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Courbure totale des feuilletages des surfaces

ReEM1 LANGEVIN and GILBERT LEvITT

Abstract. The sum of the total curvatures of two orientable orthogonal foliations on the unit sphere
S2c R3 is at least 4. The total curvature of a foliation with saddle singularities on a closed hyperbolic
surface M is at least (12 Log 2—6 Log 3) - |x(M)|.

Introduction

Soit V une surface compacte sans bord plongée dans R>. L’intégrale sur V de
la courbure de Gauss de V est égale a la caractéristique d’Euler—Poincaré de V et
ne dépend pas du plongement V < R>. Par contre, I'intégrale sur V du module de
courbure de Gauss dépend du plongement V = R?. Toutefois, la théorie de Morse
permet de montrer que cette intégrale vérifie I'inégalité démontrée par Chern et
Lashof [CL]:

|, KI=2n(Z 8W), ob BMV=rgHW)
i=0

est le i-eme nombre de Betti de V. Les surfaces tendues, i.e. plongées de fagon
quon ait Iégalité [y |K|=27(7—o B:(V)), ont une forme géométrique tres
particuliere étudiée par Kuiper [Ku].

D. Asimov [A], puis Brito, Langevin et Rosenberg [BLR] ont montré que
I’étude des feuilletages de codimension 1 transversalement orientables d’une
variété de courbure sectionnelle constante conduit a une situation analogue.

THEOREME ([BLR]). Soit & un feuilletage de codimension 1 transversale-
ment orientable d’une variété M fermée orientable de dimension n +1 et de courbure
sectionnelle constante c. Notons K(x) la courbure géodésique du feuilletage %,
c’est-a-dire le déterminant de la seconde forme fondamentale au point x de la

feuille de % passtint par x.
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176 REMI LANGEVIN AND GILBERT LEVITT

On a:

J K(x)=0, si n est impair,
M
=c"?-vol M, si n est pair.

Par contre, [y |[K(x)|, que nous appellerons courbure totale de &, dépend du
feuilletage %. Langevin [L] a étudié cette intégrale quand M est la sphére S> on
un tore plat T>. Sur le tore plat, il existe une infinité de feuilletages totalement
géodésiques, donc de courbure totale nulle. On peut en outre déterminer les
feuilletages de T minimisant la courbure totale dans leur classe d’homotopie, que
nous avons appelés feuilletages tendus (cf. [L]).

Nous étudions ici les feuilletages (singuliers) de la sphére S$2, munie de sa
métrique canonique de courbure +1, et des surfaces hyperboliques, c’est-a-dire
munies d’une métrique de courbure constante —1 (comme on le verra par la suite,
il est essential que la surface soit de courbure constante). L’idée qui se dégage de
cette étude est la suivante: le fait que la surface soit courbée entraine que les
feuilletages que I’on peut tracer dessus possedent eux aussi de la courbure, bien que
pour un feuilletage orientable la moyenne f,; K(x) soit toujours nulle.

Sur la sphére S? comme sur le tore plat, il existe des feuilletages totalement
géodésiques. Il est par contre facile de vérifier, en utilisant le théoréme de
Gauss-Bonnet, que seule une surface plate peut posséder deux feuilletages totale-
ment géodésiques et orthogonaux, et nous montrerons dans la partie I le résultat
quantitatif suivant:

THEOREME. Soient %, et %, deux feuilletages transversalement orientables
orthogonaux de la sphére S*>. La somme des courbures totales de %, et %, est au
moins égale a 4.

Dans la partie II, nous énongons et démontrons un “théoreme d’échange’ qui
relie la courbure totale d’un feuilletage et la mesure (en un sens que nous
préciserons) de I’ensemble de ses tangentes. Ce théoréme, déja utilisé dans la
partie I, nous permettra dans la partie III de démontrer le théoréme suivant:

THEOREME. Soit M une surface compacte sans bord munie d’une métrique
hyperbolique et ¥ un feuilletage (pas nécessairement orientable) dont les
singularités sont des selles. La courbure totale de ¥ est au moins égale a
(12 Log 2—6 Log 3) - |x(M).

Remarque. Si & n’est pas orientable (i.e. ne peut pas étre défini par un flot), la
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courbure géodésique de & en un point x n’est bien définie qu’en valeur absolue,
et la courbure totale de & est par définition I'intégrale sur M de cette quantité
K] (x).

