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Flow équivalence, hyperbolic Systems and a new zêta
function for flows

David Fried*

Abstract We analyze the dynamics of diffeomorphisms m terms of their suspension flows For many
Axiom A diffeomorphisms we find simplest représentatives in their fîow équivalence class and so
reduce flow équivalence to conjugacy The zêta functions of maps in a flow équivalence class are
correlated with a zêta function £H for their suspended flow This zêta function is defined for any flow
with only finitely many closed orbits in each homology class, and is proven rational for Axiom A flows
The flow équivalence of Anosov diffeomorphisms is used to relate the spectrum of the mduced map on
first homology to the existence of fixed points For Morse-Smale maps, we extend a resuit of Asimov
on the géométrie index

0. Introduction

Since Poincare&apos;s time, the dynamical properties of a smooth differential
équation hâve been studied in terms of maps between local transversals to the
flow p. Near a periodic orbit 7, for instance, one may introduce a small transverse
dise D of codimension one which cuts 7 once and study the partially defined map
f :D-+D obtained by following the flowhne through deD until it again meets D
m f(d) ptd, f&gt;0. This local section allows one to study the stability of 7 (or
other properties of p near 7) in terms of the stability (etc.) of the fixed point
yHD for /.

To obtain a global picture of a smooth (C°°,say) non-singular flow p on a

compact manifold M one might cover M with flowboxes (i.e., a disjoint family of
transverse, codimension-one, dises D, where B^ipJD, :0&lt;f ^t^} is an embedded
cylinder and {Bj covers M) and analyze the measurable first-return map /,
defined as above. While this réduction is satisfactory for the purposes of ergodic
theory, the discontinuity of / makes this approach useless for studying the

topological behavior of p.
For a satisfactory global réduction of p to a mapping, one needs a cross -

section, that is a transverse, closed submanifold K which meets every flowline.

*PartiaIly supported by MCS 76-08795
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238 DAVID FRIED

When such a K exists, the first return map f(k) pt(k)(fc) (where t(k) &gt;0, pt(k) &lt;£ K
for 0&lt;f&lt;f(fc) and pt(k)(k)eK) is a well-defined difïeomorphism and the récurrence

properties of / accurately reflect those of p. We call a flow circular if it
admits a cross-section.

Not ail nonsingular flows are circular (necessary and sufficient conditions are
given in section 1) so that this pleasant réduction is often impossible. However
any smooth map t:K—»(0,°°) and difïeomorphism / of K détermine the sus-
pended flow p with cross-section K, first-return map / and time of first return t.

On the manifold M {(k, s) | 0 &lt; s &lt; t(k)}l(k, t(k)) (/(fc), 0) the flow p is induced

by d/ds.
Even when cross-sections exist, there may well be many essentially distinct

cross-sections and first-return maps. One calls the resulting relation amongst
first-return maps flow équivalence, so / and g are flow équivalent if they hâve

conjugate suspended flows. For example, ail the rational flows on the torus are

conjugate and so ail rational rotations of S1 are flow équivalent. This means that
it is difficult to décide whether two flows with cross-section are conjugate: it does

not suffice generally to investigate the conjugacy problem for their first return
maps.

We thank the référée for his valuable assistance.

1. Preferred cross-sections

The most effective way to reduce a flow to a diffeomorphism would be a

canonical cross-section or at least a finite number of preferred cross-sections.

(From the viewpoint of the first-return maps, this is finding preferred éléments in
a flow équivalence class.) We will show in Theorem A that thèse exist for circular
Axiom A flows [Sm] whose periodic orbits span HX(M;R).

We begin by observing that there is no reason to distinguish between cross-
sections Ko and Kx to p if there is an isotopy of M carrying Ko to Kt through
cross-sections, since Ko and Kt must détermine conjugate first-return maps.
Grouping such isotopic cross-sections together enables one to study cross-sections

algebraically. Note that a cross-section K carries a preferred normal orientation,
arising from the flow p, and so détermines a dual class wK€H1(M;Z).

PROPOSITION [F2]. There is an isotopy of M carrying K to L through
cross-sections &lt;=&gt; uK uL.

This proposition suggests studying {uK g H1 (M; Z) | K is a cross section to p}.
For this purpose, topologize the set of homology directions D of M,D
Ht(M; R)/positive scalars, as (unit sphère) U{0} and note that any closed loop 7
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of M détermines a homology direction [y]eD. Define deDtobea homology
direction for p if there are points ml-^m and times tt -&gt; +00 so that p^m, -* m and
[(ptmi | 0&lt; t &lt; 0 • short path] -&gt; d. Then the set Dp of homology directions for p is

a compact subset of D.

THEOREM [F2]. The smooth flow p on the compact manifold M has a
cross-section K dual to uKeH\M; Z) iff uK(Dp)&gt;0.

If p does hâve a cross-section and the first return map admits a Markov
partition F of small size then there are a flnite number of periodic orbits
7,, i 1,..., n, corresponding to those allowed loops of éléments of F which are
minimal (no élément of F occurs twice). One then has a simpler description of the
cross-sections to p.

THEOREM [F2]. For such p, a class u e H\M; Z) is dual to a cross-section K
for p iff m()

Observe that one direction is easy, since uK(yt) is the number of times 7,
meets K in one period.

One should think of u(Dp)&gt;0 as defining an open cone ^czHl(M;R) in
which lattice points (Le., intégral classes) correspond to cross-sections to p. (One

may show that real classes in this open cone arise from closed 1-forms o&gt; with
(o(d/dt)&gt;0). The flow p is circular exactly when &lt;£ is nonempty (that is when DP
lies to one side of some hyperplane through the origin) in which case there are

infinitely many distinct lattice points in &lt;€. Under the hypothèses of the preceding
theorem, % has finitely many flat, integrally defined sides. This fact will be

exploited to find preferred lattice points in ^ and, in turn, preferred cross-
sections.

