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Treue einfach zusammenhàngende Algebren I

Klaus Bongartz

Die in den letzten Jahren entwickelte Ueberlagerungstheorie fùhrt viele
Fragen ûber darstellungsendliche Algebren zurùck auf die Untersuchung
sogenannter einfach zusammenhângender Algebren, deren Studium daher von
Interesse ist. Eine Algebra heisst einfach zusammenhàngend, wenn sie endlich-
dimensional ûber einem algebraisch abgeschlossenen Kôrper ist, nur ein-
dimensionale einfache Moduln hat (d.h. sauber ist) und einen endlichen einfach
zusammenhângenden Darstellungskôcher besitzt.

In dieser Arbeit und der folgenden klassifizieren wir die unzerlegbaren
Moduln iiber einfach zusammenhângenden Algebren. In der vorliegenden Arbeit
geben wir eine Liste von einfach zusammenhângenden Algebren mit treuen
Unzerlegbaren an, die aile derartigen Algebren enthâlt bis auf endlich viele
Ausnahmen in kleinen Dimensionen. Wir beweisen anhand der Liste, dass die
Dimensionen der Unzerlegbaren einer darstellungsendlichen Algebra A durch ein
lineares Polynom in dim A beschrànkt sind. Als weiteres Hauptergebnis zeigen
wir, dass die Dimensionen der Unzerlegbaren an den einzelnen Punkten fur eine
einfach zusammenhàngende Algebra 6 nicht iiberschreiten. Beide Ergebnisse
zusammen ermôglichen es, den Darstellungstyp einer Algebra und im endlichen
Fall den Darstellungskôcher zu bestimmen, wenn man eine schône Ueberlagerung
kennt.

Die Arbeit enthâlt kaum neue Begriffe. Die Klassifikation beruht auf der
induktiven Konstruktion einfach zusammenhângender Algebren ([8]) und auf den

Resultaten der Kiev-Schule ûber darstellungsendliche geordnete Mengen ([17],
[18], [20]). In einzelnen Fâllen sind bereits mehrere Autoren âhnlich vorgegangen
([19], [7], vor allem [23]). Bemerkenswert ist aber, dass man mit diesem

theoretisch einfachen Verfahren zum Endergebnis gelangt. Allerdings ûbersteigt
die Zahl der Fallunterscheidungen sicher die Geduld der meisten Léser, so dass

wir die naheliegende Losung verworfen haben, aile Ergebnisse auf einen Schlag in
einer einzigen Induktion zu beweisen. Stattdessen haben wir die Arbeit folgender-
massen aufgebaut, wobei sich nun verschiedene Teile ûberlappen. Im ersten
Abschnitt erinnern wir an die Ergebnisse ûber darstellungsendliche geordnete
Mengen. Danach bestimmen wir die môglichen Baume extremaler Algebren und
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klassifizieren anschliessend dièse bis auf endlich viele. Der vierte Abschnitt
enthâlt den Beweis, dass die Dimensionen Unzerlegbarer an den einzelnen
Punkten &lt;6 sind. Die Beweise in den Paragraphen 3 und 4 bestehen meistens in
der sorgfâltigen Untersuchung von Einzelfâllen, die einander âhneln. Deshalb
erlâutern wir das dabei angewandte Prinzip jeweils an einem Beispiel genauer und
geben danach dem Léser nur noch eine zweckmâssige Gliederung in die ver-
schiedenen Fàlle und die dabei erhaltenen Ergebnisse an. Im letzten Absatz
zeigen wir, dass eine darstellungsendliche saubere Algebra der Dimension n nur
Unzerlegbare der Dimension &lt;2n +1000 besitzt.

Die nachfolgende Arbeit soll die Klassifîkation der treuen einfach zusammen-
hângenden Algebren in kleinen Dimensionen enthalten. Die dabei auftretende
Vielfalt erfordert den Einsatz eines Computers. Mit einem ersten provisorischen
Programm, dessen Kapazitât nich ausreicht, haben wir bereits etwa 10 000
Algebren bestimmt. Immerhin ersieht man aus dieser unvollstândigen Liste, dass

der Trâger eines Unzerlegbaren U ûber einer einfach zusammenhângenden
Algebra A gesàttigt ist, d.h. fur jeden Weg xx -* x2 —&gt; • * * —» Xn im Kôcher von A
mit UixJîOïUiXn) gilt auch 17(^)^0, l&lt;i&lt;n.

Mein herzlicher Dank gilt meinem Lehrer Peter Gabriel, der mich mit den in
dieser Arbeit angewandten Techniken vertraut machte.

Zeitweilig wurde ich bei dieser Arbeit durch ein Stipendium der Deutschen

Forschungsgemeinschaft unterstùtzt.

1. Unterraumkategorien

Dieser einfiihrende Abschnitt fasst die Ergebnisse von Kleiner, Nazarova und
Roiter ûber darstellungsendliche geordnete Mengen zusammen, damit wir spâter
bequem darauf verweisen kônnen. Unsere Formulierung folgt einem Vorschlag
Gabriels.

Wir halten uns wâhrend der gesamten Arbeit eng an die in [8] eingefûhrten
Bezeichnungen und verweisen jeweils beim ersten Gebrauch eines Symbols oder

Begriffes auf die entsprechende Stelle. Insbesondere steht fc immer fur einen

algebraisch abgeschlossenen Kôrper und mod A fur die Kategorie der endlich-
dimensionalen A-Rechtsmoduln ùber einer endlichdimensionalen Algebra A, die
wir oft als endliche fc-Kategorie ([8], 2.1) auffassen.

1.1 Eine Vektorraumkategorie (Y, F) ûber fc besteht aus einer fc-Kategorie Y
und einem fc-linearen Funktor F: Y-*&gt; mod fc. Dabei setzen wir folgendes voraus:
Jedes Objekt in Y ist endliche direkte Summe Unzerlegbarer mit lokalen Endo-

morphismenringen. Ferner gibt es in Y nur endlich viele Isomorphieklassen
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Unzerlegbarer. Die zu (Y, F) gehôrige Unterraumkategorie YF hat als Objekte die

Tripel (W,&lt;p,V) bestehend aus Wemodk, VeY und &lt;peHomk (W, FV). Ein
Morphismus (W, &lt;p, V) ^ (W, &lt;p&apos;, V) ist ein Paar (a, 0) mit a eHomk (W, W)
und j3eHomy (V, V), so dass &lt;p&apos;°a =Fj3 °&lt;p. In TF ist jedes Objekt endliche
direkte Summe Unzerlegbarer mit lokalen Endmorphismenringen. Der Name

Unterraumkategorie rûhrt daher, dass &lt;p stets injektiv ist, wenn nicht (k, 0,0)
direkter Summand von (W, &lt;p, V) ist. Uns interessiert folgendes Beispiel einer
Unterraumkategorie: Sei A eine lokalbeschrânkte Kategorie ([8], 2.1) mit einer
Senke s (d.h. A (s, r) 0 fur t^s). Sei B die voile Unterkategorie von A
bestehend aus den Objekten, die von s verschieden sind. Ferner sei R der
B-Modul A(?, s) | B und F:mod B-» mod fc der Funktor HomB (R, Falls B
darstellungsendlich ist, bildet das Paar (mod B, F) eine Vektorraumkategorie tiber
fc. Die zugehôrige Unterraumkategorie (mod B)F ist âquivalent zu mod A. Denn
ein A-Modul M ist gegeben durch M\B,M(s) und durch ein cpe

HomB (M(s) ®kK, M\ B) Homk (M(s), HomB (J?, M | B)), also durch das

Tripel (M(s), &lt;p, M | B).

1.2 Eine besonders schône Situation liegt vor, wenn aile Unzerlegbare in Y
nur den Grundkôrper k als Endomorphismenalgebra haben. Dann muss nâmlich
dimjFV&lt;l fur aile Unzerlegbaren in Y gelten, wenn YF nur endlich viele
Unzerlegbare besitzt.

Ist die Bedingung dimFV&lt;l fur aile Unzerlegbaren V aus Y erfûllt, so

wâhlen wir Repràsentanten der Unzerlegbaren U mit FUj^O und ordnen sie

vermôge &quot;U&gt; VOlT([/, V) ^ 0&quot; partiell an. Zu den gewâhlten Repràsentanten
fùgen wir noch formai ein kleinstes Elément w hinzu und nennen die so erhaltene

geordnete Menge S S(Y,F). Wir betrachten Funktionen jll:S—&gt;N und ver-
sehn deren Trâger S^ mit der von S induzierten Ordnung. Wir nennen jul eine

Multiplizitâtsfunktion, wenn (S^, /m | S) eine der folgenden Gestalten hat:

\ V
A

t
t t t f t t î\f f f f

M4&apos;
4 414 244 4fr 1 4 -1^1/ \t/ M/ \t/Z 3 3 3
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t
4 A A 4 4

t t f\* f
42.4 42.2. 4- £4 244 Y 4 4

t\t î î\t t t\f t t/^\t lAt t

1 4 4 A

t t t t
4 42.2. 4 4 44
î î\t t

t 1 1 2. N 1

Dabei bedeutet x -» y, dass x ^ y ist, und dass dazwischen keine Punkte mehr
liegen. Die Zahlen geben jeweils den Wert von /x an. Die untere Zahl ist der
Wert an der Stelle &lt;o. Fur jedes unzerlegbare Objekt X (W,&lt;p, V) aus YF mit
&lt;Pt^O definieren wir eine Funktion jll fxx

&apos; S-+N durch |n(a)) dim W und
V © L7^(U), wobei die Summe ûber aile UeS\{&lt;*)} lâuft.

SATZ. Sei (Y, F) eine Vektorraumkategorie mit dim FV&lt; 1 fur aile Unzerleg-
baren Ve Y.

(a) (Nazarova-Roiter, Kleiner) Genau dann gibt es nur endlich viele Isomor-
phieklassen Unzerlegbarer in YF, wenn S keine der geordneten Mengen [1,1,1,1],
[2,2,2], [1,3,3], [1,2,5] oder [N,4] enthàlt, die wir der Reihe nach durch ihr
Hasse-Diagramm definieren.

§

r
î î

• • • •

î î
î f î f f t t i\f t

• •#•;•••/•••;•••;•••
(b) (Kleiner) Ist YF darstellungsendlich, so liefert die Abbildung X •-? fxx eine

Bijektion zwischen den Isomorphieklassen Unzerlegbarer X (W,ç, V) in YF mit
und den Multiplizitâtsfunktionen auf S.

1.3 Die in 1.2 geschilderte Situation liegt vor, wenn im Beispiel von 1.1 die
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Algebra A einfach zusammenhângend ist. Sei dann M (W, &lt;p, V) ein unzer-
legbarer A-Modul mit &lt;p^0 und Multiplizitâtsfunktion jll Das Gerippe von M ist
die geordnete Menge S^Yfco}. Wir sind im folgenden stark am Dimensionsvektor

(dimM(a))aeA interessiert. Offenbar gilt:

dimM(6)= £ n(U)dimU(b) fur beB und

dim M(s) dim W.

Dièse Formeln spielen eine entscheidende Rolle in der gesamten Arbeit.