I. Courbure positive

Sur la sphére S” munie d’une métrique de courbure constante, il existe des
feuilletages (nécessairement singuliers) totalement géodésiques: il suffit de
considérer un feuilletage %, défini par les grands cercles passant par un point fixe.
Pour discerner sur S? I'influence de la courbure gaussienne de la surface sur la
courbure totale des feuilletages tracés dessus, il convient de considérer
simultanément deux feuilletages.

THEOREME. Soit S la sphére unité de R> et soient %, et %, deux feuilletages
orientables orthogonaux de S possédant un nombre fini de singularités. La somme
des courbures totales de %, et de ¥, est au moins égale a 4.

Remarques. (1) La valeur minimale 47 est obtenue par example lorsque %,
est le feuilletage par méridiens défini ci-dessus et &, le feuilletages par paralleles
qui lui est orthogonal; cela se voit facilement en utilisant les techniques employées
ci-dessous pour montrer le théoreme (théoréme de la divergence ou théoréme
d’échange).

(2) Le théoréme reste trés probablement vrai si I’on ne suppose pas que les
feuilletages sont orientables.

(3) Comme nous I’a fait remarquer Morris Hirsch, on peut généraliser le
théoréme au cas de deux feuilletages faisant un angle constant 8 (0<0 < #/2). La
somme des courbures totales est alors au moins égale a 4 sin 6.

(4) Le théoréme est a rapprocher du fait suivant: pour tout £ >0, il existe sur
S? une métrique g telle que:

— g est de courbure positive ou nulle et 'aire de S? pour g est égale a 4m;

— le feuilletage %, est totalement géodésique pour g;

—1la courbure totale du feuilletage orthogonal a %, dans la métrique g est
inférieure a e.

On obtient de telles métriques en recollant deux demi-spheres aux extrémités
d’un cylindre long et étroit muni d’'une métrique plate.

(5) Contrairement aux surfaces hyperboliques, il existe sur S? un feuilletage
totalement géodésique, donc de courbure totale nulle. Si G est un groupe fini non
cyclique opérant sur S2, il serait intéressant de connaitre le minimum de la
courbure totale d’un feuilletage G-invariant.
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Démonstration du théoréeme.

La démonstration distingue deux cas:

(1) 11 existe un grand cercle C de S transverse a la fois 4 %, et 3 %, (et ne
passant par aucune singularité des feuilletages). On va alors montrer que dans
chacun des hémispheres délimités par C la somme des courbures totales de %, et
de %, est au moins égale a 2.

On choisit une orientation pour chacun des feuilletages ainsi que pour C, ce
qui permet en tout point de C de définir les angles 0, et 6, que fait C avec %, et
%, respectivement. Soit k(x) (resp. k,(x)) la courbure en x de la feuille de %,
(resp. %,) passant par x; les fonctions k, et k, sont définies en dehors des
singularités et a valeurs positives ou négatives; selon les conventions d’orienta-
tion, la fonction k; peut se trouver remplacée par son opposée.

Si l'intégrale fg |k;(x)| dx est infinie, il n’y a rien a démontrer. Supposons
maintenant cette intégrale convergente.

Si D est un hémisphere bordé par C, le théoréme de la divergence [BLR]
fournit la formule {p k;(x) dx ==+ Jc cos 6,(c) dc (i=1,2). On remarque d’autre
part que, comme C est transverse a &, et %,, les fonctions cos 6, et cos 6, gardent
un signe constant sur C. De plus, on a toujours |cos 8,|+|cos 6,|=1
(car 8, — 60, =x7/2).

Tout ceci permet d’écrire:

j |ky(x)] dx+L |k, (x)| dx = L k,(x) dx|+ L k,(x) dx

= j cos 6,(c) dc|+ J- cos 0,(c) dc
C C

. .

= | |cos 8,(c)|dc+ | |cos 6,(c)|dc
JC C

= longueur (C) =2.

(2) Dans le deuxiéme cas, il faut considérer ’ensemble ¢ de tous les grands
cercles de S. Il s’identifie a2 ’ensemble des couples de points antipodaux de S, et
est donc homéomorphe au plan projectif. Il est de plus muni d’'une mesure
canonique m de masse totale 24, invariante par ’action du groupe des isométries
de S. En dehors d’un ensemble m-négligeable, les grands cercles de S ne
contiennent pas de singularité de %, et %,, et leurs contacts avec %, et %, sont
génériques. D’apres le théoreme d’échange que nous démontrerons dans la partie
I1, 1a courbure totale de %; est égale a I’intégrale sur ¢ de la fonction w(%;, C) qui
compte le nombre de points de contact avec %; d’un grand cercle C. Puisque par
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hypothese aucun grand cercle n’est transverse a la fois 4 %, et 8 %,, la somme
w(Fq, C)+ u(F,, C) est pour m-presque tout C<€¥ non nulle, donc au moins
égale a 2. On en déduit I'inégalité cherchée. [

II. Le théoreme d’échange

Dans toute cette partie, nous désignons par H l'une des trois surfaces
suivantes:

(a) le plan euclidien R?,

(b) la sphére S* (de courbure constante +1),

(c) le plan hyperbolique H? (de courbure constante —1).

