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Courbure totale des feuilletages des surfaces

Rémi Langevin and Gilbert Levitt

Abstract. The sum of the total curvatures of two orientable orthogonal foliations on the unit sphère
S2cz R3 is at least 4ir. The total curvature of a foliation with saddle singularises on a closed hyperbolic
surface M is at least (12 Log 2-6Log3) •

Introduction

Soit V une surface compacte sans bord plongée dans R3. L&apos;intégrale sur V de
la courbure de Gauss de V est égale à la caractéristique d&apos;Euler-Poincaré de V et
ne dépend pas du plongement VcR3. Par contre, l&apos;intégrale sur V du module de
courbure de Gauss dépend du plongement VcR3. Toutefois, la théorie de Morse
permet de montrer que cette intégrale vérifie l&apos;inégalité démontrée par Chern et
Lashof [CL]:

où A(V) rgH,(V),
1=0 /

est le i-ème nombre de Betti de V. Les surfaces tendues, i.e. plongées de façon
qu&apos;on ait l&apos;égalité Jv \K\ 2tt(YÏ=o ft(V)), ont une forme géométrique très

particulière étudiée par Kuiper [Ku].
D. Asimov [A], puis Brito, Langevin et Rosenberg [BLR] ont montré que

l&apos;étude des feuilletages de codimension 1 transversalement orientables d&apos;une

variété de courbure sectionnelle constante conduit à une situation analogue.

THEOREME ([BLR]). Soir &amp; un feuilletage de codimension 1 transversalement

orientable d&apos;une variété M fermée orientable de dimension n + letde courbure

sectionnelle constante c. Notons K(x) la courbure géodésique du feuilletage &amp;9

c&apos;est-à-dire le déterminant de la seconde forme fondamentale au point x de la

feuille de &amp; passant par x.
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176 RÉMI LANGEVIN AND GILBERT LEVITT

On a:

Jl K(x) 0, si n est impair,
M

cn/2 • vol M, si n est pair.

Par contre, JM |K(x)|, que nous appellerons courbure totale de g, dépend du
feuilletage &amp;. Langevin [L] a étudié cette intégrale quand M est la sphère S3 on
un tore plat T2. Sur le tore plat, il existe une infinité de feuilletages totalement
géodésiques, donc de courbure totale nulle. On peut en outre déterminer les

feuilletages de T2 minimisant la courbure totale dans leur classe d&apos;homotopie, que
nous avons appelés feuilletages tendus (cf. [L]).

Nous étudions ici les feuilletages (singuliers) de la sphère S2, munie de sa

métrique canonique de courbure +1, et des surfaces hyperboliques, c&apos;est-à-dire

munies d&apos;une métrique de courbure constante —1 (comme on le verra par la suite,
il est essential que la surface soit de courbure constante). L&apos;idée qui se dégage de

cette étude est la suivante: le fait que la surface soit courbée entraîne que les

feuilletages que Von peut tracer dessus possèdent eux aussi de la courbure, bien que
pour un feuilletage orientable la moyenne JMK(x) soit toujours nulle.

Sur la sphère S2 comme sur le tore plat, il existe des feuilletages totalement
géodésiques. Il est par contre facile de vérifier, en utilisant le théorème de

Gauss-Bonnet, que seule une surface plate peut posséder deux feuilletages totalement

géodésiques et orthogonaux, et nous montrerons dans la partie I le résultat
quantitatif suivant:

THÉORÈME. Soient &amp;^x et &amp;2 deux feuilletages transversalement orientables

orthogonaux de la sphère S2. La somme des courbures totales de &amp;^x et &amp;2 est au
moins égale à 4tt.

Dans la partie II, nous énonçons et démontrons un &quot;théorème d&apos;échange&quot; qui
relie la courbure totale d&apos;un feuilletage et la mesure (en un sens que nous
préciserons) de l&apos;ensemble de ses tangentes. Ce théorème, déjà utilisé dans la

partie I, nous permettra dans la partie III de démontrer le théorème suivant:

THEOREME. Soit M une surface compacte sans bord munie d&apos;une métrique
hyperbolique et &amp; un feuilletage (pas nécessairement orientable) dont les

singularités sont des selles. La courbure totale de &amp; est au moins égale à

(12Log2-6Log3Hx(M)|.

Remarque. Si &amp; n&apos;est pas orientable (i.e. ne peut pas être défini par un flot), la
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courbure géodésique de &amp; en un point x n&apos;est bien définie qu&apos;en valeur absolue,
et la courbure totale de &amp; est par définition l&apos;intégrale sur M de cette quantité
\K\{x).

