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Nichteuklidische Gitterpunktprobleme und GleichverteUung in
linearen algebraischen Gruppen

Hans-Jochen Bartels

Einleitung

Es sei G eine zusammenhângende halbeinfache réelle Liegruppe mit end-
lichem Zentrum, g bezeichne die Liealgebra von G ; es wird vorausgesetzt, da8 q

einfache Liealgebra ist; dann besitzt G keine abgeschlossenen Normalteiler
positiver Dimension. G sei ferner nicht kompakt und K&lt;G sei maximale
kompakte Untergruppe, F&lt;G sei diskrete Untergruppe und kokompakt, d.h.

F\G ist kompakt. Der Raum X=G/K der maximal-kompakten Untergruppen in
G ist ein Riemannscher symmetrischer Raum. Es bezeichne it:G-&gt; G/K die
kanonische Projektion. Die Killingform auf der Liealgebra von G induziert auf X
eine G-linksinvariante Riemannsche Metrik, fur zwei Punkte 7r(g), 7r(go)eX sei

mit d(g, g0) der zugehôrige geodâtische Abstand in X bezeichnet und mit Bt(g)
die geodâtische Kugel um ir(g) mit dem Radius f&gt;0. Ist nun Nt(g,g0;r)
Nt(g, g0) die Anzahl der seF mit d(sg,go)&lt;t, so gilt fur f--&gt;oo das folgende
asymptotische Verhalten:

llm &quot;T77 r vo1 ©), (1)
,-&gt;. Nt(g, g0)

wenn vol das Volumen bezùglich der Riemannschen Metrik d auf X und $ G X
einen Fundamentalbereich von F in X bezeichnen. Fur G SL2(IR) ist (1) zuerst
in der Habilitationsschrift von H. Huber [15] mit Hilfe von Reihenentwicklungen
nach Eigenfunktionen des Laplace-Operators auf der oberen Halbebene H
S12(U)/SO(2) bewiesen worden. Fur hôherdimensionale hyperbolische Râume
sind entsprechende Resultate in [5], [10] und [16] bewiesen worden. Man
vergleiche hierzu auch den Ûbersichtsartikel [4] von Elstrodt sowie die dort
angegebene Literatur. Fur keinen der in [5] und [10] behandelten Spezialfâlle von
(1) ist ein geometrischer Beweis bekannt. Fur G SL2(U) kann man sogar zeigen,
daB sich (1) mit genauer Fehlerabschâtzung jedenfalls nicht &quot;gleichmâBig in F&quot;

geometrisch beweisen lâBt (vgl. [4] S. 66). Der in dieser Arbeit gegebene Beweis
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von (1) fur den Fall einer halbeinfachen Liegruppe G mit den am Anfang
genannten Voraussetzungen benutzt Darstellungstheorie von G und stellt eine
Kombination der in [5], [15] und [17] verwendeten Ansâtze dar. In der
letztgenannten Arbeit [17] von Murase wird unter bestimmten einschrânkenden
Voraussetzungen fur lineare algebraische Gruppen © ùber Zahlkôrpern k eine
Art Gleichverteilung von ©(fc) in ©(A) bewiesen (@(A) bezeichnet dabei die
zugehôrige Adele-Gruppe und @(k) sind die fc-rationalen Punkte von ©). Allerd-
ings werden in [17] nur die leichter zugànglichen endlichen Primstellen von k
betrachtet, wàhrend der technisch mùhsamere (vgl. unten die Lemmata 1, 3 und
4) Fall der archimedischen Primstellen offenbleibt. Wie bei [17] gehen auch in
unserem Beweis wesentlich Resultate von Howe und Moore iiber das Verhalten
im Unendlichen von Matrixkoeffizienten irreduzibler Darstellungen ein [14].

Das in (1) festgestellte asymptotische Verhalten hàngt eng zusammen mit der
Frage nach dem Wachstumsgesetz in der Gruppe F: Da man zeigen kann, daG

unter den gemachten Voraussetzungen ùber G vol(Bt(l)) von exponentiellem
Wachstum fur f—»œ ist, ergibt sich unmittelbar: F ist von exponentiellem
Wachstum(1) (vgl. die Bemerkung zu Lemma 2). Wenn man will, kann man die
Gleichung (1) als quantitative Prâzisierung dieser qualitativen Aussage verstehen.

Das aymptotische Verhalten (1) gestattet einige Anwendungen: Speziell fur
arithmetisch definierte Untergruppen F von G ergeben sich aus (1) asymptotische
Formeln fur die Anzahl der Losungen gewisser diophantischer Gleichungen bzw.
Gleichungssysteme. Sind z.B. G SL2(R) und F die Gruppe der Elemente der
reduzierten Norm eins in einer Ordnung einer indefiniten nichtzerfallenden
Quaternionenalgebra iiber Q, so erhâlt man mit (1) asymptotisch die Anzahl der
Gitterpunkte auf einem dreidimensionalen Hyperboloid imiR4, die innerhalb
eines durch die Metrik d(.,.) definierten affinen Ellipsoids liegen. Man vergleiche
auch die verwandten Resultate in [6], [11] und [18]. Die in [11] angegebenen
asymptotischen Anzahlformeln fur Losungen von Normformgleichungen gaben
ùbrigens den AnstoB fur die hier durchgefùhrten Untersuchungen. Allerdings
gestaltet sich die &quot;Géométrie der Zahlen&quot; in anisotropen algebraischen Tori-das
entspricht gerade dem in [11] betrachteten Fall - erheblich einfacher als in
halbeinfachen Gruppen und erfordert keine Rùckgriffe auf tiefer liegende
analytische Theorien. In einer spâteren Arbeit werde ich auf die zuletzt genannten

arithmetischen Fragen sowie die Ùbertragung des Ergebnisses (1) auf den
adelischen Fall, d.h. die Verallgemeinerung der Resultate von Murase unter
EinschluB der unendlichen Primstellen zuruckkommen.