Nous appelons ¢ I'espace des géodésiques de H. Il est homéomorphe au plan
projectif dans le cas (b), a une bande de Mobius ouverte dans les cas (a) et (c).
L’espace ¢ est muni d’une densité m invariante par I’action sur ¢ du groupe des
isométries de H ([S], p. 165 et suivantes), donc aussi d’'une mesure invariante
également notée m.

La densitt m est unique a une constante multiplicative prés, et nous la
normalisons de fagon que la mesure de I’ensemble des géodésiques qui rencon-
trent un disque de rayon r soit, pour r tendant vers 0, équivalente a 27r (on
trouvera ci-dessous une formule explicite pour m). Dans le cas (b), il existe un
revétement canonique w:S*>— ¥, et w*m est simplement la forme volume
définie par la métrique de S>.

Soit maintenant W un ouvert de H et % un feuilletage non singulier de W.
Méme si ¥ n’est pas orientable, on peut définir en tout point x € W un nombre
positif ou nul |K| (x) mesurant le module de la courbure géodésique en x de la
feuille de & passant par x. Si d’autre part D est une géodésique de H, nous
désignons par |u| (%, D)e NU{x} le nombre de points de DNW ou D est
tangente a %.

THEOREME D’ECHANGE.

L IKIw= Leg 1l (&, D).

(les deux termes peuvent étre simulanément infinis).

Nous avons besoin pour démontrer ce théoréme de mesurer “combien de



180 REMI LANGEVIN AND GILBERT LEVITT

gé€odésiques sont tangentes a ¥”. Pour cela nous introduisons les définitions
suivantes:

DEFINITION 1. Le pinceau de géodésiques P; est l’ensemble des
géodésiques orthogonales a la géodésique L.

DEFINITION 2. La courbe polaire I; est I’adhérence de I’ensemble des
points ou une géodésique du pinceau P, est tangente au feuilletage %.

Remarque (cf. [Th]). Pour presque tout pinceau P;, I} est presque partout
une courbe lisse (éventuellement vide).

DEFINITION 3. L’application de Gauss vyg fait correspondre & un point
x € W la géodésique tangente a3 &% en x.

Le théoreme d’échange se déduit du lemme:
LEMME. |K|=|Jac vg4|.

Démonstration. Soit L une géodésique, x un point de L. Nous pouvons
paramétrer les géodésiques D coupant un disque de rayon r centré en x a I’aide:

(1) de la géodésique A perpendiculaire a D passant par x, repérée par son
angle 0 avec L.

(2) de la distance r entre x et le point d’intersection p=A4 N D.,

La measure invariante m de ¥ s’exprime a l’aide de r et 6 par ([S], p. 28 et
307):

m=drdd, si WcR?
m=cosr-dr-df, si WcS?

m=coshr-dr-do, si WcH>

Soit N(x) la géodésique normale en x a %.

Si la courbure géodésique K n’est pas nulle en x, la courbe polaire Iy, est
transverse en x a T,. En effet, si 'y était tangente a T,, la derivée du
vecteur normal a2 &% dans la direction de T, serait nulle par définition de I'n(,-
Notons t (resp a) la paramétrisation de T, (resp de la feuille passant par x “‘par la
longueur de I'arc”). On a:

_IN_oN

= e Bk
5 e Bx)
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Calculons le module du jacobien de <y a l'aide du repeére oblique
(T.F, T I'n)) de W, et d'un repére (e, e,) de T, (, )% formé d’un vecteur unitaire
e, tangent a I’ensemble des géodésiques passant par le point x, et d’un vecteur
unitaire e, tangent a l’ensemble des géodésiques normales a la géodésique

passant par x et tangente a N(x); voir fig. 1.
Soit 0=¢<m/2 I'angle (N(x), T,.I'n«)). La différentielle de yg vaut:

+|K]| 0 )

Dys=(
e #  |cos ¢

On a donc:

)|

=|K|.
|cos ¢

\Jac Yol =

Comme, en outre, les points critiques de ys sont précisément les points ou
|IK|=0, le lemme est démontré. O
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Démonstration du théoreme (voir aussi L).