2. Extremale Algebren

2.1 Wir verwenden die Bezeichnungen von [8], 6. Dabei unterscheiden wir
meistens nicht zwischen einem darstellungsendlichen graduierten Baum (T, g)
([8], 6.3) und der zugehôrigen einfach zusammenhângenden Algebra A AT ([8],
6.4). Sei also von nun an A (T, g) eine einfach zusammenhângende Algebra mit
Darstellungskôcher ,R und Kôcher K. Auf der Punktmenge Ko des Kôchers ist
durch

&quot;x &lt; y genau dann, wenn es einen Weg von x nach y in K gibt&quot;

eine Ordnungsrelation definiert. Ein A-Modul E heisst extremal (bzw.
omnipràsent), wenn JE unzerlegbar ist und E(x)^0 fur aile bzgl. der eben
eingefùhrten Ordnung extremalen Punkte (bzw. fur aile Punkte) gilt. Die Tràger-
algebra T(M) eines A-Moduls M definieren wir als die voile Unterkategorie von
A bestehend aus dem Trâger {xeKo:M(x)^0} von M. Mit A hat auch T(M)
keinen orientierten Zyklus im Darstellungskôcher. Nach einem Ergebnis von
Happel-Ringel ([15]) ist jeder unzerlegbare A-Modul U sogar ein treuer T(U)~
Modul, d.h. T(U) identifiziert sich mit der Restklassenkategorie von A nach dem
Annihilator von U.

Eine extremale Algebra ist eine einfach zusammenhângende Algebra, die
einen extremalen Modul besitzt. Hauptgegenstand unserer Untersuchungen ist die
Klassifikation aller extremaler Algebren mit den zugehôrigen extremalen Moduln.

Dass wir statt treuer Algebren und Moduln extremale betrachten, erschwert
die Beweisfùhrung nicht und hat folgenden Grund: Wir môchten gern aile
Unzerlegbare uber allen einfach zusammenhângen Algebren kennen. Ist A
einfach zusammenhângend mit Unzerlegbarem U, so ist zunâchst nicht klar, dass
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T(U) wieder einfach zusammenhângend ist. Die einfach zusammenhângende
Algebra

mit 7/3 eô und y/Sa 0 hat z.B. als voile Unterkategorie die nicht einfach
zusammenhângende Algebra A&apos;

• •V
mit rad2A&apos; 0.

Hingegen kann man nach der Charakterisierung einfach zusammenhângender
Algebren von Bautista-Larriôn-Salmerôn ([5], [4]) und Gabriel ([14]) nacheinan-
der solange maximale oder minimale Punkte weglassen, bis man eine einfach
zusammenhângende Algebra B erhâlt, die T(U) umfasst, sodass U ein extremaler
B-Modul ist.

Als Nebenergebnis unserer Klassifikation finden wir im zweiten Teil der
Arbeit, dass aile extremalen Moduln treu sind. Ferner haben Bautista, Larriôn
und Salmerôn inzwischen bewiesen: &quot;Eine darstellungsendliche Algebra mit
zykellosem Darstellungskôcher und treuem Unzerlegbaren ist einfach zusammenhângend.&quot;

Aus jedem der beiden Resultate ergibt sich sofort, dass Trâgeralgebren
wieder einfach zusammenhângend sind. Wir benutzen jedoch dièse Tatsache
nicht.

2.2 Auf dem Darstellungskôcher R ist analog zu K eine Ordnungsrelation
&lt;R definiert. Die Spur ^R dieser Ordnungsrelation auf K-identifiziere die Punkte
von K mit den projektiven Punkten von R-ist stàrker als &lt;. Jeder &lt;R-extremale
Punkt von K ist also auch &lt;-extremal, aber die Umkehrung ist i.a. falsch.

Die in [8], 6.6, fur einen Projektiven P (g(m), m) mit maximalem Grad
angestellten Ueberlegungen gelten fur jeden &lt;R-maximalen Projektiven.

LEMMA. Sei P (g(m),m) ein &lt;R-maximaler Projektiver, und sei m—tx
Vo—Yi—V2* &apos; * —Vn ein Weg aus lauter verschiedenen Punkten im Baum T.

Hat A (T,g) einen extremalen Modul E, so gehôren (gCm)-].,^),
n-l,yB)zuR

Beweis. Per Induktion nach n. Seien Q (q, yn) der Projektive und 1 0&apos;, yn)

der Injektive in der T-Bahn(1) von yn. Da P &lt;R-maximal ist, gilt q &lt; g(m) + n -1.

1 Abweichend vom ùblichen Gebrauch bezeichnet t die Translation nach rechts.
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a-

Fig 2.2

Andererseits gibt es einen Weg P —? • • • —?£}—»••• -» I in jR, was i&gt;

g(m) + n + l zur Folge hat. Die angegebenen Punkte gehôren also zu R (Siehe
Fig. 2.2). q.e.d.

Das Lemma erlaubt uns, fur jeden Nachbarn tt von m in T den Baum T1 ([8],
6.6) in der Orientierung, wo tt einzige Quelle ist, mit einem Schnitt ([3]) durch
den Darstellungskôcher RTi ([8], 6.6) zu identifizieren.

2.3 LEMMA. Hôchstens folgende Baume T erlauben eine Graduierung g, so

dass (T, g) eine extremale Algebra ist:

(a,p, y, 8):

¦ -a2—a

h y): a

b6

a, |8, 7, 6 &gt; 1

i

ii—e—cr • -Cy

4i

ds

\ hi b[

« Y

(a, |3, 7, ô, e): a,

aa

^a — 1

€q—

V&apos;&quot;

Aa: a!—a2—

P,7, S, e&gt;l

&quot;&apos;•4.

—aa, a &gt; 1
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Wie ùblich benutzen wir fur (a, 1,1), (2, 2,1), (3, 2,1) und (4, 2,1) auch die
Bezeichungen Da+3i E6, E7 und Es.

T,

Fig. 2.3

Beweis. Sei zuerst T ein Baum mit einem Punkt a von maximaler Ordnung
n&gt;4, und sei P (g(m), m) ein &lt;R-maximaler Projektiver (Siche Fig. 2.3). Fur
m a enthâlt Ur=iSXi ([8], 6.6) die Menge [1,1,1,1]. Sei daher ohne
Einschrânkung meTu das die Zusammenhangskomponente von bx in T\{a}
bezeichnet. Nach Lemma 2.2 liefern die Punkte b2,... ,bn fur n &gt; 5 die geordnete
Menge [1,1,1,1], Daher ist n 4. Wàre m kein Randpunkt, so fânde man wieder
[1,1,1,1]. Aus dem gleichen Grund sind aile Baume T, unverzweigt, d.h. es gilt
T (a, |3, 7, 8) fur geeignete Parameter a, |8, 7, 8. Ausserdem ist bis auf Um-
benennung m aa.

Nun habe T mehr als zwei Punkte der Ordnung 3, d.h.

/b è

ist ein Teilbaum von T. Liegt m auf einem Ast, der zwischen zwei Punkten der
Ordnung 3 abzweigt, etwa in x, so liefern a, 6, g und h die geordnete Menge
[1,1,1,1]. Gleiches gilt, wenn m auf dem Zweig von e liegt. Befindet sich m auf
dem Ast von h, so findet man [1,1,1,1] mit a, b, e und g. Deshalb hat T
hôchstens zwei Punkte der Ordnung 3. Ferner zeigt obige Ueberlegung, dass fur
T (a, /3, 7, ô, e) bis auf Umbenennungen der Fall m aa vorliegt. q.e.d.

2.4 Nun geben wir zu den einzelnen Bâumen einige Algebren durch Kôcher
mit Relationen an. Dabei gelten immer aile môglichen Kommutativitâts-
relationen. Eine Nullrelation deuten wir durch eine gestrichelte Linie lângs des

betreffenden Weges an, und eine Kante x—y kann durch einen Pfeil in beliebiger
Richtung ersetzt werden.
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Aa, a&gt;l: u1—u2— —ua

Da+3,a&gt;l: mn\.«o—«i

291

(1)

(2)

w

Da+3, « \ .* X2 • -Xq

fp-1

&quot;2

u —y2— —yr
p&gt;0, q, r&gt;l,

y1—v2- - • —va

(3)

(4)

V
xl—x2

P^3, qa=l,

—xr

(5)

X2 X _w2 —wp (6)

(1,1,1, S), (7)
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(l,l,l,l,e),ea=l:
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W

yi

\

\

(8)

(9)

i, /, k, l, m &gt;

(10)

x, x2—x1-+wk-*yl—y2. ¦ ¦ —yn

Dl~&gt;V2* * • —&gt;%

(11)

(12)
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u\ (13)

Ui

V

î
x

(14)

z—x-

(15)

M-

j a (16)

»t

tf
&gt;2&lt;—V3*

w

r

n

(17)

(18)

(19)

(20)
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(a, 2,1), a &gt; 3:

(21)

u2- U i

&gt; (22)

u2-

V
y

U2-+-.&apos;

(23) (24)

u-

Als nàchstes fùhren wir zu einigen Algebren gewisse Dimensionsvektoren an,
wobei der zweite Vektor bei 22 auch zu spiegeln ist.

2 \2—2- • • 2—1—1- • • —1

1 vvt

2—2-- 2—1—!••• 12

&quot;

S

3 1.\ /

S2-2-

V

;-i... i

\—v • • i

,i—i- • • i

vi—i- • • i

A..,

1... 1—2—1—1- • • 1

&quot; /¦ S
^ 2^

\ m r- t
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15 1—1- • • —1

i—i 1 1—2-

r- -\

17 1— -1 18

2—2- 2—1

1

i—l 2—1 2-
1 -1

20 1—1 —1 1—!••• —1

n
1—2 1

n 2—2u
1—1-.. __i
I

A*&quot; \21 \_ J 22

1—1-

N_2-/ -2-1
\

^-1- -1
22 1

V-2—/

1 :2

1—!••• —1 1—!••• —1\

1 1

2 3 2

1—!•¦• —:

/

y/\
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KLASSIFIKATIONSSATZ: (a) Aile Algebren der Familien (1) bis (24) sind
extremal-also insbesondere von der Form (T, g)-und haben den jeweils angege-
benen Baum T. Dabei induziert fur jede Algebra die Zuordnung M ¦-» Dim M eine

Bijektion zwischen den Isomorphieklassen extremaler Moduln, deren Dimensions-
vektor an einem Punkt &gt;2 ist, und den zur betreffenden Algebra angefùhrten
Dimensionsvektoren.

(b) Fur die Baume A^ und Da+3 enthàlt die Liste aile extremalen Algebren.
(c) Sei A=(T,g) eine extremale Algebra. Ist T einer der Baume (a, |8, 7),

(a, P, y, 8) oder (a, j3, 7, 8, e), wobei einer der Parameter a, j3, 7, 8 oder e echî grôsser
als 67 ist, so ist A oder Aop isomorph zu einer der Algebren aus der Liste.

Die Aussage a) kann man verhâltnismâssig leicht direkt verifizieren. Dabei ist
die Injektivitât der Abbildung M*-* Dim M wohlbekannt ([15]). Die wesentlichen
Teile des Satzes sind b) und vor allem c), weil uns nun nach 2.3 und [8], 6.7 nur
noch endlich viele extremale Algebren zu &quot;kleinen&quot; Bâumen unbekannt sind.
Dièse Ausnahmealgebren sollen in der nachfolgenden Arbeit mit dem Computer
klassifiziert werden. Den Beweis des Klassifikationssatzes fiihren wir in Abschnitt
3.

