und der zugehorigen einfach zusammenhingenden Algebra A = AT ([8],
6.4). Sei also von nun an A = (T, g) eine einfach zusammenhidngende Algebra mit
Darstellungskdcher R und Kocher K. Auf der Punktmenge K, des Kochers ist
durch

“x =y genau dann, wenn es einen Weg von x nach y in K gibt”

eine Ordnungsrelation definiert. Ein A-Modul E heisst extremal (bzw.
omniprdsent), wenn E unzerlegbar ist und E(x)#0 fiur alle bzgl. der eben
eingefithrten Ordnung extremalen Punkte (bzw. fiir alle Punkte) gilt. Die Triger-
algebra T(M) eines A-Moduls M definieren wir als die volle Unterkategorie von
A bestehend aus dem Triger {x € K,: M(x) # 0} von M. Mit A hat auch T(M)
keinen orientierten Zyklus im Darstellungskocher. Nach einem Ergebnis von
Happel-Ringel ([15]) ist jeder unzerlegbare A-Modul U sogar ein treuer T(U)-
Modul, d.h. T(U) identifiziert sich mit der Restklassenkategorie von A nach dem
Annihilator von U.

Eine extremale Algebra ist eine einfach zusammenhangende Algebra, die
einen extremalen Modul besitzt. Hauptgegenstand unserer Untersuchungen ist die
Klassifikation aller extremaler Algebren mit den zugehorigen extremalen Moduln.

Dass wir statt treuer Algebren und Moduln extremale betrachten, erschwert
die Beweisfithrung nicht und hat folgenden Grund: Wir mochten gern alle
Unzerlegbare iiber allen einfach zusammenhédngen Algebren kennen. Ist A ein-
fach zusammenhingend mit Unzerlegbarem U, so ist zunachst nicht klar, dass
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T(U) wieder einfach zusammenhéngend ist. Die einfach zusammenhingende
Algebra

N
N A

mit yB =86 und yBa =0 hat z.B. als volle Unterkategorie die nicht einfach
zusammenhangende Algebra A’

N

N
mit rad* A’ =0.

Hingegen kann man nach der Charakterisierung einfach zusammenhingender
Algebren von Bautista-Larrién—-Salmerén ([5], [4]) und Gabriel ([14]) nacheinan-
der solange maximale oder minimale Punkte weglassen, bis man eine einfach
zusammenhangende Algebra B erhilt, die T(U) umfasst, sodass U ein extremaler
B-Modul ist.

Als Nebenergebnis unserer Klassifikation finden wir im zweiten Teil der
Arbeit, dass alle extremalen Moduln treu sind. Ferner haben Bautista, Larrion
und Salmerén inzwischen bewiesen: “Eine darstellungsendliche Algebra mit
zykellosem Darstellungskdcher und treuem Unzerlegbaren ist einfach zusammen-
hangend.” Aus jedem der beiden Resultate ergibt sich sofort, dass Trageralgebren
wieder einfach zusammenhingend sind. Wir benutzen jedoch diese Tatsache
nicht.

2.2 Auf dem Darstellungskocher R ist analog zu K eine Ordnungsrelation
=g definiert. Die Spur =g dieser Ordnungsrelation auf K-identifiziere die Punkte
von K mit den projektiven Punkten von R-ist stirker als <. Jeder <g-extremale
Punkt von K ist also auch =<-extremal, aber die Umkehrung ist i.a. falsch.

Die in [8], 6.6, fir einen Projektiven P =(g(m), m) mit maximalem Grad
angestellten Ueberlegungen gelten fur jeden <g-maximalen Projektiven.

LEMMA. Sei P=(g(m), m) ein <g-maximaler Projektiver, und sei m—t, =
Yo—Y1—Y2* *° —v,. ein Weg aus lauter verschiedenen Punkten im Baum T.
Hat A =(T,g) einen extremalen Modul E, so gehoren (g(m)—1,1t,),

(g(m), yy),...,(gm)+n—1,y,) zu R.

Beweis. Per Induktion nach n. Seien Q =(q, y,,) der Projektive und I=(i, y,)
der Injektive in der r-Bahn'® von y,. Da P <g-maximal ist, gilt g=g(m)+n—1.

1 Abweichend vom iiblichen Gebrauch bezeichnet + die Translation nach rechts.
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Andererseits gibt es einen Weg P— - - -
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— I in R, was i=

g(m)+n+1 zur Folge hat. Die angegebenen Punkte gehoren also zu R (Siehe
g.e.d.

Das Lemma erlaubt uns, fiir jeden Nachbarn ¢, von m in T den Baum T* ([8],
6.6) in der Orientierung, wo t; einzige Quelle ist, mit einem Schnitt ([3]) durch
den Darstellungskocher Ryi ([8], 6.6) zu identifizieren.

Fig. 2.2).

2.3 LEMMA. Hochstens folgende Biaume T erlauben eine Graduierung g, so
dass (T, g) eine extremale Algebra ist:

(a, B, v, 8): (a,B,v,8,€): a,B,v,8,e=1
-bB a, Ly
: N
h, ® B,v,6=1 Ay 1
a, az—al——-é—-—cl -C, a /c.l
(lj e—e;- - .——e‘i
Il . b1 dl,
ds o .
bB. .'da
(a, B9 ’Y) a, bB Aa: a,—a,— 0y O = 1
\a
- g——l .
a b,
1\d/ 1
o, B, y=1 I
¢
C."Y
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Wie iiblich benutzen wir fur (o, 1,1), (2,2,1), (3,2,1) und (4,2, 1) auch die
Bezeichungen D, .3, E¢, E, und Ejg.
T

»w
-
b, 1

i 2
b3
T
! T
Fig. 2.3

Beweis. Sei zuerst T ein Baum mit einem Punkt a von maximaler Ordnung
n=4, und sei P=(g(m), m) ein <g-maximaler Projektiver (Siche Fig. 2.3). Fur
m=a enthalt 117, S, (8], 6.6) die Menge [1,1,1,1]. Sei daher ohne
Einschrankung m e T,, das die Zusammenhangskomponente von b; in T\{a}
bezeichnet. Nach Lemma 2.2 liefern die Punkte b,, ..., b, fiir n =5 die geordnete
Menge [1, 1, 1, 1]. Daher ist n = 4. Ware m kein Randpunkt, so finde man wieder
[1,1,1,1]. Aus dem gleichen Grund sind alle Baume T; unverzweigt, d.h. es gilt
T=(a, B, v, ) fiir geeignete Parameter a, B, vy, 6. Ausserdem ist bis auf Um-
benennung m = a,.

Nun habe T mehr als zwei Punkte der Ordnung 3, d.h.

ist ein Teilbaum von T. Liegt m auf einem Ast, der zwischen zwei Punkten der
Ordnung 3 abzweigt, etwa in x, so liefern a, b, g und h die geordnete Menge
[1,1,1, 1] Gleiches gilt, wenn m auf dem Zweig von e liegt. Befindet sich m auf
dem Ast von h, so findet man [1,1,1,1] mit a, b, ¢ und g Deshalb hat T
hochstens zwei Punkte der Ordnung 3. Ferner zeigt obige Ueberlegung, dass fiir
T =(a, B, v, 8, £) bis auf Umbenennungen der Fall m = a, vorliegt. g.e.d.

2.4 Nun geben wir zu den einzelnen Baumen einige Algebren durch Kocher
mit Relationen an. Dabei gelten immer alle moglichen Kommutativitats-
relationen. Eine Nullrelation deuten wir durch eine gestrichelte Linie lings des
betreffenden Weges an, und eine Kante x—y kann durch einen Pfeil in beliebiger
Richtung ersetzt werden.



Treue einfach zusammenhéngende Algebren 1

Aa,a_>_1: ul__uz_... <o e—U,
D,s,a=1: u
Vo—V1— —1,
w
D(X+3’ x= 1: u\ /xl-—-—xz-——-- . .xq
Vo—0y -+ —UY
W/ p\\‘
U—y— —Y,

p=0, qr=1, pt+q+r=a

; Vi—Dp - —1,
Us

T / p=3, q=1, p+tq=a+3
Us

‘\u1

U

3 N
X1—Xp —X,
%\ p=3, q=1, r,s=1, p+gq+r+s=a+3

u
/N
Xg— —X—X ]\ /W 1—Wor— —W,
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(3)

4

(5)

(6)

(7
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1,B8,1,1,¢),B=2,e=1: L,j=1, i+j=¢eg+2
N
/uZ——')' . ~—-)u,/ X1=—>Xo—>- . —>X;_1
U, w X; (8)
/
Yyi—Y2—>- - - —Ys
(1,1,1,1,¢),e=1: Lj,k=1, i+j+tk=¢g+3
uz—-) —>u<> . —-)JCJ 1
\YI
|
)’2
l
Y
Ui Lk lm=1
\

U2—) -—-)ul .

i+j+k+l+m=¢g+3

(10)

xl'——" . -xz—-xl—-)Wk—-)yl—yz. s @ _ym

((X, Ba 1)3a2B22:

Ul—-sz. . ___)‘UB
u{ N an
/
Wi—>»Wy- - - W,

(a, B,1),a=B,3=B=2:

wWi—W, —W,

/7

“—u x—2 (12)
\y / Lo
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(a,2,1), a =3:
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u PW—X =X y~—>- - -—>X; o o
l l l Li=1, i+tj=a
V1= Up—~>: + - —V;—>Y >,

---------------------

i=3,j=2, i+j=a+3

U s\‘ 7’x
Wi—SWo—. o :;wi
v y
Wi—>W> =W,
Y £i'1:;'l)'£-'-:-; """" —
U~ —Y,;

i=3, j=1, k=2,

i+tj+k=a+3
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(21)

(23)

u2—)’ e 4 ua -1
4 S
1 o
\U :‘Iv ¢x/
y
uz—') . —_— U 1
/ X
U, u,
N, N7
N
X y

(24)

Als nachstes fithren wir zu einigen Algebren gewisse Dimensionsvektoren an,
wobei der zweite Vektor bei 22 auch zu spiegeln ist.

