

Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft
Band: 57 (1982)

Artikel: Injectivity of local quasi-isometries.
Autor: Gehring, F.W.
DOI: <https://doi.org/10.5169/seals-43883>

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 07.02.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

Injectivity of local quasi-isometries

F. W. GEHRING⁽¹⁾

1. Introduction

Suppose that E is a set in \bar{R}^n , the one point compactification of euclidean n -space R^n , $n \geq 2$, and suppose that f is a mapping from E into \bar{R}^n . We say that f is an L -quasi-isometry in E if

$$\frac{1}{L} \leq \frac{|f(x_1) - f(x_2)|}{|x_1 - x_2|} \leq L \quad (1)$$

for each pair of points $x_1, x_2 \in E - \{\infty\}$ and if $f(\infty) = \infty$ whenever $\infty \in E$. We say that f is a local L -quasi-isometry in E if for each $L' > L$ each $x \in E$ has a neighborhood U such that f is an L' -quasi-isometry in $E \cap U$.

Suppose that f is a local L -quasi-isometry in a domain D in R^n . If $L = 1$, then f is an isometry in D and hence injective there. (See, for example, Theorem IV in [11].) Simple examples show that f need not be injective if $L > 1$. It was F. John who first noticed that for certain domains D , f will be injective provided L is close enough to 1.

For each domain $D \subset R^n$ we let $L(D)$ denote the supremum of the numbers $L \geq 1$ with the property that each local L -quasi-isometry in D is injective. We say that D is *rigid* if $L(D) > 1$.

John established the following interesting result in 1969 (Theorem A in [12]). See also [7] and [8].

THEOREM 1. *If D is an open ball or half space, then $L(D) \geq 2^{1/4}$.*

This result was generalized by John and then extended recently by Martio and Sarvas to a very broad class of domains. We say that $D \subset R^n$ is a *uniform domain* if there exist constants a and b with the following property. Each pair of points

¹ This research was supported in part by grants from the U.S. National Science Foundation (Grant MCS 79-01713) and the Finnish Ministry of Education.

$x_1, x_2 \in D$ can be joined by a rectifiable arc α in D so that

$$l(\alpha) \leq a |x_1 - x_2| \quad (2)$$

and so that for each $x \in \alpha$

$$\min_{j=1,2} l(\alpha_j) \leq b d(x, \partial D), \quad (3)$$

where α_1, α_2 denote the components of $\alpha - \{x\}$. Here $l(\alpha)$ denotes the euclidean length of α and $d(x, \partial D)$ the distance from x to ∂D .

Martio and Sarvas showed that uniform domains are rigid by establishing the following result (Theorem 3.8 in [14]).

THEOREM 2. *If D is a uniform domain, then $L(D) \geq c > 1$ where c depends only on the constants a and b .*

The present paper is concerned with the problem of identifying the domains in R^n which are rigid. In particular, we characterize in Section 2 the finitely connected plane domains which have this property. It turns out that each boundary component of such a domain is either a point or a quasicircle, that is, the image of a circle or a line under a quasiconformal mapping of \bar{R}^2 . In Section 3 we establish an extension theorem for quasi-isometries. We then apply this result in Section 4 to show that if D is a simply connected rigid domain in R^2 and if f is a local L -quasi-isometry in D with $L < L(D)$, then f is not only injective in D but has an extension as a quasi-isometry to all of R^2 .

2. Rigid plane domains

Throughout the remainder of this paper we shall use complex notation to denote points in R^2 . For $z_0 \in R^2$ and $0 < r < \infty$ we let $B(z_0, r)$ denote the open disk with center z_0 and radius r . Finally for each domain $D \subset \bar{R}^2$ we let $D^* = \bar{R}^2 - \bar{D}$.

In this section we characterize the finitely connected domains in R^2 which are rigid. We begin with a technical lemma concerning a special class of quasi-isometries.

LEMMA 1. *Suppose that $\phi(t)$ is a real valued function defined in $(0, \infty)$, that*

$$|\phi(t_1) - \phi(t_2)| \leq a \left| \log \frac{t_1}{t_2} \right| \quad (4)$$

for $t_1, t_2 \in (0, \infty)$ and that

$$f(z) = \begin{cases} ze^{i\phi(|z|)} & \text{if } 0 < |z| < \infty, \\ 0 & \text{if } z = 0. \end{cases} \quad (5)$$

Then f is a $(1+a)$ -quasi-isometry in \mathbb{R}^2 .

Proof. Choose distinct points $z_1, z_2 \in \mathbb{R}^2$ with $|z_1| \leq |z_2|$. If $z_1 \neq 0$, then

$$\begin{aligned} |f(z_1) - f(z_2)| &\leq |z_1 - z_2| + |z_1| |e^{i\phi(|z_1|)} - e^{i\phi(|z_2|)}| \\ &\leq |z_1 - z_2| + |z_1| |\phi(|z_1|) - \phi(|z_2|)| \\ &\leq |z_1 - z_2| + a |z_1| \left| \log \frac{|z_1|}{|z_2|} \right| \\ &\leq (1+a) |z_1 - z_2| \end{aligned}$$

by (4), while

$$|f(z_1) - f(z_2)| = |z_2| \leq (1+a) |z_1 - z_2|$$

if $z_1 = 0$. Since f^{-1} is given by (5) with $-\phi$ in place of ϕ , the above argument can be applied to f^{-1} to complete the proof.

We next use Lemma 1 to obtain a geometric property of plane domains D with $L(D) > 1$.