I. Courbure positive

Sur la sphère S2 munie d&apos;une métrique de courbure constante, il existe des

feuilletages (nécessairement singuliers) totalement géodésiques: il suffit de
considérer un feuilletage &amp;0 défini par les grands cercles passant par un point fixe.
Pour discerner sur S2 l&apos;influence de la courbure gaussienne de la surface sur la
courbure totale des feuilletages tracés dessus, il convient de considérer
simultanément deux feuilletages.

THÉORÈME. Soit S la sphère unité de R3 et soient &amp;x et &amp;2 deux feuilletages
orientables orthogonaux de S possédant un nombre fini de singularités. La somme
des courbures totales de SFX et de 8F2 est au moins égale à 4tt.

Remarques. (1) La valeur minimale 4tt est obtenue par example lorsque &amp;x

est le feuilletage par méridiens défini ci-dessus et &amp;2 le feuilletages par parallèles
qui lui est orthogonal; cela se voit facilement en utilisant les techniques employées
ci-dessous pour montrer le théorème (théorème de la divergence ou théorème
d&apos;échange).

(2) Le théorème reste très probablement vrai si l&apos;on ne suppose pas que les

feuilletages sont orientables.
(3) Comme nous l&apos;a fait remarquer Morris Hirsch, on peut généraliser le

théorème au cas de deux feuilletages faisant un angle constant 0 (0&lt; 0 &lt;tt/2). La
somme des courbures totales est alors au moins égale à 4tt sin 6.

(4) Le théorème est à rapprocher du fait suivant: pour tout e &gt;0, il existe sur
S2 une métrique g telle que:
— g est de courbure positive ou nulle et l&apos;aire de S2 pour g est égale à 4tt;
-—le feuilletage ^0 est totalement géodésique pour g;
— la courbure totale du feuilletage orthogonal à ^0 dans la métrique g est

inférieure à e.

On obtient de telles métriques en recollant deux demi-sphères aux extrémités
d&apos;un cylindre long et étroit muni d&apos;une métrique plate.

(5) Contrairement aux surfaces hyperboliques, il existe sur S2 un feuilletage
totalement géodésique, donc de courbure totale nulle. Si G est un groupe fini non
cyclique opérant sur S2, il serait intéressant de connaître le minimum de la

courbure totale d&apos;un feuilletage G-invariant.
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Démonstration du théorème.

La démonstration distingue deux cas:

(1) II existe un grand cercle C de S transverse à la fois à &amp;^x et à &amp;2 (et ne
passant par aucune singularité des feuilletages). On va alors montrer que dans
chacun des hémisphères délimités par C la somme des courbures totales de &amp;x et
de &amp;2 est au moins égale à 2tt.

On choisit une orientation pour chacun des feuilletages ainsi que pour C, ce

qui permet en tout point de C de définir les angles 6t et 62 que fait C avec &amp;x et
&amp;?2 respectivement. Soit kx(x) (resp. k2(x)) la courbure en x de la feuille de &amp;x

(resp. 9?2) passant par x; les fonctions kx et fc2 sont définies en dehors des

singularités et à valeurs positives ou négatives; selon les conventions d&apos;orientation,

la fonction fc, peut se trouver remplacée par son opposée.
Si l&apos;intégrale Js Ifc^x)! dx est infinie, il n&apos;y a rien à démontrer. Supposons

maintenant cette intégrale convergente.
Si D est un hémisphère bordé par C, le théorème de la divergence [BLR]

fournit la formule JD fc,(x) dx ±JC cos 0t(c) de (î l, 2). On remarque d&apos;autre

part que, comme C est transverse à &amp;x et &amp;2, les fonctions cos 6X et cos 62 gardent
un signe constant sur C. De plus, on a toujours |cos 0t\ 4- |cos 62\ &gt; 1

Tout ceci permet d&apos;écrire:

J \k1(x k1(x)dx k2(x)dx

cos 0i(c) de + cos 62(c) de

J Icos^Wldc + J |cos02(c)|

longueur (C) 2ir.

dc

(2) Dans le deuxième cas, il faut considérer l&apos;ensemble ^ de tous les grands
cercles de S. U s&apos;identifie à l&apos;ensemble des couples de points antipodaux de S, et
est donc homéomorphe au plan projectif. Il est de plus muni d&apos;une mesure
canonique m de masse totale 2ir, invariante par l&apos;action du groupe des isométries
de S. En dehors d&apos;un ensemble m-négligeable, les grands cercles de S ne
contiennent pas de singularité de &amp;x et ^2&gt; et leurs contacts avec &amp;x et &amp;2 sont
génériques. D&apos;après le théorème d&apos;échange que nous démontrerons dans la partie
II, la courbure totale de &amp;x est égale à l&apos;intégrale sur ^ de la fonction /x^, C) qui
compte le nombre de points de contact avec &amp;x d&apos;un grand cercle C. Puisque par
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hypothèse aucun grand cercle n&apos;est transverse à la fois à 9X et à 92, la somme
ni&amp;u C) + jll(^2» C) est pour m-presque tout Ce^ non nulle, donc au moins
égale à 2. On en déduit l&apos;inégalité cherchée.