2 1 3 1 1—1-- 1
AN \ Y,
o JR; VIR, ', J, [ .. o
/ Y, N
1 U, O=t<a 1 1—1- - 1
4 51
L 2=2e 2711 ] ; 0 3
] / l 1=st<q 1 / \1—1---
N\ ; N,
9 1 10 1
/
i 1< >1-“1' BN e 1 >1. SN
1 1 1 1/
| |
$ 2
%‘-yz 1<t<k 1-- 1—2—1—1-- 1
1
i 1 14 1—1
13 1 1. " 1 1.
{ 1\1 N £
\1-_——-—%/ \2 %/ l
1 1

I s et s
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KLASSIFIKATIONSSATZ: (a) Alle Algebren der Familien (1) bis (24) sind
extremal — also insbesondere von der Form (T, g) — und haben den jeweils angege-
benen Baum T. Dabei induziert fiir jede Algebra die Zuordnung M — Dim M eine
Bijektion zwischen den Isomorphieklassen extremaler Moduln, deren Dimensions-
vektor an einem Punkt =2 ist, und den zur betreffenden Algebra angefiihrten
Dimensionsvektoren.

(b) Fir die Biume A, und D, ; enthdlt die Liste alle extremalen Algebren.

(c) Sei A=(T,g) eine extremale Algebra. Ist T einer der Bdiume (a, B, v),
(a, B, v, 8) oder (a, B, v, 8, €), wobei einer der Parameter «, 3, -y, 8 oder € echt grosser
als 67 ist, so ist A oder A" isomorph zu einer der Algebren aus der Liste.

Die Aussage a) kann man verhéltnismassig leicht direkt verifizieren. Dabei ist
die Injektivitit der Abbildung M — Dim M wohlbekannt ([15]). Die wesentlichen
Teile des Satzes sind b) und vor allem c), weil uns nun nach 2.3 und [8], 6.7 nur
noch endlich viele extremale Algebren zu “kleinen” Biumen unbekannt sind.
Diese Ausnahmealgebren sollen in der nachfolgenden Arbeit mit dem Computer
klassifiziert werden. Den Beweis des Klassifikationssatzes fithren wir in Abschnitt
3.

2.5 Am Ende dieses Paragraphen mochten wir anhand eines Beispiels das
Prinzip des Beweises von Satz 2.4 erklaren. Dazu benotigen wir noch folgende
Bemerkung aus [22].

LEMMA. Sei A ein Untertranslationskocher des Translationskochers I. Dann
gilt fiir x, y € Ay: dim k(A)(x, y)=dim k(I')(x, y).

Beweis. Erinnern wir daran, dass A ein Untertranslationskocher von I ist, falls
gilt: a) A ist voller Unterkocher von I', b) Fur x € A, mit 7rx € 4, ist auch 7,
definiert, c¢) Existiert 7,x fiir x € 4,, so auch 7x und es gilt 7,x = 7x.
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Unter diesen Voraussetzungen identifiziert sich k(4)(x, y) mit dem Quotien-
ten von k(I')(x, y) durch das Ideal, das von den Wegen durch einen Punkt aus
I'p\A, erzeugt wird. q.e.d.

Sei z.B. A =(T, g) eine extremale Algebra zum Baum T =(3, 3, 1). Nehmen
wir ferner an, es gebe einen =g-maximalen Projektiven P =(g(m), m) mit
m = b;. Wir setzen B =(T", g;) und skizzieren den Beginn der startenden Funk-
tion von b, in k(ZT") ([8], 6.6, siche Fig. 2.5.1).

Nun identifizieren wir nach 2.2 T' in der Orientierung mit b, als einziger
Quelle mit dem Schnitt durch Ry, der rad P =(g(m)—1, b,) als einzige Quelle
hat. Innerhalb von R liegt vor der gestrichelten Linie ein Injektiver, weil sonst
die startende Funktion von rad P den Wert 2 annimmt, was der Darstellungs-
endlichkeit von A widerspricht ([8], 6.6).

Wir miissen also verschiedene Fille untersuchen und wahlen darunter denje-
nigen, wo 7a, injektiv ist, aber keiner seiner Vorginger. Sei A der Unter-
translationskocher von ZT?, in dem 7a; injektiv ist. Wir skizzieren die startende
Funktion s von b, in k(A) (siehe Fig. 2.5.2).

Weil R Untertranslationskocher von A4 ist, liegt nach obigem Lemma der
Trager U der startenden Funktion von rad P in k(Rp:) im Triager S von s. Dabei
gilt fiir zwei Punkte x, y € U, dass x <y genau dann, wenn es in S einen Weg
von x nach y gibt (Beweis per Induktion nach Weglange).

Der Kocher von B entsteht aus demjenigen von A durch Weglassen von P.
Dabei bleiben extremale Punkte erhalten, man hat aber eventuell einige Nach-
barn von P als maximale Punkte hinzuzufiigen.

Sei nun E ein extremaler A-Modul mit Gerippe G. Per Definition verschwin-
det E also nicht auf den extremalen Punkten des Kochers von A. Nach obiger
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Bemerkung und der Dimensionsformel 1.3 liegen daher die Injektiven zu ex-
tremalen Punkten des Kochers von B in der Vereinigung der Triager der starten-
den Funktionen zu den g€ G und zu rad P. Da E am minimalen Punkt, der 7a,
entspricht, nicht verschwindet, muss G einen Vorgianger von 7a; enthalten. Unter
allen nach der Kleinerschen Liste moglichen derartigen Gerippen betrachten wir
als Beispiel

7'2(:1
G={ b
as, 7 bz, T4,

Die injektiven Punkte von R liegen dann alle im umrandeten Gebiet von A
und miissen so gewahlt werden, dass B darstellungsendlich ist (diese Bedingung ist im
Beispiel immer erfiillt), und dass alle nach links verschobenen Punkte, die zu S
gehOren, bereits zu Ry gehoren ([8], 6.6). So kann man als Injektive nicht as,
Ta5, Ta;, T°C1, 7°d, 7*b; und 73b, wihlen, weil dann 7%c, auch projektiv ist, wie
man durch Rechnen mit Dimensionen von rechts nach links sofort erkennt.
Hingegen konnen Ttas, 7a,, 1a;, 7°¢1, 7°d, v°b; und 7°b, als Injektive auftreten,
deren Dimensionsvektoren dann leicht berechnet werden konnen. Nach [6] ist B
dann durch die entsprechenden Kommutativitits- und Nullrelationen bestimmt.
In unserem Beispiel erhalten wir die Algebra

/
/
?7
/
mit Kommutativititsrelation. Da wir auch den Dimensionsvektor von rad P
kennen, finden wir fiir A

Ve
/S T
mit Kommutativitatsrelationen. Schliesslich berechnet man nach 1.3 den
Dimensionsvektor von E als
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Dabei findet man i.a. natiirlich mehrere Dimensionsvektoren.

3. Beweis des Klassifikationssatzes

Wir bestimmen die extremalen Algebren A =(T,g) getrennt fiir die in 2.3
eingefithrten Baume T, indem wir [8], 6.6 anwenden. Dabei iiberlassen wir die
Berechnung der Dimensionsvektoren extremaler Moduln meist dem Leser.

3.1 Der Baum A,

Dieser Fall ist in der Literatur eingehend behandelt (z.B. [8], 7). Die von uns
benétigten Eigenschaften sind jedoch einfach abzulesen. Der Unterschied im
Schwierigkeitsgrad zwischen der Klassifikation der treuen und derjenigen aller
einfach zusammenhingenden Algebren mit Baum A, lasst vermuten, dass die
Beschreibung aller einfach zusammenhangenden Algebren knifflig ist.

Natiirlich sind Kocheralgebren vom Typ A, extremale Algebren mit Baum
A,. Umgekehrt zeigt das induktive Verfahren aus [8], 6.6 zunichst, dass einfach
zusammenhadngende Algebren mit Baum A, als Kocher einen Baum haben.
Daher sind extremale Moduln treu. Im Triger der startenden Funktion eines
Extremalen E miissen also alle Injektiven liegen. Als Triger der startenden
Funktion eines Punktes innerhalb von k(ZA,) erhilt man das wohlbekannte
Rechteck V ([12], siehe Fig. 3.1.1). Von oben nach unten absteigend zeigt man,
dass die Injektiven alle auf einem Schnitt innerhalb von V liegen. Eine extremale
Algebra mit Baum A, ist also eine Kocheralgebra vom Typ A,. Spater brauchen
wir noch diejenigen Algebren mit Baum A, die eine aufsteigende Diagonale als
Schnitt haben und darauf 2 Punkte x und y, deren Triger zusammengenommen
alle Injektiven enthalten (siche Fig. 3.1.2).

Fig. 3.1.1
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Fig. 3.1.2

Wir konnen annehmen, dass weder x noch y treu ist. Sei D die aufsteigende
Diagonale am weitesten links, die einen Injektiven z enthilt, der nur von x aus
erreichbar ist. Wir wihlen z als hochsten Punkt auf D mit dieser Eigenschaft. Der
Injektive t auf der nachsthoheren Stufe liegt dann auf der absteigenden Diagonale
durch y. Unterhalb von z und oberhalb von y liegen die Injektiven auf Schnitten.
Man erhalt so Algebren, deren Kocher ein Baum ist, mit genau einem Punkt p
der Ordnung 3 und genau einer Nullrelation der Gestalt — p — =0.

3.2 Der Baum D, ,;

Mit Hilfe der bekannten startenden Funktionen von k(ZD, ;) ([12]) uber-
priifen wir zunichst, dass die Darstellungskdcher der in Satz 2.4 angegebenen
Algebren D, 5 als zugehoOrigen Baum haben.