LEMMA 2. *Suppose that D is a domain in \mathbb{R}^2 with $L(D) \geq c > 1$. Then there exists a constant b , depending only on c , such that for each $z_0 \in \mathbb{R}^2$ and $0 < r < \infty$, $D \cap \partial B(z_0, r)$ lies in component of*

$$G = D \cap (B(z_0, br) - \bar{B}(z_0, r/b)).$$

Proof. Choose $b \in (1, \infty)$ so that

$$1 + \frac{\pi}{\log b} < c, \quad (6)$$

and suppose there exist points $z_1, z_2 \in D \cap \partial B(z_0, r)$ which belong to different components G_1, G_2 of G . By making a change of variable we may assume that

$z_0 = 0$. Choose $\theta \in [-\pi, \pi]$ so that $z_2 = z_1 e^{i\theta}$ and let f be as in (5) with

$$\phi(t) = \begin{cases} 0 & \text{if } 0 < t \leq \frac{r}{b} \text{ or } br \leq t < \infty, \\ \frac{\log \frac{bt}{r}}{\log b} \theta & \text{if } \frac{r}{b} \leq t \leq r, \\ \frac{\log \frac{br}{t}}{\log b} \theta & \text{if } r \leq t \leq br. \end{cases}$$

Then ϕ satisfies (4) with $a = \pi/\log b$ and f is a $(1+a)$ -quasi-isometry in \mathbb{R}^2 by Lemma 1. Set

$$g(z) = \begin{cases} z & \text{if } z \in D - G_1, \\ f(z) & \text{if } z \in G_1. \end{cases} \quad (7)$$

If U is any open disk in D , then either $U \subset D - G_1$, in which case $g(z) = z$ in U , or $U \subset G_1 \cup (D - G)$, in which case $g(z) = f(z)$ in U . Hence g is a local $(1+a)$ -quasi-isometry in D . Since $z_2 \notin G_1$,

$$g(z_2) = z_2 = z_1 e^{i\theta} = z_1 e^{i\phi(|z_1|)} = g(z_1)$$

and g is not injective in D . Thus $c \leq 1+a$. This contradicts (6) and establishes the desired conclusion.

We say that $C \subset \bar{\mathbb{R}}^2$ is a K -quasicircle if it is the image of a circle or line under a K -quasiconformal mapping $f: \bar{\mathbb{R}}^2 \rightarrow \bar{\mathbb{R}}^2$. Similarly $D \subset \bar{\mathbb{R}}^2$ is said to be a K -quasidisk if ∂D is a K -quasicircle.

We have next the following information about the boundary of a rigid plane domain.

LEMMA 3. *Suppose that D is a domain in \mathbb{R}^2 with $L(D) \geq c > 1$. Then each component C of ∂D is either a point or a K -quasicircle where K depends only on c . Moreover if C_1 and C_2 are components of ∂D , then*

$$\min_{i=1,2} \text{dia}(C_i) \leq a \text{d}(C_1, C_2) \quad (8)$$

where a is a constant which depends only on c .

Here $\text{dia}(C_j)$ denotes the diameter of C_j and $d(C_1, C_2)$ the distance between C_1 and C_2 .

Proof. Choose $b \in (1, \infty)$ so that (6) holds and suppose that $z_0 \in \mathbb{R}^2$, $0 < r < \infty$ and $z_1, z_2 \in D \cap \bar{B}(z_0, r)$. Let α be any arc joining z_1 and z_2 in D . If α does not lie in $\bar{B}(z_0, r)$, then $\alpha \cap \bar{B}(z_0, r)$ contains two components α_1, α_2 which join z_1, z_2 to $w_1, w_2 \in \partial B(z_0, r)$, respectively. Lemma 2 implies that w_1 and w_2 can be joined by an arc β in $D \cap \bar{B}(z_0, br)$ and hence $\alpha_1 \cup \beta \cup \alpha_2$ joins z_1 and z_2 in $D \cap \bar{B}(z_0, br)$. A similar argument shows that any pair of points $z_1, z_2 \in D - B(z_0, r)$ can be joined in $D - B(z_0, r/b)$. Hence D is b -locally connected and by Lemma 5 in [3], each component C of ∂D is either a point or a K -quasicircle where K depends only on b .

Suppose next that C_1 and C_2 are distinct components of ∂D , choose $z_1 \in C_1$ and $z_2 \in C_2$ so that

$$|z_1 - z_2| = d(C_1, C_2) = 2r$$

and let $z_0 = \frac{1}{2}(z_1 + z_2)$. We shall use Lemma 2 to show that C_1 or C_2 lies in $B(z_0, b^2r)$ and hence that

$$\min_{i=1,2} \text{dia}(C_i) \leq 2b^2r.$$

This will establish (8) with $a = b^2$.

Suppose that C_1 and C_2 do not lie in $B(z_0, b^2r)$ and let D_0 denote the component of $\bar{\mathbb{R}}^2 - (C_1 \cup C_2)$ which contains D . Then

$$F_1 = \bar{\mathbb{R}}^2 - (D_0 \cap B(z_0, b^2r)), \quad F_2 = \bar{B}(z_0, r)$$

are continua with

$$F_1 \cap F_2 = (C_1 \cup C_2) \cap \bar{B}(z_0, r) = \{z_1, z_2\}. \quad (9)$$

Hence by Theorem V.11.5 in [15], there exist points w_1, w_2 which lie in different components G_1, G_2 of

$$\bar{\mathbb{R}}^2 - (F_1 \cup F_2) = D_0 \cap (B(z_0, b^2r) - \bar{B}(z_0, r))$$

but which can be joined by an arc α in

$$\bar{\mathbb{R}}^2 - F_1 = D_0 \cap B(z_0, b^2r).$$

Next (9) and Theorem V.16.2 in [15] imply that w_1, w_2 are not separated by $C_1 \cup C_2 \cup \bar{B}(z_0, r)$ and hence can be joined by an arc β in $D_0 - \bar{B}(z_0, r)$. Thus for $j = 1, 2$, $\alpha \cup \beta$ contains a curve which joins $\partial B(z_0, r)$ to $\partial B(z_0, b^2 r)$ in G_j ; hence

$$H_j = G_j \cap \partial B(z_0, br) \neq \emptyset.$$

Since each component of H_j is an open arc in D_0 with endpoints in $C_1 \cup C_2$, $D \cap H_j \neq \emptyset$ and we conclude that $D \cap \partial B(z_0, br)$ does not lie in a component of $D \cap (B(z_0, b^2 r) - \bar{B}(z_0, r))$. This contradicts Lemma 2 and thus establishes the desired conclusion.