Thèse preferred cross-sections will be &quot;simplest&quot; in a certain sensé. For
instance, the flow pt{x, y) (x, yelt) on S1 x S1 has cross-sections Kn {(zn, 2)} for
n&gt;0, with first return map fn rotation through 1/n of a révolution. Intuitively,
Kn should be simple when n is small. This makes sensé if one considers Haar

V
\ \.V
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240 DAVID FRIED

measure jul on SlxS1 and notes that jul induces an fn-invariant measure

A(S)

(note that this quantity is independent of r\ if r\ is small). The total mass
(Ln(Kn) n does increase with n. This captures intrinsically the idea that Kn is n
times larger than Kx.

It is easy to generalize thèse considérations to any flow p with an invariant
measure jx. If p has a cross-section K and K has first-return map / then jïK as

defined above is independent of t)&gt;0 (since ix is invariant) and gives a /-
invariant, nonnormalized measure on K. The total mass pL(K) (LK(K) measures
the complexity of K from the viewpoint of the measure /ul.

THEOREM A. Suppose p is a smooth circular flow on a compact manifold M
and there are classes cu ,cne H^M; Z) so that

1) mgH1(M;Z) is dual to a cross-section to p

2){ct} spans H^M;*).
Then there is a finite set &amp; {Kl,..., Ks} of cross sections to p with the following
properties:

a) For any p-invariant measure jul there is a Kte^ at which the total mass

function jl(K) achieves its minimum and the entropy fyx(/K) achieves it maximum,
over ail cross-sections K to p and ail return maps fK.

b) Likewise the topological entropy h(fK) achieves its maximum over ail
cross-sections K to p at some Kt eSF.

Note. This applies, as promised, to circular Axiom A flows if the homology
classes of closed orbits span HxiM; R).

Proof By 1) the open cône ^ has finitely many flat, integrally defined sides.

We want to define the Kt to be those cross-sections corresponding to the extrême
points of the convex hull of the lattice points in &lt;€. This will be satisfactory after
showing:

LEMMA. The convex hull of ^ H Hl(M\ Z) has a finite positive number of
extrême points.

Proof. The semigroup {ueHl(M; Z) | u(c,)^0, i 1,..., n} is easily seen to
hâve finitely many generators uu ud. If u X n}uv 0 &lt; n, g Z, lies in
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&lt;#nH\M;Z) and if some n} (say n1)&gt;l, then u±ule&lt;énHl(M;Z) and so

W + Mi U~UX

is not an extrême point of ^C\Hl(M; Z). Hence there are &lt;2d points.
Since p is circular, ^HH^M^Z) is nonempty. Thus its convex hull is

nonempty and has an extrême point.
Now suppose jll is some p-invariant measure. Then the total mass jd deposited

by ix on cross-sections is additive, in the following sensé.

LEMMA. If K1 and K2 are cross-sections to p and L is a cross section such that
Ul uKi + uK2 then jI(L) fi(K1) + fi(K2).

Proof. One may assume that Kx and K2 intersect transversely and that L is the
cross-section obtained by smoothing KlHK2 in a product neighborhood as

shown:

before / \ ^ after/ Y
The uniqueness of cross-sections in a given cohomology class up to ambient

isotopy implies that ju,k détermines jl(K). It is clear, however, that jûL(L)

iKKJ + iiiKJ. Q.E.D.
Since ^ is an open cône, ji extends uniquely to a linear functional on

H^M; R) with positive values on *#. It follows that fi | Hl(M; Z) H^ is minimized
on &amp; (of course, this minimum may be assumed elsewhere as well).

By Abramov&apos;s formula [DGS],

So as K varies, ^(/k) is maximized on SF.

Finally, by Dinaburg-Goodwyn-Goodman [DGS], ft(/K) supv hv(fK), where v
varies over the /^-invariant measures. But such a v gives rise to a p-invariant jll
with jl v. Hence h(fK) supti.hpi(fK) is maximized on &amp; as well. Q.E.D.

It should be noted that the &quot;total mass&quot; functional jl used in the proof is the
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asymptotic cycle of jll [S]. Much of the above proof could be rephrased in
Schwartzman&apos;s context, but the application to Axiom A Systems requires homol-
ogy directions.

One may naturally ask whether a generic set of flows with cross-sections

possess homology classes satisfying 1) in Theorem A. This holds in dimension two
thanks to the density of Morse-Smale difïeomorphisms on S1. Such maps hâve
rational rotation number which implies that the homology direction of the
suspended flow consists of a single intégral class c^. The answer is not known in
gênerai.

The irrational flows on T2 demonstrate the necessity for an integrality assump-
tion such as 1). Hère Dp is a single irrational vector, there is only one p invariant
measure ijl and fl does not assume its mimimum value of 0. A cross section with
very small mass may be obtained by taking a nearly closed flowline, joining its
ends by a short transversal and then rounding the flowline to make it transverse to
the flow. The mass deposited on this cross-section is essentially the length of the
transversal.

Assumption 2) is somewhat less essential, as the foliowing theorem shows.

THEOREM B. Suppose p is a smooth flow on a compact manifold M and there

are finitely many classes c, e H^M; Z) such that p has a cross section dual to

u&lt;$u(cl)&gt;0, i 1,..., n. Then there are finitely many preferred families
Fl5..., Fs of cross-sections, where two cross-sections are in the same family iff they
take the same values on the ct&apos;s. For any invariant measure jll, jûL is minimized and

^iC/jc) ^ maximized on FXU • • • UFS. Topological entropy is also maximized on
Fx U • • • U Fs. The first-return maps for members of a given family hâve the same

Artin-Mazur zêta function.

Proof. By applying the arguments used in Theorem A to HX(M\ Z)l{u \ u(ct)
0, i l, ...,n} and {c€Hx(M;Z)| for some m&gt;0, me £ m^} (instead of
HX(M; Z) and Ht(M; Z)) one again obtains the families Fu Fs as the extrême
lattice points in an open cône. The minimizing and maximizing properties foliow
just as before.