Dies ist klar fiir Algebren aus der Familie (2). Bei einer Algebra aus der
Familie (3) nimmt man zuerst den Darstellungskocher der Algebra ohne die x;
und hédngt dann an der absteigenden Diagonale durch v, noch den linearen
Kocher x;—x,—- + ~—x, dran. (Bei ZD,,,; liege der Punkt der Ordnung 3 oben).
Nehmen wir z.B., die Algebra

u X1 €—Xr6—X3—>Xy
Vo€ 1(——1)2‘-—)1) 3> ‘U4-:

w 5’1—))?2

In der folgenden Skizze liefern die dick eingetragenen Punkte den Darstellungs-
kocher als Unterkocher von ZD,;.
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Betrachten wir noch Familie (5). Dort ldsst man zuerst u, und w—w,—- - - —w;
weg. Dann hangt man den Projektiven zum Punkt u, an 7u,_, an und den
linearen Kocher zu w;—w,—: - -—w, dhnlich wie eben an der absteigenden

Diagonale durch v,.

Jede der angefuhrten Algebren hat offensichtlich extremale Unzerlegbare, und
jeder davon ist treu. Wir iiberlassen dem Leser die lastige Pflicht sicherzustellen,
dass bei der induktiven Konstruktion keine weiteren extremalen Algebren mit
Baum D, .5 auftreten. Dabei uiberlegt man sich, dass fiir einen <gz-maximalen
Projektiven P =(g(a;), a;) mit i =2 die zu

b
N

d——al-—-' Y/ T

/

C

gehorige Algebra extremal ist. Ausserdem benutzt man das Ergebnis am Ende
von 3.1.

3.3 Der Baum (q, 3, v, 6)

Die bisher behandelten Fille sind isofern nicht typisch, als von vorneherein
klar ist, dass alle Graduierungen eine darstellungsendliche Algebra liefern. Dies
ist von nun an nicht mehr richtig, und wir verwenden das Endlichkeitskriterium
von [8], 6.6. Im vorliegenden Fall ist die Klassifikation einfach. Wir wiederholen
nochmals ausfiihrlich die Argumentation von 2.5.

LEMMA. Die einzigen extremalen Algebren A = (T, g) mit Baum T der Klasse
(a, B, v, 8) sind bis auf Isomorphie:

A —

Uu—w >y
/
X=X > + - —>Xs
()]
ué)Wl@Wz—'——) y
N /
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Fig. 3.3

Beweis. Nach dem Beweis von Lemma 2.3 kOnnen wir annehmen, dass
P=(g(a,), a,) ein <g-maximaler Projektiver ist. Wir setzen B =(T", g,) und
skizzieren in Ry den Anfang der startenden Funktion s von rad P (Siehe Fig.
3.3). Wie in 2.2 bemerkt, identifizieren wir T' mit einem Schnitt durch Ry, so
dass rad P mit a,_, zusammenfillt. (Setze a,=e.) Als B-Modul ist e injektiv,
weil anderenfalls s(re) =2, was der Darstellungsendlichkeit von A widerspricht.
Vor e liegt also ein =<g-minimaler injektiver B-Modul i, der einem minimalen
Punkt q im Kocher K von A entspricht.

Sei jetzt E ein extremaler A-Modul mit Gerippe G (1.3). Per Definition ist
also E(q) #0. Nach der Dimensionsformel in 1.3 gibt es ein x € G mit x(q) # 0.
Weil B einfach zusammenhingend ist, ist x kleiner als i, also auch kleiner als e.
Da x mit allen Punkten im Triager von s vergleichbar ist, also erst recht mit jedem
Element von G, kann G nach der Kleinerschen Liste nur ein Element haben:
G ={x}. Da jeder Homomorphismus von rad P in einen Injektiven durch x
faktorisiert, ist x ein extremaler B-Modul. Die extremalen Punkte von B be-
stehen namlich aus den extremalen Punkten von A ohne P und eventuell
zusitzlich einigen Nachbarn von P. Im Triger der startenden Funktion von x
liegen also alle extremalen Injektiven.

Fur a =1 ist rad P =x = e und der Trager der startenden Funktion besteht aus
drei von e ausgehenden Strahlen. Alle Punkte des Tragers sind daher injektiv,
und man findet fiir B die Algebren

ds
!
X c

dl c."/
1
15 b

Z>b;

Da mit A auch B darstellungsendlich ist, findet man fiir A die angegebenen
Algebren.
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Fir a>1 ist a, oder ra, injektiv, weil der Injektive in der 7-Bahn von a,
zwischen zwei Injektiven im Triger der startenden Funktion von x liegt. Im

ersten Fall enthalt B als volle UnterkategorieIL, im zweiten ]\/__) Jedenfalls ist

B nicht darstellungsendlich. Dies schliesst den Fall a > 1 aus. q.e.d.

Natiirlich hatten wir uns einen Teil der Ueberlegungen sparen konnen, wenn
wir das Ergebnis von Bautista-Brenner ([3]) liber fast zerfallende Folgen mit vier
mittleren Termen benutzt hitten. Im nachsten Absatz leiten wir mit Hilfe ihrer
Ergebnisse iiber Wiederholungszahlen zahmer Schnitte ein wichtiges Endlich-
keitskriterium her. Oben haben wir auf eine Anwendung verzichtet um an-
zudeuten, wie man mindestens einen Teil ihrer Ergebnisse zuerst leicht fiir
einfach zusammenhingende Algebren beweist. Mit der von Gabriel und Riedt-
mann entwickelten Ueberlagerungstheorie lassen sich die Resultate dann
“hinunterdriicken’ auf beliebige darstellungsendliche Algebren.

3.4 Ein Endlichkeitskriterium

Bevor wir die restlichen Baume untersuchen, leiten wir unter gewissen Bedin-
gungen eine Schranke fiur die Linge der Aeste von T ab, falls (T, g) eine
extremale Algebra ist. Diese Ueberlegung wird durch die nachfolgende Arbeit

uberfliissig. Sie ist aber ‘“‘psychische’” Grundlage fiir die Klassifikation, weil sie
zeigt, dass es sich dabei um ein endliches Problem handelt.

LEMMA. Sei A =(T, g) eine extremale Algebra, und sei
a,—a,_1 —a,—d—b,—b,
€1

é’Y
ein Teilbaum von T. Ferner sei P =(g(a,), a,) ein Projektiver mit maximalem Grad.
Dann gilt:

(a) Fiir y=1 ist n<62.

(b) Fiir y=2 ist n<25.

Beweis. (a) Nach Lemma 2.2 und der Wahl von P gehoren z}lle Punkte im
umrandeten Bereich der Figur 3.4 zu Ry Nach [3] darf sich Eg nur 29-mal
wiederholen Also gilt k <28, d.h. n <62.

Der Beweis von (b) ist ahnlich. g.e.d.
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Fig. 3.4

3.5 Der Baum (o, B, v, d, )

Sei P =(g(m), m) ein Projektiver mit maximalem Grad. Nach dem Beweis von
Lemma 2.3 kOnnen wir m =a, annehmen und y=3§. Wir betrachten zwei
Moglichkeiten.

3.5.1 6=2

Wir uberlegen uns, dass dann bei einer extremalen Algebra alle Parameter «,
B, v, 8, € durch 62 nach oben beschrankt sind. Zunichst ist a + & =62 nach 3.4.
Setze wie iiblich B =(T", g;) und skizziere die startende Funktion von a,_; in Ry
(ao = e, siehe Fig. 3.5.1). Weil [1, 2, 5] nicht vorkommen darf, ist 8 =<4. Aus dem
gleichen Grund ist § <5, wenn e, oder e, nicht injektiv sind (bzgl. Ry natiirlich).
Sind schliesslich e, und e, injektiv, so folgert man wie in 3.3, dass das Gerippe
eines extremalen Moduls E nur aus einem Element x besteht, das kleiner als e,
ist, und dass x ein extremaler B-Modul ist. Da B als volle Unterkategorie

A%

/’.
d,
e.—>»Cq

eo——)bl

enthalt, ist & durch 4 nach oben beschrinkt.

352 &=1 (=>vy=1)

In diesem Fall konnen wir alle moglichen Algebren bestimmen. Fir g =2 ist
e, injektiv, weil sonst [1, 1, 1, 1,] auftritt. Das Gerippe eines extremalen A -Moduls
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Fig. 3.5.1

E besteht daher aus einem extremalen B-Modul x, der kleiner als e, ist. Fiir a > 1
enthilt B als volle Unterkategorie eine der nicht darstellungsendlichen Algebren

/dl /’dlc
e(f—”——g-l)b1 oder eO/’———-)lb1

aq TAq

Fiir « =1 hingegen finden wir die Familie (8) aus der Liste.

Von nun an gilt B =y =38 =1. Wir schliessen noch den Fall « >1 aus. Ist e,
injektiv, so enthdlt B als volle Unterkategorie eine Kocheralgebra vom Typ D,.
Der dafiir soeben gegebene Beweis bleibt giiltig. Wenn e, nicht injektiv ist,
unterscheiden wir zwei Moglichkeiten.