Finally we have the following relations between quasidisks and rigid plane domains.

THEOREM 3. *If D is a K -quasidisk in R^2 , then $L(D) \geq c > 1$ where c depends only on K . Conversely if D is a simply connected proper subdomain of R^2 with $L(D) \geq c > 1$, then D is a K -quasidisk where K depends only on c .*

Proof. If D is a K -quasidisk in R^2 , then by Corollary 2.33 in [14], D is a uniform domain where the constants a and b in (2) and (3) depend only on K . (For an alternative proof see Theorem III.2.3 in [4].) Hence $L(D) \geq c > 1$ where $c = c(K)$ by Theorem 2. The converse is a consequence of Lemma 3.

THEOREM 4. *A finitely connected domain D in R^2 is rigid if and only if each component of ∂D is either a point or a quasicircle.*

Proof. If D is bounded by a finite number of points or quasicircles, then D is uniform by Theorem 5 in [16] and Theorem 5 in [6]; hence D is rigid by Theorem 2. The converse follows from Lemma 3.

The problem of characterizing rigid plane domains D is more difficult when D is infinitely connected. For example, if \mathcal{C} denotes the collection of boundary components of a rigid domain D in R^2 , then

$$\sup_{C, C' \in \mathcal{C}} \frac{\min(\text{dia}(C), \text{dia}(C'))}{d(C, C')} < \infty$$

by Lemma 3. Hence one must take into account not only the shape but the relative size and position of the boundary components when D has infinite connectivity.

We conclude this section by exhibiting a plane domain D which is rigid but not uniform; thus the converse of Theorem 2 does not hold. The existence of such a domain is an immediate consequence of the following result.

THEOREM 5. *If D is a rigid domain in R^2 and if E is a discrete subset of D , then $D - E$ is a rigid domain.*

Proof. Suppose that U is an open disk with center at z_0 and let $U_0 = U - \{z_0\}$. Then since $L(D)$ is invariant under similarity mappings, Theorem 4 implies that $L(U_0)$ is an absolute constant c which exceeds 1.

Suppose next that f is a local L -quasi-isometry in $D - E$ with $L < \min(L(D), c)$. Given $z_0 \in E$ we can choose an open disk U centered at z_0 such that

$$U_0 = U - \{z_0\} \subset D - E.$$

If $z_1, z_2 \in U_0$, then for each $\varepsilon > 0$ we can find an arc α joining z_1 and z_2 in U_0 with

$$l(\alpha) \leq (1 + \varepsilon) |z_1 - z_2|.$$

Since f is a local L -quasi-isometry in U_0 ,

$$|f(z_1) - f(z_2)| \leq l(f(\alpha)) \leq Ll(\alpha) \leq L(1 + \varepsilon) |z_1 - z_2|,$$

and letting $\varepsilon \rightarrow 0$ yields

$$|f(z_1) - f(z_2)| \leq L |z_1 - z_2|. \quad (10)$$

Then (10) implies that f has a continuous extension in U which satisfies (10) for $z_1, z_2 \in U$. Next since $L < c$, f is injective in U_0 , and it follows that f is injective and hence a homeomorphism in U . Choose an open disk V about $f(z_0)$ with $V \subset f(U)$. Then $g = (f|U)^{-1}$ is a local L -quasi-isometry in $V_0 = V - \{f(z_0)\}$, and the above argument applied to g shows that f is an L -quasi-isometry in $g(V)$. Thus f has an extension to D which is a local L -quasi-isometry in a neighborhood of each point of E and hence in D . Then since $L < L(D)$, f is injective in D . Hence f is injective in $D - E$,

$$L(D - E) \geq \min(L(D), c) > 1$$

and $D - E$ is a rigid domain.

Now let B denote the unit disk and let

$$E = \left\{ z = \left(1 - \frac{1}{j}\right) \exp\left(\frac{2\pi i k}{j^2}\right) : k = 1, 2, \dots, j^2, j = 2, 3, \dots \right\}.$$

Then $D = B - E$ is rigid by Theorem 5. On the other hand if $z_1 = 0$ and if $z_2 \in D$ with $|z_2| \geq 1 - 1/2j$ and $j \geq 2$, then each rectifiable arc α joining z_1 and z_2 in D must contain a point z with $|z| = 1 - 1/j$ and

$$\min_{j=1,2} l(\alpha_j) \geq \frac{j}{2\pi} d(z, \partial D),$$

where α_1, α_2 denote the components of $\alpha - \{z\}$. Hence there exists no constant b for which D satisfies condition (3) and D is not a uniform domain.

3. Extension of quasi-isometries

We establish here some extension theorems for plane quasi-isometries. Our arguments are based on a reflection principle for quasidisks due to Ahlfors [1] and estimates for the hyperbolic distance.

