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Flow equivalence, hyperbolic systems and a new zeta
function for flows

Davip Friep*

Abstract. We analyze the dynamics of diffeomorphisms in terms of their suspension flows. For many
Axiom A diffeomorphisms we find simplest representatives in their flow equivalence class and so
reduce flow equivalence to conjugacy. The zeta functions of maps in a flow equivalence class are
correlated with a zeta function ¢, for their suspended flow. This zeta function is defined for any flow
with only finitely many closed orbits in each homology class, and is proven rational for Axiom A flows.
The flow equivalence of Anosov diffeomorphisms is used to relate the spectrum of the induced map on
first homology to the existence of fixed points. For Morse-Smale maps, we extend a result of Asimov
on the geometric index.

0. Introduction

Since Poincare’s time, the dynamical properties of a smooth differential
equation have been studied in terms of maps between local transversals to the
flow p. Near a periodic orbit v, for instance, one may introduce a small transverse
disc D of codimension one which cuts y once and study the partially defined map
f:D — D obtained by following the flowline through d € D until it again meets D
in f(d)=pd, t>0. This local section allows one to study the stability of y (or
other properties of p near vy) in terms of the stability (etc.) of the fixed point
vyN D for f.

To obtain a global picture of a smooth (C”,say) non-singular flow p on a
compact manifold M one might cover M with flowboxes (i.e., a disjoint family of
transverse, codimension-one, discs D; where B; ={p,D, :0=<t=<n,} is an embedded
cylinder and {B;} covers M) and analyze the measurable first-return map f,
defined as above. While this reduction is satisfactory for the purposes of ergodic
theory, the discontinuity of f makes this approach useless for studying the
topological behavior of p.

For a satisfactory global reduction of p to a mapping, one needs a cross-
section, that is a transverse, closed submanifold K which meets every flowline.

*Partially supported by MCS 76-08795.
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238 DAVID FRIED

When such a K exists, the first return map f(k) = p,q)(k) (Where t(k) >0, p, (k)¢ K
for 0<t<t(k) and p,u)(k) € K) is a well-defined diffeomorphism and the recurr-
ence properties of f accurately reflect those of p. We call a flow circular if it
admits a cross-section.

Not all nonsingular flows are circular (necessary and sufficient conditions are
given in section 1) so that this pleasant reduction is often impossible. However
any smooth map t:K — (0, ) and diffeomorphism f of K determine the sus-
pended flow p with cross-section K, first-return map f and time of first return t.
On the manifold M ={(k, s) | 0=s = t(k)}/(k, t(k)) = (f(k), 0) the flow p is induced
by d/ds.

Even when cross-sections exist, there may well be many essentially distinct
cross-sections and first-return maps. One calls the resulting relation amongst
first-return maps flow equivalence, so f and g are flow equivalent if they have
conjugate suspended flows. For example, all the rational flows on the torus are
conjugate and so all rational rotations of S' are flow equivalent. This means that
it is difficult to decide whether two flows with cross-section are conjugate: it does
not suffice generally to investigate the conjugacy problem for their first return
maps.

We thank the referee for his valuable assistance.

1. Preferred cross-sections

The most effective way to reduce a flow to a diffeomorphism would be a
canonical cross-section or at least a finite number of preferred cross-sections.
(From the viewpoint of the first-return maps, this is finding preferred elements in
a flow equivalence class.) We will show in Theorem A that these exist for circular
Axiom A flows [Sm] whose periodic orbits span H,(M;R).

We begin by observing that there is no reason to distinguish between cross-
sections K, and K, to p if there is an isotopy of M carrying K, to K; through
cross-sections, since K, and K; must determine conjugate first-return maps.
Grouping such isotopic cross-sections together enables one to study cross-sections
algebraically. Note that a cross-section K carries a preferred normal orientation,
arising from the flow p, and so determines a dual class ug € H'(M; Z).

PROPOSITION ([F2]. There is an isotopy of M carrying K to L through
Cross-sections < Ugx = Uy .

This proposition suggests studying {ux € H'(M;Z) | K is a cross section to p}.
For this purpose, topologize the set of homology directions D of M,D =
H,(M; R)/positive scalars, as (unit sphere) U{0} and note that any closed loop vy
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of M determines a homology direction [y]e D. Define d € D to be a homology
direction for p if there are points m; — m and times t, — + so that p,m; — m and
[(p;m; | 0=t =t) - short path] — d. Then the set D, of homology directions for p is
a compact subset of D.

THEOREM [F2]. The smooth flow p on the compact manifold M has a
cross-section K dual to ux € H'(M; Z) iff ux(D,)>0.

If p does have a cross-section and the first return map admits a Markov
partition F of small size then there are a finite number of periodic orbits
Y»i=1,...,n, corresponding to those allowed loops of elements of F which are
minimal (no element of F occurs twice). One then has a simpler description of the
cross-sections to p.

THEOREM [F2). For such p, a class ue H'(M; Z) is dual to a cross-section K
for p iff u(v,)>0,i=1,...,n.

Observe that one direction is easy, since ug(+y;) is the number of times v;
meets K in one period.

One should think of u(D,)>0 as defining an open cone €< H'(M;R) in
which lattice points (i.e., integral classes) correspond to cross-sections to p. (One
may show that real classes in this open cone arise from closed 1-forms @ with
w(d/dt)>0). The flow p is circular exactly when € is nonempty (that is when D,
lies to one side of some hyperplane through the origin) in which case there are
infinitely many distinct lattice points in €. Under the hypotheses of the preceding
theorem, € has finitely many flat, integrally defined sides. This fact will be
exploited to find preferred lattice points in € and, in turn, preferred cross-
sections.