II. Le théorème d&apos;échange

Dans toute cette partie, nous désignons par H l&apos;une des trois surfaces
suivantes:

(a) le plan euclidien R2,

(b) la sphère S2 (de courbure constante +1),
(c) le plan hyperbolique H2 (de courbure constante -1).
Nous appelons ^ l&apos;espace des géodésiques de H. Il est homéomorphe au plan

projectif dans le cas (b), à une bande de Môbius ouverte dans les cas (a) et (c).
L&apos;espace ^ est muni d&apos;une densité m invariante par l&apos;action sur ^ du groupe des
isométries de H ([S], p. 165 et suivantes), donc aussi d&apos;une mesure invariante
également notée m.

La densité m est unique à une constante multiplicative près, et nous la
normalisons de façon que la mesure de l&apos;ensemble des géodésiques qui rencontrent

un disque de rayon r soit, pour r tendant vers 0, équivalente à 2irr (on
trouvera ci-dessous une formule explicite pour m). Dans le cas (b), il existe un
revêtement canonique tt.S2—»^, et 7r*m est simplement la forme volume
définie par la métrique de S2.

Soit maintenant W un ouvert de H et 9 un feuilletage non singulier de W.

Même si 9 n&apos;est pas orientable, on peut définir en tout point xeWun nombre
positif ou nul |K| (x) mesurant le module de la courbure géodésique en x de la
feuille de 9 passant par x. Si d&apos;autre part D est une géodésique de H, nous
désignons par |fi| (9, D)gNUH le nombre de points de DDW où D est

tangente à 9.

THÉORÈME D&apos;ÉCHANGE.

f \K\(x)=[ \n\(9,D).

(les deux termes peuvent être simulanément infinis).

Nous avons besoin pour démontrer ce théorème de mesurer &quot;combien de
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géodésiques sont tangentes à 9&quot;. Pour cela nous introduisons les définitions
suivantes:

DÉFINITION 1. Le pinceau de géodésiques 0&gt;L est l&apos;ensemble des

géodésiques orthogonales à la géodésique L.

DEFINITION 2. La courbe polaire FL est l&apos;adhérence de l&apos;ensemble des

points où une géodésique du pinceau ^L est tangente au feuilletage &amp;.

Remarque (cf. [Th]). Pour presque tout pinceau 0&gt;L, FL est presque partout
une courbe lisse (éventuellement vide).

DÉFINITION 3. L&apos;application de Gauss y^ fait correspondre à un point
xeWla géodésique tangente à $F en x.

Le théorème d&apos;échange se déduit du lemme:

LEMME. \K\ |Jac yj\.

Démonstration. Soit L une géodésique, x un point de L. Nous pouvons
paramétrer les géodésiques D coupant un disque de rayon r centré en x à l&apos;aide:

(1) de la géodésique A perpendiculaire à D passant par x, repérée par son
angle 6 avec L.

(2) de la distance r entre x et le point d&apos;intersection p A C\ D.
La measure invariante m de ^ s&apos;exprime à l&apos;aide de r et 0 par ([S], p. 28 et

307):

m drd6, si

m cos r • dr • d6, si W&lt;= S2,

m cosh rdr- de, si W^H2.

Soit N(x) la géodésique normale en x à ^.
Si la courbure géodésique K n&apos;est pas nulle en x, la courbe polaire FN(x) est

transverse en x à Tx. En effet, si FN(x) était tangente à Tx, la dérivée du

vecteur normal à &amp; dans la direction de Tx serait nulle par définition de FN(x).

Notons r (resp a) la paramétrisation de Tx (resp de la feuille passant par x &quot;par la

longueur de l&apos;arc&quot;). On a:
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Figure 1

Calculons le module du jacobien de yF à l&apos;aide du repère oblique
(TJF, TxFN(x)) de W, et d&apos;un repère (el, e2) de TTjr(x)^ formé d&apos;un vecteur unitaire
ex tangent à l&apos;ensemble des géodésiques passant par le point x, et d&apos;un vecteur
unitaire e2 tangent à l&apos;ensemble des géodésiques normales à la géodésique
passant par x et tangente à N(x); voir fig. 1.

Soit 0&lt;(p&lt;7r/2 l&apos;angle (N(jc), TxFNix)). La différentielle de y&amp; vaut:

|cos&lt;p|/

On a donc:

|Jac 7^|

det MK\ 0

|cos &lt;p\

|cos
\K\.

Comme, en outre, les points critiques de y*? sont précisément les points où
\K\ 0, le lemme est démontré.
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Démonstration du théorème (voir aussi L).