If D is a simply connected proper subdomain of \mathbb{R}^2 , then the *hyperbolic metric* with curvature -1 in D is given by

$$\rho_D(z) = \frac{|g'(z)|}{\operatorname{Im}(g(z))},$$

where g is any conformal mapping of D onto the upper half plane H . From standard distortion theorems it follows that

$$\frac{1}{2} \leq |g'(z)| \frac{d(z, \partial D)}{\operatorname{Im}(g(z))} \leq 2, \quad (11)$$

where $d(z, \partial D)$ denotes the distance from z to ∂D , and hence that

$$\frac{1}{2d(z, \partial D)} \leq \rho_D(z) \leq \frac{2}{d(z, \partial D)}. \quad (12)$$

(See, for example, p. 22 in [17].) Next the *hyperbolic distance* between points $z_1, z_2 \in D$ is given by

$$h_D(z_1, z_2) = \inf_{\alpha} \int_{\alpha} \rho_D(z) |dz|,$$

where the infimum is taken over all rectifiable arcs α joining z_1 and z_2 in D . From

(12) and Lemma 2.1 in [5] it follows that

$$h_D(z_1, z_2) \geq \frac{1}{2} \left| \log \frac{d(z_1, \partial D)}{d(z_2, \partial D)} \right| \quad (13)$$

for $z_1, z_2 \in D$. Next if D is a K -quasidisk, then by (12), Corollary 2.33 in [14] and Theorem 1 in [6],

$$h_D(z_1, z_2) \leq c \log \left(\frac{|z_1 - z_2|}{d(z_1, \partial D)} + 1 \right) \left(\frac{|z_1 - z_2|}{d(z_2, \partial D)} + 1 \right) + d. \quad (14)$$

for $z_1, z_2 \in D$, where c and d are constants which depend only on K . (Cf. pp. 42–44 in [13].)

We begin with a result on a special class of quasi-isometries.

LEMMA 4. *If D is a Jordan domain in R^2 and if $z_1, z_2 \in D$ with $h_D(z_1, z_2) \leq a$, then there exists an L -quasi-isometry $f: \bar{D} \rightarrow \bar{D}$ such that f is the identity on ∂D , $f(z_1) = z_2$ and L depends only on a .*

Proof. Choose a conformal mapping $g: D \rightarrow H$ normalized so that $g(z_1) = i$ and $g(z_2) = bi$ where $b > 1$. Then

$$\log b = h_D(z_1, z_2) \leq a$$

and g extends to a homeomorphism which maps \bar{D} onto \bar{H} . Set

$$h(w) = \begin{cases} u + iv & \text{if } w = u + iv \in \bar{H} - \{\infty\}, \\ \infty & \text{if } w = \infty. \end{cases}$$

Then h is continuously differentiable with

$$\left. \begin{aligned} h_H(h(w), w) &= \log b \leq a, \\ \frac{1}{b} \frac{|dw|}{\operatorname{Im}(w)} &\leq \frac{|dh(w)|}{\operatorname{Im}(h(w))} \leq \frac{|dw|}{\operatorname{Im}(w)} \end{aligned} \right\} \quad (15)$$

in H and $f = g^{-1} \circ h \circ g$ is a homeomorphism of \bar{D} onto \bar{D} which is the identity on ∂D and maps z_1 onto z_2 .

Fix $z \in D$ and set $w = g(z)$. Then

$$\frac{|df(z)|}{|dz|} = \frac{|dh(w)|}{|dw|} \frac{|g'(z)|}{|g'(f(z))|}, \quad (16)$$

while we obtain

$$\left. \begin{aligned} \frac{1}{2} \leq |g'(z)| \frac{d(z, \partial D)}{\operatorname{Im}(w)} \leq 2 \\ \frac{1}{2} \leq |g'(f(z))| \frac{d(f(z), \partial D)}{\operatorname{Im}(h(w))} \leq 2 \end{aligned} \right\} \quad (17)$$

from (11). Next by (13) and (15),

$$\frac{1}{2} \left| \log \frac{d(f(z), \partial D)}{d(z, \partial D)} \right| \leq h_D(f(z), z) = h_H(h(w), w) \leq a$$

whence

$$e^{-2a} \leq \frac{d(f(z), \partial D)}{d(z, \partial D)} \leq e^{2a}. \quad (18)$$

Combining (15), (16), (17) and (18) yields

$$\frac{1}{L} \leq \frac{|df(z)|}{|dz|} \leq L$$

where $L = 4e^{3a}$, and hence f is a local L -quasi-isometry in D . (Cf. p. 395 in [10].) The desired conclusion is now a consequence of the following elementary result.

LEMMA 5. *Suppose that D_1 and D_2 are domains in R^2 , that $f: \bar{D}_1 \rightarrow \bar{D}_2$ is a homeomorphism and that f is an L_1 -quasi-isometry in ∂D_1 and a local L_2 -quasi-isometry in D_1 . Then f is an L -quasi-isometry in \bar{D}_1 where $L = \max(L_1, L_2)$.*

Proof. Fix $z_1, z_2 \in D_1$ and let α be the open segment joining these points in R^2 . If $\alpha \subset D_1$, then

$$|f(z_1) - f(z_2)| \leq l(f(\alpha)) \leq L_2 l(\alpha) \leq L |z_1 - z_2|.$$

Otherwise for $j = 1, 2$ let α_j denote the component of $\alpha \cap D_1$ which has z_j as an endpoint and let w_j denote the other endpoint of α_j . Then $w_j \in \partial D_1$, $\alpha_j \subset D_1$ and

$$\begin{aligned} |f(z_1) - f(z_2)| &\leq |f(z_1) - f(w_1)| + |f(w_1) - f(w_2)| + |f(w_2) - f(z_2)| \\ &\leq L |z_1 - w_1| + L_1 |w_1 - w_2| + L |w_2 - z_2| \\ &\leq L |z_1 - z_2|. \end{aligned}$$

Applying this argument to f^{-1} shows that f is an L -quasi-isometry in D_1 , and hence in \bar{D}_1 by continuity.