Assume the cross-sections K and L are in the same family, and let 7 be a

periodic orbit for p. If [7] were not expressible as a linear combination of cx with
nonnegative coefficients there would be an intégral linear functional u with
u(ct)&gt;0 and u(y)&lt;0. Such a u would be dual to a cross-section / with
Uj(y) u(7)&lt;0, which is impossible. Hence [7] is a linear combination of cE&apos;s. As
&quot;k(c,) WjlCc,) by our définition of family, it follows that uK(y) uL(y).

Clearly for given K and m the values of uK(y) for ail 7 détermine Nm(fK)
#Fix(/£). Since the Artin-Mazur zêta function £(g) exp (I mNm(g)tm) dépends
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only on Nm(g), we hâve Ç(fK) £(/L) as desired. (If some Nm(fK) is infinité, f still
makes sensé formally as an indexing device for the coefficients.) Q.E.D.

One may say more if M is 2-dimensional. The only nontrivial case of Theorem
B is when M T2, and p is a flow with cross-section whose first return map has
rational rotation number. Then Dp is a single direction, represented by a unique
indivisible d e HX(M\ Z)/torsion. There is a single preferred family, namely Fx
{ueH1(M;Z) | u(d) l}. It isn&apos;t hard to verify that Ft consists of ail the cross-
sections Ktop whose first return maps fK hâve rotation number 0. Moreover, if
K9LeFl9 the maps fK and fL are conjugate; the flow p establishes a natural
conjugacy between Fix (fK) and Fix (/L) and also a compatible sensé of motion on
the complementary intervais.

2. The homology zêta fonction for flows

The last conclusion of Theorem B suggests studying the way in which the
Artin-Mazur zêta functions vary from one family to another. We will show that
ail thèse zêta functions are related to a new zêta function £H(p) of several
variables in a simple way. In the spécial case of the semiflow associated to the
Lorenz attractor, the analogous zêta function was introduced by Williams [W].

For the sake of contrast, we will summarize some results about the usual zêta
function for flows. Motivated by the Selberg zêta function for surfaces of constant
négative curvature, Smale defined [Sm]

where y ranges over the prime periodic orbits of the smooth flow p and where

l(y) is the period of 7. The product converges for Re (s) large provided the l(y)
increase sufficiently rapidly. For constant-time suspensions of Axiom A
difïeomorphisms and for géodésie flows on surfaces of constant négative curvature,

f(s) is meromorphic in the whole plane [Sm]. For certain Axiom A flows,
((s) has an essential singularity at s -e[G]. By results of Bowen, the study of
Ç(s) for Axiom A flows reduces to questions about the suspended flows of
subshifts of finite type [Bl].

Instead of monitoring the length of closed orbits, we will keep track of their
homology class (modulo torsion). This homology zêta function £H(p) for flows p is

modeled on the Artin-Mazur zêta functions £(/) for difïeomorphisms / (as

opposed to the Selberg zêta function mentioned above). The arguments of
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Manning that establish the rationality of £(g) for Axiom A g carry over to give
the rationality of £h(p) f°r Axiom A flows p.

As with ail zêta fonctions considered in dynamical Systems, a finiteness

assumption is needed to define £H(p). Henceforth we assume p is a smooth flow
on a compact manifold M with only finitely many periodic orbits in each

homology class. (As we distinguish orbits from their multiples, this constraint
excludes a flow with a closed orbit 7 whose homology class [7] is of finite order in
Ht(M; Z).) We call such a flow p homology finite.

We now construct certain algebraic réceptacles for the zêta functions to be

defined. For a free abelian group G of finite rank, one may form the &quot;group ring&quot;

Z[G] ©geG Zg and the &quot;rational formai power séries module&quot; PG flgeo Qg- By
regarding G as a multiplicative group, Z[G] has a natural multiplication and is an

intégral domain. Using the natural action of G on PG by translation, PG is a

module over Z[G]. In case rank G 1, G ={tl \ ieZ}, one sees that Z[G] consists

of finite intégral Laurent séries in t, that PG consists of rational formai power
séries in t and i~l and that the module action is multiplication. For rank G&gt;1,

one obtains a similar interprétation for Z[G] and PG upon choosing an intégral
basis for G.

DEFINITION. If p is homology finite, let

y k&gt;0 ^

where H is the finitely generated free abelian group H^M; Z)/torsion, 7 varies

over the prime periodic orbits of p and [7] g H is the torsion-free part of the

homology class of 7.
We check that log£H(p) is well-defined. As mentioned above, p homology

finite implies [7] ^ 0 for ail 7. Since the torsion subgroup of Ht(M; Z) is finite,
only finitely many 7 hâve the same [7]. Together with the fact that any nonzero
h eH is uniquely expressible as a positive power of an indivisible élément, it
foliows that the coefficients in the formula are indeed finite and rational.

Note that £H(p) is only implicitly defined via its logarithm. In the cases

discussed below, £H(p) exists in its own right. Note that for now that formally

The following is immédiate from the définitions.

PROPOSITION 1. If p is a flow with cross-section K dual to ueH\M;Z)
then log Ç(fK) e Pz is obtained from log ÇH(p) by substituting m[7] for [7]. {Hère one
thinks of Z as the free multiplicative group on one generator t.)
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Unfortunately the module PH has nontrivial torsion (as shown the author by
W. Dwyer). This gives rise to ambiguities in interpreting a quotient of éléments of
Z[H] as éléments of PH. For instance, 1/f + r1 may be expanded as either
t -13 + r5 - r7 + • • • or as t&quot;1 - r3 + r5 -1~7 + We may avoid thèse ambiguities
by restricting the quotients we consider as in the following définition.

DEFINITION. The formai power séries sePG is strictly rational if there are

p, q e Z[G] and a,beZ,b^0 such that
1) regarding G additively, 0 is not a convex combination of the terms in p, q

with nonvanishing coefficients and

in which case one writes s (a + p)l(b + q). Note that condition 1) is équivalent to
the existence of a linear functional u : G -» Z positive on the terms of p and g.