2.5 Am Ende dièses Paragraphen môchten wir anhand eines Beispiels das

Prinzip des Beweises von Satz 2.4 erklâren. Dazu benôtigen wir noch folgende
Bemerkung aus [22].

LEMMA. Sei A ein Untertranslationskôcher des Translationskôchers F. Dann
gilt fur x, y € Ao: dim k(A)(x, y)&lt;dim fc(F)(x, y).

Beweis. Erinnern wir daran, dass A ein Untertranslationskôcher von F ist, fails

gilt: a) A ist voiler Unterkôcher von F, b) Fur xeA0 mit rrxeA0 ist auch t^
definiert, c) Existiert rAx fur x e Ao, so auch rrx und es gilt rAx rrx.
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Unter diesen Voraussetzungen identifiziert sich k(A)(x, y) mit dem Quotien-
ten von k(F)(x, y) durch das Idéal, das von den Wegen durch einen Punkt aus

ro\ào erzeugt wird. q.e.d.

V\ A

S VV/V\/
Fig. 2.5.1

Sei z.B. A (T, g) eine extremale Algebra zum Baum T (3, 3,1). Nehmen
wir ferner an, es gebe einen ^R-maximalen Projektiven P (g(m),m) mit
m b3. Wir setzen B (T1, gx) und skizzieren den Beginn der startenden Funk-
tion von b2 in kÇlT1) ([8], 6.6, siehe Fig. 2.5.1).

Nun identifizieren wir nach 2.2 T1 in der Orientierung mit b2 als einziger
Quelle mit dem Schnitt durch JRT&gt;, der rad P (g(m) -1, b2) als einzige Quelle
hat. Innerhalb von JRTi liegt vor der gestrichelten Linie ein Injektiver, weil sonst
die startende Funktion von radP den Wert 2 annimmt, was der Darstellungs-
endlichkeit von A widerspricht ([8], 6.6).

Wir mùssen also verschiedene Fâlle untersuchen und wâhlen darunter denje-
nigen, wo rax injektiv ist, aber keiner seiner Vorgànger. Sei A der Unter-
translationskôcher von ZT1, in dem ra1 injektiv ist. Wir skizzieren die startende
Funktion s von b2 in k(A) (siehe Fig. 2.5.2).

Weil jRti Untertranslationskôcher von A ist, liegt nach obigem Lemma der
Trâger U der startenden Funktion von rad P in fc(jRT0 im Trâger S von s. Dabei
gilt fur zwei Punkte x,yeU, dass x&lt;vy geriau dann, wenn es in S einen Weg
von x nach y gibt (Beweis per Induktion nach Weglânge).

Der Kôcher von B entsteht aus demjenigen von A durch Weglassen von P.

Dabei bleiben extremale Punkte erhalten, man hat aber eventuell einige Nach-
barn von P als maximale Punkte hinzuzufugen.

Sei nun E ein extremaler A-Modul mit Gerippe G. Per Définition verschwin-
det E also nicht auf den extremalen Punkten des Kôchers von A. Nach obiger

Fig. 2.5.2
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Bemerkung und der Dimensionsformel 1.3 liegen daher die Injektiven zu ex-
tremalen Punkten des Kôchers von B in der Vereinigung der Trâger der starten-
den Funktionen zu den g g G und zu rad P. Da E am minimalen Punkt, der rax
entspricht, nicht verschwindet, muss G einen Vorgânger von rat enthalten. Unter
allen nach der Kleinerschen Liste môglichen derartigen Gerippen betrachten wir
als Beispiel

J -H
\a3, r3b2, rax)

Die injektiven Punkte von RTi liegen dann aile im umrandeten Gebiet von A

und mûssen so gewàhlt werden, dass B darstellungsendlich ist (dièse Bedingung ist im
Beispiel immer erfûllt), und dass aile nach links verschobenen Punkte, die zu S

gehôren, bereits zu RTi gehôren ([8], 6.6). So kann man als Injektive nicht a3,

ra2, rat, r2cu T3d, r4bx und r3b2 wâhlen, weil dann t2cx auch projektiv ist, wie

man durch Rechnen mit Dùnensionen von rechts nach links sofort erkennt.
Hingegen kônnen ra3, ra2, rau t2c1? T3d, t3^! und r3b2 als Injektive auftreten,
deren Dimensionsvektoren dann leicht berechnet werden kônnen. Nach [6] ist JB

dann durch die entsprechenden Kommutativitâts- und Nullrelationen bestimmt.
In unserem Beispiel erhalten wir die Algebra

mit Kommutativitâtsrelation. Da wir auch den Dimensionsvektor von rad P
kennen, finden wir fur A

&apos;S

Y
mit Kommutativitâtsrelationen. Schliesslich berechnet man nach 1.3 den
Dimensionsvektor von E als
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Dabei findet man i.a. natùrlich mehrere Dimensionsvektoren.

3. Beweis des Klassifikationssatzes

Wir bestimmen die extremalen Algebren A=(T,g) getrennt fiir die in 2.3

eingefiihrten Baume T, indem wir [8], 6.6 anwenden. Dabei ùberlassen wir die

Berechnung der Dimensionsvektoren extremaler Moduln meist dem Léser.

3.1 Der Baum Aa

Dieser Fall ist in der Literatur eingehend behandelt (z.B. [8], 7). Die von uns

benôtigten Eigenschaften sind jedoch einfach abzulesen. Der Unterschied im
Schwierigkeitsgrad zwischen der Klassifikation der treuen und derjenigen aller
einfach zusammenhângenden Algebren mit Baum Aa làsst vermuten, dass die

Beschreibung aller einfach zusammenhângenden Algebren knifflig ist.
Natùrlich sind Kôcheralgebren vom Typ Aa extremale Algebren mit Baum

Aa. Umgekehrt zeigt das induktive Verfahren aus [8], 6.6 zunâchst, dass einfach
zusammenhângende Algebren mit Baum A^ als Kôcher einen Baum haben.
Daher sind extremale Moduln treu. Im Trâger der startenden Funktion eines
Extremalen E mûssen also aile Injektiven liegen. Als Trâger der startenden
Funktion eines Punktes innerhalb von fc(ZAa) erhâlt man das wohlbekannte
Rechteck V ([12], siehe Fig. 3.1.1). Von oben nach unten absteigend zeigt man,
dass die Injektiven aile auf einem Schnitt innerhalb von V liegen. Eine extremale
Algebra mit Baum Aa ist also eine Kôcheralgebra vom Typ Aa. Spâter brauchen
wir noch diejenigen Algebren mit Baum Aa, die eine aufsteigende Diagonale als

Schnitt haben und darauf 2 Punkte x und y, deren Trâger zusammengenommen
aile Injektiven enthalten (siehe Fig. 3.1.2).

Fig. 3.1.1
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Fig. 3.1.2

Wir kônnen annehmen, dass weder x noch y treu ist. Sei D die aufsteigende
Diagonale am weitesten links, die einen Injektiven z enthàlt, der nur von x aus

erreichbar ist. Wir wàhlen z als hôchsten Punkt auf D mit dieser Eigenschaft. Der
Injektive t auf der nâchsthôheren Stufe liegt dann auf der absteigenden Diagonale
durch y. Unterhalb von z und oberhalb von y liegen die Injektiven auf Schnitten.
Man erhâlt so Algebren, deren Kôcher ein Baum ist, mit genau einem Punkt p
der Ordnung 3 und genau einer Nullrelation der Gestalt —&gt; p —» 0.

3.2 Der Baum Da+3

Mit Hilfe der bekannten startenden Funktionen von fc(ZDa+3) ([12]) iiber-
prûfen wir zunâchst, dass die Darstellungskôcher der in Satz 2.4 angegebenen
Algebren Da+3 als zugehôrigen Baum haben.

Dies ist klar fur Algebren aus der Familie (2). Bei einer Algebra aus der
Familie (3) nimmt man zuerst den Darstellungskôcher der Algebra ohne die xt
und hângt dann an der absteigenden Diagonale durch vp noch den linearen
Kôcher xx—x2—* * —xq dran. (Bei lDa+3 liège der Punkt der Ordnung 3 oben).
Nehmen wir z.B., die Algebra

U X

In der folgenden Skizze liefern die dick eingetragenen Punkte den Darstellungskôcher

als Unterkôcher von ZD13.
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\ \s \ms \#7 \y \y \m/ \m? \ 7 \ 7

/ \/v V V V V V V V V V VV &apos;

&apos;

^ / V x.x x./ x.x W X-/Vv &apos;

Betrachten wir noch Familie (5). Dort lâsst man zuerst up und w1—vv2— • •—ws
weg. Dann hângt man den Projektiven zum Punkt up an twp_2 an und den
linearen Kôcher zu Wi—w2—• • •—ws âhnlich wie eben an der absteigenden
Diagonale durch vq.

Jede der angefùhrten Algebren hat offensichtlich extremale Unzerlegbare, und

jeder davon ist treu. Wir iiberlassen dem Léser die lâstige Pflicht sicherzustellen,
dass bei der induktiven Konstruktion keine weiteren extremalen Algebren mit
Baum £&gt;a+3 auftreten. Dabei ûberlegt man sich, dass fur einen &lt;R-maximalen

Projektiven P (g(at), al) mit i&gt;2 die zu

\.d—ax at_!
c

gehôrige Algebra extremal ist. Ausserdem benutzt man das Ergebnis am Ende

von 3.1.

3.3 Der Baum (a, |8, 7, 8)

Die bisher behandelten Fâlle sind isofern nicht typisch, als von vorneherein
klar ist, dass aile Graduierungen eine darstellungsendliche Algebra liefern. Dies
ist von nun an nicht mehr richtig, und wir verwenden das Endlichkeitskriterium
von [8], 6.6. Im vorliegenden Fall ist die Klassifikation einfach. Wir wiederholen
nochmals ausfûhrlich die Argumentation von 2.5.

LEMMA. Die einzigen extremalen Algebren A=(T,g) mit Baum T der Klasse

(a, /3, 7, 8) sind bis auf Isomorphie :

u—&gt;w ty\ /Xi—*X2—&gt; &gt;XS

Xi—&gt;x2 &gt;x8
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1 *

yi&apos;

Fig. 3.3

Beweis. Nach dem Beweis von Lemma 2.3 kônnen wir annehmen, dass

^ (g(^a)? a&lt;x) ein &lt;R-maximaler Projektiver ist. Wir setzen B={Tx,gx) und
skizzieren in RT\ den Anfang der startenden Funktion s von rad P (Siehe Fig.
3.3). Wie in 2.2 bemerkt, identifizieren wir T1 mit einem Schnitt durch jRti, so
dass rad P mit aa-.1 zusammenfâllt. (Setze ao=e.) Als B-Modul ist e injektiv,
weil anderenfalls s(re) 2, was der Darstellungsendlichkeit von A widerspricht.
Vor e liegt also ein &lt;R-minimaler injektiver B-Modul i, der einem minimalen
Punkt q im Kôcher K von A entspricht.