Zunichst existiere 7’a;_; fur ein a =j=2 nicht. Wir skizzieren die startende
Funktion s von a,_; in Ry (Siehe Fig. 3.5.2.1). In der 7-Bahn von a,_, liegt ein

Fig. 3.5.2.1

Injektiver, der einen minimalen Injektiven i als Vorginger hat. Ein extremaler
A-Modul E verschwindet nicht an der Stelle i, so dass sein Gerippe einen
Vorgianger von i enthilt. Nach der Kleinerschen Liste haben wir G ={a},
1=k =<a—1, fiir einen extremalen B-Modul a,. Zwischen e, und e, gibt es einen
Injektiven, weil sonst s(re.) =2 gilt. Wendet man auf die extremale Algebra B
das zu 2.3 duale Lemma an, so findet man, dass schon a,_; injektiv ist. Daher ist
G ={a,_,} und a,_, ist ein treuer B-Modul. Existiert 7°a;, so ist e, injektiv (sonst
kommt [1,1,1,1] vor oder es ist s(te;)=2) und B enthilt als volle Unter-
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kategorie

d,
e]——)cl
b,—te,

T 4,

Existiert 72a, nicht, so sei e, der Injektive mit kleinstem Index. Dann enthilt B

als volle Unterkategorie.

Nun mogen alle 7'q;,_;, a=j=2, existieren. Die Existenz von 72a, erzwingt,
dass e, injektiv ist. Sei E ein extremaler A-Modul mit Gerippe G. Hat G nur ein
Element x, so ist x ein extremaler B-Modul. Anderenfalls gilt nach der
Kleinerschen Liste G ={e,, b;}. Falls b;<>7e, mono, ist e; ein extremaler B-
Modul. Fir b, > 7e, epi hingegen sind auch ey,>> e; und ey,->> b; epi aus
Dimensionsgriinden, d.h. e, ist ein extremaler B-Modul. Auf jeden Fall ist B
extremal mit =<gz-minimalem Injektiven e,, was dem zu 2.3 dualen Lemma
widerspricht.

Jetzt bleibt lediglich der Fall a = 8 =y =6 =1 librig. Wieder skizzieren wir die
startende Funktion von e, wobei e, der Injektive mit kleinstem Index sei (Siehe
Fig. 3.5.2.2). Nun bereits vertraute Argumente zeigen, dass als Gerippe ex-
tremaler A-Moduln nur die Mengen {¢;}, 0<j=<«k, oder {e,x}, 1=i=<k, x¢€
{re;, by}, j <i—1, moglich sind. Im ersten Fall ist ¢; ein extremaler B-Modul, also
treu nach 3.2. Fir A stosst man auf eine Algebra der Familie (9). Im zweiten Fall
schneiden wir dual zur iiblichen Konstruktion B am minimalen Injektiven e, auf.
Im unteren Teil erhalten wir eine Algebra B’ mit Baum A,, wobei alle unzer-
legbaren injektiven B’-Moduln in der Vereinigung der Trager der startenden

4-4}4,
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Funktionen von x und te;_; liegen. Nach der Bemerkung am Ende von 3.1 finden
wir die Familie (10).

3.6 Der Baum (o, 3, v), =2

Die Analyse dieses Falles ist bei weitem am kompliziertesten, und eine
vollstindige Klassifikation ohne Computer kaum durchfithrbar. Wir unterscheiden
mehrere Moglichkeiten und setzen dabei von nun an a =3 =y voraus.

361 y=2

Wir zeigen, dass bei jeder extremalen Algebra a <27 ist. Sei P =(g(m), m)
ein Projektiver maximalen Grades. Da [2,2,2] nicht auftreten darf, muss m
Randpunkt oder Nachbar eines Randpunktes sein. Nach 3.4 haben wir a <27 fur
me{a;}. Ist m kein Randpunkt, so ergibt sich nun a <4, weil sonst [1, 2, 5]
auftritt.

Sei jetzt m = c,. Wir skizzieren die startende Funktion von c,_; in Ry wobei
wieder B =(T", g,).

Tl TTI 7,2 Tl
} .
1 :
1 7 1 -
{/l {/I é/'
/ / /

Qo s
. b .
l/' ! oder 1/ 1
0
Cl/ %Tcl

Es folgt a <4. Fiir =3 ist nun a =<5, sonst kame [1, 2, 5] vor. Ist a, nicht
injektiv, so gilt a =6, weil anderenfalls [1, 2, 5] auftritt. Analog ist « <5, wenn
12c, existiert. Man sieht, dass jetzt B eine der folgenden Algebren als volle
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Unterkategorie enthélt, weshalb a <5 gilt.

‘.Ia Cfa q-'a ao‘ aa
as E b
T b2 b2 / 2 . .
’ B 5 b
CTI 'Tbl/’ ’ 2] \Tbl, CTll bl g2 b 42 / 2
>'reo/' \Teo/' \T}"O ll /7 2\7b 1 11 / b\t
TC1 Tcl/ TCh c{/ \Teo/ C{ T€o

Die gleichen Ueberlegungen gelten fir m = bg.

362 vy=1

Zuerst sei P=(g(m), m) ein Projektiver maximalen Grades mit m e{a;}.
Dabei ist nur a =i=a —4 zulissig, weil sonst [1,2, 5] auftritt. Nach 3.4 ergibt
sich a =66.

Von jetzt an sei P =(g(m), m) ein <g-maximaler Projektiver mit m¢{a;}. Wir
werden fiir « =8 alle extremalen Algebren klassifizieren.

36.2.1 m=d

Dann ist a <4, weil sonst [1, 2, 5] vorkommt.

3.6.22 m=c

Wie immer sei B=(T", g;). Der Baum von B ist dann vom Typ A,, so dass B
stets darstellungsendlich ist. Wir skizzieren den Beginn der startenden Funktion
von d in Ry mit Trager S. (Siehe Fig. 3.6.2.2). Ist d injektiv, so ist S fiir alle
Werte von o und 8 darstellungsendlich. Wir erhalten so die Familie (11). Sei also
d nicht injektiv. Fir B=3 ist dann a =35, weil sonst [1,2,5] in S liegt. Wir
konnen daher B =2 voraussetzen. Ist a; nicht injektiv, so folgt a« =6. Fur
injektives a, stossen wir auf die Familien (13), (14) und (17)°® mit j=2. Dem
letzten Fall m € {b,;} sind die nichsten drei Absitze gewidmet.
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-1

Fig. 3.7.1

3.7 Der Baum (o, 2, 1), me{b,}.

Im folgenden ist stets a = 8. Es ist klar, dass B immer darstellungsendlich ist.

3.71 m=b,

Wir zeichnen die Trager der startenden Funktionen von r; und r, mit
rad P=r, @ r, (Siehe Fig. 3.7.1). Dabei muss d injektiv sein, weil sonst [1, 2, 5]
vorkommt. Man erhalt Algebren der Familie (12)°°, wo z fehit.

Der Trager der startenden Funktion von b, (Siehe Fig. 3.7.2) in k(ZT") zeigt,
dass vor der gestrichelten Linie ein Injektiver x von Ry liegt, weil sonst [1, 2, 5]

1
14/
AN /4
\/4\ ’
/4»\ A
/4\//4/
1Z4-1%0
(4
A EYY
l
Fig. 3.7.2

auftritt. Wir unterscheiden die einzelnen Fille, wobei wir immer als erstes den
Trager der startenden Funktion von b; in k(A) skizzieren. Dabei ist A der
Unterkocher von ZT?, in dem x injektiv ist (2.5).

(a) b, ist injektiv (Siehe Fig. 3.7.2.a).
Dann ist b, extremaler B-Modul, also treu nach 3.2. Man erhalt die Familie

..
/\4-
A
A5
1

Fig. 3.7.2.
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(16) und Algebren aus den Familien (12) und (12)°®, bei denen z fehlt.

(b) d ist injektiv (aber b, nicht) (Siehe Fig. 3.7.2.b).
Jetzt ist d ein treuer B-Modul. Die moglichen Algebren gehdren zur Familie
(12) ohne z.

4-1
Fig. 3.7.2.b

(c) 7b, ist injektiv (Siehe Fig. 3.7.2.c).

Die startende Funktion von b, sieht so aus wie in (a). Nun ist aber d ein
extremaler B-Modul, also treu nach 3.2. Alle Injektive von Ry liegen also im
Triager der startenden Funktion von d in k(A), die wir andeuten. Wir finden die

Familien (17), (18), (19) und (17)°".

(d) a, ist injektiv (Siehe Fig. 3.7.2.d).

Das Gerippe eines extremalen A -Moduls ist einelementig oder gleich {a,, ¢,}.
Jedenfalls liegen alle Injektiven im eingekreisten Bereich. Wir stossen auf die
Familien (13)°® und (14)°".

(e) a, ist injektiv (Siehe Fig. 3.7.2.e).

Das Gerippe eines extremalen A-Moduls besteht aus hochstens zwei
Elementen, wovon eines Vorginger von a, ist. Deshalb liegen die Injektiven im
unkreisten Gebiet. Wir finden alle fehlenden Algebren der Familien (12) bis (24).
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3.8 Der Baum (o, 3,1), me{b}

Wieder sei a = 8. Dann ist m = b, nicht moglich, weil sonst [1, 2, 5] vorkommt.
Analog ist d injektiv bei m = b,, so dass nur Algebren der Familie (12) mit z
erlaubt sind. Nun gelte also m = b;. Wir deuten die startende Funktion an (Siehe
Fig. 3.8). Ist b, injektiv, so auch extremal, also treu nach unserer Liste. Eine
Ueberpriifung aller in Frage kommenden Kandidaten anhand der Liste zeigt dann,
dass A nur zur Familie (12) geh6ren kann. Aehnlich geht man vor, wenn b,
injektiv ist. Wegen a <8 darf d kein <g-minimaler Injektiver sein. Nun unter-
scheiden wir zwei Fille. Zuerst sollen 72b; und 73b, existieren. Dann ist a,
injektiv, weil sonst [1,2,5] vorkommt. Sei E ein extremaler A-Modul mit
Gerippe G. Ist G ={x}, so ist x extremal, also auch B. Sonst ist nur noch
G ={a,, c;} moglich. Aus Dimensionsgriinden sind dann d oder a; extremal. In
jedem Fall ist B eine extremale Algebra mit <g-minimalen Injektiven a,. Die
duale Version von Lemma 2.2 schliesst wegen a = 8 diesen Fall aus.