The infinité séries consequently contributes only finitely many coefficients to a

given g g G (it is a &quot;locally finite&quot; sum) and hence defines an élément of PG. It is

easy to check, regarding p e Z[G] as an élément of PG in the obvious way, that is

If s is strictly rational as just defined and if a b, then one may define log s

using the power séries for log 1 + x:

x2 x3

where x a~1p + (1 + a~1P)(~«&quot;1^ + a 2q2~a 3q3 + - • •)• As before, one may use

the functional u to see that this is a locally finite sum, and hence gives a

well-defined élément of PG.

DEFINITION. If the power séries su...9sk are strictly rational and a, bt

for ï 1,..., k then the power séries log st + • • • +log sk will be called the formai

logarithm of the rational function Y[^i ^ One must be careful not to manipulate

the formai product 11!°= i st algebraically. For instance the rational function

¦r1
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has formai logarithm

But

(1 +

cannot
are ail

We

1 1

1

be expanded as 1

given by divergent
shall prove

l~2

1

-(t~l + t

séries.
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t4 t6

since the coefficients

THEOREM C. For any Axiom A homology finite flow p, £H(p) is rational.

Note that this means precisely that there are strictly rational function st with
a, bl9 i 1,..., k, so that the séries log £H(p) defined above equals Yï=1 log st. In
fact, we will use one s, for each basic set F for p. Define log £H(p | A) to be the
élément of PH obtained by restricting the orbits 7 which appear in the définition
of log Ch(p) to those orbits 7 c A. The theorem clearly will foliow from the

following proposition, by Smale&apos;s Spectral Décomposition Theorem [Sm].

PROPOSITION 2. Given a basic set A for p, there is a strictly rational function
s with a b l such that

log Ch(p I A) log s.

Proof of the proposition. Recall that A admits a Markov family of sections M
and let yl9..., 7m be the closed orbits determined by minimal allowed loops
/1,..., 4n of éléments of F. Suppose that some convex combination of
[71]» • • • »[7m]€ H gives 0. Then for some nonnegative integers al9..., am, one
has Zal[7l] 0. Choose xoeM and xlell for i l,..., m. There are allowed

séquences pt from x0 to xt and qt from xx to x0. For any n &gt; 0, the closed orbit an
determined by
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satisfies [ôn] [ô0]. Since the map carrying symbol séquences to orbits is finite to
one, the {ôn} would be an infinité collection of orbits corresponding to the same
class [S0]eH, contradicting the homology finiteness of p.

Since 0 is not a convex combination of [7J,..., [7m] it follows that there
exists u e H\M; Z) with u[yJ&gt;0, ail L By [F2] there is a map 0 : M -» S1 so that
d(0 ° pt)/dt&gt;0, near A and d*(l) u. Roughly speaking, there is a cross-section

near A in class u. It follows easily from this that for any n &gt; 0 only finitely many
closed orbits ycA satisfy u(y) n.

Hence log £H(p I A) g Ph(w) {x e PH | only finitely many terms ch, ch 7^ 0, in x
satisfy u(h) n, any rc&gt;0 and no terms hâve u(ft)&lt;0 and h^O}. It is easy to
check that PH(u) is an intégral domain. The units of PH(u) are precisely

For the rest of this proof, ail our computations shall be made in this intégral
domain.

Our approach will follow Bowen&apos;s scheme for reducing properties of closed

orbits of p | A to symbolic dynamics using Markov partitions [Bl]. Bowen (using
Manning&apos;s work with diffeomorphisms as a guide) constructs a finite index set /,
using a function l(i):I-&gt;Z+ such that for each iel one has the following
gadgetry:

1) A subshift of finite type al:Yl-&gt; Yt

2) A continuous function tt : Y, -&gt; (0,00)

3) The suspended flow &amp; on X, ={(y, t) \ y e Yl9 0&lt;f&lt;^(y)}/(y,t,(y))

(o;(y),0) and
4) A continuous, finite-to-one map ir, : Xt-»il(p) such that pf °ir, =irl°ifc)t for

ail teR.
The key property of this set-up is the relation, for each periodic point peA

and tgZ+,

(-l)I(lH1card {x | ir,(x) p, t prime period of x)
IGl

_ 11 if t is the prime period of p
10 otherwise

In our context, this yields

where ô varies over the prime periodic orbits for ifo.
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The Wang séquence of the fibration Yx —&gt; Xt —» S1 in Cech cohomology

H°(Y,;Z) fT~l
&gt;H°(Yt;

is exact. Note that /J°(Yi; Z) {continuous maps from Y, to Z} is generated by
the characteristic functions of closed-open sets. Any closed-open set in Y, is the
union of cylinder sets for some Markov partition of Y, (simply perform symbol
splitting enough times on a given Markov partition). Because Hl{M\ Z) is free
and à is surjective, n* : tt\M\Z)-*H\Xx\ Z) lifts to H°(Y,;Z). The facts just
mentioned show how to find a homomorphism L such that

H\M; Z)^&gt;Fc H0^ ; Z)

commutes. Hère, for some Markov partition M for al9 F Cyl (^0 {/ : Yt —» Z | /
is constant on each cylinder set CgM}. Note that F is a free abelian group,
naturally dual to the free abelian group on M. Let A, be the 0-1 matrix of
transitions for M.

Let e vary over ail séquences (Ch,..., CJp) of cylinder sets in M satisfying

A,(CJk, CJlt+1) l, k modulo p. Such a séquence e has a minimal period —,
rC

repeated fc times. Also, e détermines the o-j-periodic orbit ê that passes cyclically

through CJl5..., CJp and a given € appears for precisely the — cyclic permutations
K

Of €.