Nous pouvons appliquer le théorème de changement de variable aux points où
\K\ i=- 0 qui n&apos;ont pas pour image une valeur critique de y&amp;.

Par le théorème de Sard, l&apos;ensemble des valeurs critiques de y&amp; est de mesure
nulle, et donc aussi l&apos;ensemble des points non critiques de y&amp; d&apos;image une valeur
critique. On a donc, puisqu&apos;en un point critique |K| 0:

[ 1*1= [ 1*1= f |/i|(y,L)
•W JW-cnt-y&amp;Hyvient)) *S-y,{cnt)

où crit désigne l&apos;ensemble des points critiques de y&amp;.

III. Courbure négative

Sur une surface compacte sans bord munie d&apos;une métrique hyperbolique (i.e.
de courbure constante -1), il n&apos;existe pas de feuilletage totalement géodésique.
Thurston a d&apos;ailleurs remarqué qu&apos;une lamination géodésique (c&apos;est-à-dire un
compact réunion de géodésiques simples disjointes) est nécessairement de
mesure nulle ([T2], p. 8.27).

THÉORÈME. Soit M une surface compacte sans bord munie d&apos;une métrique
hyperbolique, et &amp; un feuilletage de M dont les singularités sont des selles. La
courbure totale de 9 est au moins égale à (12Log2-6Log3)

Remarques. (1) En d&apos;autres termes, la courbure de 9 a une valeur moyenne au
moins égale à (6Log 2-3 Log3)/*r 0,2747

(2) On trouvera ci-dessous des exemples de feuilletages pour lesquels la
courbure totale atteint la valeur minimale.

(3) Si toutes les selles de 9 ont un nombre pair de séparatrices (en particulier
si 9 est orientable), on peut montrer que la courbure totale de 9 est au moins
égale à4Log2-|*(M)|.

(4) Le théorème est probablement encore vrai si l&apos;on suppose seulement que
9 est à singularités isolées (pas nécessairement de type selle).

(5) Le théorème ne se généralise pas aux métriques non hyperboliques.
Considérons, sur une surface M compacte sans bord avec x(M) &lt; 0, deux feuilletages

mesurés transverses 9X et &amp;2 (au sens de [TJ ou [FLP]), ou de façon
équivalente une différentielle quadratique holomorphe (voir [HM] ou [Ke] par
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exemple). Ces données définissent sur M une métrique plate, singulière en un
nombre fini de points, pour laquelle &amp;x et &amp;^2 sont totalement géodésiques (et
orthogonaux). En désingularisant cette métrique dans des voisinages de plus en
plus petits des singularités, on obtient une famille de métriques de courbure
négative ou nulle, d&apos;aire constante, pour lesquelles la courbure totale de &amp;i et &amp;2

peut être arbitrairement petite.

Notations et examples

Soit M comme dans l&apos;énoncé du théorème, et p:H —&gt; M l&apos;application de

revêtement universel. Nous identifierons le plan hyperbolique H à l&apos;intérieur d&apos;un

disque dans le modèle de Poincaré (voir par example [T2], chapitres 2 et 3). Le
bord Soo de ce disque est le cercle à Vinfini de H. Les géodésiques de H sont les

arcs de cercle orthogonaux à S^. Etant donnés deux points distincts m et m&apos; de
Soo, il existe une unique géodésique de H &quot;joignant&quot; m et m&apos;, i.e. admettant m et
m&apos; comme points à l&apos;infini. Trois points distincts de S*, définissent ainsi un triangle
asymptotique, et deux triangles asymptotiques quelconques sont conjugués par
une isométrie de H. Si la restriction de p à l&apos;intérieur d&apos;un triangle asymptotique
est injective, l&apos;image dans M sera également appelée triangle asymptotique. Un
triangle asymptotique, dans H ou dans M, est d&apos;aire ir.

Pour pouvoir construire des exemples de feuilletages minimisant la courbure

totale, nous devons commencer par construire un feuilletage &amp;a sur un triangle
asymptotique A c H (voir figure 2). Soit b le centre de symétrie de A. Le

Figure 2
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Figure 3

feuilletage &amp;a possède une seule singularité, une selle à trois branches située en b.

Les séparatrices issues de b sont les géodésiques joignant b aux points à l&apos;infini de
A ; elles se coupent en b selon des angles égaux à 2tt/3. Pour obtenir &amp;a, nous
remplissons chaque secteur par une famille de courbes convexes, de façon que le
bord de A se compose de feuilles. En projetant &amp;a par p, on obtient un feuilletage
(encore noté &amp;a) sur tout triangle asymptotique de M.