Im verbleibenden Fall besteht das Gerippe eines Extremalen aus einem
Vorginger von d, sodass B extremal ist. Existiert 7°b;, so sind a, oder a,
<r-minimale Injektive, was wieder wegen der dualen Aussage zu 2.2 unmoglich
ist. Daher ist 7b, injektiv. Alle Injektive sind von b, oder d aus erreichbar. Man
tiberzeugt sich, dass B dann nicht darstellungsendlich ist. Wir haben also nur
Algebren der Familie (12) mit z gefunden.

3.9 Der Baum («o,B,1), me{b}, p=4.

Wir zeigen, dass fiir « =8 keine extremalen Algebren existieren. Da sonst
[1, 2, 5] auftritt, ist nur m e{bg_,, bg} erlaubt. Fiir m = bs_; muss d injektiv sein,
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weil anderenfalls [1, 2, 5] vorkommt. Dann enthilt aber B eine Kocheralgebra
vom Typ E; als volle Unterkategorie. Daher sei m = bs. Falls 7d, 7°b,, . .., 7°bg_,
existieren, ist a; injektiv. Wie vorhin sieht man, dass B extremal ist. Dies
widerspricht der dualen Form von Lemma 2.2 und « =8. Im anderen Fall ist B
aus trivialen Griinden extremal, so dass es geniigt, die Nichtexistenz extremaler
Algebren fiir B =4 nachzuweisen. Dies ergibt sich aus der Struktur der Dar-
stellungskOocher der Algebren aus der Familie (12) mit z.

4. Eine Schranke fiir die punktweise Dimension

SATZ. Sei A eine einfach zusammenhdngende Algebra mit Kocher K und U
ein unzerlegbarer A-Modul. Dann gilt dim U(x) =<6 fiir alle x € K.

Der Satz ist bisher bekannt fiir kommutative Kocher ([19], [26]) und Baum-
algebren ([7]). Er ist das Analogon zu einem Ergebnis Kleiners iiber Dar-
stellungen geordneter Mengen ([18]), auf das sich der Beweis des Satzes stiitzt.

Wir bendtigen noch einige Definitionen. Fur einen unzerlegbaren A-Modul U
bezeichnet sup U das Supremum der dim U(x) genommen iiber alle x € K,,. Ist
eine Algebra A gegeben, so bedeutet sup A das Supremum aller sup U, wobei U
die unzerlegbaren A-Moduln durchlauft.

Die startenden Funktionen von k(ZT), T Dynkinsch, ([12]), und Lemma 2.5
zeigen, dass

1 (A, neN

2 D,,neN
sup A=<3 fir A=(T,g) mitT=1 E;

4 E,

k6 LES

Weiter gilt die Behauptung nach Lemma 3.3 fiir einen extremalen Modul uber
einer einfach zusammenhingenden Algebra mit Baum vom Typ (a, B, v, 8).

Wir fuhren den Beweis per Induktion iiber dim A und konnen offenbar beim
Induktionsschritt U als extremalen A-Modul voraussetzen. Sei im folgenden also
stets A =(T, g) eine extremale Algebra mit Extremalem U and =g-maximalem
Projektiven P =(g(m), m). Weiter bezeichne S = -, S, die Vereinigung der
Tréager der startenden Funktionen s, B =[[;-; B; die Algebra A\{P} ([8], 6.6)
und G das Gerippe von U. Nach der Kleinerschen Liste und den Dimensions-
formeln in 1.3 gilt bereits dim U(z) <6 fiir den Punkt z, der P entspricht. An den
anderen Punkten weisen wir die Giultigkeit des Satzes ebenfalls mit Hilfe von 1.3
nach. Dabei unterscheiden wir die nach 2.3 moéglichen Baume fur T.
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4.1 Der Baum (o, f,%,96,¢)

Nach 2.3 gilt m = a,. Wir skizzieren den Beginn von S (Siehe Fig. 4.1). Fiir
B=2 ist e, injektiv, weil sonst [1,1,1,1] in S vorkommt. Folglich enthilt G

Fig. 4.1

einen Vorganger von e, also ein maximales Element. Nach 1.2 ist G ein-
elementig, und die Behauptung gilt per Induktion. Sei also 8 =1 und zuerst a > 1.
Das Gerippe ist auch einelementig, wenn 72a, nicht existiert. Im verbleibenden
Fall ist e, injektiv, weil sonst fur £>1 [1,1,1, 1] auftritt oder fir e=1
s,, den Wert 2 annimmt. Da einelementige Gerippe keine Schwierigkeiten ver-
ursachen, haben wir nur G ={e,, b;} zu betrachten. Da entweder b, selbst
injektiv ist, oder b < te, und e, > Te, gilt, erhalten wir sup U <2. (S bedeutet
mono, > epi). Jetzt sei « = 1. Wegen s, (7e.) =1 gibt es einen Injektiven e, mit
kleinstem Index k. Als Gerippe ist nur {e, x} mit j<« und x = e, i <j, oder
x = b; zu untersuchen. Die Dimensionen addieren sich nur bei den Injektiven,
die Nachfolger von 7e;_, sind, und sind dort kleiner als 2, weil beides Moduln
uber einer Algebra mit Baum A, sind.

4.2 Der Baum (o, f3,v), a=p=y=2.

Wie in 3.6.1 muss m Randpunkt oder Nachbar eines Randpunktes sein. Im
zweiten Fall ist d injektiv. Also besteht das Gerippe aus zwei Unzerlegbaren fur
die Faktoren von B, und die Aussage folgt per Induktion.

Nun sei m ein Randpunkt r. Wir skizzieren S:

T] TT 1 7_2 T 1
P
1 T 1
/
/@/ A2
/1 0 1
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Einer der Vorginger von 72d ist also injektiv. Ist einer der beiden eingekreisten
Punkte injektiv, so besteht das Gerippe aus einem Injektiven und einem Unzer-
legbaren ‘“vom Typ A, ”. Ist einer der Injektiven zu den Punkten zwischen r und
d in T' nicht Nachfolger von 7d, so ist das Gerippe einelementig. (Diese
Bemerkung benutzen wir oft in dhnlichen Situationen.) Bis auf Umbenennung
liegt der Fall m =c, vor, weil sonst [2,2,2] auftritt. Fir « =3 findet man
[1, 1, 1, 1]. Schliesslich bleiben folgende Moglichkeiten fiir ein Gerippe:

T4c
{ T 1, a,, bz} . Nach 1.3 ist sup U <sup 7d +sup 7°c, +sup a,+sup b, =4
d

{7d, a,, b,}: Es gilt sup U =3.
{a,, b,}: Wegen a,<> a,® 7d und b, < b, D 1d ist sup U=4
{a,, b,}: Wie eben folgt sup U =3.

4.3 Der Baum (o,8,1), a=pB=2.

Dieser Fall erfordert einige Rechnungen. Wir unterscheiden die einzelnen
Moglichkeiten fiir m.

4.3.1 m=d

Nur die Dynkinbaume E, E,;, Eg treten auf.

432 m =C

Wir zeichnen S (Siehe Fig. 4.3.2). Ist b, oder a, injektiv, so besteht G aus
zwei Unzerlegbaren mit sup =1. Nun erzwingt [1, 1, 1, 1], dass B =2. Fiir injek-
tives a, hat das Gerippe hichstens vier Elemente, deren Supremum jeweils 1 ist.
Es bleibt nur a <4, weil sonst [2,2,2] in S liegt.
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4.3.3 mel{b}

Wegen des Verbotes von [1, 3, 3] gilt m e{bg, bg_1, bg_»}. Fiir m=bg_, ist d
injektiv, weil anderenfalls [2, 2, 2] vorkommt. Die Abschitzung gilt in diesem
Fall. Fiir m = bg_, skizzieren wir S (Siehe Fig. 4.3.3.1). Ist a, injektiv, so kann
hochstens

X
{lk,C1all

als Gerippe auftreten, und es folgt sup U =<4. Ist a; nicht injektiv, so gilt wegen
[1,1,1,1] schon B =2 und wegen [1, 3, 3] auch a <4.

Schliesslich sei m = bg und zuerst B = 3. Wir skizzieren S (Siehe Fig. 4.3.3.2).
Vor der gestrichelten Linie muss also ein Injektiver liegen. Die Abschatzung ist
einfach, wenn a,, a, oder 7d injektiv sind. Da [1, 1, 1, 1] nicht in S liegt, gilt also
a=8=3.

(a) 7a, ist injektiv.

T3b2
Liegt 7a; in G, so tritt hochstens { T }auf, und es ergibt sich sup U=

T2b1’7a19a3

4. Liegt Ta, nicht in G, so hat G hochstens zwei Punkte, z.B. G ={a,, rd}. Dann
gilt sup U <sup a,+sup 7d =2+4 = 6, wie die startenden Funktionen von a, und
7d in k(ZE,) zeigen. Die ibrigen Fille behandelt man ahnlich.

\\ 1 .
\
N
TN
7\
124 24Z0M%4 N,
27 Yo 2N
4/ \o/ \o;’\ll/
. Ve

Fig. 4.3.3.2
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(b) 72b,, ¢, oder 7c, sind injektic.
Die erste Moglichkeit entspricht (a), bei den beiden anderen treten sogar nur
2-elementige Gerippe auf.

(c) 7d is injektiv.
Nach den bereits behandelten Fillen ist B eine der Algebren

7’

7 \z
oder %» und dann A = é} oder

Die Behauptung gilt. Es bleibt noch der Fall B =2, a =5 iibrig. Wir skizzieren S
(Siehe Fig. 4.3.3.3). Vor der gestrichelten Linie muss ein Injektiver liegen. Da T

‘ .
]
I //1
-4\
1% 4
N L/
A4 i1
27 g
424 1204
47 \a/{A/' No
|
Fig. 4.3.3.3

als Baum D, hat, brauchen wir nur Gerippe mit mehr als 3 Elementen zu
untersuchen. Daher kOnner wir bis zum durchgezogenen Strich alle Punkte als
nicht injektiv annehmen. Ferner ist a =5, weil sonst [1, 3, 3] vorkommt.