Sei jetzt E ein extremaler A-Modul mit Gerippe G (1.3). Per Définition ist
also E(q)^0. Nach der Dimensionsformel in 1.3 gibt es ein xeG mit x(q)^0.
Weil B einfach zusammenhângend ist, ist x kleiner als i, also auch kleiner als e.

Da x mit allen Punkten im Trâger von s vergleichbar ist, also erst recht mit jedem
Elément von G, kann G nach der Kleinerschen Liste nur ein Elément haben:

G={x}. Da jeder Homomorphismus von rad P in einen Injektiven durch x
faktorisiert, ist x ein extremaler B-Modul. Die extremalen Punkte von B be-
stehen nâmlich aus den extremalen Punkten von A ohne P und eventuell
zusâtzlich einigen Nachbarn von P. Im Trâger der startenden Funktion von x
liegen also aile extremalen Injektiven.

Fur a 1 ist rad P x e und der Trâger der startenden Funktion besteht aus
drei von e ausgehenden Strahlen. Aile Punkte des Trâgers sind daher injektiv,
und man findet fur B die Algebren

Da mit A auch B darstellungsendlich ist, findet man fur A die angegebenen
Algebren.
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Fur a &gt; 1 ist ax oder rax injektiv, weil der Injektive in der r-Bahn von ax
zwischen zwei Injektiven im Tràger der startenden Funktion von x liegt. Im

ersten Fall enthàlt B als voile Unterkategoriei/^-*, im zweiten &apos;^—&gt;. Jedenfalls ist

B nicht darstellungsendlich. Dies schliesst den Fall a &gt; 1 aus. q.e.d.

Naturlich hàtten wir uns einen Teil der Ueberlegungen sparen kônnen, wenn
wir das Ergebnis von Bautista-Brenner ([3]) iiber fast zerfallende Folgen mit vier
mittleren Termen benutzt hâtten. Im nâchsten Absatz leiten wir mit Hilfe ihrer
Ergebnisse ûber Wiederholungszahlen zahmer Schnitte ein wichtiges Endlich-
keitskriterium her. Oben haben wir auf eine Anwendung verzichtet um an-
zudeuten, wie man mindestens einen Teil ihrer Ergebnisse zuerst leicht fur
einfach zusammenhângende Algebren beweist. Mit der von Gabriel und Riedt-
mann entwickelten Ueberlagerungstheorie lassen sich die Resultate dann
&quot;hinunterdrùcken&quot; auf beliebige darstellungsendliche Algebren.

3.4 Ein Endlichkeitskriterium

Bevor wir die restlichen Baume untersuchen, leiten wir unter gewissen Bedin-

gungen eine Schranke fur die Lange der Aeste von T ab, falls (T, g) eine
extremale Algebra ist. Dièse Ueberlegung wird durch die nachfolgende Arbeit
uberflussig. Sie ist aber &quot;psychische&quot; Grundlage fur die Klassifikation, weil sie

zeigt, dass es sich dabei um ein endliches Problem handelt.

LEMMA. Sei A (T, g) eine extremale Algebra, und sei

an—an_! —ax—d—bt—b2

ein Teilbaum von T. Ferner sei P (gC^), a,,) ein Projektiver mit maximalem Grad.
Dann gilt:

(a) Fur 7 1 ist n^ 62.

(b) Fur 7&gt;2 ist n&lt;25.

Beweis. (a) Nach Lemma 2.2 und der Wahl von P gehôren aile Punkte im
umrandeten Bereich der Figur 3.4 zu RT. Nach [3] darf sich És nur 29-mal
wiederholen Also gilt fe&lt;28, d.h. n&lt;62.

Der Beweis von (b) ist âhnlich. q.e.d.
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Fig. 3.4

3.5 Der Baiim (a, |8, y,8,e)

Sei P (g(m),m) ein Projektiver mit maximalem Grad. Nach dem Beweis von
Lemma 2.3 kônnen wir m aot annehmen und y&lt;&amp; Wir betrachten zwei

Môglichkeiten.

3.5.1 ô&gt;2

Wir ùberlegen uns, dass dann bei einer extremalen Algebra aile Parameter a,
(3, 7, 8, e durch 62 nach oben beschrânkt sind. Zunàchst ist a +e &lt;62 nach 3.4.
Setze wie ùblich B (T1, gt) und skizziere die startende Funktion von aa-x in i?Ti
(a0 e0, siehe Fig. 3.5.1). Weil [1,2, 5] nicht vorkommen darf, ist j3 &lt;4. Aus dem

gleichen Grand ist 8 &lt;5, wenn e0 oder ee nicht injektiv sind (bzgl. RT* natûrlich).
Sind schliesslich e0 und ee injektiv, so folgert man wie in 3.3, dass das Gerippe
eines extremalen Moduls E nur aus einem Elément x besteht, das kleiner als e0

ist, und dass x ein extremaler B-Modul ist. Da B als voile Unterkategorie

e0—»t&gt;!

enthàlt, ist Ô durch 4 nach oben beschrânkt.

3.5.2 8 1 (=»y 1)

In diesem Fall kônnen wir aile môglichen Algebren bestimmen. Fur p &gt; 2 ist

e0 injektiv, weil sonst [1,1,1,1,] auftritt. Das Gerippe eines extremalen A-Moduls
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A&apos;

Fig. 3.5.1

E besteht daher aus einem extremalen B-Modul x, der kleiner als eQ ist. Fur a &gt; 1

enthâlt B als voile Unterkategorie eine der nicht darstellungsendlichen Algebren

a1

h
bx oder

Fur a 1 hingegen finden wir die Familie (8) aus der Liste.
Von nun an gilt |3 7 8 1. Wir schliessen noch den Fall a &gt; 1 aus. Ist e0

injektiv, so enthâlt B als voile Unterkategorie eine Kôcheralgebra vom Typ D4.
Der dafùr soeben gegebene Beweis bleibt gûltig. Wenn e0 nicht injektiv ist,
unterscheiden wir zwei Môglichkeiten.

Zunâchst existiere TjaH1 fur ein a&gt;/&gt;2 nicht. Wir skizzieren die startende

Funktion s von aa_! in JRTi (Siehe Fig. 3.5.2.1). In der r-Bahn von aa_x liegt ein

0

Fig. 3.5.2.1

Injektiver, der einen minimalen Injektiven i als Vorgânger hat. Ein extremaler

A-Modul E verschwindet nicht an der Stelle i, so dass sein Gerippe einen

Vorgânger von i enthâlt. Nach der Kleinerschen Liste haben wir G={ak},
1 &lt; k &lt; a -1, fur einen extremalen B-Modul aK. Zwischen e0 und ee gibt es einen

Injektiven, weil sonst s(ree) 2 gilt. Wendet man auf die extremale Algebra B

das zu 2.3 duale Lemma an, so findet man, dass schon aa_x injektiv ist. Daher ist

G ={aa-l} und a«_! ist ein treuer B-Modul. Existiert r2au so ist et injektiv (sonst

kommt [1,1,1,1] vor oder es ist s(rex) 2) und B enthâlt als voile Unter-
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kategorie

/¦
bx—&gt;Te0

Va,
Existiert r2ax nicht, so sei eK der Injektive mit kleinstem Index. Dann enthâlt B

lrK
als voile Unterkategorie.

Nun môgen aile rJa,_i, a&gt;j&gt;2, existieren. Die Existenz von r2ax erzwingt,
dass ex injektiv ist. Sei E ein extremaler A-Modul mit Gerippe G. Hat G nur ein
Elément x, so ist x ein extremaler B-Modul. Anderenfalls gilt nach der
Kleinerschen Liste G~{eXy bx}. Falls bx&lt;=-*re0 mono, ist ex ein extremaler B-
Modul. Fur bx-*&gt; re0 epi hingegen sind auch eQ+&gt; ex und eo-*&gt; bx epi aus

Dimensionsgriinden, d.h. e0 ist ein extremaler B-Modul. Auf jeden Fall ist B
extremal mit &lt;R-minimalem Injektiven el9 was dem zu 2.3 dualen Lemma
widerspricht.

Jetzt bleibt lediglich der Fall a p &lt;y ô l ùbrig. Wieder skizzieren wir die
startende Funktion von e0 wobei eK der Injektive mit kleinstem Index sei (Siehe

Fig. 3.5.2.2). Nun bereits vertraute Argumente zeigen, dass als Gerippe
extremaler A-Moduln nur die Mengen {e,}, 0^/^k, oder {et,x}, 1&lt;î&lt;k, xe
{re]9 bx}, j &lt; i -1, môglich sind. Im ersten Fall ist e, ein extremaler B-Modul, also

treu nach 3.2. Fur A stôsst man auf eine Algebra der Familie (9). Im zweiten Fall
schneiden wir dual zur ùblichen Konstruktion B am minimalen Injektiven eK auf.
Im unteren Teil erhalten wir eine Algebra B&apos; mit Baum AK, wobei aile unzer-
legbaren injektiven B&apos;-Moduln in der Vereinigung der Trâger der startenden

s
¦ \

Fig. 3.5.2.2
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Funktionen von x und 7ex-\ liegen. Nach der Bemerkung am Ende von 3.1 finden
wir die Familie (10).

3.6 Der Baum (a, 0, 7), 0 &gt; 2

Die Analyse dièses Falles ist bei weitem am kompliziertesten, und eine
vollstândige Klassifikation ohne Computer kaum durchfùhrbar. Wir unterscheiden
mehrere Môglichkeiten und setzen dabei von nun an a &gt; |3 &gt; 7 voraus.

3.6.1

Wir zeigen, dass bei jeder extremalen Algebra a&lt;27 ist. Sei P (g(m), m)
ein Projektiver maximalen Grades. Da [2,2,2] nicht auftreten darf, muss m

Randpunkt oder Nachbar eines Randpunktes sein. Nach 3.4 haben wir a &lt;27 fur
m g {a,}. Ist m kein Randpunkt, so ergibt sich nun a&lt;4, weil sonst [1,2,5]
auftritt.

Sei jetzt m cy. Wir skizzieren die startende Funktion von cy-i in RT* wobei
wieder B=(T\g1).

T1 tT1 t2Tx

y y/ ^ ;
Ist e0 injektiv, so enthâlt B als voile Unterkategorie

\/1 Oder
•^0

Es folgt a&lt;4. Fur /3&gt;3 ist nun a&lt;5, sonst kâme [1,2,5] vor. Ist ax nicht

injektiv, so gilt a&lt;6, weil anderenfalls [1,2,5] auftritt. Analog ist a&lt;5, wenn
r2ct existiert. Man sieht, dass jetzt B eine der folgenden Algebren als voile
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Unterkategorie enthâlt, weshalb a &lt; 5 gilt.

aa aa

r
ax td1

1

Ter, i ixî /\)
Die gleichen Ueberlegungen gelten fur m b3.

3.6.2 y 1

Zuerst sei P (g(m), m) ein Projektiver maximalen Grades mit
Dabei ist nur a&gt;i&gt;a-4 zulâssig, weil sonst [1,2,5] auftritt. Nach 3.4 ergibt
sich a&lt;66.

Von jetzt an sei P (g(m), m) ein &lt;R-maximaler Projektiver mit m^lc^}. Wir
werden fur a ^ 8 aile extremalen Algebren klassifizieren.