Lemma 5 shows that a bijective local quasi-isometry between two domains is a quasi-isometry if the induced boundary correspondence is a quasi-isometry. We can also draw this conclusion without knowledge of the boundary correspondence when the two domains have sufficiently regular boundaries.

LEMMA 6. *Suppose that D_1 and D_2 are K_1 - and K_2 -quasidisks in R^2 and that $f: D_1 \rightarrow D_2$ is a bijective local L_1 -quasi-isometry. Then f extends to an L -quasi-isometry of \bar{D}_1 onto \bar{D}_2 where L depends only on K_1 , K_2 and L_1 .*

Proof. Fix $z_1, z_2 \in D_1$. By Corollary 2.33 in [14], there exists a rectifiable arc α joining z_1 and z_2 in D_1 such that

$$l(\alpha) \leq a_1 |z_1 - z_2|,$$

where a_1 depends only on K_1 . Thus

$$|f(z_1) - f(z_2)| \leq l(f(\alpha)) \leq L_1 l(\alpha) \leq L_1 a_1 |z_1 - z_2|.$$

Next since f is injective, f^{-1} is a local L_1 -quasi-isometry in D_2 and arguing as above yields

$$|z_1 - z_2| \leq L_1 a_2 |f(z_1) - f(z_2)|,$$

where a_2 depends only on K_2 . Hence f is an L -quasi-isometry in D_1 where $L = \max(L_1 a_1, L_1 a_2)$, and we can extend f to \bar{D}_1 by continuity.

We will require the following version of Lemma 4 for the case where D is a quasidisk.

LEMMA 7. *Suppose that D is a K -quasidisk in R^2 , that $z_1, z_2 \in D$ and that*

$$\frac{1}{b} \leq \frac{|z_1 - z|}{|z_2 - z|} \leq b \tag{19}$$

for all $z \in \partial D - \{\infty\}$ where b is a constant. Then there exists an L -quasi-isometry $f: \bar{D} \rightarrow \bar{D}$ such that f is the identity on ∂D , $f(z_1) = z_2$ and L depends only on K and b .

Proof. For $j = 1, 2$ choose $w_j \in \partial D - \{\infty\}$ so that

$$|z_j - w_j| = d(z_j, \partial D).$$

Then by (19),

$$|z_1 - z_2| \leq |z_1 - w_j| + |z_2 - w_j| \leq (b + 1) d(z_j, \partial D)$$

and hence

$$h_D(z_1, z_2) \leq 2c \log(b + 2) + d = a$$

by (14), where c and d depend only on K . The desired conclusion now follows directly from Lemma 4.

We derive now an extension of Ahlfors' reflection principle for quasidisks. (See, for example, Lemma 3 on p. 80 in [2].)

THEOREM 6. Suppose that D_1 is a K_1 -quasidisk with $\infty \in \partial D_1$, that D_2 is a Jordan domain in \mathbb{R}^2 with $\infty \in \partial D_2$ and that $\phi: \partial D_1 \rightarrow \partial D_2$ is an L_1 -quasi-isometry. Then there exists an L -quasi-isometry $f: \bar{D}_1 \rightarrow \bar{D}_2$ such that $f = \phi$ on ∂D_1 and L depends only on K_1 and L_1 . Suppose further that $z_1 \in D_1$, $z_2 \in D_2$ and

$$\frac{1}{b} \leq \frac{|z_1 - z|}{|z_2 - \phi(z)|} \leq b \quad (20)$$

for all $z \in \partial D_1 - \{\infty\}$ where b is a constant. Then we can choose f so that, in addition, $f(z_1) = z_2$ and L depends only on K_1 , L_1 and b .

If we choose $D_2 = D_1^*$ and $\phi(z) = z$, then the first part of Theorem 6 yields the above mentioned result of Ahlfors.

Proof. For $j = 1, 2$ let g_j map D_j conformally onto the upper half plane H . Then g_j extends to a homeomorphism of \bar{D}_j onto \bar{H} and by performing an additional Möbius transformation we may assume that $g_j(\infty) = \infty$. Hence $\psi(x) = g_2 \circ \phi \circ g_1^{-1}(x)$ is a homeomorphism of ∂H onto itself with $\psi(\infty) = \infty$.

Choose $-\infty < x < \infty$ and $t > 0$, let $\alpha'_1 = (x, x + t)$ and $\beta'_1 = (-\infty, x - t)$, and let $\alpha_1, \alpha_2, \alpha'_2$ and $\beta_1, \beta_2, \beta'_2$ denote the images of α'_1 and β'_1 under $g_1^{-1}, \phi \circ g_1^{-1}, \psi$ respectively. If Γ_1 is the family of arcs joining α_1 to β_1 in D_1 , then the extremal

length $\lambda(\Gamma_1)$ of Γ_1 is equal to 1. Moreover since D_1 is a K_1 -quasidisk,

$$|z_1 - z_2| \leq c_1 |z_1 - z_3| \quad (21)$$

for each ordered triple of points $z_1, z_2, z_3 \in \partial D_1 - \{\infty\}$ where c_1 is a constant which depends only on K_1 . In particular if we let $z_1 = g_1^{-1}(x)$ and $w_1 = g_1^{-1}(x+t)$, then the argument on pp. 82–83 in [2] shows that

$$\alpha_1 \subset \bar{B}(w_1, r), \quad r = c_1 |z_1 - w_1|$$

and that

$$d(\alpha_1, \beta_1) \geq s = c_1^{-5} e^{-2\pi} r.$$

Since ϕ is an L_1 -quasi-isometry,

$$\alpha_2 \subset \bar{B}(w_2, L_1 r), \quad d(\alpha_2, \beta_2) \geq \frac{s}{L_1}$$