These preferred cross-sections will be ‘“‘simplest” in a certain sense. For
instance, the flow p,(x, y) = (x, ye*) on S' x 8" has cross-sections K, ={(z", z)} for
n >0, with first return map f, =rotation through 1/n of a revolution. Intuitively,
K, should be simple when n is small. This makes sense if one considers Haar

A\
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measure w on S'xS' and notes that u induces an f,-invariant measure

an<s>=i—u<{p,x |xeK,, 0=t=n))

(note that this quantity is independent of m if m is small). The total mass
i, (K,)=n does increase with n. This captures intrinsically the idea that K, is n
times larger than K;.

It is easy to generalize these considerations to any flow p with an invariant
measure . If p has a cross-section K and K has first-return map f then g as
defined above is independent of >0 (since w is invariant) and gives a f-
invariant, nonnormalized measure on K. The total mass i (K) = jix(K) measures
the complexity of K from the viewpoint of the measure .

THEOREM A. Suppose p is a smooth circular flow on a compact manifold M
and there are classes c,, . ..,c,€ Hi(M;Z) so that
1) ue H'(M; Z) is dual to a cross-section to p

Sule)>0

2) {¢;} spans H,(M;R).

Then there is a finite set F ={K,, . .., K} of cross sections to p with the following
properties:

a) For any p-invariant measure w there is a K, €% at which the total mass
function 1(K) achieves its minimum and the entropy h;(fx) achieves it maximum,
over all cross-sections K to p and all return maps fx.

b) Likewise the topological entropy h(fx) achieves its maximum over all
cross-sections K to p at some K; € %.

Note. This applies, as promised, to circular Axiom A flows if the homology
classes of closed orbits span H{(M;R).

Proof. By 1) the open cone € has finitely many flat, integrally defined sides.
We want to define the K; to be those cross-sections corresponding to the extreme
points of the convex hull of the lattice points in €. This will be satisfactory after
showing:

LEMMA. The convex hull of € "H'(M;Z) has a finite positive number of
extreme points.

Proof. The semigroup {ue H'(M;Z) | u(c;)=0,i=1,...,n} is easily seen to
have finitely many generators u;,...,u;. If u=) nu,0=n,eZ, lies in
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€NH'(M;Z) and if some n; (say n;)>1, then u+u, e €NH'(M;Z) and so

u+u1 u_ul
= +
2 2

u

is not an extreme point of € N H'(M; Z). Hence there are =2¢ points.

Since p is circular, € NH'(M;Z) is nonempty. Thus its convex hull is
nonempty and has an extreme point.

Now suppose w is some p-invariant measure. Then the total mass @ deposited
by n on cross-sections is additive, in the following sense.

LEMMA. If K, and K, are cross-sections to p and L is a cross section such that
U = ug, +ug, then @(L)= @(K;)+ x(K,).

Proof. One may assume that K; and K, intersect transversely and that L is the
cross-section obtained by smoothing K;NK, in a product neighborhood as

shown:
\/L\/
after: -
/ \_.*

The uniqueness of cross-sections in a given cohomology class up to ambient
isotopy implies that pux determines @(K). It is clear, however, that @i(L)=
a(K,)+@d(K,). Q.E.D.

Since € is an open cone, @ extends uniquely to a linear functional on
H'(M; R) with positive values on €. It follows that & | H'(M; Z) N% is minimized
on ¥ (of course, this minimum may be assumed elsewhere as well).

By Abramov’s formula [DGS],

before: ——

hu (Pl) = h,l(fK)ll(K)-

So as K varies, h;(fx) is maximized on &.

Finally, by Dinaburg-Goodwyn-Goodman [DGS], h(fx) =sup, h, (fx), where v
varies over the fy-invariant measures. But such a v gives rise to a p-invariant pu
with @ =». Hence h(fx)=sup,h;(fx) is maximized on ¥ as well. Q.E.D.

It should be noted that the ‘‘total mass” functional @ used in the proof is the
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asymptotic cycle of w [S]. Much of the above proof could be rephrased in
Schwartzman’s context, but the application to Axiom A systems requires homol-
ogy directions.

One may naturally ask whether a generic set of flows with cross-sections
possess homology classes satisfying 1) in Theorem A. This holds in dimension two
thanks to the density of Morse-Smale diffeomorphisms on S'. Such maps have
rational rotation number which implies that the homology direction of the
suspended flow consists of a single integral class c¢;. The answer is not known in
general.

The irrational flows on T? demonstrate the necessity for an integrality assump-
tion such as 1). Here D, is a single irrational vector, there is only one p invariant
measure p and g does not assume its mimimum value of 0. A cross section with
very small mass may be obtained by taking a nearly closed flowline, joining its
ends by a short transversal and then rounding the flowline to make it transverse to
the flow. The mass deposited on this cross-section is essentially the length of the
transversal.

Assumption 2) is somewhat less essential, as the following theorem shows.

THEOREM B. Suppose p is a smooth flow on a compact manifold M and there
are finitely many classes c¢;€ H,(M;Z) such that p has a cross section dual to
uu(g)>0,i=1,...,n. Then there are finitely many preferred families
F,, ..., F, of cross-sections, where two cross-sections are in the same family iff they
take the same values on the c¢;’s. For any invariant measure wu, {1 is minimized and
h;(fx) is maximized on F,U - - - UF,. Topological entropy is also maximized on
F,U - - - UF,. The first-return maps for members of a given family have the same
Artin-Mazur zeta function.

Proof. By applying the arguments used in Theorem A to H'(M; Z)/{u | u(¢;) =
0,i=1,...,n} and {ce H,(M;Z)| for some m>0, mc=) mc;} (instead of
H'(M; Z) and H,(M; Z)) one again obtains the families F,, . . ., F, as the extreme
lattice points in an open cone. The minimizing and maximizing properties follow
just as before.