This gives

y yk(g)f=yk(ê)]
8k&gt;0 k t P

By taking the product of ail the cylinder sets over one period, a cr,-periodic
orbit € détermines an élément [ë]GF*=Hom (F;Z) (recall that F* is the free
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abelian group on M). Using the above diagram of maps we find

is obtained from

?¦?•*•

by replacing each term a/* by a • LT/*, where LT : F* -&gt; (H\M;Z))* H.
We now compute

X - Trace (CAJP, where C (^ •. ^ Y d card M
P&gt;o P \0 CdJ

-logdet(/-CA)

Applying LT term by term gives

(J-B,),

where the entries of Bt are either 0 or in H. Using the fact that
u(LT(Cu - - - CJ) Lu(Cp Ch) m[ttï(€)]&gt;0 for ail e, we see that
-logdet (!-£,)€ PH(u).

Finally, we hâve

Setting

l+p= fi det(/-B,) and l+q= fl det(J-B.)
KOeven l(*)odd

yields fH(p) (1 + p)/(l + q), so we are done. Q.E.D.



250 DAVID FRIED

COROLLARY. If p is an Axiom A flow with cross-section, ail the zêta

fonctions of first-return maps are obtained by substituting monomials xx

ta\ x3 ta* into a rational function £H(p) of xx,..., x3. Hère |3 rank

Ht(M; Z) and (al9..., a3)€Z3 are the coordinates of the class in H1(M; Z) dual
to the cross-section.

Proof. This is almost immédiate. One should note, however, that since p has a

cross-section there is a functional u : H —» Z positive on ail classes of closed orbits
of p, and this functional should be used in the proof of Proposition 2 for ail the
basic sets of p. Once this précaution is taken, £H(p) may be unambiguously
interpreted as the resuit of applying the exponential séries £xnM! formally to
log £H(p)&gt; since ail sums will be locally finite. Q.E.D.

3. The homology zêta function and basic sets

When A is a basic set for an Axiom A flow p and A contains only finitely
many periodic orbits in each homology class, the proof of Proposition 2, section 2

shows that £H(p | A) is well-defined and lies in the quotient field Q(Z[H]) of
Z[H]. We hère study £H(p | A) as an invariant of the basic set A. The homology
finiteness assumption for p\A will be interpreted dynamically. It will also be

shown that ^H(p | A) usually détermines DP\A, the homology directions of p on A
(although in gênerai one extra pièce of information is needed). This leads to a

canonical choice of the classes cx referred to in Theorem A above.

THEOREM D. For a basic set A of an Axiom A flow p on a compact manifold
M, the following are équivalent:
1) p\A is homology finite, Le., only finitely many orbits of p\A lie in any given class

in Ht(M; Z).
2) Some ueHx(M; Z) is positive on ail closed orbits of p\A.
3) Some u e ^(M; Z) is positive on DpjA.
4) There is a compact, codimension one submanifold K&lt;^M with a preferred normal
orientation so that each flowline in A meets K and ail such intersections are
transverse and in the positive sensé.

If thèse conditions hold, the proof of Proposition 2, Section 2 yields the
formula £h(p) U + p)/(1 + &lt;?)&gt; where u is positive on ail the terms {hJciH of
p,qeZ[H~}. The convex hull Cc=H(8)R H1(M;R) of {h,} does not contain 0,
and the projection of C to D H^M; R)/positive scalars equals DplA.

If one requires 1-fp and 1 + q to be relatively prime, then p and q are
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uniquely determined, independently of the choice of Markov family and the
functional u. The same characterization of Dp)A holds.

Proof. 1) —&gt; 2) was already shown in Proposition 2, Section 2
2) -&gt; 3) follows from [F2]. When 2) holds, Dp)A is the projection of D of the

convex hull of the classes of closed orbits (indeed, a finite number of classes
suffice).

3)-»4) also follows from [F2]. When 3) holds, there is a function OiM-^S1
with 0*(1) u and (dldt)6(ptx)&gt;0. By choosing 0 smooth, one may let K be the
inverse image of a regular value of 6.

4) —&gt; 1) since there is a continuous first return map on KHA which, by
hyperbolicity, has isolated periodic points of given period. For n &gt; 0, the compact-
ness ofKcA implies only flnitely many closed orbits yc A satisfy uk(y) n, and
1) follows.

Writing p £ mA&gt; &lt;l Z rcA&gt; where for each i at least one of m,, ^ is nonzero,
one has (from the proof of Proposition 2, Section 2) that any u € H1 (M; Z) which
is positive on the closed orbits of p\A is also positive on {h»}. Conversely, if u is

positive on {!%} then u is positive on the terms of logfH(p|A)
log(l + p)-log(l + q). Since, as mentioned above, Dp(A is the projection to D of
the convex hull of the homology classes of closed orbits, one obtains the desired
description of DP\A.

To obtain the canonical choice of p,q, one uses the unique factorization
property of Z[H]. The intrinsic définition of £H(p \ A) shows that the ratio
(l-fp)/(l + q)e Q(Z[H]) is independent of Markov partition. A complète factorization

of 1 + p or 1+q into irreducibles may be modified factor by factor with
units ±h,heH so that each factor is of form 1 + r, where u is positive on the
terms of r. Thèse factorizations of 1+p, 1 + q are unique up to order. By
eliminating common factors 1 + r, one obtains the canonical expression £H(p | A)
(l + p&apos;)/(l + q&apos;)- By the proof of Proposition 2, Section 2, one has that p, q (hence

p\ q&apos;) are independent of the choice of m. Arguing as in the last paragraph, we are
done. Q.E.D.

If for each basic set A for p the terms h, are chosen from the canonical choice
of p, q, then \Ja {K) is a canonical choice of {cj for Theorem III above. For by
[F2], u(Dp)&gt;0&lt;S&gt;u(Dp|A)&gt;0 for ail A.