Nous pouvons appliquer le théoréme de changement de variable aux points ou
|K|# 0 qui n’ont pas pour image une valeur critique de yg.

Par le théoréeme de Sard, ’ensemble des valeurs critiques de g est de mesure
nulle, et donc aussi ’ensemble des points non critiques de yg d’'image une valeur
critique. On a donc, puisqu’en un point critique |K|=0:

L K| = L K| = L ul (@, L>=L ul (%, L)
—crit—vyg' (vg(crit)) —yg(crit)

ou crit désigne ’ensemble des points critiques de yg. [

III. Courbure négative

Sur une surface compacte sans bord munie d’une métrique hyperbolique (i.e.
de courbure constante —1), il n’existe pas de feuilletage totalement géodésique.
Thurston a d’ailleurs remarqué qu’une lamination géodésique (c’est-a-dire un
compact réunion de géodésiques simples disjointes) est nécessairement de me-
sure nulle ([T,], p. 8.27).

THEOREME. Soit M une surface compacte sans bord munie d’une métrique
hyperbolique, et & un feuilletage de M dont les singularités sont des selles. La
courbure totale de F est au moins égale a (12 Log2—6 Log 3) : |[x(M)|.

Remarques. (1) En d’autres termes, la courbure de & a une valeur moyenne au
moins égale a (6 Log2—3Log3)/7w=0,2747 - - - .

(2) On trouvera ci-dessous des exemples de feuilletages pour lesquels la
courbure totale atteint la valeur minimale.

(3) Si toutes les selles de & ont un nombre pair de séparatrices (en particulier
si & est orientable), on peut montrer que la courbure totale de & est au moins
égale a2 4 Log?2 - |x(M)|.

(4) Le théoreme est probablement encore vrai si I’on suppose seulement que
% est a singularités isolées (pas nécessairement de type selle).

(5) Le théoreme ne se généralise pas aux métriques non hyperboliques.
Considérons, sur une surface M compacte sans bord avec x(M) <0, deux feuillet-
ages mesurés transverses %, et %, (au sens de [T,] ou [FLP]), ou de fagon
équivalente une différentielle quadratique holomorphe (voir [HM] ou [Ke] par
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exemple). Ces données définissent sur M une métrique plate, singuliére en un
nombre fini de points, pour laquelle %, et %, sont totalement géodésiques (et
orthogonaux). En désingularisant cette métrique dans des voisinages de plus en
plus petits des singularités, on obtient une famille de métriques de courbure
négative ou nulle, d’aire constante, pour lesquelles la courbure totale de %, et %,
peut etre arbitrairement petite.

Notations et examples

Soit M comme dans 1’énoncé du théoréme, et p: H — M I’application de
revétement universel. Nous identifierons le plan hyperbolique H a 'intérieur d’un
disque dans le modeéle de Poincaré (voir par example [T,], chapitres 2 et 3). Le
bord S.. de ce disque est le cercle a ’infini de H. Les géodésiques de H sont les
arcs de cercle orthogonaux a S.. Etant donnés deux points distincts m et m’ de
S.., il existe une unique géodésique de H “‘joignant” m et m’, i.e. admettant m et
m' comme points a I'infini. Trois points distincts de S., définissent ainsi un triangle
asymptotique, et deux triangles asymptotiques quelconques sont conjugués par
une isométrie de H. Si la restriction de p a I'intérieur d’un triangle asymptotique
est injective, I'image dans M sera également appelée triangle asymptotique. Un
triangle asymptotique, dans H ou dans M, est d’aire .

Pour pouvoir construire des exemples de feuilletages minimisant la courbure
totale, nous devons commencer par construire un feuilletage %, sur un triangle
asymptotique A < H (voir figure 2). Soit b le centre de symétrie de A. Le

)

Figure 2
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Figure 3

feuilletage %, possede une seule singularité, une selle a trois branches située en b.
Les séparatrices issues de b sont les géodésiques joignant b aux points a 'infini de
A; elles se coupent en b selon des angles égaux a 2#/3. Pour obtenir %,, nous
remplissons chaque secteur par une famille de courbes convexes, de facon que le
bord de A se compose de feuilles. En projetant %, par p, on obtient un feuilletage
(encore noté %,) sur tout triangle asymptotique de M.