where $w_2 = \phi(w_1)$, and arguing again as on p. 83 in [2] we see that

$$\lambda(\Gamma_2) \geq \frac{1}{\pi} \left(\frac{s}{L_1^2 r + s} \right)^2,$$

where Γ_2 is the family of arcs joining α_2 to β_2 in D_2 . This implies that

$$\frac{\psi(x+t) - \psi(x)}{\psi(x) - \psi(x-t)} \leq c_2, \quad (22)$$

where c_2 is a constant which depends only on K_1 and L_1 . From (22) and the above argument with $\alpha'_1 = (x-t, x)$ and $\beta'_1 = (x+t, \infty)$ we conclude that

$$\frac{1}{c_2} \leq \frac{\psi(x+t) - \psi(x)}{\psi(x) - \psi(x-t)} \leq c_2$$

for all such x and t . Set

$$h(z) = \frac{1}{2} \int_0^1 (\psi(x+ty) + \psi(x-ty)) dt + \frac{i}{2} \int_0^1 |\psi(x+ty) - \psi(x-ty)| dt$$

for $z = x + iy \in \bar{H} - \{\infty\}$ and $h(\infty) = \infty$. Then h maps \bar{H} homeomorphically onto \bar{H} and h is continuously differentiable and K -quasiconformal in H with

$$\frac{1}{c_3} \frac{|dz|}{\operatorname{Im}(z)} \leq \frac{|dh(z)|}{\operatorname{Im}(h(z))} \leq c_3 \frac{|dz|}{\operatorname{Im}(z)},$$

where K and c_3 depend only on c_2 , and hence on K_1 and L_1 . (See pp. 69–74 in [2] for the case where $\psi(x)$ is increasing in x .) Thus $f_1 = g_2^{-1} \circ h \circ g_1$ is a homeomorphism of \bar{D}_1 onto \bar{D}_2 , $f = \phi$ on ∂D_1 , f_1 is K -quasiconformal in D_1 and

$$\frac{|df_1(z)|}{|dz|} = \frac{|dh(w)|}{|dw|} \frac{|g'_1(z)|}{|g'_2(f_1(z))|}$$

for $z \in D_1$, $w = g_1(z)$. From (11) applied to g_1 and g_2 we obtain

$$\frac{1}{2} \leq |g'_1(z)| \frac{d(z, \partial D_1)}{\operatorname{Im}(w)} \leq 2,$$

$$\frac{1}{2} \leq |g'_2(f_1(z))| \frac{d(f_1(z), \partial D_2)}{\operatorname{Im}(h(w))} \leq 2.$$

Thus

$$\frac{1}{4c_3} \frac{d(f_1(z), \partial D_2)}{d(z, \partial D_1)} \leq \frac{|df_1(z)|}{|dz|} \leq 4c_3 \frac{d(f_1(z), \partial D_2)}{d(z, \partial D_1)} \quad (23)$$

and it remains to bound the ratio on the left and right sides of (23).

If w_1, w_2, w_3 is an ordered triple of points in $\partial D_2 - \{\infty\}$, then

$$|w_1 - w_2| \leq c_1 L_1^2 |w_1 - w_3|$$

by (21) and D_2 is a K_2 -quasidisk where K_2 depends only on K_1 and L_1 . Hence f_1 can be extended by quasiconformal reflection in ∂D_1 and ∂D_2 to yield a K_3 -quasiconformal mapping of \bar{R}^2 onto itself with $K_3 = KK_1^2K_2^2$. Fix $z_1 \in D_1$ and $z_2 \in \partial D_1 - \{\infty\}$, and choose $z_3 \in \partial D_1$ so that $|z_3 - z_2| = |z_1 - z_2|$. Since f_1 is K_3 -quasiconformal in \bar{R}^2 with $f_1(\infty) = \infty$,

$$|f_1(z_1) - f_1(z_2)| \leq c |f_1(z_3) - f_1(z_2)| \leq c_4 |z_3 - z_2| = c_4 |z_1 - z_2|$$

where c and $c_4 = cL_1$ depend only on K_1 and L_1 . We thus obtain

$$\frac{1}{c_4} |z_1 - z_2| \leq |f_1(z_1) - f_1(z_2)| \leq c_4 |z_1 - z_2| \quad (24)$$

for all $z_1 \in D_1$ and $z_2 \in \partial D_1 - \{\infty\}$. In particular, (24) implies that

$$\frac{1}{c_4} d(z, \partial D_1) \leq d(f_1(z), \partial D_2) \leq c_4 d(z, \partial D_1)$$

for all $z \in D_1$, and we conclude from (23) that f_1 is a local L_2 -quasi-isometry in D_1 with $L_2 = 4c_3c_4$. Lemma 5 then implies that f_1 is an L_3 -quasi-isometry in \bar{D}_1 where $L_3 = \max(L_1, L_2)$, and choosing $f = f_1$ completes the proof of the first part of Theorem 6.

Finally suppose that $z_1 \in D_1$, $z_2 \in D_2$ and that (20) holds for all $z \in \partial D_1 - \{\infty\}$. If $w \in \partial D_2 - \{\infty\}$, then $z = f_1^{-1}(w) \in \partial D_1 - \{\infty\}$ and

$$\frac{|f_1(z_1) - w|}{|z_2 - w|} = \frac{|f_1(z_1) - f_1(z)|}{|z_1 - z|} \frac{|z_1 - z|}{|z_2 - \phi(z)|}$$

lies between $(bc_4)^{-1}$ and bc_4 by (20) and (24). By Lemma 7 there exists an L_4 -quasi-isometry $f_2: \bar{D}_2 \rightarrow \bar{D}_2$ such that f_2 is the identity on ∂D_2 , $f_2(f_1(z_1)) = z_2$ and L_4 depends only on K_2 and b . Thus $f = f_2 \circ f_1$ has all the properties required in the second part of Theorem 6.