Assume the cross-sections K and L are in the same family, and let v be a
periodic orbit for p. If [y] were not expressible as a linear combination of ¢; with
nonnegative coefficients there would be an integral linear functional u with
u(c;)>0 and u(y)<0. Such a u would be dual to a cross-section J with
u;(y) = u(y) <0, which is impossible. Hence [y] is a linear combination of ¢;’s. As
ug (c;) = ug (¢;) by our definition of family, it follows that ug(y) = u. (y).

Clearly for given K and m the values of ux(7y) for all y determine N, (fx)=
#Fix (fg). Since the Artin-Mazur zeta function £(g) =exp (¥ =N,.(g)t™) depends



Flow equivalence 243

only on N,,(g), we have {(fi) = {(f.) as desired. (If some N,,(f) is infinite, ¢ still
makes sense formally as an indexing device for the coefficients.) Q.E.D.

One may say more if M is 2-dimensional. The only nontrivial case of Theorem
B is when M = T?, and p is a flow with cross-section whose first return map has
rational rotation number. Then D, is a single direction, represented by a unique
indivisible d € H,(M; Z)/torsion. There is a single preferred family, namely F, =
{ue H'(M;Z)| u(d)=1}. It isn’t hard to verify that F, consists of all the cross-
sections K to p whose first return maps fx have rotation number 0. Moreover, if
K, L e F,, the maps fx and f; are conjugate; the flow p establishes a natural
conjugacy between Fix (fx) and Fix (f_) and also a compatible sense of motion on
the complementary intervals.

2. The homology zeta function for flows

The last conclusion of Theorem B suggests studying the way in which the
Artin~Mazur zeta functions vary from one family to another. We will show that
all these zeta functions are related to a new zeta function y(p) of several
variables in a simple way. In the special case of the semiflow associated to the
Lorenz attractor, the analogous zeta function was introduced by Williams [W].

For the sake of contrast, we will summarize some results about the usual zeta
function for flows. Motivated by the Selberg zeta function for surfaces of constant
negative curvature, Smale defined [Sm]

L(s) = n (1— =GO
v, k

where y ranges over the prime periodic orbits of the smooth flow p and where
I(y) is the period of y. The product converges for Re (s) large provided the I(y)
increase sufficiently rapidly. For constant-time suspensions of Axiom A
diffeomorphisms and for geodesic flows on surfaces of constant negative curva-
ture, {(s) is meromorphic in the whole plane [Sm]. For certain Axiom A flows,
{(s) has an essential singularity at s = —e[G]. By results of Bowen, the study of
{(s) for Axiom A flows reduces to questions about the suspended flows of
subshifts of finite type [B1].

Instead of monitoring the length of closed orbits, we will keep track of their
homology class (modulo torsion). This homology zeta function ¢ (p) for flows p is
modeled on the Artin-Mazur zeta functions {(f) for diffeomorphisms f (as
opposed to the Selberg zeta function mentioned above). The arguments of
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Manning that establish the rationality of {(g) for Axiom A g carry over to give
the rationality of {y(p) for Axiom A flows p.

As with all zeta functions considered in dynamical systems, a finiteness
assumption is needed to define {4 (p). Henceforth we assume p is a smooth flow
on a compact manifold M with only finitely many periodic orbits in each
homology class. (As we distinguish orbits from their multiples, this constraint
excludes a flow with a closed orbit y whose homology class [y] is of finite order in
H,(M;Z).) We call such a flow p homology finite.

We now construct certain algebraic receptacles for the zeta functions to be
defined. For a free abelian group G of finite rank, one may form the ‘““group ring”
Z[G]= ©®,.; Zg and the “rational formal power series module” P; =[], Qg. By
regarding G as a multiplicative group, Z[ G] has a natural multiplication and is an
integral domain. Using the natural action of G on Pg by translation, Pg is a
module over Z[G]. In case rank G =1, G ={t' | i € Z}, one sees that Z[ G] consists
of finite integral Laurent series in ¢, that P5 consists of rational formal power
series in ¢ and ¢~ and that the module action is multiplication. For rank G >1,
one obtains a similar interpretation for Z[G] and P5 upon choosing an integral
basis for G.

DEFINITION. If p is homology finite, let

og Zu(p) =Y. ¥

~ L kT

where H is the finitely generated free abelian group H,(M; Z)/torsion, -y varies
over the prime periodic orbits of p and [y]€ H is the torsion-free part of the
homology class of +.

We check that log {y(p) is well-defined. As mentioned above, p homology
finite implies [y]# 0 for all v. Since the torsion subgroup of H,(M; Z) is finite,
only finitely many y have the same [v]. Together with the fact that any nonzero
h € H is uniquely expressible as a positive power of an indivisible element, it
follows that the coeflicients in the formula are indeed finite and rational.

Note that {y(p) is only implicitly defined via its logarithm. In the cases
discussed below, {y(p) exists in its own right. Note that for now that formally
log u(p) =¥, —log (1~[y]), that is &s(p) =TT, (1~[yD™".

The following is immediate from the definitions.

PROPOSITION 1. If p is a flow with cross-section K dual to ue H'(M;Z)
then log {(fx) € Pz is obtained from log (i (p) by substituting u[+y] for [y]. (Here one
thinks of Z as the free multiplicative group on one generator t.)
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Unfortunately the module Py has nontrivial torsion (as shown the author by
W. Dwyer). This gives rise to ambiguities in interpreting a quotient of elements of
Z[H] as elements of Py. For instance, 1/t+t ' may be expanded as either
t—t2+t2—t"+---orast '—t 2+t °—t’+ .... We may avoid these ambiguities
by restricting the quotients we consider as in the following definition.