(a) a; ist injektiv
b
Nur T tritt als Gerippe mit mehr als 3 Elementen auf. Es gilt
as, 7a,, 'szl
sup U=6.

(b) 7a, ist injektiv
Die Moglichkeiten fiir mehr als 3-elementige Gerippe sind:

(A4, 1) T T o
x €{ay, as
ta, °by, a4), xe{r’d, %c}, |7°by, Ta,, a‘}, {szl, X, T4, }, )

743 y
2 T 2 T X,y € {03, as, aS}-
7°b,, as, 7a;), (7°by, Tay, Xx),
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Bei allen Punkten ausser 72b; handelt es sich um Unzerlegbare ‘“vom Typ A,”.
Die Behauptung ergibt sich aus 1.3.

4.3.4 me{a}

Nun ist me{a,_; |0=<i=4}, weil sonst [1,2,5] auftritt. Fir m =a,_, ist d
injektiv ([N, 4]!), und fir m=a,_; ist =2 und a=<4, weil sonst [1,3,3]
vorkommt. Im Fall m =a,_, ist fur B =3 d injektiv ([2, 2, 2]!). Sei also B =2. Ist
b, injektiv, so gilt sup U < 2. Anderenfalls ist « =4. Aehnlich ist fir m = a,_, der
Fall einfach, wo b, injektiv ist. Da [1, 1, 1, 1] nicht vorkommt, kdnnen wir 8 =2
annehmen. Wir skizzieren S fur a =5 (Siehe Fig. 4.3.4). Vor der gestrichelten
Linie muss ein Injektiver liegen. Die Behauptung ldsst sich nun stets leicht
nachweisen. Den letzten Fall m =a,, a> =2, untersuchen wir im nachsten
Absatz.

435 m=a,a>B=2

Sei zuerst B=3. Wir deuten S an (Siehe Fig. 4.3.5.1). Man verifiziert
sup U=6, wenn by, b,, ¢y, 7d oder 7c, injektiv sind. Die dabei auftretenden
Gerippe haben hochstens zwei Punkte. Nun gilt aber B =2, weil sonst [2, 2, 2]
vorkommt.

Fig. 4.3.5.1

Wir skizzieren S fir o =5 (Siehe Fig. 4.3.5.2). Vor der gestrichelten Linie
muss also ein Injektiver liegen. Wir betrachten zunichst genau einen speziellen
Fall. Wir nehmen an, a sei 5, bis zur durchgezogenen Linie gebe es keine
Injektiven und 7%a, sei injektiv. Wir berechnen unter diesen Bedingungen alle
startenden Funktionen von Punkten, die in Gerippen mit mehr als einem Punkt
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Die ubrigen startenden Funktionen nehmen hochstens den Wert 1 an. und ihr
Verlauf ist klar.

Nun suchen wir Gerippe, in denen c, liegt und finden nur {c,, b;} oder {c,, b,}.
Die gerade berechneten Funktionen, Lemma 2.5 und 1.3 liefern die Behauptung.
Wir kénnen nun ¢, vergessen und dann auch b,. Fir 7d gibt es nur {rd, b,}. Der
Reihe nach vergessen wir ¢y, by, 7d, by, b, 7°a,, 7°d und 73a,. Fir 72a, gibt es
nur die Moglichkeiten

Toa, ™a,

2 2 4 2 2 4 s 3 2 5
t%a,,7°cy, tas ), {r a,,T ¢, X}, xefr as, T 04}, T A1, T°Cy, T Ay
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und 2-elementige Gerippe. Immer gilt die Behauptung. Beim Vergessen von 74a;
treten nur 2-elementige Gerippe auf. Fir 72c; gibt es als grosse Gerippe nur

X
{ 1 } x e{r3d, 73b,, T3b,}

4 5
726’1,7 Ay, T-A47

und die Behauptung ist wahr. Genauso vergisst man 7>d.

Betrachten wir nun die 7*a, enthaltenden Gerippe. Da jetzt alle startenden
Funktionen nur noch die Werte 1 und 0 annehmen, interessieren uns nur noch
Multiplizititsfunktionen p mit Yycs \1o} (V) >6 (1.3.). Dieser Fall tritt nicht auf.
Schliesslich wollen wir noch T%a, vergessen. Dabei treten zwar eventuell

.I;und N

als Gerippe auf, die Multiplizitatsfunktionen w mit )y cs,\(o) (V) >6 erlauben,
aber die in 1.3 gegebenen Dimensionsformeln zeigen auch hier sup U <6.

Der Beweis setzt sich nun aus lauter Einzelschritten zusammen, die dem
soeben behandelten Fall dhnlich sind, aber meist viel einfacher, sodass man den
Beweis an einem langweiligen Nachmittag durchfithren kann. Wir geben nur die
Strategie an. Man erledigt nacheinander die Fille, wo c,, b,, 7d, b,, 7%a,, 7c;, by,
73a,, 7>d oder b, injektiv sind. Da sonst [N, 4] vorkommt, kann man jetzt a <7
annehmen. Man behandelt die Fille in denen 7%as, v°a,, v%c, oder 'b, injektiv
sind. Von da an ist « =5, weil sonst [1, 1, 1, 1] auftritt. Schliesslich betrachtet man
noch die Fille, wo 1*a,, v3d, v2b,, 7*a,, T°c,; oder b, injektiv sind. Fiir 7%d ist
es geschickter, wie in 4.3.3c) vorzugehen.

S. Lineares Wachstum der Dimensionen Unzerlegbarer
Wir wollen aus Satz 2.4 folgendes Ergebnis herleiten:

SATZ. Sei A eine darstellungsendliche saubere Algebra der Dimension d mit e
Einfachen. Dann gilt fiir die Dimension jedes Unzerlegbaren U die Abschdtzung:
dim U =2d - e+1000.

Bevor wir den Satz beweisen, mochten wir noch einige Bemerkungen und
Folgerungen hinzufiigen. Dem Beweisgang wird man entnehmen:

KOROLLAR 1. Eine darstellungsendliche d-dimensionale Algebra A mit e
Einfachen besitzt nur Unzerlegbare U der Dimension <2d —e +1000+d.
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Die Existenz einer Funktion f:N—N mit dim U={f(dim A) hat Gabriel
implizit in [11] gezeigt. Jensen und Lenzing haben dies in [16] aufgegriffen. In
beiden Fallen geht jedoch der verwickelte Beweis von Nazarova-Roiter tiber die
Brauer-Thrall-Vermutung ein. Ferner ergibt sich die Existenz einer derartigen
Funktion aus der Arbeit Roiters iiber multiplikative Basen von darstellungs-
endlichen Algebren. ([25])

Die Konstante 1000 rithrt von den im Klassifikationssatz tibergangenen
Ausnahmealgebren her. Die bisher durchgefiihrten Computerrechnungen lassen
erwarten, dass der bestmogliche Wert fiir die Konstante etwa bei 30 liegt.
Hingegen lasst sich der variable Teil nur noch unwesentlich vermindern. Wir
geben namlich fir jedes n =2 eine darstellungsendliche Algebra der Dimension
3n+10 mit n+4 Einfachen an, die einen Unzerlegbaren der Dimension 4n+3 =
2d —2e —9 besitzt. Betrachte die Algebra mit Kocher

n+2

N

n-+
\n+4/

bei der 2—-1—2, n+2—-n+1—-n und n+2—->n+3—>n+4 die einzigen
nichtverschwindenden Kompositionen von Wegen sind. Um einzusehen, dass A
darstellungsendlich ist, und um den gesuchten Unzerlegbaren zu finden, trennt
man am einfachsten die Punkte 2, 3, ..., n auf in Sender und Empfanger ([9]).

Mit unseren Methoden kann man beweisen, dass die Anzahl Unzerlegbarer
nur exponentiell wachst. Wir gehen hier nicht darauf ein, und verweisen darauf,
dass nach [3] die Anzahl durch d - 32" nach oben beschrinkt ist.

Schliesslich erwahnen wir noch folgendes Korollar, das wir am Ende der
Arbeit beweisen.

3

1223233 - n—-1nen+1

KOROLLAR 2. Eine d-dimensionale Algebra ist genau dann nicht dar-
stellungsendlich, wenn es einen Unzerlegbaren U gibt mit 2d +1000vd<dim U <
(d?+1)(2d +1000vd).

In der Varietét Alg; ([11]) der d-dimensionalen Algebrenstrukturen ist offen-
bar die Menge S, der Algebrenstrukturen, die einen Unzerlegbaren der Dimen-
sion n besitzen, konstruierbar. Wiare S, sogar abgeschlossen, so ergibe das
Korollar einen einfachen Beweis fiir die Offenheit der darstellungsendlichen
Algebren ([11]).

5.1 Folgendes Lemma steht in Beziechung zu einem Ergebnis Roiters ([25]).

LEMMA. Sei A die universelle Ueberlagerung einer darstellungsendlichen
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sauberen Algebra ([13]). Auf A gebe es punktweise 1-dimensionale Unzerlegbare
mit Trdagern

X1—Xo—X3" " X1 X < X1 <0 <Xy, UNd X Xt

 Xtr € Xetr+1

Dabei seien die x; fiir 1 <i <« +rund fiir k <i <« +r+1 verschieden. Fiir r =0 sei
noch x. ., # X._,. Dann gilt:

(a) X 4,41 ist vOn allen x;, i# k +r+1, verschieden.