3.6.2.1 m d

Dann ist a &lt;4, weil sonst [1, 2, 5] vorkommt.

3.6.2.2 m cl

Wie immer sei B (T1, gt). Der Baum von B ist dann vom Typ An, so dass B
stets darstellungsendlich ist. Wir skizzieren den Beginn der startenden Funktion
von d in KTi mit Tràger S. (Siehe Fig. 3.6.2.2). Ist d injektiv, so ist S fur aile
Werte von a und p darstellungsendlich. Wir erhalten so die Familie (11). Sei also

d nicht injektiv. Fur j3&gt;3 ist dann a&lt;5, weil sonst [1,2,5] in S liegt. Wir
kônnen daher |8=2 voraussetzen. Ist ax nicht injektiv, so folgt a&lt;6. Fur
injektives ax stossen wir auf die Familien (13), (14) und (17)op mit j 2. Dem
letzten Fall m€{fcj sind die nâchsten drei Absàtze gewidmet.

Fig. 3.6.2.2
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A
&apos;

A

Fig 3 7 1

3.7 Der Baum (a, 2,1), m e{bt}.

Im folgenden ist stets a &gt; 8. Es ist klar, dass B immer darstellungsendlich ist.

3 7.1 m b1

Wir zeichnen die Trâger der startenden Funktionen von rx und r2 mit
rad F r1©r2 (Siehe Fig. 3.7.1). Dabei muss à injektiv sein, weil sonst [1,2,5]
vorkommt. Man erhâlt Algebren der Familie (12)op, wo z fehlt.

3.7.2 m b2

Der Trâger der startenden Funktion von bx (Siehe Fig. 3.7.2) in k(lTl) zeigt,
dass vor der gestrichelten Linie ein Injektiver x von RTi liegt, weil sonst [1, 2, 5]

I

Fig 372

auftritt. Wir unterscheiden die einzelnen Fâlle, wobei wir immer als erstes den

Trâger der startenden Funktion von b1 in k(A) skizzieren. Dabei ist A der
Unterkôcher von ZT1, in dem x injektiv ist (2.5).

(a) bx ist injektiv (Siehe Fig. 3.7.2.a).
Dann ist bx extremaler B-Modul, also treu nach 3.2. Man erhâlt die Familie

Fig 372a
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(16) und Algebren aus den Familien (12) und (12)op, bei denen z fehlt.

(b) d ist injektiv (aber bx nicht) (Siehe Fig. 3.7.2.b).
Jetzt ist d ein treuer B-Modul. Die môglichen Algebren gehôren zur Familie

(12) ohne z.

A&apos;

a&apos;

A-A

Fig 3 7 2b

(c) rbx ist injektiv (Siehe Fig. 3.7.2.c).
Die startende Funktion von bx sieht so aus wie in (a). Nun ist aber d ein

extremaler B-Modul, also treu nach 3.2. Aile Injektive von l*Ti liegen also im
Trâger der startenden Funktion von d in k(A), die wir andeuten. Wir finden die
Familien (17), (18), (19) und (17)op.

¦¦««
:&gt;

l
Fig 37 2c

(d) ax ist injektiv (Siehe Fig. 3.7.2.d).
Das Gerippe eines extremalen A-Moduls ist einelementig oder gleich {a1? cx}.

Jedenfalls liegen aile Injektiven im eingekreisten Bereich. Wir stossen auf die
Familien (13)op und (14)op.

Fig 3 7 2d

(e) a2 ist injektiv (Siehe Fig. 3.7.2.e).
Das Gerippe eines extremalen A-Moduls besteht aus hôchstens zwei

Elementen, wovon eines Vorgànger von a2 ist. Deshalb liegen die Injektiven im
unkreisten Gebiet. Wir finden aile fehlenden Algebren der Familien (12) bis (24).
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Fig 3 7 2e

3.8 Der Baum (a, 3,1), m e {bt}

Wieder sei a &gt;: 8. Dann ist m bx nicht môglich, weil sonst [1,2, 5] vorkommt.
Analog ist d injektiv bei m b2, so dass nur Algebren der Familie (12) mit z
erlaubt sind. Nun gelte also m b3. Wir deuten die startende Funktion an (Siehe

Fig. 3.8). Ist b2 injektiv, so auch extremal, also treu nach unserer Liste. Eine
Ueberprûfung aller in Frage kommenden Kandidaten anhand der Liste zeigt dann,
dass A nur zur Familie (12) gehôren kann. Aehnlich geht man vor, wenn bx

injektiv ist. Wegen a ^8 darf d kein &lt;R-minimaler Injektiver sein. Nun unter-
scheiden wir zwei Fàlle. Zuerst sollen r2bx und r3b2 existieren. Dann ist ax

injektiv, weil sonst [1,2,5] vorkommt. Sei E ein extremaler A-Modul mit
Gerippe G. Ist G={x}, so ist x extremal, also auch B. Sonst ist nur noch

G={ax,cx} môglich. Aus Dimensionsgrûnden sind dann d oder ax extremal. In
jedem Fall ist B eine extremale Algebra mit &lt;R-minimalen Injektiven ax. Die
duale Version von Lemma 2.2 schliesst wegen a &gt; 8 diesen Fall aus.

Im verbleibenden Fall besteht das Gerippe eines Extremalen aus einem

Vorgânger von d, sodass B extremal ist. Existiert r2bu so sind ai oder a2

^R-minimale Injektive, was wieder wegen der dualen Aussage zu 2.2 unmôglich
ist. Daher ist rbx injektiv. Aile Injektive sind von bx oder d aus erreichbar. Man
ûberzeugt sich, dass B dann nicht darstellungsendlich ist. Wir haben also nur
Algebren der Familie (12) mit z gefunden.

3.9 Der Baum (a, j3,1), m e {bt}, |3 &gt; 4.

Wir zeigen, dass fur a&gt;8 keine extremalen Algebren existieren. Da sonst

[1, 2, 5] auftritt, ist nur m €{fc3_x, fce} erlaubt. Fur m è3_! muss d injektiv sein,

A&apos;\&apos;

&lt; v
V VV\

Fig 3 8
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weil anderenfalls [1, 2, 5] vorkommt. Dann enthàlt aber B eine Kôcheralgebra
vom Typ É8 als voile Unterkategorie. Daher sei m b3. Falls rd, r2bx,..., T3ft3_!

existieren, ist at injektiv. Wie vorhin sieht man, dass B extremal ist. Dies

widerspricht der dualen Form von Lemma 2.2 und a &gt;8. Im anderen Fall ist B
aus trivialen Grunden extremal, so dass es genùgt, die Nichtexistenz extremaler

Algebren fur |3 4 nachzuweisen. Dies ergibt sich aus der Struktur der Dar-
stellungskôcher der Algebren aus der Familie (12) mit z.

4. Eine Schranke fur die punktweise Dimension

SATZ. Sei A eine einfach zusammenhàngende Algebra mit Kôcher K und U
ein unzerlegbarer A-Modul. Dann gilt dim U(x)&lt;6 fur aile xeK0.

Der Satz ist bisher bekannt fur kommutative Kôcher ([19], [26]) und Baum-
algebren ([7]). Er ist das Analogon zu einem Ergebnis Kleiners ûber Dar-
stellungen geordneter Mengen ([18]), auf das sich der Beweis des Satzes stùtzt.

Wir benôtigen noch einige Definitionen. Fur einen unzerlegbaren A-Modul U
bezeichnet sup U das Supremum der dim U(x) genommen ùber aile x e Ko. Ist
eine Algebra A gegeben, so bedeutet sup A das Supremum aller sup U, wobei U
die unzerlegbaren A-Moduln durchlâuft.

Die startenden Funktionen von fc(ZT), T Dynkinsch, ([12]), und Lemma 2.5

zeigen, dass

sup A&lt;

Weiter gilt die Behauptung nach Lemma 3.3 fur einen extremalen Modul ûber
einer einfach zusammenhângenden Algebra mit Baum vom Typ (a, /3, y, 8).

Wir fûhren den Beweis per Induktion ûber dim A und kônnen offenbar beim

Induktionsschritt U als extremalen A-Modul voraussetzen. Sei im folgenden also

stets A =(T, g) eine extremale Algebra mit Extremalem U and &lt;R-maximalem

Projektiven P (g(m),m). Weiter bezeichne S Uln=1SXi die Vereinigung der

Trâger der startenden Funktionen s^ B=n[=iBt die Algebra A\{P} ([8], 6.6)

und G das Gerippe von U. Nach der Kleinerschen Liste und den Dimensions-

formeln in 1.3 gilt bereits dim l/(z)&lt;6 fur den Punkt z, der P entspricht. An den

anderen Punkten weisen wir die Gûltigkeit des Satzes ebenfalls mit Hilfe von 1.3

nach. Dabei unterscheiden wir die nach 2.3 môglichen Baume fur T.

1

2

3 fur

4

6

A=(T, g) mitT &lt;

A., «eN

Dn,neN
E6

E7

E8
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4.1 Der Baum (a, j3, 7, 8, e)

Nach 2.3 gilt m aa. Wir skizzieren den Beginn von S (Siehe Fig. 4.1). Fur
j3&gt;2 ist e0 injektiv, weil sonst [1,1,1,1] in S vorkommt. Folglich enthâlt G

4

Fig 4 1

einen Vorgânger von e0, also ein maximales Elément. Nach 1.2 ist G ein-
elementig, und die Behauptung gilt per Induktion. Sei also /3 1 und zuerst a &gt; 1.

Das Gerippe ist auch einelementig, wenn r2al nicht existiert. Im verbleibenden
Fall ist ex injektiv, weil sonst fur e&gt;l [1,1,1,1] auftritt oder fur 6 1

sXx den Wert 2 annimmt. Da einelementige Gerippe keine Schwierigkeiten ver-
ursachen, haben wir nur G={eubx} zu betrachten. Da entweder bx selbst

injektiv ist, oder b (=-^ re0 und ex -*» re0 gilt, erhalten wir sup 1/&lt;2. (cz^ bedeutet

mono, -» epi). Jetzt sei a 1. Wegen sXl(Tee) 1 gibt es einen Injektiven eK mit
kleinstem Index k. Als Gerippe ist nur {ev x] mit / ^ k und x ret, i &lt; /, oder
x bx zu untersuchen. Die Dimensionen addieren sich nur bei den Injektiven,
die Nachfolger von re^x sind, und sind dort kleiner als 2, weil beides Moduln
ùber einer Algebra mit Baum An sind.

4.2 Der Baum (a, &amp; 7), a&gt;

Wie in 3.6.1 muss m Randpunkt oder Nachbar eines Randpunktes sein. Im
zweiten fall ist d injektiv. Also besteht das Gerippe aus zwei Unzerlegbaren fur
die Faktoren von B, und die Aussage folgt per Induktion.