DEFINITION. The formal power series s € P is strictly rational if there are
p,q€Z[G] and a,beZ, b# 0 such that

1) regarding G additively, O is not a convex combination of the terms in p, q
with nonvanishing coefficients and

1 2 3
2) s= (a+p)g<1 —g+%5—%;+- - )

in which case one writes s = (a +p)/(b+q). Note that condition 1) is equivalent to
the existence of a linear functional u:G — Z positive on the terms of p and g.
The infinite series consequently contributes only finitely many coefficients to a
given ge G (it is a “locally finite” sum) and hence defines an element of Pg. It is
easy to check, regarding p € Z[ G] as an element of Pg in the obvious way, that is
(a+p)=(b+q)s.

If s is strictly rational as just defined and if a =b, then one may define log s
using the power series for log 1+ x:

2 x3

1 = ——F——
0gs=Xx 5 3

where x=a"'p+(1+a 'p)(—a 'q+a?q’—a>q’+- - -). As before, one may use
the functional u to see that this is a locally finite sum, and hence gives a
well-defined element of Pg.

DEFINITION. If the power series s, ..., S are strictly rational and a; = b;
for i=1,..., k then the power series log s;+- - - +1og s, will be called the formal
logarithm of the rational function 1<, s;. One must be careful not to manipulate
the formal product [If_, s; algebraically. For instance the rational function

1 1
1+¢%2 1+¢7¢
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has formal logarithm

log —— +log — —(---E—t"‘—t2+£——6+---)eP
1w BTt 2 23 z
But
1 ~ 1
A+)A+tY) 1+ +t+69)
cannot be expanded as 1—(t"'+t+t>)+(t '+t+1t5)*—- - - since the coefficients

are all given by divergent series.
We shall prove

THEOREM C. For any Axiom A homology finite flow p, {y(p) is rational.

Note that this means precisely that there are strictly rational function s; with
a;=b,i=1,...,k, so that the series log {;(p) defined above equals Yr_, log s;. In
fact, we will use one s; for each basic set I" for p. Define log {y(p | A) to be the
element of Py obtained by restricting the orbits y which appear in the definition
of log {uy(p) to those orbits y < A. The theorem clearly will follow from the
following proposition, by Smale’s Spectral Decomposition Theorem [Sm].

PROPOSITION 2. Given a basic set A for p, there is a strictly rational function
s with a=b =1 such that

log &(p | A)=logs.

Proof of the proposition. Recall that A admits a Markov family of sections #

and let vy,,...,vy, be the closed orbits determined by minimal allowed loops
li,..., 1, of elements of F. Suppose that some convex combination of
[v1),...,[vm]€ H gives 0. Then for some nonnegative integers a, ..., a,, one

has Y a;[y.]=0. Choose xoe M and x;el; for i=1,..., m. There are allowed
sequences p; from x, to x; and g; from x; to x,. For any n =0, the closed orbit o,
determined by

pich- - lieqiepyely - lhogao - oq,
L e Y a—
na, na,
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satisfies [5,]=[8,). Since the map carrying symbol sequences to orbits is finite to
one, the {§,} would be an infinite collection of orbits corresponding to the same
class [8,]€ H, contradicting the homology finiteness of p.

Since 0 is not a convex combination of [v,],...,[v,] it follows that there
exists u € H'(M; Z) with u[v;]>0, all i. By [F2] there is a map : M — S' so that
d(0 < p,)/dt>0, near A and 6*(1) = u. Roughly speaking, there is a cross-section
near A in class u. It follows easily from this that for any n >0 only finitely many
closed orbits y< A satisfy u(y)=n.

Hence log &y(p | A) € Py(u) ={x € Py | only finitely many terms ¢, ¢, #0, in x
satisfy u(h)=n, any n>0 and no terms have u(h)=<0 and h#0}. It is easy to
check that Py(u) is an integral domain. The units of Py(u) are precisely
{x =Y cyh € Py(u)| co # O}.

For the rest of this proof, all our computations shall be made in this integral
domain.

Our approach will follow Bowen’s scheme for reducing properties of closed
orbits of p | A to symbolic dynamics using Markov partitions [B1]. Bowen (using
Manning’s work with diffeomorphisms as a guide) constructs a finite index set 1,
using a function [(i):I1—Z"* such that for each iel one has the following
gadgetry:

1) A subshift of finite type o;:Y; = Y,

2) A continuous function ¢, : Y; — (0, )

3) The suspended flow ¢ on Xi={(y,t)|yeY;, 0=t=4(y)}/(y, t(y))=
(gi(y), 0) and

4) A continuous, finite-to-one map ; : X; = {2(p) such that p,om =m s, for
all teR.

The key property of this set-up is the relation, for each periodic point p€ A
and TeZ",

Y (=1)!®*'card {x | m(x) = p, T = prime period of x)

iel

_J 1 if 7 is the prime period of p
0 otherwise

In our context, this yields

k [m.(8)]"
log Lu(p) = 2. AN Y (Z X wk )

where & varies over the prime periodic orbits for ¢
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The Wang sequence of the fibration Y; — X; — S' in Cech cohomology

HYY;; )15 HO(Y,; Z) % H'(X;; Z) > 0

is exact. Note that H°(Y;; Z) ={continuous maps from Y; to Z} is generated by
the characteristic functions of closed-open sets. Any closed-open set in Y; is the
union of cylinder sets for some Markov partition of Y, (simply perform symbol
splitting enough times on a given Markov partition). Because H'(M;Z) is free
and d is surjective, ¥ : H'(M; Z)— H'(X,; Z) lifts to H°(Y;;Z). The facts just
mentioned show how to find a homomorphism L such that

H'(M;Z)5Fc H(Y;; Z)

3 d
™y J'

Hl(Xl; Z)

A 4

0

commutes. Here, for some Markov partition M for o;,, F=Cyl(M)={f:Y,—>Z|f
is constant on each cylinder set Ce#}. Note that F is a free abelian group,
naturally dual to the free abelian group on #. Let A, be the 0-1 matrix of

transitions for .
Let € vary over all sequences (C;,...,C;) of cylinder sets in # satisfying