Soit maintenant M une surface fermée orientable de genre g munie d’une
métrique hyperbolique. Choisissons sur M une famille de 3g—3 géodésiques
compactes disjointes découpant M en pantalons (disques a deux trous). Dans
chaque pantalon on choisit de plus trois géodésiques disjointes spiralant vers les
composantes du bord (voir figure 3). Le complémentaire de 'union de toutes ces
géodésiques se compose de 4g—4 triangles asymptotiques disjoints. En les
feuilletant par %, et en rajoutant comme feuilles les bords des pantalons, on
obtient un feuilletage de M; de la démonstration ci-dessous il résultera que la
courbure totale de ce feuilletage atteint la valeur minimale (12 Log2-—
6 Log 3) - |[x(M)|. En fait les feuilletages de M minimisant la courbure totale
s’obtiennent en feuilletant comme ci-dessus chaque triangle asymptotique du
complémentaire d’une lamination géodésique compléte (au sens de [T,] p. 8.40).
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Démonstration du théoréeme

Sans perte de généralité, on peut supposer M orientable. Pour simplifier la
démonstration, nous supposerons que toutes les selles de & ont trois séparatrices
et qu’il n’y a pas de liaisons entre selles. Considérons I’application de revétement
universel p:H — M, et le feuilletage # induit par ¥ sur H. Parce que les
singularités de % sont des selles (donc d’indice négatif), il n’existe pas dans H de
disque que nous appellerons ‘““de Whitehead”, a savoir de disque dont le bord est
ou bien une feuille de % ou bien la réunion d’un morceau de feuille de ¥ et d’un
arc transverse a ¥; en effet un tel disque contient nécessairement une singularité
d’indice positif.

Considérons I’ensemble 4 des géodésiques de H, muni de sa mesure canoni-
que m (voir partie II). Le principe de la démonstration du théoréme peut se
résumer par I’affirmation suivante:

AFFIRMATION. A toute selle s de %, on peut associer un ensemble de
géodésiques Gg =¥ de mesure supérieure ou égale a 6 Log2—3 Log 3, et une
injection (peut étre non mesurable) i; de G, dans H envoyant toute géodésique
sur un point ou elle est tangente a . De plus, si s et s’ sont deux selles distinctes
de %, les images respectives A, et A, de G, et G, sont disjointes dans H.

Compte tenu de cette affirmation, le théoréme résultera d’une application
soigneuse du théoréme d’échange et du fait que & posséde 2 |x(M)| selles.

Nous commencgons la démonstration par un lemme ‘“bien connu des
spécialistes”’.

LEMME 1. Toute demi-feuille | de % qui n’aboutit pas a une selle converge
vers un point du cercle a infini S...

Démonstration. Remarquons d’abord que le comportement a I'infini des demi-
feuilles de 9% ne change pas si on modifie & par une isotopie (car si @ est un
homéomorphisme de H relevant un homéomorphisme de M isotope a I'identité,
alors sup, . d(x, $x) est fini). Le lemme est ainsi clair si la demi-feuille p(l) de &
est compacte ou spirale vers une feuille compacte: en effet une feuille compacte
de & n’est pas homotope a 0 dans M, et donc est isotope & une géodésiqug_.ji par
contre I’adhérence E(l-)_ ne contient pas de feuille compacte, soit I, = p(l) une
feuille de & disjointe de p(l), et C une courbe fermée simple transverse a F et
coupant I,. La courbe C rencontre p(l) une infinité de fois; comme elle n’est pas
homotope 2 0, on peut supposer que c’est une geodesique.

Puisqu’il n’existe pas dans H de disque de Whitehead, la demi-feuille !
rencontre une composante connexe de p '(C) en au plus un point, et on peut



186 REMI LANGEVIN AND GILBERT LEVITT

Figure 4

considérer dans H N S, 'intersection de tous les demi-espaces fermés bordés par
une composante de p~'(C), dans lesquels | entre successivement (voir figure 4).
Parce qu’il y a une infinité de tels demi-espaces et que la distance entre deux
composantes distinctes de p~!(C) est minorée par un nombre strictement positif
indépendant du choix de ces composantes, I’intersection considérée ne contient
pas de point de H. Elle ne peut contenir qu’un seul point de S.., car si elle en
contenait deux alors elle contiendrait aussi la géodésique de H qui les joint. [