Finally we require the following result which shows that a certain class of quasi-isometries is invariant under conjugation by inversion.

LEMMA 8. *Suppose that f is an L -quasi-isometry in $E \subset \bar{R}^2$, that*

$$\frac{1}{L} \leq \frac{|f(z)|}{|z|} \leq L \quad (25)$$

for $z \in E - \{0, \infty\}$ and that $f(0) = 0$ if $0 \in E$. Then $g = T \circ f \circ T^{-1}$ is an L^3 -quasi-isometry in $T(E)$ where $T(z) = 1/z$.

Proof. Choose distinct points $w_1, w_2 \in T(E) - \{\infty\}$ and let $z_i = 1/w_i$. If $w_1, w_2 \neq 0$, then $z_1, z_2 \in E - \{0, \infty\}$,

$$\frac{|g(w_1) - g(w_2)|}{|w_1 - w_2|} = \frac{|f(z_1) - f(z_2)|}{|z_1 - z_2|} \frac{|z_1|}{|f(z_1)|} \frac{|z_2|}{|f(z_2)|}$$

and hence

$$\frac{1}{L^3} \leq \frac{|g(w_1) - g(w_2)|}{|w_1 - w_2|} \leq L^3 \quad (26)$$

by (25). If $w_1 = 0$, then $g(w_1) = 0$,

$$\frac{|g(w_1) - g(w_2)|}{|w_1 - w_2|} = \frac{|z_2|}{|f(z_2)|}$$

and again (26) holds. Finally if $\infty \in T(E)$ then $g(\infty) = \infty$ and thus g is an L^3 -quasi-isometry in $T(E)$.

We now obtain the main result of this section from combining Lemma 8 and Theorem 6.

THEOREM 7. *Suppose that D_1 is a K_1 -quasidisk in \mathbb{R}^2 , that D_2 is a Jordan domain in \mathbb{R}^2 and that $\phi: \partial D_1 \rightarrow \partial D_2$ is an L_1 -quasi-isometry. Then there exist L -quasi-isometries $f: \bar{D}_1 \rightarrow \bar{D}_2$ and $f^*: \bar{D}_1^* \rightarrow \bar{D}_2^*$ such that $f = f^* = \phi$ on ∂D_1 and L depends only on K_1 and L_1 .*

Proof. Suppose that $\infty \in \partial D_1$. Then D_1 and D_1^* are K_1 -quasidisks with $\partial D_1 = \partial D_1^*$ and the existence of f and f^* is an immediate consequence of Theorem 6.

Suppose next that $\infty \notin \partial D_1$. Then $\infty \in D_1^*$ and $\infty \in D_2^*$. By making a preliminary change of variables we may assume that $0 \in \partial D_1$ and that $\phi(0) = 0$. For $j = 1, 2$ let G_j denote the image of D_j under $T(z) = 1/z$ and set $\psi = T \circ \phi \circ T^{-1}$. Then G_1 is a K_1 -quasidisk with $\infty \in \partial G_1$,

$$\frac{1}{L_1} \leq \frac{|\phi(z)|}{|z|} \leq L_1 \quad (27)$$

for $z \in \partial D_1 - \{0\}$ and hence $\psi: \partial G_1 \rightarrow \partial G_2$ is an L_1^3 -quasi-isometry by Lemma 8. Theorem 6 then yields L_2 -quasi-isometries $g: \bar{G}_1 \rightarrow \bar{G}_2$ and $g^*: \bar{G}_1^* \rightarrow \bar{G}_2^*$ such that $g = g^* = \psi$ on ∂G_1 and L_2 depends only on K_1 and L_1 . In addition, since $0 \in G_1^*$, $0 \in G_2^*$ and

$$\frac{1}{L_1} \leq \frac{|0 - z|}{|0 - \psi(z)|} \leq L_1$$

for $z \in \partial G_1 - \{\infty\}$ by (27), we can choose g^* so that $g^*(0) = 0$. Fix $z_1 \in \bar{G}_1 - \{\infty\}$ and

let z_0 be a point where the segment joining 0 to z_1 meets ∂G_1 . Then

$$\begin{aligned} |g(z_1)| &\leq |g(z_1) - g(z_0)| + |g(z_0)| \leq L_2 |z_1 - z_0| + |\psi(z_0)| \\ &\leq L_2 |z_1 - z_0| + L_1 |z_0| \leq L_2 |z_1| \end{aligned}$$

since $L_2 \geq L_1$. Thus by symmetry

$$\frac{1}{L_2} \leq \frac{|g(z)|}{|z|} \leq L_2$$

for $z \in \bar{G}_1 - \{\infty\}$. Next

$$\frac{1}{L_2} \leq \frac{|g^*(z)|}{|z|} \leq L_2$$

for $z \in \bar{G}_1^* - \{0, \infty\}$ since g^* is an L_2 -quasi-isometry in \bar{G}_1^* . Thus $f = T^{-1} \circ g \circ T$ and $f^* = T^{-1} \circ g^* \circ T$ have the required properties by Lemma 8.

COROLLARY 1. *Suppose that D_1 and D_2 are K_1 - and K_2 -quasidisks in \mathbb{R}^2 and that $f: D_1 \rightarrow D_2$ is a bijective local L_1 -quasi-isometry. Then there exists an L -quasi-isometry $g: \bar{R}^2 \rightarrow \bar{R}^2$ such that $g = f$ in D_1 and L depends only on K_1 , K_2 and L_1 .*

Proof. By Lemma 6, f extends to an L_2 -quasi-isometry of \bar{D}_1 onto \bar{D}_2 where L_2 depends only on K_1 , K_2 and L_1 . Next Theorem 7 with $\phi = f|_{\partial D_1}$ yields an L_2^* -quasi-isometry $f^*: \bar{D}_1^* \rightarrow \bar{D}_2^*$ such that $f^* = f$ on ∂D_1 and L_2^* depends only on K_1 , K_2 and L_1 . Then

$$g = \begin{cases} f & \text{in } \bar{D}_1 \\ f^* & \text{in } \bar{D}_1^*, \end{cases} \quad (28)$$

is the desired extension of f .