Ai(C;,C; . )=1, k modulo p. Such a sequence € has a minimal period —E,
repeated k times. Also, € determines the g;-periodic orbit € that passes cyclically
through C;,, ..., C; and a given € appears for precisely the % cyclic permutations

of e.
This gives

[m(®F _ s [m(@)]
y 3 mOF_yln

8 k>0 k €

By taking the product of all the cylinder sets over one period, a ¢;-periodic
orbit € determines an element [é]e F*=Hom (F;Z) (recall that F* is the free
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abelian group on ). Using the above diagram of maps we find

[Wi(f—)]
2

€ Py

1s obtained from

'I;’G—JGPF*
e P

by replacing each term af* by a - LTf*, where LT : F* — (H'(M; Z))* = H.
We now compute

[_g_l: C;, - C;
Lyl

= Z lTrace (CA;)?, where C=

p>0

=—logdet (I-CA,)

(c1 0

0 '..Cd), d =card M

Applying L™ term by term gives

['Tri(é)]_
g p

where the entries of B; are either O or in H. Using the fact that
u(L™(C;, - C))=Lu(G;,...,C;)=u[m(&)]>0 for all € we see that
—log det (I — B;) € Py(u).

Finally, we have

log &y(p) =Y, (-1)'V*1(—log det (I - B))).

iel

Setting

1+p= [] det-B) and 1+q= [] det(I-B)

1(i) even 1(i) odd

yields {y(p)=(1+p)/(1+q), so we are done. Q.E.D.
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COROLLARY. If p is an Axiom A flow with cross-section, all the zeta
functions of first-return maps are obtained by substituting monomials x,=
t%, ...,xg=1t% into a rational function {y(p) of x,,...,xs. Here B =rank
H,(M;Z) and (a,, ..., ag) € Z? are the coordinates of the class in H'(M; Z) dual
to the cross-section.

Proof. This is almost immediate. One should note, however, that since p has a
cross-section there is a functional u : H — Z positive on all classes of closed orbits
of p, and this functional should be used in the proof of Proposition 2 for all the
basic sets of p. Once this precaution is taken, {y(p) may be unambiguously
interpreted as the result of applying the exponential series ) x"/n! formally to
log {4 (p), since all sums will be locally finite. Q.E.D.

3. The homology zeta function and basic sets

When A is a basic set for an Axiom A flow p and A contains only finitely
many periodic orbits in each homology class, the proof of Proposition 2, section 2
shows that ¢y(p|A) is well-defined and lies in the quotient field Q(Z[H]) of
Z[H]. We here study {y(p | A) as an invariant of the basic set A. The homology
finiteness assumption for p | A will be interpreted dynamically. It will also be
shown that ¢y (p | A) usually determines D, ,, the homology directions of p on A
(although in general one extra piece of information is needed). This leads to a
canonical choice of the classes ¢; referred to in Theorem A above.

THEOREM D. For a basic set A of an Axiom A flow p on a compact manifold
M, the following are equivalent:

1) p|A is homology finite, i.e., only finitely many orbits of p|A lie in any given class
in H(M; Z).

2) Some uc H'(M; Z) is positive on all closed orbits of p|A.

3) Some uec H'(M;Z) is positive on D,,.

4) There is a compact, codimension one submanifold K = M with a preferred normal
orientation so that each flowline in A meets K and all such intersections are
transverse and in the positive sense.

If these conditions hold, the proof of Proposition 2, Section 2 yields the
formula {y(p)=(1+p)/(1+q), where u is positive on all the terms {h;}< H of
p, q€Z[H]. The convex hull Cc H®R = H,(M; R) of {h;} does not contain 0,
and the projection of C to D = H,;(M; R)/positive scalars equals D, ,.

If one requires 1+p and 1+q to be relatively prime, then p and q are
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uniquely determined, independently of the choice of Markov family and the
functional u. The same characterization of D,, holds.

Proof. 1) — 2) was already shown in Proposition 2, Section 2

2) — 3) follows from [F2]. When 2) holds, D, 4 is the projection of D of the
convex hull of the classes of closed orbits (indeed, a finite number of classes
suffice).

3) — 4) also follows from [F2]. When 3) holds, there is a function 6 : M — S*
with 6%(1) = u and (d/dt)6(p,x)> 0. By choosing 6 smooth, one may let K be the
inverse image of a regular value of 6.

4) — 1) since there is a continuous first return map on KNA which, by
hyperbolicity, has isolated periodic points of given period. For n >0, the compact-
ness of K < A implies only finitely many closed orbits y = A satisfy u, (y) = n, and
1) follows.

Writing p =) m;h;, q =) n;h;, where for each i at least one of m;, n; is nonzero,
one has (from the proof of Proposition 2, Section 2) that any u € H'(M; Z) which
is positive on the closed orbits of p|A is also positive on {h;}. Conversely, if u is
positive on {h} then wu is positive on the terms of log{y(p|A)=
log (1+p)—log (1+q). Since, as mentioned above, D, , is the projection to D of
the convex hull of the homology classes of closed orbits, one obtains the desired
description of D,,.

To obtain the canonical choice of p, q, one uses the unique factorization
property of Z[H]. The intrinsic definition of {y(p|A) shows that the ratio
(1+p)/(1+q)e Q(Z[H])) is independent of Markov partition. A complete factori-
zation of 1+p or 1+¢q into irreducibles may be modified factor by factor with
units +h, he H so that each factor is of form 1+r, where u is positive on the
terms of r. These factorizations of 1+p,1+q are unique up to order. By
eliminating common factors 1+r, one obtains the canonical expression {y(p | A) =
(1+p")/(1+4q"). By the proof of Proposition 2, Section 2, one has that p, q (hence
P, q') are independent of the choice of u. Arguing as in the last paragraph, we are
done. Q.E.D.