Suppose one wishes to compute Dp|A from £H(p | A)e Q(Z[H]). If one knows
a functional u :H-*Z positive on Dp|A then the preceding proof gives a procédure

for calculating Dp)A via a canonical form for £H(p I ^)- R is often unneces-

sary, however, to know such a functional. Express £H(p I A) in lowest terms as r/s.

Then, r, seZ[H] are determined up to units, Le., can only be replaced by er, es

with € ±h,heH. One may look at the convex hulls Cr, Cs c H®R of the terms
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appearing in r, s. There must be one point h which is an extrême point both for Cr
and Cs and at which the coefficients rh, sh satisfy rh sh ±1. Usually there will be

only one such point h and the canonical form of fH(p | A) will be

(rhh)-1r=l + p

In any case, p and q (and hence Dp)A) are determined up to finite ambiguity by
Ch(p I A).

4. Flow équivalence and topological entropy

Theorems A and B indicate where to look in a flow équivalence class for the
maximum value of the topological entropy, under certain rationality assumptions
on the homology directions. In this section we will further investigate how

topological entropy varies under flow équivalence.
With «cH^MîR) as in Section 1, each lattice point uG^nH\M;Z) gives

rise to a cross-section K, a return map r (determined by u up to conjugacy) and a

topological entropy h(u) h(r). For any n&gt;0, the cross-section L corresponding
to n - u is n disjoint copies of K, cyclically permuted by the return map s:L-+ L
in such a way that sn consists of n disjoint copies of r. It follows that h(nu)
(l/n)h(u), that is the function h:&lt;%nH1(M;2j)—&gt;&apos;R is homogeneous of degree
-1. We will show

THEOREM E. There exists a unique extension of h to a continuous map
hi^-^UL that is homogeneous of degree -1. Either h(^) 0 or &amp;(&lt;&amp;) c (0, &lt;»). When
h&gt;0 on &lt;&amp;, 1/h is concave.

Proof Suppose that for some ueH\M;Z)n^ we hâve h(r) 0. Then the

Dinaburg-Goodwyn-Goodman Theorem [B2] gives h^(r) 0 for ail p-invariant
measures jx. By Abramov&apos;s formula [DGS], hfJL(p1) 0. Choosing another section
and reversing this reasoning shows h vanishes on ail of H1(M; Z)n^. By
homogeneity and continuity, h(^) 0.

We may assume now that h is positive on H1(M;Z)n&lt;^. As jul varies over
those p invariant measures for which h|X(p1)&gt;0, Dinaburg-Goodwyn-Goodman
gives h(r) supM&lt;ha,(r). Abramov gives

1

—-: ih(r)



Flow équivalence 253

Regarding j!(K) as a linear functional positive on &lt;£, the right hand side defines a

nonnegative concave function g.^-^R that is homogeneous of degree +1. From
concavity, we see g is continuous. As g&gt;0 on the dense set H1(M;Q)n{gy the
concavity of g gives g&gt;0 on &lt;S. So /î l/g:«-&gt;R is the desired
extension. Q.E.D.

We may say more about h when p is hyperbolic.

THEOREM F. Suppose p is the suspension flow of /:/—&gt; J where f is

a) an Axiom A diffeomorphism with perfect Q or
b) a pseudo-Anosov map [FLP].

Then h tends to &lt;*&gt; on &amp;€.

Remark. Note that Theorem A shows that there is a finite maximum for \\ on
the set of intégral points in &lt;€. To fix ideas, we présent a simple function with the.
qualitative features of h. Let &lt;# be the open positive quadrant in the x - y plane
and let /(jc, y) x2 + y2/xy(x + y). Then 1// is homogeneous, concave, positive on
^ and vanishes on 3^ but f(x, y)^ 1 for ail positive integers x and y.

Proof. We will restrict ourselves to case a), as case b) is nearly identical.

Let A be a basic set for p. Suppose ueH\M;Z) is positive on DplA. Then
Theorem D shows there is a submanifold K dual to u and transverse to p\A.
There is an associated return map r:KDA ^which is an infinité basic set. The
associated entropy hA(u) is therefore positive [B3].

As in the proof of Theorem E one shows that gA l/hA extends uniquely to a

concave function on &lt;#A, where &lt;£A ={u | u(Dp)A)&gt;0}. As &lt;€= nA &lt;$A and h

supA (hA | *&amp;) we need only show gA vanishes on d&lt;#A.

When Dp(A consists of a single point, then Theorem B shows that the

Artin-Mazur zêta function £(r) associated tou€^A dépends only on u(d). As the

entropy of an Axiom A basic set is the growth rate of the number of periodic
points, hA(u) dépends only on u(d). By homogeneity, gA(w) is proportional to
u(d) and tends to zéro on b^A.

When Dp contains more than one point we must proceed differently. For
simplicity, assume that A is the suspension flow of a subshift of finite type. Choose

a class vgH\M;Z) with u(Dp|A)2&gt;0, i;(Dp!A)^0, and Oei;(DptA). Let F be a

Markov family of local sections to p | A. As stated in section 1, there is a minimal
loop in F such that the associated orbit y has u(y) 0. Let seF be one of the

symbols occurring in 7. Then there is a loop beginning and ending at s such that
the associated orbit 8 has v(8)&gt;0. By concatenating thèse loops at s one obtains
a family of periodic orbits with zêta function l/l~[y]~[8].



254 DAVID FRIED

Choose ueVnH\M&apos;9Z). For ail n&gt;0, u + nve&lt;£nH\M;Z) so there is a

corresponding return map rn and zêta function fn £(rn). Recall that h(rn) is the

growth rate of the number of periodic orbits of rn. We estimate this from below
using the orbits constructed in the preceding paragraph: hir^^hn where e~h» is

the smallest zéro of 1 - t(u+nv)M- t(u+nv)i8). We let a u(y), b u(ô), c v(ô) and

p(t,x) l-ta — tbxc. Graphing p(t, x) 0 shows that this curve passes through
(t, x) (l,0) and has a continuation from this point into f&lt;l, x&gt;0. Thus for n

large there is an intersection point (^, x^) of p(t, x) 0 with x tn lying near
(1,0). Thus e~nhn xn^&gt;0, so nhA(u + nv)&gt;nhn-*&lt;*&gt;. We get

gA(t;) lim gA(t&gt;4—)=lim —- 0.
nhA(u + nv)

By homogeneity, g vanishes on ail rational points in d&lt;£A not in Ann (DP|A).