Soit maintenant M une surface fermée orientable de genre g munie d&apos;une

métrique hyperbolique. Choisissons sur M une famille de 3 g —3 géodésiques

compactes disjointes découpant M en pantalons (disques à deux trous). Dans
chaque pantalon on choisit de plus trois géodésiques disjointes spiralant vers les

composantes du bord (voir figure 3). Le complémentaire de l&apos;union de toutes ces

géodésiques se compose de 4g —4 triangles asymptotiques disjoints. En les

feuilletant par &amp;a et en rajoutant comme feuilles les bords des pantalons, on
obtient un feuilletage de M; de la démonstration ci-dessous il résultera que la
courbure totale de ce feuilletage atteint la valeur minimale (12Log2-
6 Log 3) • |#(M)|. En fait les feuilletages de M minimisant la courbure totale
s&apos;obtiennent en feuilletant comme ci-dessus chaque triangle asymptotique du
complémentaire d&apos;une lamination géodésique complète (au sens de [T2] p. 8.40).
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Démonstration du théorème

Sans perte de généralité, on peut supposer M orientable. Pour simplifier la
démonstration, nous supposerons que toutes les selles de SF ont trois séparatrices
et qu&apos;il n&apos;y a pas de liaisons entre selles. Considérons l&apos;application de revêtement
universel p:H -&gt; M, et le feuilletage W induit par 9 sur H. Parce que les

singularités de W sont des selles (donc d&apos;indice négatif), il n&apos;existe pas dans H de
disque que nous appellerons &quot;de Whitehead&quot;, à savoir de disque dont le bord est
ou bien une feuille de $? ou bien la réunion d&apos;un morceau de feuille de ffl et d&apos;un

arc transverse à 2£; en effet un tel disque contient nécessairement une singularité
d&apos;indice positif.

Considérons l&apos;ensemble ^ des géodésiques de H, muni de sa mesure canonique

m (voir partie II). Le principe de la démonstration du théorème peut se
résumer par l&apos;affirmation suivante:

AFFIRMATION. A toute selle s de 2£, on peut associer un ensemble de

géodésiques Gs&lt;=&lt;^ de mesure supérieure ou égale à 6Log2-3Log3, et une
injection (peut être non mesurable) is de Gs dans H envoyant toute géodésique
sur un point où elle est tangente à W. De plus, si 5 et 5&apos; sont deux selles distinctes
de $?, les images respectives As et As&gt; de Gs et Gs&gt; sont disjointes dans H.

Compte tenu de cette affirmation, le théorème résultera d&apos;une application
soigneuse du théorème d&apos;échange et du fait que 9 possède 2 |x(M)| selles.

Nous commençons la démonstration par un lemme &quot;bien connu des

spécialistes&quot;.

LEMME 1. Toute demi-feuille l de W qui n&apos;aboutit pas à une selle converge
vers un point du cercle à V infini Soc

Démonstration. Remarquons d&apos;abord que le comportement à l&apos;infini des demi-
feuilles de 3£ ne change pas si on modifie 9 par une isotopie (car si &lt;p est un

homéomorphisme de H relevant un homéomorphisme de M isotope à l&apos;identité,

alors supxeH d(x, &lt;px) est fini). Le lemme est ainsi clair si la demi-feuille p(l) de 9
est compacte ou spirale vers une feuille compacte: en effet une feuille compacte
de 9 n&apos;est pas homotope à 0 dans M, et donc est isotope à une géodésique^i par
contre l&apos;adhérence p(ï) ne contient pas de feuille compacte, soit h^p(l) une
feuille de 9 disjointe de p(J), et C une courbe fermée simple transverse à 9 et

coupant lx. La courbe C rencontre p(l) une infinité de fois; comme elle n&apos;est pas

homotope à 0, on peut supposer que c&apos;est une geodesique.

Puisqu&apos;il n&apos;existe pas dans H de disque de Whitehead, la demi-feuille l

rencontre une composante connexe de p~~\C) en au plus un point, et on peut
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Figure 4

considérer dans H D S*, l&apos;intersection de tous les demi-espaces fermés bordés par
une composante de p^CO, dans lesquels l entre successivement (voir figure 4).
Parce qu&apos;il y a une infinité de tels demi-espaces et que la distance entre deux

composantes distinctes de p~x(C) est minorée par un nombre strictement positif
indépendant du choix de ces composantes, l&apos;intersection considérée ne contient
pas de point de H. Elle ne peut contenir qu&apos;un seul point de Sœ, car si elle en
contenait deux alors elle contiendrait aussi la géodésique de H qui les joint.

