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Hôlder continuity of conformai mappings and non-quasiconformal
Jordan curves

Jochen Becker and Christian Pommerenke

Let fcCbea quasiconformal curve (quasicircle), that is the image of the unit
circle under a quasiconformal mapping of the plane. Let / and /* dénote
conformai mappings of the unit disk D onto int F and ext F respectively.

It is well-known that / and /* hâve quasiconformal extensions onto the plane
[3], p. 98. Because of the Hôlder continuity of quasiconformal mappings ([3], p.
71), / and /* as well as their inverse mappings f~l and /*&quot;* satisfy Hôlder
conditions:

\f(z1)-f(z2)\^K\z2~zl\a (zl9z2eD), (1)

lr1(wi)-r1(w2)I^L|w1-w2|0 (w1?w2€intF)

and similarily for /* where one has to use the spherical metric in ext F. The
Hôlder exponents a (0 &lt; a &lt; 1) and |8 (1 &lt; j8 &lt; 2) dépend only on F [4], [5], [8], p.
287, 289, 347.

By means of a simple geometrical characterization of (1) (Theorem 1), we
construct a non-quasiconformal Jordan curve (Theorem 2) such that nevertheless

/, /*, and also f~l, /*&quot;* remain Hôlder continuous. This shows that Hôlder
continuity of ail thèse conformai mappings is only a necessary, but not a sufficient
condition for quasicircles.

Let GgC be a simply connected domain and let h(wl9 w2) dénote the
hyperbolic distance of the points w1} w2£G deflned by

(w,=/(z,),i 1,2) (2)
~~ \Z2~Z\\

where / is a conformai mapping of D onto G. Let ô(w) dist (w, dG) dénote the
(Euclidean) boundary distance.

THEOREM 1. If G is a bounded simply connected domain, woe G, and f a
conformai mapping of D onto G, then (1) is satisfied if and only if

lim sup [fi(w0, w) 4-— log S(w)]&lt; +&lt;». (3)
Ô(w)-*0 OL
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222 J BECKER AND CHRISTIAN POMMERENKE

Proof. It is well-known that (1) is équivalent to

Izl2)&quot;&quot;1 (|z|&lt;l) (4)

(see for instance [2], p. 361-363). Introducing the non-Euclidean length élément

21

-\z\

corresponding to (2) we see that (4) means

Since G is bounded we hâve 8(f(z)) —» 0 if and only if \z\ —» 1. Thus we obtain as

an équivalent condition

lim sup h(/(0), w) log p(w) &lt; +oo. (5)
ô(w)-k) L ai

Because of

[8], p. 22 it follows by the triangle inequality for h(wu w2) that (5) is the same as

(3) which proves Theorem 1.

The following corollary gives a convenient sufficient condition for Hôlder
continuity.

CORROLLARY. Let f be a bounded univalent function defined in D, G
/(D), then f satisfies (1) if there are positive numbers M, 80, Sx with the property
that, for every weG with 8(w)&lt;80, there exists wteG with ôCw^^Ô! and a

Connecting arc C&lt;=^G9 such that

i log
2a o(w)
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Proof. We choose wo /(0). Then we hâve

j p(a))\dù)\

From (6) and ô(w1)^ô1&gt;0 it follows that (3) is satisfied which implies (1) by
Theorem 1.

We are now ready to construct a Jordan curve with the desired properties.

THEOREM 2. There is a non-quasiconformal Jordan curve F such that the

conformai mappings f and /* of D onto int F and ext F respectively, and also their
inverse mappings are Hôlder continuous.

Proof We set Q ={w u + iv :|w|&lt;l, M&lt;1} and Rn={w u + iv:
0&lt;u-l&lt;an,\v-vn\&lt;en} where we choose vn l/n, en 2~n,an=~enlogen,
n 2, 3, We consider the domain G Q U U n=2 K- Since F dG is a locally
connected continuum without eut points it is a Jordan curve [8], p. 281. But it
is not a quasicircle, because the Ahlfors criterion [1] is not satisfied. For we hâve

diam Rn an

2en 2en

On the other hand, we shall show below that, for every weG, 6(w)&lt;i, there
exists WjgG, S(wx)^i, and a Connecting arc C such that

Thus (6) is satisfied with a=\ which shows that / is a-Hôlder-continuous for
some a &gt; |.

The Hôlder continuity of f~\ /*, f*&quot;1 follows easily from results by Nâkki and

Palka [6], [7]:
Let d(wu w2) infc Jc \dw\ dénote the inner distance of wu w2eG where the

infimum is taken over ail Connecting arcs C^G. Then, obviously, there exists a

constant A such that

d(wx, w2)&lt;A \w2-Wi\ (wi, w2eG).
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It follows from [6] that /* and f~l are Hôlder continuous.

Considering the inner distance d*(wu w2) with regard to G* ext F one easily
sees that, for every (3 (0&lt; |3 &lt; 1), and .R &gt;0, there exists a constant B such that

d*(Wl, w2)^B |w2- wtf (w, g G*, kl^R, i 1, 2)

This implies, by another resuit of Nàkki and Palka [6], [7], that /*-1 is also

Hôlder continuous.
Hence it remains to prove (7). We hâve to consider the following cases.

(a) w u + iv € Q, and, if u &gt; v &gt; 0, |t&gt; - un| &gt; en, n 2, 3,.... Hence ô(w)
min (1 -|w|, 1 -|i?|). Choose Wx 0 and C [w1? w2] (segment with end points wl5
w2). Then

/21of f
JcÔ(û&gt;)~Jô(w) t

(b) w u + n? g O, w &gt;i; &gt;0, \v — vn\&lt;en for some n (hence ô(w)&gt; 1 - u).

Choose, for ô(w)&lt;2% w1=5+ii;, C [w!, w]. Because of

we obtain

t log -

28(w)
&lt;21og

(c) w u + iu6Rn for some n, Osu-ls^-^ hence
Choose w1 2+iun and C [wl5 u + iun]U[u + it;n, w]. Then

)8M JV((l)2 ^) J
en — y

(d) w u + tu e Rre for some n, a,, - en &lt; u -1 hence ô(w) min (gn — \v — vn\

-u). Choose w1 |+it;n, C [w1,
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Then

e« J2dt
bn J8(w)

f ]dço|&lt; f1 dx [a^dx, f
)cS(o&gt;)~)m J(l-x)2 + e2n l en )8

Thus we hâve proved that (7) holds in each case which complètes the proof of
Theorem 2.

Remark. The Holder continuity of /* could hâve also been shown by this
method.
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