As such points are dense, gj^ vanishes on &amp;€A.

When A isn&apos;t the suspension of a subshift of finite type, one passes to the
1-dimensional flow t/r defined by a Markov partition. One shows in the usual way
that h(u) is also the entropy of the return map for ty associated to u, and then the

preceding argument applies. Q.E.D.

5. Flow équivalence of Anosov diffeomorphisms

Two interesting homological results are known for an Anosov flow p with
cross-section on a compact connected manifold M. The optimistic resuit is that
when p has a smooth invariant measure the homology classes of closed orbits span
Hi(M;R)[P]. We extend this at the end of this section to transitive p. Thus
Theorem A applies for such p. As any known p is conjugate to one with a smooth
invariant measure, our Theorem A applies to ail known p. The pessimistic resuit is

that for ail thèse known cases H1(M; Z) Z, hence p has only one connected
cross-section and Theorem A is trivial for such p. One may try, however, to use

flow équivalence to prove HX(M; Z) Z is gênerai (Le., not just for known cases).

We hère présent the results of such an attempt, and so relate in an unobvious way
several properties which are often conjectured to hold for ail Anosov
diffeomorphisms A : K —&gt; K, K connected and compact. Some results of this
section are in the author&apos;s thesis [FI] which was written under the direction of
Stephen Smale.

One property is purely homological, namely
Property 1) No eigenvalue of A^:H\K;R)-^H\K;R) is a root of unity.
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This holds for ail known examples [Fr]; the most gênerai known resuit [H] is that
1) is true if irxK has a polycyclic subgroup of finite index and if the Betti numbers
of the universal cover of K are finite. As will be shown later, the condition
HX(M; R) R is équivalent to 1 not being an eigenvalue of A*.

Another property is purely dynamical, namely
Property 2) A has a fixed point.

This holds for ail known A, since they are conjugate to infranilmanifold examples
for which 2) holds.

The last property is a homological property of the Anosov manifold K.
Property 3) dim H*(K; R) &lt; 2\ fc dim K.

To check this for known examples, one may use finite covers and the transfer map
to reduce to studying nilmanifolds K. By inducting on the nilpotent degree of K,
and using the Serre spectral séquence for the fibration of K over a torus as in

[Ml], one obtains dim H*(K; R) &lt; II dim H*(Tt;R) 2\ where Tt are the tori
which appear as successive fibers in the représentation of K as an iterated torus
bundle. This line of argument was suggested to the author by Rufus Bowen.

We now state

THEOREM G. // an Anosov diffeomorphism A0:K0-+ Ko, Ko compact and
connectée, fails to satisfy Property 1) then there is an Anosov diffeomorphism

A:K-^K, with K compact and connected and dim K dim Ko, so that
a) 1 is an eigenvalue of A*:H\K;R)~* Hl(K;R)
b) A has no periodic points up to any given period, and
c) dimH*(K;R) is arbitrarily large.

So if Property 2 (or Property 3) holds for ail Anosov diffeomorphism of a fixed
dimension, Property 1 must hold as well.

Proof By passing to a finite cover, one may assume that the stable and

unstable bundles of Ao are orientable, as in [M]. By passing to a power of Ao, one

may assume Ao préserves thèse orientations and that 1 is an eigenvalue for
A^ : HX(K; R) -&gt; Hl(K; R). Suspending Ao gives an Anosov flow p on a compact
manifold M, dim M dim K0+l. From the Wang exact séquence on real

A*—1A1
cohomology, one has 0-&gt;H°Ko-+ HlM-+ HlKo &gt;HlKo, and so

dimH1(M;R) rankH1(M;Z)&gt;l. Thus the flow équivalence class of Ao is

nontrivial; we shall choose A from this flow équivalence class.

Since p is Anosov, it satisfies Axiom A. Hence for a finite number of classes

c.e^ue Hl(M; Z) is dual to a cross-section to p iff u(ct)&gt;0 for ail i. By adding

some extra c, if necessary, we may assume ail convex combinations in H of (0, ct)

are also c/s.
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Let u0 be the indivisible cohomology class p*(l) where p.M-^S1 is the
natural fibration with fiber Ko and p* : H1^1; Z) Z-&gt; H\M\ Z). Extend u0 to
an intégral basis for H1 (M; Z) and let i^ be another vector in this basis. Then for
a a(n) large enough, the class u i^ + auo satisfies:

1) u(Dp)&gt;0 and u is indivisible
2) u(ct)&gt;n for ail î.

By 2) and the choice of c,&apos;s one has «[7]^ rc for ail periodic orbits 7 of p, proving
part b) of the Theorem.

Let K be the cross-section dual to u and A the first return map of K. Then A
is Anosov and has no periodic points of period &lt;n. Consequently the Lefschetz
number L(Al) 0 for i 1,..., n -1.

Were dimH*(K;R)&lt;n, it would follow from the algebraic argument in [Fu]
that L(Al) 0 for ail i. Since A is Anosov and préserves the unstable orientation,
one has [Sm] the equality |L(Al)| #Fix(Al), i&gt;0. Since A has periodic points,
this is a contradiction. Thus dimH*(K;R)&gt;n, proving part c) of the Theorem.

The Wang séquence for K-+M-+S1 shows that 1 is an eigenvalue of A*.
This gives part a). Q.E.D.

The preceding arguments work just as well for Thurston&apos;s pseudo-Anosov
maps, since flow-equivalence préserves pseudo-Anosov [FLP, Exp. 14]. However
it is known [FLP, Exp. 13] that property 1 fails for certain pseudo-Anosov maps;
indeed, the induced map on Ht can even be the identity. This gives

COROLLARY. Given any integer n there is a pseudo-Anosov map of a closed

connectée surface with no periodic points of period &lt;n.