If for each basic set A for p the terms h; are chosen from the canonical choice
of p, g, then |, {h;} is a canonical choice of {c;} for Theorem III above. For by
[F2], u(D,)>0< u(D,4)>0 for all A.

Suppose one wishes to compute D, from {y(p | A)€ Q(Z[H]). If one knows
a functional u: H — Z positive on D, 4 then the preceding proof gives a proce-
dure for calculating D, via a canonical form for {4(p | A). It is often unneces-
sary, however, to know such a functional. Express ¢ (p | A) in lowest terms as r/s.
Then, r, s € Z[H] are determined up to units, i.e., can only be replaced by er, es
with € = +h, h € H. One may look at the convex hulls C,, C; « HQR of the terms
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appearing in r, s. There must be one point h which is an extreme point both for C,
and C, and at which the coefficients r,, s, satisfy r, = s, = £1. Usually there will be
only one such point h and the canonical form of {y(p|A) will be

(r,h)'r  1+p
(Shh)—ls 1+q '

In any case, p and q (and hence D, ,) are determined up to finite ambiguity by
Lulp | A).

4. Flow equivalence and topological entropy

Theorems A and B indicate where to look in a flow equivalence class for the
maximum value of the topological entropy, under certain rationality assumptions
on the homology directions. In this section we will further investigate how
topological entropy varies under flow equivalence.

With € < H'(M;R) as in Section 1, each lattice point u e € " H'(M; Z) gives
rise to a cross-section K, a return map r (determined by u up to conjugacy) and a
topological entropy h(u) = h(r). For any n >0, the cross-section L corresponding
to n - u is n disjoint copies of K, cyclically permuted by the return map s: L — L
in such a way that s" consists of n disjoint copies of r. It follows that h(nu)=
(1/n)h(u), that is the function h: ¥ NH'(M;Z)— R is homogeneous of degree
—1. We will show

THEOREM E. There exists a unique extension of h to a continuous map
h 1€ — R that is homogeneous of degree —1. Either h(€) =0 or h(€) < (0, ©). When
h>0 on €, 1/h is concave.

Proof. Suppose that for some ue H YM;Z)N€ we have h(r)=0. Then the
Dinaburg-Goodwyn-Goodman Theorem [B2] gives h;(r)=0 for all p-invariant
measures w. By Abramov’s formula [DGS], h,(p,) = 0. Choosing another section
and reversing this reasoning shows h vanishes on all of H'(M;Z)N¥. By
homogeneity and continuity, (€)= 0.

We may assume now that h is positive on H'(M;Z)N%. As w varies over
those p invariant measures for which h,(p,)>0, Dinaburg-Goodwyn-Goodman
gives h(r) =sup, h;(r). Abramov gives

1 aK)
h o
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Regarding (i(K) as a linear functional positive on €, the right hand side defines a
nonnegative concave function g:%€ — R that is homogeneous of degree +1. From
concavity, we see g is continuous. As g>0 on the dense set H'(M; Q)N¥, the
concavity of g gives g>0 on €. So h=1/g:€—R is the desired
extension. Q.E.D.

We may say more about A when p is hyperbolic.

THEOREM F. Suppose p is the suspension flow of f:J — J where f is

a) an Axiom A diffeomorphism with perfect Q or
b) a pseudo-Anosov map [FLP].

Then h tends to « on €.

Remark. Note that Theorem A shows that there is a finite maximum for A on
the set of integral points in €. To fix ideas, we present a simple function with the.
qualitative features of h. Let € be the open positive quadrant in the x —y plane
and let f(x, y)=x?+y?*/xy(x+y). Then 1/f is homogeneous, concave, positive on
€ and vanishes on 9% but f(x, y)=1 for all positive integers x and y.

Proof. We will restrict ourselves to case a), as case b) is nearly identical.

Let A be a basic set for p. Suppose ue H'(M;Z) is positive on D,,. Then
Theorem D shows there is a submanifold K dual to u and transverse to p | A.
There is an associated return map r: K N A & which is an infinite basic set. The
associated entropy h, (u) is therefore positive [B3].

As in the proof of Theorem E one shows that g, = 1/h, extends uniquely to a
concave function on €,, where €, ={u|u(D,4)>0}. As =N, €, and h=
sup, (h, | €) we need only show g, vanishes on 9€,.

When D,, consists of a single point, then Theorem B shows that the
Artin-Mazur zeta function {(r) associated to u € €, depends only on u(d). As the
entropy of an Axiom A basic set is the growth rate of the number of periodic
points, h,(u) depends only on u(d). By homogeneity, g,(u) is proportional to
u(d) and tends to zero on 9%€,.

When D, contains more than one point we must proceed differently. For
simplicity, assume that A is the suspension flow of a subshift of finite type. Choose
a class ve HY(M;Z) with v(D,4)=0, v(D,4)#0, and Oev(D,,). Let F be a
Markov family of local sections to p | A. As stated in section 1, there is a minimal
loop in F such that the associated orbit y has v(y)=0. Let s€ F be one of the
symbols occurring in . Then there is a loop beginning and ending at s such that
the associated orbit & has v(8)>0. By concatenating these loops at s one obtains
a family of periodic orbits with zeta function 1/1—[vy]—[8].
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Choose ue¢NH(M;Z). For all n>0,u+nve€NH(M;Z) so there is a
corresponding return map r, and zeta function ¢, = {(r,). Recall that h(r,) is the
growth rate of the number of periodic orbits of r,. We estimate this from below
using the orbits constructed in the preceding paragraph: h(r,)=h, where e ™ is
the smallest zero of 1— "W —+m)® We let a = u(y), b=u(8), c =v(8) and
p(t, x)=1—1t*—t*x°. Graphing p(t, x) =0 shows that this curve passes through
(t, x)=(1,0) and has a continuation from this point into t<1, x >0. Thus for n
large there is an intersection point (t,, x,) of p(t, x)=0 with x =t" lying near
(1,0). Thus e ™ =x, = 0, so nh,(u+nv)=nh,—>x. We get

_ 1 u)_ : 1 _

a0~ lim (0 +5) = im s

By homogeneity, g vanishes on all rational points in d€, not in Ann (D).
As such points are dense, g, vanishes on 3%€,.