Remarquons de plus que deux séparatrices | et ' issues d’une méme selle s de ¥
convergent vers des points distincts de S... C’est clair s’il existe dans M une courbe
fermée simple transverse C coupant p(l) U p(l') au moins deux fois, car alors toute
composante de p~*(C) qui recontze | ou I’ sépare les points a ’infini de [ et I’ (une
composante de p~'(C) recontre [ U I’ au plus une fois car il n’y a pas de disque de
Whitehead). Sinon, les séparatrices p(l) et p(l’) spiralent vers des feuilles com-
pactes I, et I5 de %. Si [l et I’ ont le méme point a infini, ces feuilles [, et I sont
isotopes (deux géodésiques de H dont les projections dans M sont compactes ne
peuvent pas avoir de point en commun a 'infini, 2 moins d’étre égales). Si [, = l§,
I’'union de p(l) et p(l’) avec une courbe transverse proche de I, découpe un disque
de Whitehead, ce qui est impossible. Si [, et lj sont distinctes, elles bordent dans
M un anneau; cet anneau ne contient pas de singularité de & (car ¥ ne possede
que des selles), et en considérant ¥ on voit que p(l) et p(l’) spiralent en fait vers
la méme feuille (de &) du méme coté, ce qui est exclu.

On peut ainsi associer a toute selle s de H trois points de S. qui définissent
un triangle asymptotique A, (voir figure 5); les trois géodésiques joignant ces
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Figure 5

points seront dites asymptotes de s. Deux asymptotes associées a des selles
distinctes de # ne peuvent pas se couper transversalement dans H, et donc les
triangles asymptotiques associés a deux selles distinctes de # sont d’intérieurs
disjoints.

Fixons une géodésique L de H qui ne contient aucune selle de %, n’est
asymptotique a aucune séparatrice de ¥ et n’est tangente a aucune séparatrice de
# (m-presque toute géodésique satisfait a ces conditions). Si s est une selle de ¥
et D I'une de ses trois asymptotes, nous dirons que le couple (s, D) est L-
admissible s’il vérifie les conditions suivantes:

—s¢ Dy
— s et A, sont situés du méme coté de D;

— L ne coupe pas D et sépare s de D.
A tout couple L-admissible (s, D), nous allons associer un domaine compact

T, p (voir figure ci-dessous). Les deux séparatrices issues de s et asymptotiques a
D séparent H en deux domaines. Nous appelons &, , I'adhérence de celui qui ne
contient pas les points a I'infini de L. Nous désignons d’autre part par P le
demi-plan fermé de bord L qui contient s, et nous définissons T, , comme la
composante connexe de #-ND, , qui contient s. Le domaine T, ;, est compact et

homéomorphe 4 un disque (voir figure 6).
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Figure 6

Si (s, D) et (s', D) sont deux couples L-admissibles, on a exactement I’'une des
quatre possibilités suivantes:
— T, p est contenu dans Ty p
— T, p' est contenu dans T,
— T, p et T, p sont disjoints
— T, p et T, p sont d’intérieurs
disjoints, et s =5s’.
En particulier, la situation de la figure 7 n’est pas possible.

Figure 7

LEMME 2. Pour tout couple L-admissible (s, D), la collection d’arcs LN T,
est tangente a ¥ en au moins un point.
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Figure 8

Démonstration. 11 ne peut exister qu’un nombre fini de domaines T, p,. con-
tenus dans T p. 11 suffit donc de montrer le lemme pour un domaine T, , minimal
(pour l'inclusion). Un tel domaine ne contient pas de selle dans son intérieur (voir
figure 8).

Si le lemme est faux, T, est un disque ne contenant pas de singularité de ¥
dans son intérieur et dont le bord se compose alternativement de morceaux de
feuilles de % et de morceaux transverses a #. En outre, la définition d’un couple
L-admissible entraine qu’au voisinage de s la troisieme séparatrice issue de s
(celle qui n’est pas asymptotique 2 D) n’est pas contenue dans T, . La seule
possibilité est que T, soit un ‘“rectangle” (voir figure 9).

Le morceau de feuille compris entre les points 2 et 3 appartient a I'une des
séparatrices issues de s et asymptotiques 2 D, par exemple a celle qui contient 1.

Figure 9
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On peut alors considérer le morceau de séparatrice joignant 1 a 2. Ce morceau ne
rencontre pas le segment de L compris entre 1 et 2 et il borde avec ce segment un
disque de Whitehead, ce qui est une contradiction. [

Nous dirons maintenant qu’un couple (s, D) est fortement L-admissible s’il est
L-admissible et si de plus L rencontre A, (donc les deux cOtés de A, autres que
D). Une selle s ne peut ainsi appartenir qu’a un seul couple fortement L-
admissible, et les domaines T, correspondant a deux couples fortement L-
admissibles sont nécessairement disjoints.