COROLLARY 2. *Suppose that C_1 is a K_1 -quasicircle and that ϕ is an L_1 -quasi-isometry in C_1 . Then there exists an L -quasi-isometry $g: \bar{R}^2 \rightarrow \bar{R}^2$ such that $g = \phi$ on C_1 and L depends only on K_1 and L_1 .*

Proof. Let $C_2 = \phi(C_1)$ and for $j = 1, 2$ let D_j be a component of $\bar{R}^2 - C_j$ chosen so that $D_j \subset \mathbb{R}^2$. If f and f^* are the L -quasi-isometries given by Theorem 7, then g defined in (28) is the required extension.

Corollary 2 extends recent results of Jerison and Kenig [9] and of Tukia [18] who consider the cases where C_1 is a line and a circle, respectively.

4. An application

If f is a local L -quasi-isometry in a plane domain D with $L < L(D)$, then f is injective. The following result shows that one can say more whenever D is simply connected.

THEOREM 8. *Suppose that D_1 is a simply connected proper subdomain of R^2 and that f is a local L_1 -quasi-isometry in D_1 with $L < L(D_1)$. Then there exists an L -quasi-isometry $g: R^2 \rightarrow R^2$ such that $g = f$ in D_1 and L depends only on $L(D_1)$ and L_1 .*

Proof. Let $D_2 = f(D_1)$ and let g denote any local L_2 -quasi-isometry in D_2 with $L_2 < L(D_1)/L_1$. Then $g \circ f$ is a local $L_1 L_2$ -quasi-isometry in D_1 , $g \circ f$ is injective in D_1 since $L_1 L_2 < L(D_1)$ and hence g is injective in D_2 . Thus

$$L(D_2) \geq \frac{L(D_1)}{L_1} > 1. \quad (29)$$

Since f is injective in D_1 , f is an L_1^2 -quasiconformal mapping of D_1 and hence D_2 is a simply connected proper subdomain of R^2 . Then by Theorem 3 and (29) D_1 and D_2 are K_1 - and K_2 -quasidisks, where K_1 and K_2 depend only on $L(D_1)$ and $L(D_1)/L_1$ respectively, and the existence of g follows from Corollary 1.

Theorem 8 can be interpreted physically if we think of D_1 as a homogeneous elastic body and f as the distortion of D_1 due to a force field. In this case $L(D_1)$ measures the maximum permissible strain in D_1 before D_1 buckles. Theorem 8 asserts that if the strain in D_1 is less than $L(D_1)$, then the shape of D_1 is not substantially changed under the force field.

REFERENCES

- [1] L. V. AHLFORS, *Quasiconformal reflections*, Acta Math. 109 (1963) 291–301.
- [2] L. V. AHLFORS, *Lectures on quasiconformal mappings*, Van Nostrand Mathematical Studies 10, Princeton 1966.
- [3] F. W. GEHRING, *Univalent functions and the Schwarzian derivative*, Comment. Math. Helv. 52 (1977) 561–572.
- [4] F. W. GEHRING, *Characteristic properties of quasidisks*, Les Presses de l’Université de Montréal 1982.

- [5] F. W. GEHRING and B. P. PALKA, *Quasiconformally homogeneous domains*, J. d'Analyse Math. 30 (1976) 172–199.
- [6] F. W. GEHRING and B. G. OSGOOD, *Uniform domains and the quasi-hyperbolic metric*, J. d'Analyse Math. 36 (1979) 50–74.
- [7] J. GEVIRTZ, *On the univalence of quasi-isometric mappings*, Rev. Colombiana Mat. 7 (1973) 125–132.
- [8] J. GEVIRTZ, *A sharp condition for univalence in euclidean spaces*, Proc. Amer. Math. Soc. 57 (1976) 261–265.
- [9] D. S. JERISON and C. E. KENIG, *Hardy spaces, A_∞ , and singular integrals on chord-arc domains*, Math. Scand. (to appear).
- [10] F. JOHN, *Rotation and strain*, Comm. Pure Appl. Math. 14 (1961) 391–413.
- [11] F. JOHN, *On quasi-isometric mappings, I*, Comm. Pure Appl. Math. 21 (1968) 77–110.
- [12] F. JOHN, *On quasi-isometric mappings, II*, Comm. Pure Appl. Math. 22 (1969) 265–278.
- [13] P. W. JONES, *Extension theorems for BMO*, Indiana Univ. Math. J. 29 (1980) 41–66.
- [14] O. MARTIO and J. SARVAS, *Injectivity theorems in plane and space*, Ann. Acad. Sci. Fenn. 4 (1978–79) 383–401.
- [15] M. H. A. NEWMAN, *Elements of the topology of plane sets of points*, Camb. Univ. Press 1954.
- [16] B. G. OSGOOD, *Univalence criteria in multiply-connected domains*, Trans. Amer. Math. Soc. 260 (1980) 459–473.
- [17] C. POMMERENKE, *Univalent functions*, Vandenhoeck and Ruprecht, Göttingen 1975.
- [18] P. TUKIA, *The planar Schönflies theorem for Lipschitz maps*, Ann. Acad. Sci. Fenn. 5 (1980) 49–72.

University of Helsinki
Helsinki, Finland

University of Michigan
Ann Arbor, Michigan

Received January 14, 1982