When A isn’t the suspension of a subshift of finite type, one passes to the
1-dimensional flow ¢ defined by a Markov partition. One shows in the usual way
that h(u) is also the entropy of the return map for ¢ associated to u, and then the
preceding argument applies. Q.E.D.

5. Flow equivalence of Anosov diffeomorphisms

Two interesting homological results are known for an Anosov flow p with
cross-section on a compact connected manifold M. The optimistic result is that
when p has a smooth invariant measure the homology classes of closed orbits span
H,(M;R)[P]. We extend this at the end of this section to transitive p. Thus
Theorem A applies for such p. As any known p is conjugate to one with a smooth
invariant measure, our Theorem A applies to all known p. The pessimistic result is
that for all these known cases H'(M;Z)=7Z, hence p has only one connected
cross-section and Theorem A is trivial for such p. One may try, however, to use
flow equivalence to prove H'(M;Z)=12Z is general (i.e., not just for known cases).
We here present the results of such an attempt, and so relate in an unobvious way
several properties which are often conjectured to hold for all Anosov
diffeomorphisms A:K — K, K connected and compact. Some results of this
section are in the author’s thesis [F1] which was written under the direction of
Stephen Smale.

One property is purely homological, namely

Property 1) No eigenvalue of A*: H'(K; R)— H'(K;R) is a root of unity.
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This holds for all known examples [Fr]; the most general known result [H] is that
1) is true if K has a polycyclic subgroup of finite index and if the Betti numbers
of the universal cover of K are finite. As will be shown later, the condition
H'(M;R)=R is equivalent to 1 not being an eigenvalue of A*.

Another property is purely dynamical, namely

Property 2) A has a fixed point.
This holds for all known A, since they are conjugate to infranilmanifold examples
for which 2) holds.

The last property is a homological property of the Anosov manifold K.

Property 3) dim H*(K;R)=<2* k =dim K.
To check this for known examples, one may use finite covers and the transfer map
to reduce to studying nilmanifolds K. By inducting on the nilpotent degree of K,
and using the Serre spectral sequence for the fibration of K over a torus as in
[M1], one obtains dim H*(K; R)<II dim H*(T;; R) =2, where T, are the tori
which appear as successive fibers in the representation of K as an iterated torus
bundle. This line of argument was suggested to the author by Rufus Bowen.

We now state

THEOREM G. If an Anosov diffeomorphism A,: K,— Ky, Ky compact and
connected, fails to satisfy Property 1) then there is an Anosov diffeomorphism
A :K — K, with K compact and connected and dim K = dim K,, so that

a) 1 is an eigenvalue of A*: H'(K;R)— H'(K;R)

b) A has no periodic points up to any given period, and

c) dim H*(K;R) is arbitrarily large.

So if Property 2 (or Property 3) holds for all Anosov diffeomorphism of a fixed
dimension, Property 1 must hold as well.

Proof. By passing to a finite cover, one may assume that the stable and
unstable bundles of A, are orientable, as in [M]. By passing to a power of A,, one
may assume A, preserves these orientations and that 1 is an eigenvalue for
AY HY(K;R)— H'K;R). Suspending A, gives an Anosov flow p on a compact
manifold M, dim M =dim K,+1. From the Wang exact sequence on real

A*—1
cohomology, one has 0— H°K,— H'M — H'K,——>H'K,, and so

dim H'(M;R) =rank H'(M;Z)>1. Thus the flow equivalence class of A, is
nontrivial; we shall choose A from this flow equivalence class.

Since p is Anosov, it satisfies Axiom A. Hence for a finite number of classes
cie H,ue H'(M;Z) is dual to a cross-section to p iff u(¢;)>0 for all i. By adding
some extra ¢; if necessary, we may assume all convex combinations in H of (0, ¢;)

are also ¢;’s.
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Let u, be the indivisible cohomology class p*(1) where p:M — S! is the
natural fibration with fiber K, and p*: H'(S'; Z)=Z — H'(M; Z). Extend u, to
an integral basis for H'(M; Z) and let u, be another vector in this basis. Then for
a = a(n) large enough, the class u = u, + au, satisfies:

1) u(D,)>0 and u is indivisible

2) u(¢;)=n for all i.

By 2) and the choice of ¢;’s one has u[y]=n for all periodic orbits y of p, proving
part b) of the Theorem.

Let K be the cross-section dual to u and A the first return map of K. Then A
is Anosov and has no periodic points of period <n. Consequently the Lefschetz
number L(A)=0fori=1,...,n—1.

Were dim H*(K;R)<n, it would follow from the algebraic argument in [Fu]
that L(A")=0 for all i. Since A is Anosov and preserves the unstable orientation,
one has [Sm] the equality |L(A")|=#Fix (A'), i >0. Since A has periodic points,
this is a contradiction. Thus dim H*(K; R) =n, proving part ¢) of the Theorem.

The Wang sequence for K — M — S'! shows that 1 is an eigenvalue of A*.
This gives part a). Q.E.D.

The preceding arguments work just as well for Thurston’s pseudo-Anosov
maps, since flow-equivalence preserves pseudo-Anosov [FLP, Exp. 14]. However
it is known [FLP, Exp. 13] that property 1 fails for certain pseudo-Anosov maps;
indeed, the induced map on H, can even be the identity. This gives

COROLLARY. Given any integer n there is a pseudo-Anosov map of a closed
connected surface with no periodic points of period <n.