Nun sei m ein Randpunkt r. Wir skizzieren S:

r1 rT1 t2t
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Einer der Vorgânger von r2d ist also injektiv. Ist einer der beiden eingekreisten
Punkte injektiv, so besteht das Gerippe aus einem Injektiven und einem Unzer-
legbaren &quot;vom Typ An&quot;. Ist einer der Injektiven zu den Punkten zwischen r und
d in T1 nicht Nachfolger von rd, so ist das Gerippe einelementig. (Dièse

Bemerkung benutzen wir oft in âhnlichen Situationen.) Bis auf Umbenennung
liegt der Fall m=c2 vor, weil sonst [2,2,2] auftritt. Fur a &gt; 3 findet man

[1,1,1,1]. Schliesslich bleiben folgende Môglichkeiten fur ein Gerippe:

Nach 1.3 ist sup t/&lt;sup rd + sup t2c1 + sup a2 + sup b2 4

{rd, a2, b2}: Es gilt sup l/&lt;3.

{ai, fci}: Wegen a1C1^ a2®rd und bx^ b2(Brd ist sup C/&lt;4

{ai, b2}: Wie eben folgt sup U&lt;3.

4.3 Der Baum (a, j3,1), a &gt; (3 &gt; 2.

Dieser Fall erfordert einige Rechnungen. Wir unterscheiden die einzelnen

Môglichkeiten fur m.

4.3.1 m d

Nur die Dynkinbâume E6, E7, E8 treten auf.

4.3.2 m cx

Wir zeichnen S (Siehe Fig. 4.3.2). Ist bx oder ax injektiv, so besteht G aus

zwei Unzerlegbaren mit sup 1. Nun erzwingt [1,1,1,1], dass /3 =2. Fur injek-
tives a2 hat das Gerippe hôchstens vier Elemente, deren Supremum jeweils 1 ist.

Es bleibt nur a &lt;4, weil sonst [2, 2, 2] in S liegt.

^ ¦Vv,

Fig. 4.3.2
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A&apos;

A/

A

Fig 4 3 3 1

4.3.3

Wegen des Verbotes von [1, 3, 3] gilt me{b^ b3-i, b^-2}. Fur m b3_2 ist d

injektiv, weil anderenfalls [2, 2, 2] vorkommt. Die Abschâtzung gilt in diesem

Fall. Fur m fc3_1 skizzieren wir S (Siehe Fig. 4.3.3.1). Ist ax injektiv, so kann
hôchstens

als Gerippe auftreten, und es folgt sup U^4. Ist ax nicht injektiv, so gilt wegen
[1,1,1,1] schon j3 2 und wegen [1, 3, 3] auch a &lt;4.

Schliesslich sei m b$ und zuerst |3 &gt;3. Wir skizzieren S (Siehe Fig. 4.3.3.2).
Vor der gestrichelten Linie muss also ein Injektiver liegen. Die Abschâtzung ist
einfach, wenn al9 a2 oder rd injektiv sind. Da [1,1,1,1] nicht in S liegt, gilt also

(a) tùx ist injektiv.

Liegt rax in G, so tritt hôchstens \\~ Vauf, und es ergibt sich sup [/&lt;

l t2!?!, rax, a3j

4. Liegt Tax nicht in G, so hat G hôchstens zwei Punkte, z.B. G {a2&gt; rd}. Dann
gilt sup l/&lt;sup a2 + sup rd&lt;2 + 4 6, wie die startenden Funktionen von a2 und
rd in k(ZE7) zeigen. Die ùbrigen Fàlle behandelt man âhnlich.

7&lt;^/ V,&apos;V

Fig 4 3 3 2
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(b) r2bt, Ci oder rc± sind injektic.
Die erste Môglichkeit entspricht (a), bei den beiden anderen treten sogar nur

2-elementige Gerippe auf.

(c) rd is injektiv.
Nach den bereits behandelten Fâllen ist B eine der Algebren

Voder &amp; und dann A
I

oder

Die Behauptung gilt. Es bleibt noch der Fall /3 2, a &gt; 5 ûbrig. Wir skizzieren S

(Siehe Fig. 4.3.3.3). Vor der gestrichelten Linie muss ein Injektiver liegen. Da T1

Fig. 4.3.3.3

als Baum Dn hat, brauchen wir nur Gerippe mit mehr als 3 Elementen zu
untersuchen. Daher kônner wir bis zum durchgezogenen Strich aile Punkte als

nicht injektiv annehmen. Ferner ist a 5, weil sonst [1, 3, 3] vorkommt.

(a) a3 ist injektiv

(x
Nur &lt; | &gt; tritt als Gerippe mit mehr als 3 Elementen auf. Es gilt

(^3, rau T2fcJ

sup l/&lt;6.

(b) Tax ist injektiv
Die Môglichkeiten fur mehr als 3-elementige Gerippe sind:

!ra2
x a5) f ra2 a5) ra2)

î&gt;î î } I î H I î \ xe{a4,a5}
rax T2bu a4), x e{r2d, T2ct}, (.t2^, ralt a4), [r bu x, t^),

\ ]\ \ î&gt; x,ye{a3,a4,a5}.
\T2bu a5, iax), [T2blf rau x),
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Bei allen Punkten ausser r2bx handelt es sich um Unzerlegbare &quot;vom Typ An&quot;.

Die Behauptung ergibt sich aus 1.3.

4.3.4 meidi}

Nun ist me{aa-i |0&lt;i&lt;4}, weil sonst [1,2,5] auftritt. Fur m aa-4 ist d

injektiv ([N, 4]!), und fur m aa^3 ist |3&lt;2 und a&lt;4, weil sonst [1,3,3]
vorkommt. Im Fall m aa_2 ist fur ($ &gt; 3 d injektiv ([2, 2, 2]!). Sei also |3 2. Ist
bx injektiv, so gilt sup Lf&lt;2. Anderenfalls ist a &lt;4. Aehnlich ist fur m aa_x der
Fall einfach, wo bx injektiv ist. Da [1,1,1,1] nicht vorkommt, kônnen wir (3=2
annehmen. Wir skizzieren S fur a&gt;5 (Siehe Fig. 4.3.4). Vor der gestrichelten
Linie muss ein Injektiver liegen. Die Behauptung lâsst sich nun stets leicht
nachweisen. Den letzten Fall m aa, a &gt; ($ &gt; 2, untersuchen wir im nâchsten

Absatz.

Fig. 4.3.4

4.3.5 m a

Sei zuerst /3&gt;3. Wir deuten S an (Siehe Fig. 4.3.5.1). Man verifiziert

sup L/&lt;6, wenn bu b2, cl5 rd oder rc1 injektiv sind. Die dabei auftretenden

Gerippe haben hôchstens zwei Punkte. Nun gilt aber |3 2, weil sonst [2, 2, 2]
vorkommt.

OV

Fig. 4.3.5.1

Wir skizzieren S fur a&gt;5 (Siehe Fig. 4.3.5.2). Vor der gestrichelten Linie

muss also ein Injektiver liegen. Wir betrachten zunâchst genau einen speziellen

Fall. Wir nehmen an, a sei 5, bis zur durchgezogenen Linie gebe es keine

Injektiven und r4ax sei injektiv. Wir berechnen unter diesen Bedingungen aile

startenden Funktionen von Punkten, die in Gerippen mit mehr als einem Punkt
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Fig 43 5 2

auftreten. Hier erinnert t daran, dass T4at injektiv ist.

/ ° A

S V V t
*vzvz + v ^: t

X &lt; iV V V

A&apos;0

y, y

/ V

,-^r
t^. 4£A2LCiïi-A-4

V

A
&lt;&apos; t

Die ubrigen startenden Funktionen nehmen hochstens den Wert 1 an, und ihr
Verlauf ist klar.

Nun suchen wir Gerippe, in denen cx liegt und finden nur {cu bt} oder {cl9 b2}.

Die gerade berechneten Funktionen, Lemma 2.5 und 1.3 liefern die Behauptung.
Wir kônnen nun cx vergessen und dann auch bx. Fur rd gibt es nur {rd, i&gt;2}« D^r
Reihe nach vergessen wir cl9 bl9 rd, b2, rbu r2au r2d und r3a2. Fur T3ax gibt es

nur die Môglichkeiten

f
i, r2cu r4a3 r2cu x}, x g {r4a3, r5a4}, 3

1

1s T5a4J
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und 2-elementige Gerippe. Immer gilt die Behauptung. Beim Vergessen von T4a3

treten nur 2-elementige Gerippe auf. Fur r2cx gibt es als grosse Gerippe nur

It2Ci, r4a2, r5a4J,
xe(r3d,r3bur3b2}

und die Behauptung ist wahr. Genauso vergisst man r3d.
Betrachten wir nun die r4a2 enthaltenden Gerippe. Da jetzt aile startenden

Funktionen nur noch die Werte 1 und 0 annehmen, interessieren uns nur noch
Multiplizitàtsfunktionen n mit Zves^xw} l*&gt;(V)&gt;6 (1.3.). Dieser Fall tritt nicht auf.
Schliesslich wollen wir noch j4ax vergessen. Dabei treten zwar eventuell

und .N
als Gerippe auf, die Multiplizitatsfunktionen ja mit £V€s»A{a&gt;} ja(V)&gt;6 erlauben,
aber die in 1.3 gegebenen Dimensionsformeln zeigen auch hier sup 1/^6.

Der Beweis setzt sich nun aus lauter Einzelschritten zusammen, die dem
soeben behandelten Fall âhnlich sind, aber meist viel einfacher, sodass man den
Beweis an einem langweiligen Nachmittag durchfùhren kann. Wir geben nur die
Stratégie an. Man erledigt nacheinander die Fâlle, wo cl9 bx, rd, b2, T2au tcu rbu
T3a2, r2d oder rb2 injektiv sind. Da sonst [N, 4] vorkommt, kann man jetzt a^l
annehmen. Man behandelt die Fâlle in denen r4a3, r3ax, r2cx oder rlbx injektiv
sind. Von da an ist a 5, weil sonst [1,1,1,1] auftritt. Schliesslich betrachtet man
noch die Fâlle, wo T4a2, r3d, r2b2, T4au t3Ci oder r3bx injektiv sind. Fur r4d ist
es geschickter, wie in 4.3.3c) vorzugehen.

5. Lineares Wachstum der Dimensionen Unzerlegbarer

Wir wollen aus Satz 2.4 folgendes Ergebnis herleiten:

SATZ. Sei A eine darstellungsendliche saubere Algebra der Dimension d mit e

Einfachen. Dann gilt fur die Dimension jedes Unzerlegbaren U die Abschàtzung:
dim[/&lt;2d-

Bevor wir den Satz beweisen, môchten wir noch einige Bemerkungen und
Folgerungen hinzufûgen. Dem Beweisgang wird man entnehmen:

KOROLLAR 1. Eine darstellungsendliche d-dimensionale Algebra A mit e

Einfachen besitzt nur Unzerlegbare U der Dimension &lt;2d - e 4- 100(K/d.