(b) Es gibt einen punktweise 1-dimensionalen Unzerlegbaren mit Triger

x|1=i=x+r+1}.

Beweis. Angenommen, a) sei falsch. Sei also x,..,.;=x mit x, ., # x,; fur
j=1. Nach Voraussetzung ist [ <k und wir unterscheiden zwei Fille, namlich
X—>:+—x.und x; « -+ — x.. Im ersten Fall konstruieren wir eine 1-para-
metrische Familie Unzerlegbarer U,, A € k. Setze U, (x;)=k fir [=i=k+r, und
stelle den Pfeil zwischen x; und x,. ., durch Multiplikation mit A, die anderen
Pfeile durch die Identitat dar. Da alle auftretenden Punkte voneinander ver-
schieden sind, folgt aus U, = U, schon A = u. Im zweiten Fall konstruieren wir
einen Zyklus nichttrivialer Abbildungen zwischen punktweise 1-dimensionalen
Unzerlegbaren von A, die wir einfach mit jhrem Triger identifizieren. Sei q die
benachbarte Quelle von x,.. Wir finden den Zyklus

x)—=>@—=>—=>x < x)=>@—=>x)=>@ke g x)—> ()

Dabei existiert q — - - - — x,, <« - - - « x;, weil alle Punkte verschieden sind. Die
gleiche Bemerkung zeigt nun Teil (b). q.e.d.

5.2 Wir beweisen den Satz. Sei also A eine saubere darstellungsendliche
Algebra der Dimension d mit e Einfachen, und sei U ein unzerlegbarer A-
Modul. Wie iiblich bezeichne I'y den Darstellungskocher von A, I, dessen
universelle Ueberlagerung und A die universelle Ueberlagerung von A. Dann
haben wir ein kommutatives Diagramm mit einem Ueberlagerungsfunktor F ([8])

Ack([L)>U0
[l
Ack(l,)a2U

Wihle einen unzerlegbaren A-Modul U iiber U. Nach [14] liegt jede endliche
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volle Unterkategorie von A —also auch der Triger von U —in einer einfach
zusammenhangenden vollen Unterkategorie B. Wir konnen dann sogar an-
nehmen, dass U ein extremaler B-Modul ist. Damit gilt B =(T, g) fiir einen der
Biume aus 2.3. Wir beweisen dim U =dim U =2d —e+1000 in den einzelnen
Fillen.

Nach Satz 2.4 fehlen in unserer Liste extremaler Algebren nur endlich viele.
Ein Blick in den Beweis von 2.4 und Satz 4 zeigen, dass fir alle extremalen
Moduln iiber diesen Ausnahmealgebren die Dimension <1000 ist. Die Behaup-
tung muss daher nur noch fiir die Algebren aus der Liste bewiesen werden.

5.2.1 Die Familie (1)

Wir markieren alle Quellen und Senken. Bis auf Dualitit liegt also der Fall
S g4 —> >S5, 5§ <X < q, vor, wobei eventuell das letzte
Stiick von x bis g, fehlt. Tritt einmal die Situation s < t- - - t' — s’ mit F(s) = F(s")
und F(t) # F(t') auf, so konstruiert man mit 5.1 und seinem dualen beliebig grosse
Unzerlegbare fir A, indem man in Punkt s’ den Punkt F(t) hochhebt usw.
Deshalb liegen iiber jedem Punkt von A hochstens zwei Senken. Wir schitzen
ab:

dm U= ) dim P, —r+1=2(d—e)+1.
i=1

Dabei bezeichnet P, den projektiven A-Modul zum Punkt s, der die gleiche
~ Dimension hat wie die projektive Decke von F(s).

5.2.2 Die Familie (2)

Wieder kennzeichnen wir alle Quellen und Senken, sodass ohne Ein-
schrankung der Fall
c

AN

b— - —55e—-- e—(1—> -+ —>Se—- - —(,
a
vorliegt. Nun ist eine Situation s < t---t'— s’ mit F(s)=F(s’) ausgeschlossen.
Denn fiir F(t) # F(t") argumentiert man wie eben, und fiir F(t) = F(t") findet man
in A als volle Unterkategorie

’
c
\ . /
/,...,. vh e .. —Se—. . -b\ ,
a a’

indem man in s’ das Bild des linken Teils unter F hochhebt. Nach der Liste der
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Dimensionsvektoren erhalt man:

dim U=<2 ) dim P, —2r+3=<2(d—e)+3.

i=1

5.2.3 Die Familie (3)

Bei den Unterkochern

>_ 7 und >_”'_'\___...._

liegt wie in 5.2.2 iiber jedem Punkt nur eine Senke. Fiir die punktweise 1-
dimensionalen Extremalen dieser Kocher gilt also dm E<d—-e+3,d.h.dimU=<
2(d—e)+6.

5.2.4 Die Familie (4)

Dieser Fall scheint am schwierigsten zu sein. Bis auf Dualitit haben wir:

A\

d,
\a
Wie in 5.2.2 ergibt sich F(s;) # F(s;) und F(t;,) # F(t;) fiir i j. Ist F(c) # F(s;) fiir
alle i, so erhilt man: dim U <2(d — e). Gleiches gilt, wenn iiber F(a) keine Quelle
mehr liegt.

Sei also F(s.)=F(c). Wir zeigen, dass B dann in der Nihe von s, =c’ fol-
gendermassen aussicht: x «< b’ —c' «d,, «d),_1 < <di—y mit F(b')=
F(b), 1>0 und F(d))=F(d,) fir m=p=l1. Zurgiichst folgt F(b')= F(b) wie in
5.2.1. Wire b’ keine Quelle, so finde man in A eine volle Unterkategorie mit
kommutativem Kocher

/"
A
N N
die nicht darstellungsendlich ist. ; ;
Kimen in F(c) 3 Pfeile an, so lige ein D, in A. Also ist F(d,,)=F(d,,).

Analog findet man in A eine Kopie von D,, falls F(d}) # F(d,) fir p=1, p=1.
Angenommen, | <0. Wire F(d})=F(a), so giabe es in B noch einen zweiten

b—>- - > =P —>S,—: . -«—0q,
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nichtverschwindenden Weg d,— b” — ¢’ mit F(b") = F(b). Also ist F(dy) # F(a).
Dann enthilt aber B einen nicht darstellungsendlichen kommutativen Unterkocher
der Gestalt

./">4
N

Als néchstes fithren wir die Annahme F(d;) = F(d)) fiir m=i>j=1 zu einem
Widerspruch. Nach dem vorangegangenen Absatz gilt auch F(d;) = F(d;). Es folgt
F(d,,,) = F(d;.,), wobei wir noch d,,.; =c und dy,=a vereinbaren. Anderenfalls
liftet man namlich in d; die Kette F(d;,,— ' — ¢ <+ -—¢’) und erhilt eine
Kette, in der 4 Senken iiber F(c) liegen, was in 5.2.1 ausgeschlossen ist. Analog
folgert man F(d;_,) = F(d;_,) daraus, dass iiber F(a) bereits 2 Quellen liegen. Die
Kette a >d,—---—d, — c wird also unten auf einen Kreis aufgewickelt.
Somit ist F(d,) = F(a) fir ein i>t=j und F(d!,,)=F(d,.,) =F(d,) # F(b). Wir
finden dann eine Kette mit 3 Senken iiber F(c) im Widerspruch zu 5.2.1.

Nach den beiden vorherigen Absitzen gilt F(d}) # F(d)) fiir i# j. Dies liefert
uns die gewiinschte Ungleichung:

dim Us2(dimPc+ Y dimPs‘—r)+m——l+1s2d——e+1.

iFx

5.2.5 Die Familien (5), (6), (9) und (10).

Bei einer Algebra der Familie (5) betrachtet man zuerst die beiden maximalen
Unteralgebren ohne Nullrelation und argumentiert wie in 5.2.4. Daraus erhalt
man die Abschitzung. Die Familie (6) schneidet man an den Punkten u and v auf
in zwei D, s. Genauso verfihrt man mit Algebren aus (9) und (10). Bei (10)
untersucht man z.B. zuerst

Ny
__,< S
und /
U — e

5.2.6 Die ubrigen Familien

Bis auf Dualitat findet man fiir jeden Extremalen einen Untermodul der
Kodimension =3, der von zwei unzerlegbaren Projektiven iiberdeckt wird.

5.2.7 Der Beweis von Korollar 1

Sei also A eine beliebige darstellungsendliche Algebra der Dimension d und
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A die zugehorige saubere Algebra. Ferner sei G: mod A — mod A die Morita-
Aequivalenz. Da jeder einfache A-Modul hochstens Dimension vd hat, gilt
dim M =+d dim GM fiir jeden A-Modul M. Dies wenden wir auf die Unzerleg-
baren U an, wo GU zu einer Ausnahmealgebra gehort. In den anderen Fillen
geht die Abschiatzung jeweils aus dem Beweis hervor. Wir deuten dies fiir Familie
(1) an. Dort kommt in der projektiven Decke von GU jeder Unzerlegbare
hochstens mit Vielfachheit 2 vor. Gleiches gilt dann fiir die projektiven Decken
von GU und U.

5.3 Gehen wir noch kurz auf den Beweis von Korollar 2 ein. Eine Richtung
folgt direkt aus Satz 5. Umgekehrt haben wir zu zeigen, dass eine d-dimensionale
Algebra darstellungsendlich ist, wenn die Dimension der Unzerlegbaren entweder
<2d+1000vd oder >(d?+1)(2d +1000+/d) ist. Nun folgt aus der Definition von
DTr und TrD, dass alle Einfachen in Komponenten des Darstellungskochers
liegen, deren Moduln Dimension <2d + 1000~/d haben ([1], [27]). Also ist A dar-
stellungsendlich.