Remarquons de plus que deux séparatrices l et V issues d&apos;une même selle sdeVt
convergent vers des points distincts de S*,. C&apos;est clair s&apos;il existe dans M une courbe
fermée simple transverse C coupant p(l) U p(f&apos;) au moins deux fois, car alors toute
composante de p~~x(C) qui recontre l ou I&apos; sépare les points à l&apos;infini de l et V (une

composante de p^iC) recontre l U l&apos; au plus une fois car il n&apos;y a pas de disque de

Whitehead). Sinon, les séparatrices p(l) et p(V) spiralent vers des feuilles
compactes l0 et l&apos;Q de &amp;. Si l et V ont le même point à l&apos;infini, ces feuilles l0 et l&apos;o sont
isotopes (deux géodésiques de H dont les projections dans M sont compactes ne

peuvent pas avoir de point en commun à l&apos;infini, à moins d&apos;être égales). Si l0 Jo&gt;

l&apos;union de p(l) et p(V) avec une courbe transverse proche de lQ découpe un disque
de Whitehead, ce qui est impossible. Si l0 et l&apos;o sont distinctes, elles bordent dans

M un anneau; cet anneau ne contient pas de singularité de &amp; (car &amp; ne possède

que des selles), et en considérant M on voit que p(l) et p(I&apos;) spiralent en fait vers
la même feuille (de &amp;) du même côté, ce qui est exclu.

On peut ainsi associer à toute selle s de H trois points de S«&gt; qui définissent

un triangle asymptotique As (voir figure 5); les trois géodésiques joignant ces
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Figure 5

points seront dites asymptotes de s. Deux asymptotes associées à des selles
distinctes de %£ ne peuvent pas se couper transversalement dans H, et donc les

triangles asymptotiques associés à deux selles distinctes de %£ sont d&apos;intérieurs

disjoints.
Fixons une géodésique L de H qui ne contient aucune selle de 2£, n&apos;est

asymptotique à aucune séparatrice de M et n&apos;est tangente à aucune séparatrice de
%C (m-presque toute géodésique satisfait à ces conditions). Si s est une selle de Vt

et D l&apos;une de ses trois asymptotes, nous dirons que le couple (s, D) est L-
admissible s&apos;il vérifie les conditions suivantes:

-s£D;
— s et As sont situés du même côté de D;
— L ne coupe pas D et sépare s de D.

A tout couple L-admissible (s, D), nous allons associer un domaine compact
Ts,n (voir figure ci-dessous). Les deux séparatrices issues de s et asymptotiques à

D séparent H en deux domaines. Nous appelons 3)SiD l&apos;adhérence de celui qui ne
contient pas les points à l&apos;infini de L. Nous désignons d&apos;autre part par 0% le

demi-plan fermé de bord L qui contient s, et nous définissons TsD comme la

composante connexe de 0%n2)s,r&gt; qui contient s. Le domaine TsD est compact et
homéomorphe à un disque (voir figure 6).
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Figure 6

Si (s, D) et (s&apos;, D&apos;) sont deux couples L-admissibles, on a exactement l&apos;une des

quatre possibilités suivantes:

— TsD est contenu dans Ts&gt;D&gt;

— Ts,d&apos; est contenu dans TsD

— TStD et TStD&gt; sont disjoints
— TS)D et Ts&gt;

D&gt; sont d&apos;intérieurs

disjoints, et s s&apos;.

En particulier, la situation de la figure 7 n&apos;est pas possible.

Figure 7

LEMME 2. Pour tout couple L-admissible (s, D), la collection d&apos;arcs L H TsD

est tangente à W en au moins un point.



Courbure totale des feuilletages des surfaces 189

Figure 8

Démonstration. Il ne peut exister qu&apos;un nombre fini de domaines Ts D-
contenus dans TsD. Il suffit donc de montrer le lemme pour un domaine TsD minimal
(pour l&apos;inclusion). Un tel domaine ne contient pas de selle dans son intérieur (voir
figure 8).

Si le lemme est faux, TsD est un disque ne contenant pas de singularité de %e

dans son intérieur et dont le bord se compose alternativement de morceaux de
feuilles de ^ et de morceaux transverses à M. En outre, la définition d&apos;un couple
L-admissible entraîne qu&apos;au voisinage de s la troisième séparatrice issue de s

(celle qui n&apos;est pas asymptotique à D) n&apos;est pas contenue dans TsD. La seule

possibilité est que TsD soit un &quot;rectangle&quot; (voir figure 9).
Le morceau de feuille compris entre les points 2 et 3 appartient à l&apos;une des

séparatrices issues de s et asymptotiques à D, par exemple à celle qui contient 1.

2 1

Figure 9
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On peut alors considérer le morceau de séparatrice joignant 1 à 2. Ce morceau ne
rencontre pas le segment de L compris entre 1 et 2 et il borde avec ce segment un
disque de Whitehead, ce qui est une contradiction.