320 KLAUS BONGARTZ

Die Existenz einer Funktion /:N—&gt;N mit dim l/&lt;/(dim A) hat Gabriel
implizit in [11] gezeigt. Jensen und Lenzing haben dies in [16] aufgegriffen. In
beiden Fâllen geht jedoch der verwickelte Beweis von Nazarova-Roiter ùber die

Brauer-Thrall-Vermutung ein. Ferner ergibt sich die Existenz einer derartigen
Funktion aus der Arbeit Roiters ùber multiplikative Basen von darstellungs-
endlichen Algebren. ([25])

Die Konstante 1000 rùhrt von den im Klassifikationssatz ûbergangenen
Ausnahmealgebren her. Die bisher durchgefiihrten Computerrechnungen lassen

erwarten, dass der bestmôgliche Wert fur die Konstante etwa bei 30 liegt.
Hingegen lâsst sich der variable Teil nur noch unwesentlich vermindern. Wir
geben nâmlich fur jedes n ^ 2 eine darstellungsendliche Algebra der Dimension
3n -f 10 mit n + 4 Einfachen an, die einen Unzerlegbaren der Dimension An + 3

2d-2e-9 besitzt. Betrachte die Algebra mit Kôcher

n + 3

bei der 2—»l—»2, n + 2—»n + l—»n und n+2--&gt;n + 3—»n + 4 die einzigen
nichtverschwindenden Kompositionen von Wegen sind. Um einzusehen, dass A
darstellungsendlich ist, und um den gesuchten Unzerlegbaren zu finden, trennt
man am einfachsten die Punkte 2, 3,..., n auf in Sender und Empfânger ([9]).

Mit unseren Methoden kann man beweisen, dass die Anzahl Unzerlegbarer
nur exponentiell wâchst. Wir gehen hier nicht darauf ein, und verweisen darauf,
dass nach [3] die Anzahl durch à • 322de+loo° nach oben beschrânkt ist.

Schliesslich erwàhnen wir noch folgendes Korollar, das wir am Ende der
Arbeit beweisen.

KOROLLAR 2. Eine d-dimensionale Algebra ist genau dann nicht
darstellungsendlich, wenn es einen Unzerlegbaren U gibt mit 2d + 1000Vd&lt;dim U^

In der Varietât Algd ([11]) der d-dimensionalen Algebrenstrukturen ist ofïen-
bar die Menge Sn der Algebrenstrukturen, die einen Unzerlegbaren der Dimension

n besitzen, konstruierbar. Wâre Sn sogar abgeschlossen, so ergâbe das

Korollar einen einfachen Beweis fur die Ofïenheit der darstellungsendlichen
Algebren ([11]).

5.1 Folgendes Lemma steht in Beziehung zu einem Ergebnis Roiters ([25]).

LEMMA. Sei Â die universelle Ueberlagerung einer darstellungsendlichen
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sauberen Algebra ([13]). Auf Â gebe es punktweise l-dimensionale Unzerlegbare
mit Tràgern

x1—x2—x3- xK_i-^xK &lt;-xK+1&lt; &lt;-xK+r und xK&lt;-x
*&quot;&quot; XK+r+l

Dabei seien die xx fur 1 &lt; i &lt; k 4- r und fur K^i^K + r+1 verschieden. Fur r 0 sei

noch xK+1^xK_!. Dann gilt:
(a) xK+r+1 ist von allen x,, î^K + r + 1, verschieden.

(b) JEs gifor emen punktweise 1-dimensionalen Unzerlegbaren mit Tràger

Beweis. Angenommen, a) sei falsch. Sei also xK+r+1 xt mit xK+r+1 ^xl+J fur
/&gt;1. Nach Voraussetzung ist 1&lt;k und wir unterscheiden zwei Fàlle, nàmlich

xt-^ - - - -+ xK und x{ &lt;— • • • —&gt; xK. Im ersten Fall konstruieren wir eine 1-para-
metrische Familie Unzerlegbarer Uk, kek. Setze Uk(xt) k fur l &lt; i &lt; k 4- r, und
stelle den Pfeil zwischen x{ und xK+r durch Multiplikation mit À, die anderen
Pfeile durch die Identitât dar. Da aile auftretenden Punkte voneinander
verschieden sind, folgt aus Uk ^ U^ schon À jul. Im zweiten Fall konstruieren wir
einen Zyklus nichttrivialer Abbildungen zwischen punktweise 1-dimensionalen

Unzerlegbaren von Â, die wir einfach mit ihrem Trâger identifizieren. Sei q die
benachbarte Quelle von xK. Wir finden den Zyklus

(xi) -&gt; (q -* » xk &lt; xt) -» (q -&gt; • • • xk) -&gt; (x{ &lt; q -» • • • xk) -» (xj)

Dabei existiert q —?•••—&gt; xfc «-•••&lt;— xI? weil aile Punkte verschieden sind. Die
gleiche Bemerkung zeigt nun Teil (b). q.e.d.

5.2 Wir beweisen den Satz. Sei also A eine saubere darstellungsendliche
Algebra der Dimension d mit e Einfachen, und sei U ein unzerlegbarer A-
Modul. Wie ublich bezeichne FA den Darstellungskôcher von A, fA dessen

universelle Ueberlagerung und Â die universelle Ueberlagerung von A. Dann
haben wir ein kommutatives Diagramm mit einem Ueberlagerungsfunktor F ([8])

Âczk(fA)BÛ
I&apos; Jr

Wâhle einen unzerlegbaren Â-Modul Û ûber U. Nach [14] liegt jede endliche
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voile Unterkategorie von A - also auch der Trâger von U - in einer einfach
zusammenhàngenden vollen Unterkategorie B. Wir kônnen dann sogar an-
nehmen, dass Û ein extremaler B-Modul ist. Damit gilt B (T, g) fur einen der
Baume aus 2.3. Wir beweisen dim (7 dim (7&lt;2d-e + 1000 in den einzelnen
Fâllen.

Nach Satz 2.4 fehlen in unserer Liste extremaler Algebren nur endlich viele.
Ein Blick in den Beweis von 2.4 und Satz 4 zeigen, dass fur aile extremalen
Moduln ûber diesen Ausnahmealgebren die Dimension &lt;1000 ist. Die Behaup-
tung muss daher nur noch fur die Algebren aus der Liste bewiesen werden.

5.2.1 Die Familie (1)

Wir markieren aile Quellen und Senken. Bis auf Dualitàt liegt also der Fall

Sl «_... «_ qx -+ _&gt; 52 &lt;_ _&gt; 5r &lt;_ x • • &lt;— qr vor, wobei eventuell das letzte
Stûck von x bis qr fehlt. Tritt einmal die Situation s &lt;— t • • • t&apos; —» s&apos; mit F(s) F(sr)
und F(t)^F(t&apos;) auf, so konstruiert man mit 5.1 und seinem dualen beliebig grosse
Unzerlegbare fur Â, indem man in Punkt sr den Punkt F(t) hochhebt usw.
Deshalb liegen iiber jedem Punkt von A hôchstens zwei Senken. Wir schàtzen
ab:

r

dim t/&lt; X dimPSt-r+l&lt;2(d-e) + l.
1 1

Dabei bezeichnet Ps den projektiven Â-Modul zum Punkt s, der die gleiche
Dimension hat wie die projektive Decke von F(s).

5.2.2 Die Familie (2)

Wieder kennzeichnen wir aile Quellen und Senken, sodass ohne Ein-
schrânkung der Fall

5_&gt; &gt;Sl&lt; &lt;—&lt;h—»• • • —»sr&lt; «—qr

a
vorliegt. Nun ist eine Situation s«-f- • -t&apos;-&gt;s&apos; mit F(s) F(sf) ausgeschlossen.
Denn fur F(t) ^ F(f&apos;) argumentiert man wie eben, und fur F(t) F(t&apos;) findet man
in Â als voile Unterkategorie

c c&apos;

d a&apos;

indem man in s&apos; das Bild des linken Teils unter F hochhebt. Nach der Liste der
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Dimensionsvektoren erhâlt man:

dim C/&lt;2 £ dimPs-

5.2.3 Die Familie (3)

Bei den Unterkôchern

—/ und

liegt wie in 5.2.2 ùber jedem Punkt nur eine Senke. Fur die punktweise 1-
dimensionalen Extremalen dieser Kôcher gilt also dim E &lt; d — e -f 3, d.h. dim Û ^
2(d-e) + 6.

5.2.4 Die Familie (4)

Dieser Fall scheint am schwierigsten zu sein. Bis auf Dualitât haben wir:

AA
;

&quot;a

Wie in 5.2.2 ergibt sich Fis^^FiSj) und F(O^F(f,) fur ifj. Ist Fi^^F^) fur
aile i, so erhâlt man: dim L7&lt;2(d-e). Gleiches gilt, wenn ùber F(a) keine Quelle
mehr liegt.

Sei also F(sK) F(c). Wir zeigen, dass B dann in der Nâhe von sK c&apos; fol-
gendermassen aussieht: x &lt;— b&apos; —&gt; c&apos; ^~ d^ &lt;— dm-i ^—# • • &lt;— dî -&gt; y mit F(6&apos;)

F(6), i&gt;0 und F(dp F(dp) fur m&gt;p&gt;/. Zunâchst folgt F(b&apos;) F(b) wie in
5.2.1. Wâre br keine Quelle, so fànde man in Â eine voile Unterkategorie mit
kommutativem Kôcher

die nicht darstellungsendlich ist.
Kâmen in F(c) 3 Pfeile an, so lâge ein Dn in Â. Also ist

Analog findet man in Â eine Kopie von Dn, falls F(d&apos;p)^F(dp) fur p&gt;l, p&gt; I.
Angenommen, !&lt;0. Wâre F(do) F(a), so gâbe es in JB noch einen zweiten
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nichtverschwindenden Weg d^-**&gt;&quot;-&gt; c&apos; mit F(b&quot;) F(b). Also ist F(diï±F(a).
Dann enthâlt aber B einen nicht darstellungsendlichen kommutativen Unterkôcher
der Gestalt

Als nâchstes fùhren wir die Annahme F(d[) F(dJ) fur m &gt; i &gt; j &gt; l zu einem

Widerspruch. Nach dem vorangegangenen Absatz gilt auch F(dt) F(d,). Es folgt
F(dl+1) F(d]+l), wobei wir noch dm+1 c und do a vereinbaren. Anderenfalls
liftet man nâmlich in d, die Kette F(d]+1 —»•••—»c&lt;----»c&apos;) und erhàlt eine

Kette, in der 4 Senken ùber F(c) liegen, was in 5.2.1 ausgeschlossen ist. Analog
folgert man F(d»_i) F(dï_1) daraus, dass ùber F(a) bereits 2 Quellen liegen. Die
Kette a —&gt; di —» • • *~&gt;dm^c wird also unten auf einen Kreis aufgewickelt.
Somit ist F(d&apos;t) F(a) fur ein i&gt;r&gt;/ und F(d;+1) F(dt+1) F(d1)^F(6). Wir
finden dann eine Kette mit 3 Senken ûber F(c) im Widerspruch zu 5.2.1.

Nach den beiden vorherigen Absâtzen gilt F(d[) =£ F(d&apos;j) fur ij=j. Dies liefert
uns die gewiinschte Ungleichung:

dim L/&lt;2(dimPc+

5.2.5 Die Familien (5), (6), (9) und (10).

Bei einer Algebra der Familie (5) betrachtet man zuerst die beiden maximalen
Unteralgebren ohne Nullrelation und argumentiert wie in 5.2.4. Daraus erhàlt
man die Abschâtzung. Die Familie (6) schneidet man an den Punkten u and v auf
in zwei D&apos;n s. Genauso verfâhrt man mit Algebren aus (9) und (10). Bei (10)
untersucht man z.B. zuerst

5.2.6 Die ûbrigen Familien

Bis auf Dualitât findet man fur jeden Extremalen einen Untermodul der
Kodimension ^3, der von zwei unzerlegbaren Projektiven ùberdeckt wird.