Aehnliche Ueberlegungen fithren zur folgenden numerischen Vermutung iiber
Brauer-Thrall 2: Eine nicht darstellungsendliche Algebra A der Dimension d hat
unendlich viele Unzerlegbare der Dimension =20d(6*¢*!+1000). Leider kénnen
wir die Vermutung bisher nur beweisen, wenn A eine ‘“‘schone” Ueberlagerung
besitzt.

Anhang. Wieviele Moduln hat eine darstellungsendliche Algebra?

Fiir eine endlichdimensionale Algebra A bezeichne u(A) die Anzahl der
Isomorphieklassen unzerlegbarer A-Moduln, i(A,n) die Anzahl der Iso-
morphieklassen n-dimensionaler A-Moduln. Weiter sei u(d) das Supremum der
u(A), wobei A alle d-dimensionalen darstellungsendlichen Algebren durchlauft.
Wir beweisen in diesem Anhang:

PROPOSITION 1. Es gibt eine Konstante C, so dass fiir alle d =4 gilt:

2V < u(d)=9d°® - 227 + Cd.

PROPOSITION 2. Eine Algebra A ist darstellungsendlich genau dann, wenn
es ein Polynom P e R[X] gibt, so dass i(A, n)=<P(n) fiir alle n eN gilt. Dabei ldsst

sich P fiir alle d-dimensionalen darstellungsendlichen Algebren zugleich wdhlen.

Die Beweise beruhen auf Ueberlagerungstheorie, dem Klassifikationssatz und
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Betrachtungen aus Abschnitt 5, wobei beide Schranken in Proposition 1 noch
verbessert werden konnen. Wir behalten die Bezeichnungen der Arbeit bei.

A.1 Die untere Schranke in Proposition 1.
Um die untere Schranke zu finden, betrachte man fiir p =1 folgenden Kdocher

122232 (p—1)2p, dessen Pfeile wir einfach mit « und B bezeichnen.
B B B 8

Die Algebra A(p), die durch aB =0 = Ba definiert wird, hat dann p? als Dimen-
sion. Die universelle Ueberlagerung von A(p) ist eine Baumalgebra ([13], [28]),
und die unzerlegbaren A (p)-Moduln U mit U(1)# 0 entsprechen nach [10] den
Unzerlegbaren des Stammbaumes ([8]) mit p Generationen (Siehe Skizze fiir
p =4), die an der Stelle 1 nicht verschwinden. Dies ergibt 1+2+4+---4+2F7 1=
2P —1 Unzerlegbare, so dass A(p) per Induktion 2°*'—(p+2) Unzerlegbare
besitzt. Daraus ergibt sich die untere Schranke.

'a\.é‘\ /a,\/ k\é’\ /ﬁ,\/
%\1/ :B =0

Man beachte, dass die Dimensionen der unzerlegbaren A(p)-Moduln alle
durch p beschrankt sind, und dass es eine Kette von 2P —2 irreduziblen Abbil-
dungen zwischen unzerlegbaren A(p)-Moduln gibt, deren Komposition nicht
verschwindet. Die Ringelsche Schranke im Lemma von Harada-Sai ([29], [30]) ist
also sogar fiir darstellungsendliche Algebren scharf.

A.2 Die obere Schranke in Proposition 1

Es geniigt, die Abschiatzung fiir saubere Algebren der Dimension d zu
beweisen. Dazu gehen wir vor wie am Anfang von Abschnitt 5.2, betrachten also
das kommutative Diagramm

Ack(fA)

Pl

Acind A

mit einem Ueberlagerungsfunktor F.

Sei P ein Punkt in A. Wir wollen uns iiberlegen, wieviele Kopien der
Algebren u;—u,—us—- - - u,_,—1u, aus Familie (1) des Klassifikationssatzes in A
liegen, so dass u; mit P zusammenfallt. Zunichst sei a =5. Fir den Pfeil u;—u,
haben wir héchstens 6 Moglichkeiten, weil sonst D, in A vorkommt. Sei nun ein
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Pfeil u;—u, gewahlt. Dann bleiben uns fir Up—Uu3 nur jeweils 2 Moglichkeiten
iibrig, da anderenfalls nach Lemma 5.1 in A ein E, auftritt, weil entweder 2
Pfeile in u, beginnen oder 2 enden. Fir us;—u, kOnnen wir erneut nur unter 2
Pfeilen wahlen, weil sonst E6 vorkommt. Gleiches gilt fiir die Wahl von u,—u; 1,
solange i =a —2 ist. Der letzte Pfeil u,_,—u, erlaubt nur 4 Moglichkeiten, weil
A kein D, enthilt. Insgesamt kann also P=u,—u,—- - -—u, auf hdchstens
6-2>73.4=3 2* verschiedene Arten in A licgen. Diese Formel bleibt auch fiir
a <5 richtig.

Ist U ein unzerlegbarer A-Modul, so wahlen wir U und eine einfach
zusammenhingende volle Unteralgebra B =(T, g) von A, so dass U ein ex-
tremaler B-Modul ist (Siehe 5.2). Naturlich ist B eine Invariante von U. Wir
konnen jetzt alle unzerlegbaren A-Moduln zihlen, wo B zur Familie (1) gehort.
Nach 5.2.1 gilt namlich a < 2d. Deshalb lasst sich die gesuchte Zahl Z, folgender-
massen abschatzen:

2d
=< (Anzahl Punkte von A) ( ) 3 2"‘).<_3d22‘}‘+l
oa=1

Fiir die anderen Familien geht man analog vor. Um den Leser nicht zu langweilen,
greifen wir nur noch die Familien (4) und (10) heraus. Zuerst sei also

V—Uy - - —,
12%) /
\U1 =P
Fiir den Teil u; = v;—v,—- * -—v, gibt es wie eben hochstens 3 - 29*1 Moglich-

keiten. Dann liegt aber v, — u, bereits eindeutig fest, weil sonst D, auftritt. Nun
ist auch u; — u,- - - — u, vorgeschrieben. Wir erhalten also hochstens 3 -29*!
Kopien von B in A mit u, =P. Jede davon besitzt q extremale Moduln. Ferner
sind die Parameter p und q nach 5.2.4 beide durch d beschrinkt. Die Anzahl Z,
aller Unzerlegbaren U mit B vom Typ (4) kann man daher abschatzen:

< (Anzahl Punkte von A) - (Anzahl Algebren in Familie (4)).
(Anzahl jeweiliger extremaler Moduln) - (Anzahl der jeweils moglichen
Einbettungen einer Algebra)
<d-d*-d-3-2¢" =342
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Jetzt sei B aus der Familie (10). Fiir den Teil

Yi—: - —Ym
P= U—w—-- .___wkg
Xp—: - —X

gibt es hochstens 3 - 2<*1 - 2'*1. 2™*1 Mpglichkeiten. Danach liegt alles eindeutig
fest. Die Familie wird durch 5 Parameter beschrieben, fur die gilt: i+j=<d,
k +l=d, k + m=d. Jede Algebra hat nur einen extremalen Modul. Wir finden so:

Z10=3d%2%4+3,

Fiir alle anderen Familien gibt es weniger Moglichkeiten. Die Anzahl der
Unzerlegbaren U, wo B oder B°? zu einer der Familien aus dem Klassifikations-
satz gehort, ist also beschrankt durch

2 . 24 . 3 . d6 . 22d+3 =9d622d+7.

Wir miissen noch diejenigen Unzerlegbaren zahlen, wo B zu einer der
Ausnahmealgebren gehort. Es gibt nur endlich viele Ausnahmealgebren. Jede
davon hat nur endlich viele extremale Moduln und lasst sich nur auf endlich viele
Arten in A einbetten, wenn man das Bild eines Punktes vorschreibt. Daher
existiert eine Konstante C, so dass die Anzahl der verbleibenden unzerlegbaren
A-Moduln durch C - d beschrinkt ist.

A.3 Der Beweis von Proposition 2

Zuerst sei A eine d-dimensionale darstellungsendliche Algebra mit einem
Reprasentantensystem {U,, U,, ..., U,} unzerlegbarer Moduln. Nach Proposition
1ist t=s:=9d%2%2**7+ Cd. Wir rechnen:

t
Y m; -dim U, = n}

1

i(A, n)= {(m,, my, ..., m)eN"| |

2

t t
= {(ml,mz,...,mt,O,...,O,n——Z mi)eNs“[ Z midimUi=n}

i=1 i=1

-(")

IA

s+1
{(xla X250y ~xs+1)eNs+1 ’ Z X; = n}
i=1

X+
Die Behauptung gilt fiir P(X)=( s s).
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Umgekehrt sei nun A nicht darstellungsendlich. Ferner sei Q ein Polynom
vom Grad g, so das i(A, n)=<Q(n). Wir werden einen Widerspruch herleiten.
Setze K:=(dim A)*+1. Wie in 5.3 bemerkt (Siehe auch [30]) folgt aus der
Definition von DTr und TrD ([2]), dass es eine Folge unzerlegbarer A-Moduln
U, ieN, gibt mit dim U;Edim U,,; =K -dim U, Dabei koénnen wir noch
dim U, =<K, also dim U, =K'*! annehmen. Fiir beliebiges L =1, L N, betrachte
die Menge

L
{(no, ny,...,n)eNF*1| Z n; =KL}

i=0

L

L
L ) Die Moduln der Gestalt @5~ , U™ liefern uns dann

K
der Kardinalitat (

K"+ : : : o
( N ) Isomorphieklassen der Dimension <K?“*'. Andererseits ist nach Voraus-

setzung die Anzahl der Isomorphieklassen von Moduln der Dimension =n durch
R(n) beschrinkt, wobei R ein Polynom vom Grad g+1 ist, das wir ohne
Einschrinkung als R(X)=rX*®*"' mit reR annehmen konnen. Fiir grosse L

. . K"+L QL+1)-(g+1)
stossen wir auf den Widerspruch L =zr-K .
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