Nous dirons maintenant qu&apos;un couple (s, D) est fortement L-admissible s&apos;il est
L-admissible et si de plus L rencontre As (donc les deux côtés de As autres que
D). Une selle s ne peut ainsi appartenir qu&apos;à un seul couple fortement
Inadmissible, et les domaines TsD correspondant à deux couples fortement
Inadmissibles sont nécessairement disjoints.

Si s est une selle de %C, nous appelons Gs l&apos;ensemble des géodésiques L pour
lesquelles il existe une asymptote D de s telle que le couple (s, D) soit fortement
L-admissible. L&apos;injection cherchée is de Gs dans H est obtenue en associant à

une géodésique L l&apos;un des points de LDTStD où L est tangente à 26 (voir le
lemma 2); nous choisissons les is de façon équivariante, i.e. si a est une
transformation du revêtement et cr* la transformation induite sur ^ on a itrs°cr*

a°is pour toute selle s de 2£ Désignons par As l&apos;image is(Gs)c:H. Pour L fixée,
les domaines TsD correspondant à deux couples fortement L-admissibles distincts
ne se rencontrent pas; on a donc As C\AS&apos; 0 si s^ sf.

Pour prouver l&apos;affirmation énoncée plus haut, il reste à vérifier que l&apos;on a

toujours m(Gs)^6Log2-3Log3.
Pour cela, considérons pour tout angle a (0&lt;a&lt;7r) la mesure f(a) de

^ensemble des géodésiques qui ne coupent pas D et séparent s et D (voir figure
10).

LEMME 3. (a) f(a) -2 Log sin (a/2);
(b) pour a, j3, 7 entre 0 et ir9 avec a + j8 + y 2ir, on a :

Figure 10
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Démonstration du lemme 3.

(a) On peut donner plusieurs démonstrations. La première consiste à remarquer,

en utilisant le théorème d&apos;échange, que /(a) est la courbure totale du
feuilletage dessiné sur la figure 11.

Le théorème de la divergence ([BLR]) permet alors de calculer /(a) par la
formule f(a) 2l-l\ à condition d&apos;interpréter convenablement cette différence
de deux quantités infinies.

Nous donnons maintenant une démonstration directe. Compte tenu de
l&apos;égalité /(tt) 0, il suffit de vérifier que /&apos;(a) =-cotg (a/2). Si on désigne par
h(a) la distance de s à D, la quantité /&apos;(«) * da est égale à la mesure de
l&apos;ensemble des géodésiques coupant un segment (géodésique) de longueur infiniment

petite dh h&apos;(a) • da sous un angle d&apos;au moins a/2. Cette mesure est

proportionnelle à dh et le coefficient de proportionnalité peut se calculer en
utilisant la formule &quot;euclidienne&quot; m dr - dO (voir partie II). Un calcul simple
donne 2cos(a/2), et par conséquent f(a) 2cos(a/2) • h&apos;(a). La trigonométrie
hyperbolique fournit ensuite la formule cosh (h(a)) 1/sin (a/2) (voir par exemple
[T2], formule 2.6.12), d&apos;où l&apos;on déduit facilement h&apos;(&lt;*) -l/2sin(a/2). Finalement,

on obtient bien /&apos;(a) =-cotg (a/2).
(b) Les triplets (a, |8, 7) d&apos;angles compris entre 0 et tt, avec a + j3 + 7 2ir,

paramétrent les points d&apos;un triangle asymptotique. Si le point correspondant est

sur le bord du triangle, on a par exemple y ir, et /(a) + /(j3) + /(y)
-2 Log [sin (a/2), sin ((&lt;ir - a)/2)] 2 Log (2/sin a) =&gt; 2 Log 2 &gt; 6 Log 2 - 3 Log 3. Si

le point tend vers un coin du triangle, l&apos;un des angles tend vers 0 et /(a)+ /(£) +

f(7) tend vers +00. Il suffit donc pour montrer l&apos;assertion (b) de vérifier que le seul

extremum possible de f(a) + f(P) + f(y) dans le triangle est (2ir/3, 2tt/3, 2tt/3). Or
la différentielle de f(a) + f(p) + f(y) est -cotg(a/2) • da-cotg (0/2) • dp-
cotg (7/2) • dy et ne s&apos;annule que pour cotg (a/2) cotg (0/2) cotg (7/2), c&apos;est-à-

dire pour a (3 7 2tt/3.

