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Holder continuity of conformal mappings and non-quasiconformal
Jordan curves

JoCcHEN BECKER and CHRISTIAN POMMERENKE

Let I' = C be a quasiconformal curve (quasicircle), that is the image of the unit
circle under a quasiconformal mapping of the plane. Let f and f* denote
conformal mappings of the unit disk D onto int I' and ext I' respectively.

It is well-known that f and f* have quasiconformal extensions onto the plane
[3], p. 98. Because of the Holder continuity of quasiconformal mappings ([3], p.
71), f and f* as well as their inverse mappings f~' and f*! satisfy Holder
conditions:

If(z1) = f(z)| =K |z,— 24" (21, 2,€D), (1)
If_l(wl)_f_l(wz)lSL |W1"'W2l3 (wy, wyeint I

and similarily for f* where one has to use the spherical metric in ext I. The
Holder exponents a (0<a=1) and B8 (1=8<2) depend only on I" [4],[5], [8], p.
287, 289, 347.

By means of a simple geometrical characterization of (1) (Theorem 1), we
construct a non-quasiconformal Jordan curve (Theorem 2) such that nevertheless
f, f*, and also f', f* ' remain Holder continuous. This shows that Holder
continuity of all these conformal mappings is only a necessary, but not a sufficient
condition for quasicircles.

Let GgC be a simply connected domain and let h(w;, w,) denote the
hyperbolic distance of the points w,, w, € G defined by

11— 2,25 +|2,— 2
‘1 - 5122‘—122" Zl‘

(wi=f(z),i=1,2) (2)

h(w,, w,) =log

where f is a conformal mapping of D onto G. Let §(w) =dist (w, 3G) denote the
(Euclidean) boundary distance.

THEOREM 1. If G is a bounded simply connected domain, wo€ G, and f a
conformal mapping of D onto G, then (1) is satisfied if and only if

1
lim sup [h(wy, w)+—log 8(w)]< +oo. (3)
8(w)—0 o
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222 J. BECKER AND CHRISTIAN POMMERENKE

Proof. It is well-known that (1) is equivalent to
If@=MA-|z*7" (z]<1) (4)
(see for instance [2], p. 361-363). Introducing the non-Euclidean length element

2 |dz|
1-|z|?

p(w) |dw|= (w=f(2))

corresponding to (2) we see that (4) means
H(FO), F(2) = Tog | 5] (1-+z)p(f(2) |

Since G is bounded we have 8(f(z)) — 0 if and only if |z| — 1. Thus we obtain as
an equivalent condition

lim sup [h(f(O) w)—llog p(w)]<+oo (5)

8(w)—0
Because of
I=pw)d(w)=2

[8], p. 22 it follows by the triangle inequality for h(w,, w,) that (5) is the same as
(3) which proves Theorem 1.

The following corollary gives a convenient sufficient condition for Holder
continuity.

CORROLLARY. Let f be a bounded univalent function defined in D, G =
f(D), then f satisfies (1) if there are positive numbers M, 8,, 8, with the property
that, for every we G with 8(w)<§,, there exists w,€ G with 8(w,)=8, and a
connecting arc C < G, such that

ldol /o 1 1
é(w) M+2alg8(w) (©6)
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Proof. We choose wy=f(0). Then we have

(o, W)= (o, wi)+ [ p(w) ldo
C

LA W)l [ ldel
<log ——m———~— —_—
8 T 1 (wy) ”L 5(w)

From (6) and &8(w;)=6,>0 it follows that (3) is satisfied which implies (1) by
Theorem 1.

We are now ready to construct a Jordan curve with the desired properties.

THEOREM 2. There is a non-quasiconformal Jordan curve I" such that the
conformal mappings f and f* of D onto int I' and ext I respectively, and also their
inverse mappings are Hoélder continuous.

Proof. We set Q={w=u+iv:|lul<l,|v|]<1l} and R,={w=u+iv:
O<su-—-1<a,,|v—v,|<e,} where we choose v,=1/n,¢,=2"" a, =—¢,loge,,
n=2,3,.... We consider the domain G =QU |J5_, R,. Since I' =9G is a locally
connected continuum without cut points it is a Jordan curve [8], p. 281. But it
is not a quasicircle, because the Ahlfors criterion [1] is not satisfied. For we have

diam R, a,
>
2g, 2€,

— +0oo(n —> ),

On the other hand, we shall show below that, for every we G, 8(w)<3, there
exists w; € G, 8(w;) =3, and a connecting arc C such that

ldol _, 1 7
Ls(w)__Zlog&(w). (7)

Thus (6) is satisfied with « =% which shows that f is a-Holder-continuous for

some a =j.

The Holder continuity of £, f*, f*! follows easily from results by Nakki and
Palka [6], [7]:

Let d(w,, w,) =inf; [ |dw| denote the inner distance of w,, w, € G where the
infimum is taken over all connecting arcs C < G. Then, obviously, there exists a
constant A such that

d(Wl, Wz)sA ‘Wz—wll (WI’ W, € G).
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It follows from [6] that f* and f~! are Holder continuous.
Considering the inner distance d*(w,, w,) with regard to G* =ext I" one easily
sees that, for every B (0<B<1), and R >0, there exists a constant B such that

d*(wla W2)SB |W2_ WllB (Wi € G*a ‘wi|—<“R9 i= 1’ 2)

This implies, by another result of Nakki and Palka [6], [7], that f* ! is also
Holder continuous.

Hence it remains to prove (7). We have to consider the following cases.

(a) w=u+iveQ, and, if u=v=0, |[v—v,|=e,, n=2,3,.... Hence 8(w)=
min (1 —|u|, 1—|v|). Choose w; =0 and C =[w;, w,] (segment with end points w,,
w,). Then

ldo| _ (" y2dt_ 1
L 6(«»)‘LW> [ o V2loegigy

(b) w=u+iveQ, u=v=0, |v—v,|<e, for some n (hence 8(w)>1—u).
Choose, for 8(w)<3, w, =1+iv, C=[w,, w]. Because of

S(w)=V(1=x?)+(g, —|v—20,))?, w=x+iveC,

we obtain
J ldo| _, 3+VGE+ (e — v -0,
e 8(@)  El-ut(A—ul+(e.—[v0—10,)?
- 1+J/(1+4¢€3) 1
=log 26(w) <210g8(w)'

(c) w=u+iveR, for some n, 0=u—-1=<a,—¢, hence 8(w)=¢g, —|v—v,|
Choose w, =32+iv, and C=[w,, u+iv,]U[u+iv,, w]. Then

_i__d_(?i_ 1 dx uilf lo—uv, | dy
J; 6(&)*J1/2\/((1—X)2+8,21)+J; 8n+L en“—y

a 1
<=} —lv—v.[)=<2log —— .
. og (&, —|v—v,]) 25

n

(d w=u+iveR, for some n, a, —¢&,<u—1 hence 8§(w)=min (g, —|v—v,|,
1+a,—u). Choose w,=3i+iv,, C=[wy,1+a,—¢,+iv,]JU[1+a,—¢,+iv, w].
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Then
J’ |dw| JI dx J;“n’sndx r" J2 dt
—= ——+ e e
C 6(0)) 1/2 \/(l—x) +8n €, S(w) t
1
< —log ¢, + "+ /2log ——=<2log——.

Thus we have proved that (7) holds in each case which completes the proof of
Theorem 2.

Remark. The Holder continuity of f* could have also been shown by this
method.
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