The pseudo-Anosov case of the following resuit was first proven by Thurston
[FLP, Exp. 14] by completely différent methods (using that the mapping torus of a

pseudo-Anosov map is atoroidal). The next theorem settles the problem Plante
raised in [P] to generalize his resuit to ail transitive Anosov flows from the volume
preserving case. Plante used asymptotic cycles whereas we use Z-covers as in [F2].

THEOREM H. Let pt:M-*M be either a transitive Anosov flow or a pseudo-
Anosov flow (that is, a flow with cross-section with a pseudo-Anosov return map).
Then the homology classes of closed orbits span H^MiH).

Proof. Clearly we may take M connected.
Let M be a fine Markov partition for p and let yl9..., yk be the closed p

orbits corresponding to minimal loops in M [F2]. As in [F2, Theorem H], the

homology class [7] of any periodic orbit 7 is a positive intégral combination of
[YiI • • • &gt; [Yk]- Assuming thèse classes don&apos;t span HX(M\ R), then some indivisible
intégral class ueH\M;Z) vanishes on [7J,... ,[7k] and hence on ail [7]. We

will deduce that p isn&apos;t transitive.
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Let 7T : M-^ M be the connectée! Z-cover of M determined by u. Then pt lifts
to a flow pt that commutes with Z and a periodic p-orbit lifts to a periodic p orbit
of the same period. We dénote ptx by tx.

Let 0 : M-*R/Z represents u, Le., 0*[df] u. Then 0 lifts to 6 : M-*R. We show

LEMMA. \ë(tx)-ê(x)\ is uniformly bounded over ail xeM, f €R.

Proof. We may take x so that the orbit of x passes only through the interior of
éléments of M. As every p orbit meets M in bounded time, we may assume x and
tx lie over M. For each tt for which ttx e tt&quot;1^, 0&lt; f0&lt; fi &lt; • * • &lt; tn f, let s(i) eM
be the symbol associated to ir^x).

Choose ix as large as possible with s(ix) s(0), then i2 is large as possible with
s(ii)~s(*i +1), etc., obtaining a séquence 0^ix&lt;i2&lt;• • • — ïm n- Let i0 — 1.

Then for 1 &lt;j &lt; m, the séquence s(ij_ +1),..., s(i} -1), s(i,) is a closed loop in M
and détermines a closed orbit passing through yi€s(iJ) of some period p, (not
necessarily the minimum period of y,). We lift y} to the point y} e tt&quot;1^]) nearest
to cijX, where a, t(hi)+t. Let b} fv Then

m m

fl(tx)-«(x)= I 6»(6Jx)-ê(aIx)+ I ^x)-^.^).
Each term in the second sum is the variation of 0 between consécutive intersections

of a flowline with M, hence bounded. The points ttC^x) and 7r(y,) hâve the

same intersections with M for the first î,-i,-i places and so stay close for that
interval (M was chosen fine). Thus b,x is near yr and each term in the first sum is

bounded. Finally m&lt;card(J0, which proves the lemma.

To conclude the proof, we study the N-fold cover MN M/NZ of M and the
induced flow i/fN p/JVZ where N is chosen so that N/3 is a bound for the

preceding lemma. Clearly MN is compact and connected and i/fN is Anosov (or
pseudo-Anosov). Let 6N:MN-&gt;R/NZ be the map induced by 0. As 0N represents

a nontrivial cohomology class, it is surjective. However, the values of 6N over

any trajectory of if/N are not dense (they occupy ^2/3 of the image). Thus t^N isn&apos;t

transitive, so O(il/N)^MN. But the density of closed orbits in M implies closed

orbits are dense in MN as well. This contradiction shows that u cannot exist, so

[7] span as desired. Q.E.D.

6. Flow équivalence and Morse-Smale maps

We will show that flow-equivalence may be used to identify and strengthen an

invariant of Asimov&apos;s for the suspension p of a Morse-Smale map. If Cu Cr
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are the closed orbits of p, Asimov dénotes the fixed point index of the Poincare
map near Ç by el=±l and defines the géométrie index of p to be J(p)
Zt=i €,[CjeH. In [A, proposition A] it is shown that if /, g:K-&gt; K are isotopic
Morse-Smale maps that préserve stable and unstable orientations at their periodic
points, their suspended flows p, \\f satisfy /(p)

In fact, J(ijj) may be identified as follows.

THEOREM I. For $ as above, J(ilf) (-l)kx(^±\ where x(^) is the Euler
class of the normal bundle ^ and k dira K.

Proof. If m € H\M; Z) is dual to K, then

where p, is the period of points QDK for g. Also, €, (—l)u«, where i^ is the
dimension of the unstable manifold of points in QDK. Thus u(/(i/0)
Zper(g) (-l)u(p), where u is the unstable dimension of the periodic point p. By the
Morse-Smale inequalities [Sm], IP(-l)k~u(p) x(K). This gives

k The Euler class ^)eH satisfies u(x(^±)) x(K). Thus

Note that the condition w(cJ)&gt;0 is satisfied. Choosing a set of intégral vectors

!&lt;!,..., iip € ^(M; Z) that are close to u in angle but span HX{M\ R), one
obtains Wi({cJ)&gt;0, i 1,..., j3 =dim ^(M; R). The arguments of the previous
paragraph apply equally well to cross-sections Kv dual to u,, and thus wI(/(p))
^((-Ifxip1-)) for i l,...,0. As the i^&apos;s span H1(M;R) H*(8&gt;« and H is

torsion free, the proposition follows. Q.E.D.
Consequentiy, Morse-Smale flows p, \\t with cross-section will hâve the same

géométrie index even if they are only assumed homotopic through nonsingular
vector fields (for then *(px)
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