Si s est une selle de #, nous appelons G, I’ensemble des géodésiques L pour
lesquelles il existe une asymptote D de s telle que le couple (s, D) soit fortement
L-admissible. L’injection cherchée i; de G, dans H est obtenue en associant a
une géodésique L l'un des points de LNT,p ou L est tangente a ¥ (voir le
lemma 2); nous choisissons les i; de fagon équivariante, i.e. si o est une
transformation du revétement et o« la transformation induite sur ¢ on a i, ,cox=
o°i, pour toute selle s de #. Désignons par A, I'image i,(G,) < H. Pour L fixée,
les domaines T, correspondant a deux couples fortement L-admissibles distincts
ne se rencontrent pas; on a donc A,NA, =0 si s#s'.

Pour prouver l'affirmation énoncée plus haut, il reste a vérifier que 'on a
toujours m(G;)=6 Log2—3 Log 3.

Pour cela, considérons pour tout angle @ (0<a=) la mesure f(a) de
I’ensemble des géodésiques qui ne coupent pas D et séparent s et D (voir figure
10).

LEMME 3. (a) f(a)=-2Logsin (a/2);
(b) pour a, B,y entre O et w, avec a+B+vy=2m, on a:

fle)+f(B)+f(y) =3f(2m/3) =6 Log 2—3 Log 3.

S
/\
/S5

/ L

Figure 10
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Démonstration du lemme 3.

(a) On peut donner plusieurs démonstrations. La premiére consiste & remar-
quer, en utilisant le théoreme d’échange, que f(a) est la courbure totale du
feuilletage dessiné sur la figure 11.

Le théoreme de la divergence ([BLR]) permet alors de calculer f(a) par la
formule f(a)=21-1', a condition d’interpréter convenablement cette différence
de deux quantités infinies.

Nous donnons maintenant une démonstration directe. Compte tenu de
Iégalité f(wr) =0, il suffit de vérifier que f'(a)=—cotg(a/2). Si on désigne par
h(a) la distance de s a D, la quantité f'(a)-da est égale a la mesure de
I’ensemble des géodésiques coupant un segment (géodésique) de longueur infini-
ment petite dh =h'(a) - da sous un angle d’au moins «/2. Cette mesure est
proportionnelle a dh et le coefficient de proportionnalité peut se calculer en
utilisant la formule ‘“euclidienne” m =dr - d6 (voir partie II). Un calcul simple
donne 2 cos (a/2), et par conséquent f'(a) =2 cos (a/2) - h'(a). La trigonométrie
hyperbolique fournit ensuite la formule cosh (h(a)) = 1/sin (a/2) (voir par exemple
[T,], formule 2.6.12), d’ott I'on déduit facilement h'(a)=—1/2sin(a/2). Finale-
ment, on obtient bien f'(a)=—cotg (a/2).

(b) Les triplets (a, B, y) d’angles compris entre 0 et , avec a+B+vy =2,
paramétrent les points d’un triangle asymptotique. Si le point correspondant est
sur le bord du triangle, on a par exemple y=m, et f(a)+f(B)+f(y)=
—2 Log [sin (/2). sin ((7 — a)/2)]=2 Log (2/sin a) =2 Log 2>6 Log 2—3 Log 3. Si
le point tend vers un coin du triangle, 'un des angles tend vers 0 et f(a)+f(B)+
f(v) tend vers +oo. 1l suffit donc pour montrer ’assertion (b) de vérifier que le seul
extremum possible de f(a)+ f(B)+f(y) dans le triangle est (27/3, 27/3, 27/3). Or
la différentielle de f(a)+f(B)+f(y) est —cotg(a/2)- da—cotg(B/2) dB—
cotg (v/2) - dy et ne s’annule que pour cotg (a/2) = cotg (B/2) = cotg (v/2), c’est-a-
dire pour a =B=vy=2#/3. U

Figure 11
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Figure 12

Cela étant, deux cas sont possibles pour une selle s de #:

— s est située dans son triangle asymptotique A, (ou sur le bord); on a alors (voir
figure 12):

m(G;) = f(a)+f(B)+f(y)=6 Log 2—-3 Log 3.

— s est extérieure a A, (voir figure 13); alors le couple (s, D,) (i=1,2) est

Figure 13
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fortement L-admissible pour m-presque toute géodésique L ne coupant pas D,
et séparant t de D, (voir figure 13). Donc:

m(G;) > f(a) + f(B) = f(a) + f(B) + f(m) =6 Log 2—3 Log 3.