5.2.7 Der Beweis von Korollar 1

Sei also A eine beliebige darstellungsendliche Algebra der Dimension d und
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Â die zugehôrige saubere Algebra. Ferner sei G: mod A -&gt; mod Â die Morita-
Aequivalenz. Da jeder einfache A-Modul hôchstens Dimension y/d hat, gilt
dim M&lt;\ld dim GM fur jeden A-Modul M. Dies wenden wir auf die Unzerleg-
baren U an, wo GU zu einer Ausnahmealgebra gehôrt. In den anderen Fâllen
geht die Abschâtzung jeweils aus dem Beweis hervor. Wir deuten dies fur Familie
(1) an. Dort kommt in der projektiven Decke von GU jeder Unzerlegbare
hôchstens mit Vielfachheit 2 vor. Gleiches gilt dann fur die projektiven Decken
von GU und U.

5.3 Gehen wir noch kurz auf den Beweis von Korollar 2 ein. Eine Richtung
folgt direkt aus Satz 5. Umgekehrt haben wir zu zeigen, dass eine d-dimensionale
Algebra darstellungsendlich ist, wenn die Dimension der Unzerlegbaren entweder
&lt;2d + 1000Vd oder &gt;(d2+l)(2d + 1000Vâ) ist. Nun folgt aus der Définition von
DTr und TrD, dass aile Einfachen in Komponenten des Darstellungskôchers
liegen, deren Moduln Dimension &lt;2d + lOOOVd haben ([1], [27]). Also ist A
darstellungsendlich

Aehnliche Ueberlegungen fùhren zur folgenden numerischen Vermutung ùber
Brauer-Thrall 2: Eine nicht darstellungsendliche Algebra A der Dimension d hat
unendlich viele Unzerlegbare der Dimension &lt;20d(64d+1 + 1000). Leider kônnen
wir die Vermutung bisher nur beweisen, wenn A eine &quot;schône&quot; Ueberlagerung
besitzt.

Anhang. Wieviele Moduln hat eine darstellungsendliche Algebra?

Fur eine endlichdimensionale Algebra A bezeichne u(A) die Anzahl der

Isomorphieklassen unzerlegbarer A-Moduln, i(A, n) die Anzahl der Iso-

morphieklassen rc-dimensionaler A-Moduln. Weiter sei u(d) das Supremum der

u(A), wobei A aile d-dimensionalen darstellungsendlichen Algebren durchlâuft.
Wir beweisen in diesem Anhang:

PROPOSITION 1. Es gibt eine Konstante C, so dass fier aile d &gt;4 gilt:

2Vd &lt; u(d)&lt;9d6 • 22d+7 + Cd.

PROPOSITION 2. Eine Algebra A ist darstellungsendlich genau dann, wenn

es ein Polynom PeU[X] gibt, so dass i(A, n)&lt;P(n) fur aile n&lt;=N gilt. Dabei lâsst

sich P fur aile d-dimensionalen darstellungsendlichen Algebren zugleich wàhlen.

Die Beweise beruhen auf Ueberlagerungstheorie, dem Klassifikationssatz und
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Betrachtungen aus Abschnitt 5, wobei beide Schranken in Proposition 1 noch
verbessert werden kônnen. Wir behalten die Bezeichnungen der Arbeit bei.

A.1 Die untere Schranke in Proposition 1.

Um die untere Schranke zu finden, betrachte man fur p ^ 1 folgenden Kôcher
ex a ex a

1 «± 2 «± 3 «± • • • (p — 1) &lt;± p, dessen Pfeile wir einfach mit a und /3 bezeichnen.
3 3 3 3

Die Algebra A(p), die durch a($ =0 j3a definiert wird, hat dann p2 als Dimension.

Die universelle Ueberlagerung von A(p) ist eine Baumalgebra ([13], [28]),
und die unzerlegbaren A(p)-Moduln U mit 1/(1)^0 entsprechen nach [10] den

Unzerlegbaren des Stammbaumes ([8]) mit p Generationen (Siehe Skizze fur
p=4), die an der Stelle 1 nicht verschwinden. Dies ergibt 1+2+4+- • • + 2P~1

2P-1 Unzerlegbare, so dass A(p) per Induktion 2p+1-(p + 2) Unzerlegbare
besitzt. Daraus ergibt sich die untere Schranke.

«0=0
Man beachte, dass die Dimensionen der unzerlegbaren A(p)-Moduln aile

durch p beschrànkt sind, und dass es eine Kette von 2P - 2 irreduziblen Abbil-
dungen zwischen unzerlegbaren A(p)-Moduln gibt, deren Komposition nicht
verschwindet. Die Ringelsche Schranke im Lemma von Harada-Sai ([29], [30]) ist
also sogar fur darstellungsendliche Algebren scharf.

A.2 Die obère Schranke in Proposition 1

Es geniigt, die Abschâtzung fur saubere Algebren der Dimension d zu
beweisen. Dazu gehen wir vor wie am Anfang von Abschnitt 5.2, betrachten also

das kommutative Diagramm

i-
A e ind A

mit einem Ueberlagerungsfunktor F.

Sei P ein Punkt in Â. Wir wollen uns ûberlegen, wieviele Kopien der

Algebren ux—u2—u3— • • ua-t—ua aus Familie (1) des Klassifikationssatzes in Â
liegen, so dass ux mit P zusammenfâllt. Zunâchst sei a &gt; 5. Fur den PfeU ux—u2
haben wir hôchstens 6 Môglichkeiten, weil sonst D4 in Â vorkommt. Sei nun ein
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Pfeil u1—u2 gewâhlt. Dann bleiben uns fur u2—u3 nur jeweils 2 Môglichkeiten
ûbrig, da anderenfalls nach Lemma 5.1 in Â ein É7 auftritt, weil entweder 2

Pfeile in u2 beginnen oder 2 enden. Fur u3—u4 kônnen wir erneut nur unter 2

Pfeilen wâhlen, weil sonst É6 vorkommt. Gleiches gilt fur die Wahl von ut—m,+1,
Solange i&lt;a-2 ist. Der letzte Pfeil u^^—ua erlaubt nur 4 Môglichkeiten, weil
Â kein D4 enthâlt. Insgesamt kann also P u1—u2—•••—ua auf hôchstens
6 • 2&quot;~3 -4 3 2&quot; verschiedene Arten in Â liegen. Dièse Formel bleibt auch fur
a &lt; 5 richtig.

Ist U ein unzerlegbarer A-Modul, so wâhlen wir Û und eine einfach

zusammenhàngende voile Unteralgebra B (T,g) von Â, so dass Û ein ex-
tremaler B-Modul ist (Siehe 5.2). Natûrlich ist B eine Invariante von U. Wir
kônnen jetzt aile unzerlegbaren A-Moduln zâhlen, wo B zur Familie (1) gehôrt.
Nach 5.2.1 gilt nâmlich a &lt;2d. Deshalb lâsst sich die gesuchte Zahl Zx folgender-
massen abschâtzen:

Punkte von A) £ 3 • 2a)&lt;3d22d+1

Fur die anderen Familien geht man analog vor. Um den Léser nicht zu langweilen,

greifen wir nur noch die Familien (4) und (10) heraus. Zuerst sei also

B ; }V1—V2 Vqx/
Fur den Teil ux-^ vx—v2— • —vq gibt es wie eben hôchstens 3 • 2q+1 Môglichkeiten.

Dann liegt aber v1-^up bereits eindeutig fest, weil sonst D4 auftritt. Nun
ist auch 1*!—» u2- • • —&gt; Up vorgeschrieben. Wir erhalten also hôchstens 3 • 2q+1

Kopien von B in Â mit ux P. Jede davon besitzt q extremale Moduln. Ferner
sind die Parameter p und q nach 5.2.4 beide durch à beschrânkt. Die Anzahl Z4
aller Unzerlegbaren U mit B vom Typ (4) kann man daher abschâtzen:

Z4&lt; (Anzahl Punkte von A) • (Anzahl Algebren in Familie (4)).

(Anzahl jeweiliger extremaler Moduln) • (Anzahl der jeweils môglichen

Einbettungen einer Algebra)
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Jetzt sei B aus der Familie (10). Fur den Teil

yx ym

Xl xx

gibt es hôchstens 3 • 2K+1 • 2t+1 • 2m+1 Môglichkeiten. Danach liegt ailes eindeutig
fest. Die Familie wird durch 5 Parameter beschrieben, fur die gilt: ï-h/&lt;d,
k + / &lt; d, k + m &lt; d. Jede Algebra hat nur einen extremalen Modul. Wir finden so:

Z10&lt;3d622d+3.

Fur aile anderen Familien gibt es weniger Môglichkeiten. Die Anzahl der
Unzerlegbaren U, wo B oder Bop zu einer der Familien aus dem Klassifikations-
satz gehôrt, ist also beschrànkt durch

2 • 24 • 3 • d6 • 22d+3 9de22d+1.

Wir miissen noch diejenigen Unzerlegbaren zâhlen, wo B zu einer der

Ausnahmealgebren gehôrt. Es gibt nur endlich viele Ausnahmealgebren. Jede
davon hat nur endlich viele extremale Moduln und làsst sich nur auf endlich viele
Arten in Â einbetten, wenn man das Bild eines Punktes vorschreibt. Daher
existiert eine Konstante C, so dass die Anzahl der verbleibenden unzerlegbaren
A-Moduln durch C * d beschrànkt ist.

A.3 Der Beweis von Proposition 2

Zuerst sei A eine d-dimensionale darstellungsendliche Algebra mit einem

Reprâsentantensystem {Uu U2,..., Ut} unzerlegbarer Moduln. Nach Proposition
1 ist f &lt;s: 9d622d+7+Cd. Wir rechnen:

i(A,n)= i(m1,m2)...,mf)€Nt | £ m, • dim Ut n^

N^1! Z mldimLr=n}|

Die Behauptung gilt fur P(X) ].
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Umgekehrt sei nun A nicht darstellungsendhch. Ferner sei Q ein Polynom
vom Grad g, so das i(A,n)&lt;Q(n). Wir werden einen Widerspruch herleiten.
Setze K: (dimA)2+l. Wie in 5.3 bemerkt (Siehe auch [30]) folgt aus der
Définition von DTr und TrD ([2]), dass es eine Folge unzerlegbarer A-Moduln
Ul9 îefcl, gibt mit dim l/.^dim Ul+l&lt;K • dim Ut. Dabei kônnen wir noch
dim U0&lt;K, also dim Ut ^Kl+l annehmen. Fur beliebiges L &gt; 1, LeN, betrachte
die Menge

L+1(no,nb...5nL)€NL
i=o

{¦

I. Die Moduln der Gestalt ©f^0 U? liefern uns dann

1 Isomorphieklassen der Dimension &lt;K2L+1. Andererseits ist nach Voraus-

setzung die Anzahl der Isomorphieklassen von Moduln der Dimension &lt;n durch
R(n) beschrânkt, wobei R ein Polynom vom Gradg + 1 ist, das wir ohne

Einschrankung als R(X) rX*+1 mit reR annehmen kônnen. Fur grosse L

(KL +L\J^r .^(2L+1)(R+1).
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