Figure 11
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Figure 12

Cela étant, deux cas sont possibles pour une selle s de df€&apos;

¦ s est située dans son triangle asymptotique As (ou sur le bord); on a alors (voir
figure 12):

— s est extérieure à As (voir figure 13); alors le couple (s,Dt) 0 1,2) est

Figure 13
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fortement L-admissible pour m-presque toute géodésique L ne coupant pas D,
et séparant t de Dx (voir figure 13). Donc:

Nous avons maintenant prouvé l&apos;affirmation. Montrons que l&apos;affirmation implique

le théorème. Choisissons pour chaque selle s^ de &amp;* un relevé s, dans H
(l&lt;i&lt;h 2|x(M)|), et appelons A l&apos;union (disjointe) des Av Puisque pour
toute transformation cr du revêtement on a crA LJÎ*=i A™,» ^es ensembles A et

aA sont disjoints si a^id, et donc la restriction de p à A est injective.
Supposons qu&apos;il existe un voisinage ouvert U de A sur lequel p soit encore

injective. Alors la courbure totale de &amp; est supérieure ou égale à la courbure
totale de d€\U9 laquelle d&apos;après le théorème d&apos;échange est au moins égale à

SiH=i m(Gs)&gt;2 • |*(M)| • (6Log2-3Log3). Le théorème serait donc démontré si

U existait.
En fait, U n&apos;existe en général pas, mais nous allons construire pour tout e e 0

petit, des ensembles Ges^GSi tels que m(GSi-Ges) tende vers 0 quand e tend vers
0 et qu&apos;il existe un voisinage ouvert Ue de l&apos;ensemble correspondant Ae sur

lequel p est injective. On déduit le théorème de l&apos;existence de ces G* en

appliquant comme précédemment le théorème d&apos;échange.

Fixons e&gt;0 et soit L une géodésique appartenant à Gv II existe donc une

asymptote D de st telle que le couple (st,D) soit fortement L-admissible.

Considérons la géodésique D&apos; située à une distance e de D du côte de s, et telle

que la perpendiculaire commune à D et D&apos; passe par s, (voir figure 14).

Figure 14
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Figure 15

On peut supposer que D&apos; est transverse aux deux séparatrices issues de s, et
asymptotiques à D, et définir comme plus haut un domaine compact T*,D&lt;

&amp;™ nâJSjJD (hachuré sur la figure 14). Soit n le nombre de selles contenues dans
Tt%,D&apos; et ae &gt;0 tel que la courbure totale de $f dans le ae-voisinage de 8TtiD&apos; soit
inférieure à e.

Par définition, la géodésique L e GS| sera dans G^ si et seulement si:

(i) L ne coupe pas D&apos; et sépare s, de D&apos;;

(ii) pour toute selle s de Tesjy, la distance de L à s est au moins égale à e/n;
(iii) L est transverse à &quot;M dans le ae-voisinage de STeSjD.

Il est facile de voir que m(GSi — Gs) tend vers 0 quand e tend vers 0. Nous
notons AJcA^ l&apos;image de G* dans H et Ae U,h-i A*.

Nous allons terminer la démonstration en prouvant que, pour e, i et / fixés, la
distance de A* à l&apos;union des conjugués de A* est strictement positive (si i=j,
nous ne conjuguons A* que par les transformations du revêtement différentes de
l&apos;identité). Soient donc QeAes, Q&apos;eAeS}, avec Q et crQ&apos; très proches (a est une
transformation du revêtement, non triviale si i=j). La condition (iii) ci-dessus

entraîne que crQ&apos; appartient à TfuE&gt; (voir figure 15) et donc que le triangle
asymptotique associé à la selle ers, se trouve du côté de D qui ne contient pas st

(ou une situation analogue en intervertissant les rôles de s, et s,). La géodésique
V tangente à 5if en crQ&apos; rencontre par conséquent D et D&apos;.

Définissons une distance sur l&apos;ensemble des géodésiques qui coupent un
compact K&lt;=^H par:

dK(U L&apos;) sup inf d(x, y); angle (L, L&apos;)) si L H V H K 0

(oublier le terme angle (L, V) si L n V 0)

angle (L, V) si L ni/ x e K.
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Les géodésiques L et L&apos; construites plus haut vérifient dK(L, V)^y\ &gt;0, où
K T* D&gt;, et où Tj ne dépend pas de Q, Q&apos; et cr. Si L et L&apos; ne se coupent pas ou se

coupent loin de K, elles ne peuvent être proches dans K et satisfaire les

conditions imposées. Sinon, puisque L ne passe trop près des selles de TeSiD&apos;

(condition (ii) ci-dessus), cela entraîne le résultat cherché, à savoir que la distance
entre les points de tangence Q et crQ&apos; sont minorés par une constante
indépendante de Q, Q&apos; et cr (nous utilisons ici le fait suivant: étant donnés un
nombre 0&gt;O et un compact KcMne contenant aucune selle de ^, il existe

a &gt;0 tel que, si deux géodésiques L1 et L2 tangentes à S€ en des points ax et a2

appartenant à v~l{K) se coupent avec un angle d&apos;au moins 0, alors la distance

entre ax et a2 est au moins a).
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