The pseudo-Anosov case of the following result was first proven by Thurston
[FLP, Exp. 14] by completely different methods (using that the mapping torus of a
pseudo-Anosov map is atoroidal). The next theorem settles the problem Plante
raised in [P] to generalize his result to all transitive Anosov flows from the volume
preserving case. Plante used asymptotic cycles whereas we use Z-covers as in [F2].

THEOREM H. Let p,: M — M be either a transitive Anosov flow or a pseudo-
Anosov flow (that is, a flow with cross-section with a pseudo-Anosov return map).
Then the homology classes of closed orbits span H,(M; R).

Proof. Clearly we may take M connected.

Let # be a fine Markov partition for p and let vy,,..., vy, be the closed p
orbits corresponding to minimal loops in # [F2]. As in [F2, Theorem H], the
homology class [y] of any periodic orbit vy is a positive integral combination of
[vi) - - -, [v ] Assuming these classes don’t span H,;(M; R), then some indivisible
integral class u € H'(M; Z) vanishes on [v,],...,[v] and hence on all [y]. We
will deduce that p isn’t transitive.
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Let m: M— M be the connected Z-cover of M determined by u. Then p, lifts
to a flow p, that commutes with Z and a periodic p-orbit lifts to a periodic p orbit
of the same period. We denote p,x by tx.

Let 0 : M—R/Zrepresents u,i.e., §*[dt]= u. Then 8 lifts to 6 : M— R. We show

LEMMA. [é(tx)-—é(x)l is uniformly bounded over all xe M, tR.

Proof. We may take x so that the orbit of x passes only through the interior of
elements of M. As every p orbit meets A in bounded time, we may assume x and
tx lie over M. For each ¢ for which txen 7', 0=to<t,<---<t =1t let s(i)e M
be the symbol associated to w(tx).

Choose i; as large as possible with s(i,) = s(0), then i, is large as possible with
s(i) =s(i; + 1), etc., obtaining a sequence 0<i,<i,<---=<i, =n. Let ip=-1.
Then for 1=j=m, the sequence s(i;_;+1),..., s(i; — 1), s(i;) is a closed loop in M
and determines a closed orbit passing through y, € s(i;) of some period p; (not
necessarily the minimum period of y;). We lift y; to the point §; € w~'(y,) nearest
to a;x, where a; =t;_,,;. Let b;=t;. Then

6(tx)—6(x) = i 5(b,-x) - 0~(a,-x) + i é(a,-x)-— 5(b,~m1x).

ji=

Each term in the second sum is the variation of 6 between consecutive intersec-
tions of a flowline with #, hence bounded. The points m(a;x) and w(y;) have the
same intersections with # for the first i; —i;,_; places and so stay close for that
interval (# was chosen fine). Thus b;x is near y;, and each term in the first sum is
bounded. Finally m < card (#), which proves the lemma. i

To conclude the proof, we study the N-fold cover My = M/NZ of M and the
induced flow ¢ =p/NZ where N is chosen so that N/3 is a bound for the
preceding lemma. Clearly My is compact and connected and ¢ is Anosov (or
pseudo-Anosov). Let 6y : My — R/NZ be the map induced by 6. As 6y repres-
ents a nontrivial cohomology class, it is surjective. However, the values of 6y over
any trajectory of s, are not dense (they occupy =2/3 of the image). Thus ¢ isn’t
transitive, so () # My. But the density of closed orbits in M implies closed
orbits are dense in My as well. This contradiction shows that u cannot exist, so

[v] span as desired. Q.E.D.

6. Flow equivalence and Morse-Smale maps

We will show that flow-equivalence may be used to identify and strengthen an
invariant of Asimov’s for the suspension p of a Morse-Smale map. If Cy, ..., C,
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are the closed orbits of p, Asimov denotes the fixed point index of the Poincare
map near C; by ¢ =+1 and defines the geometric index of p to be J(p)=
Yi-1&[Cle H. In [A, proposition A] it is shown that if f, g: K — K are isotopic
Morse-Smale maps that preserve stable and unstable orientations at their periodic
points, their suspended flows p, ¢ satisfy J(p) = J ().

In fact, J(¢») may be identified as follows.

THEOREM 1. For ¢ as above, J({) = (—1)*x(¢"), where x(¢*) is the Euler
class of the normal bundle y* and k = dim K.

Proof. If ue H'(M;Z) is dual to K, then

r

wW)= Y eulGl= Y ep

i=1

where p; is the period of points C; NK for g. Also, ¢ =(—1)%, where u; is the
dimension of the unstable manifold of points in C,NK. Thus u(J(y))=
Yper (p (—1)“®, where u is the unstable dimension of the periodic point p. By the
Morse-Smale inequalities [Sm], Y, (—1)*“® =x(K). This gives u(J(¢))=
(=1)*x(K). The Euler class x(¢*)e H satisfies u(x(¢*)) = x(K). Thus u(J(¢)) =
u((=1)*x(g™H)).

Note that the condition u(c;) >0 is satisfied. Choosing a set of integral vectors
Uy, ..., us € H'(M;Z) that are close to u in angle but span H'(M;R), one
obtains u;({¢;})>0, i=1,..., B =dim H'(M;R). The arguments of the previous
paragraph apply equally well to cross-sections K; dual to u;, and thus u;(J(p)) =
u((—D*x(p")) for i=1,...,B. As the u’s span H'(M;R)=H*®R and H is
torsion free, the proposition follows. Q.E.D.

Consequently, Morse-Smale flows p, ¢y with cross-section will have the same
geometric index even if they are only assumed homotopic through nonsingular
vector fields (for then x(p*) = x(¢¥)).
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