Nous avons maintenant prouvé I’affirmation. Montrons que 1’affirmation impli-
que le théoréme. Choisissons pour chaque selle s; de % un relevé s; dans H
(1=i=h=2|x(M)]), et appelons A l'union (disjointe) des A,. Puisque pour
toute transformation o du revétement on a oA =, A, les ensembles A et
oA sont disjoints si o # id, et donc la restriction de p a A est injective.

Supposons qu’il existe un voisinage ouvert U de A sur lequel p soit encore
injective. Alors la courbure totale de & est supérieure ou égale a la courbure
totale de %y, laquelle d’apres le théoréme d’échange est au moins égale a

. m(G,)=2"|x(M)|- (6 Log 2—3 Log 3). Le théoréme serait donc démontré si
U existait.

En fait, U n’existe en général pas, mais nous allons construire pour tout € € 0
petit, des ensembles G < G tels que m(G, — Gg) tende vers 0 quand ¢ tend vers
0 et qu’il existe un voisinage ouvert U® de I’ensemble correspondant A® sur
lequel p est injective. On déduit le théoreme de Pexistence de ces Gg en
appliquant comme précédemment le théoreme d’échange.

Fixons ¢ >0 et soit L une géodésique appartenant a G;. Il existe donc une
asymptote D de s; telle que le couple (s, D) soit fortement L-admissible.
Considérons la géodésique D’ située a une distance € de D du cdte de s; et telle
que la perpendiculaire commune & D et D’ passe par s; (voir figure 14).

Figure 14
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Figure 15

On peut supposer que D’ est transverse aux deux séparatrices issues de s; et
asymptotiques a D, et définir comme plus haut un domaine compact T; p =
PP NP, (hachuré sur la figure 14). Soit n le nombre de selles contenues dans
Ts p et a, >0 tel que la courbure totale de # dans le a,-voisinage de 8T p soit
inférieure a €.

Par définition, la géodésique L € G, sera dans Gg si et seulement si:

(i) L ne coupe pas D’ et sépare s; de D’;

(ii) pour toute selle s de Tf j, la distance de L a s est au moins égale a /n;

(iii) L est transverse a ¥ dans le a,-voisinage de 8T5 ..

I1 est facile de voir que m(G; —Gs) tend vers 0 quand & tend vers 0. Nous
notons Af < A, I'image de G¢ dans H et A®=J_, AL.

Nous allons terminer la démonstration en prouvant que, pour &, i et j fixés, la
distance de A7 a I'union des conjugués de AS est strictement positive (si i =],
nous ne conjuguons Ag que par les transformations du revétement différentes de
I'identité). Soient donc Qe Ag, Q'€ A, avec Q et 0Q’ trés proches (o est une
transformation du revétement, non triviale si i =j). La condition (iii) ci-dessus
entraine que oQ’ appartient a T; , (voir figure 15) et donc que le triangle
asymptotique associé€ a la selle os; se trouve du coté de D qui ne contient pas s;
(ou une situation analogue en intervertissant les roles de s; et 5;). La géodésique
L' tangente a & en oQ' rencontre par conséquent D et D’'.

Définissons une distance sur I’ensemble des géodésiques qui coupent un
compact K< H par:

dg (L, L") =sup ( inf d(x, y); angle (L, L')) siLNL'NK=¢

xeLNK, yeL'NK

(oublier le terme angle (L, L") si LNL'=0)
=angle (L,L")si LNL'=xeK.
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Les géodésiques L et L' construites plus haut vérifient di (L, L')=n>0, ou
K =Ts p, et ou n ne dépend pas de Q, Q' et 0. Si L et L’ ne se coupent pas ou se
coupent loin de K, elles ne peuvent étre proches dans K et satisfaire les
conditions imposées. Sinon, puisque L ne passe trop pres des selles de Tg
(condition (ii) ci-dessus), cela entraine le résultat cherché, a savoir que la distance
entre les points de tangence Q et ¢Q’ sont minorés par une constante
indépendante de Q, Q' et o (nous utilisons ici le fait suivant: étant donnés un
nombre 6>0 et un compact K <M ne contenant aucune selle de %, il existe
a >0 tel que, si deux géodésiques L, et L, tangentes a # en des points a; et a,
appartenant a p~!'(K) se coupent avec un angle d’au moins 6, alors la distance
entre a, et a, est au moins «). [
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