Dièse Arbeit ist folgendermaBen aufgebaut: Im ersten Abschnitt werden

1 Zur Définition dièses Begriffs vgl. etwa [9] Seite 53.
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einige Volumenabschâtzungen zusammengestellt, die im zweiten Abschnitt beim
Beweis der asymptotischen Formel (1) benôtigt werden.

An dieser Stelle danke ich Herrn Professor S. J. Patterson fur eine Reihe
nûtzlicher Gesprâche und einige Literaturhinweise und ebenso dem Referenten
fur Kritik und einige Ratschlâge sehr herzlich.
1. G, K, r,X G/Ky d(.,.) und Bt(g) seien wie in der Einleitung. Da G und K
unimodular sind, trâgt X ein G-linksinvariantes Ma6 fx. jul làfôt sich so normieren,
daB es mit dem von der Killingform induzierten G-linksinvarianten Ma8 auf X
ûbereinstimmt. dk bezeichne das Haar-MaB auf K mit $K dk 1. Bei geeigneter
Normierung des Haar-MaBes dg auf G gilt dann fur stetiges / auf G mit
kompaktem Trâger

(2)

Das MaB ja kann nach [7], [12] noch genauer berechnet werden. Dies sei dem
besseren Verstândnis wegen hier kurz zusammengestellt. g bezeichne die

Liealgebra von G und g fc©p sei Cartan-Zerlegung von g derart, daB k die zu K
gehôrige Liealgebra ist; dann kann man p mit dem Tangentialraum von G/K-X
im Punkte 7r(l) identifizieren. Bezeichnet Exp die Exponentialabbildung von p in
die Riemannsche Mannigfaltigkeit X, so weiB man, daB Exp : p —» G/K X ein
Isomorphismus ist (vgl. [12], S. 251, [13] S. 379). Ferner berechnet sich das MaB

li auf X folgendermaBen:

/(Exp x) det A, dx, (3)

wenn x Exp x, dx das Volumenelement auf p bezûglich der Killingform bezeich-

nen und Ax:p-+p der folgende Endomorphismus ist:

1=0

T, die Restriktion von (adx)2 auf p (vgl. [7], [12], [13]). Fur die folgenden
Volumenabschâtzungen ist es zweckmâBig, das MaB fx weiter umzuformen und

bezûglich geodâtischer Polarkoordinaten zu berechnen: r, Bu 0n_! seien

Polarkoordinaten um 0 in dem euklidischen Raum p (euklidisch bezûglich der

Killingform), so daB sich jedes x€p\{0} eindeutig in der Form x= r - x darstellen
lâBt, wobei î€p die Lange 1 hat und nur von 6l9..., 0n_! abhângt. Betrachtet
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man vermôge der Abbildung Exp:p-»X dièse Polarkoordinaten als Koor-
dinatensystem in X, so erhàlt man gerade die geodâtischen Polarkoordinaten mit
Pol7r(l)eX(vgl. [7] S. 166).

Bezùglich dieser Polarkoordinaten berechnet sich det Ax • dx folgendermaBen
([7] S 166, [12] S. 251):

det A, dx r»-1 fi ^^ drdO1 • • • dOn-u (4)

dabei sind t\,...,t\ die Eigenwerte von Tf, ^ &gt;0. Die tx sind stetige Funktionen
von 6l9..., #„_! i 1,..., n. Fur tt 0 ersetze man in (4) sinh (rf,)/^ durch 1.

Damit ergibt sich fur das Volumen v(r): /m(Br(l)) die Formel:

und man hat das

LEMMA 1. Bezeichnet v(r) jut(Br(l)) das Volumen der geodâtischen Kugel
vont Radius r um tt(1) in X, so ist fur r, c^O

mit uon r unabhàngigen Funktionen &amp; a, so dafi

lim a(c) 1, lim t/Kc) t?(l)-
c—»&gt;0 c-*0

Beweis. Nach (5) ist

Mit
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hat man daher:

Zum Beweis des Lemmas genûgt es, in dem rechts stehenden Intégral den

Integranden geeignet abzuschâtzen. Dazu ist:

p )p( )1 fur

und

1 1

(p + c)tt ptx
fur p&gt;0,

Beachtet man nun, da6 die tt *,(#!,..., 0n_i) als stetige Funktionen von

0l9..., 0n_i nach oben beschrânkt sind, etwa durch t0, so ergibt sich die Behaup-
tung des Lemmas unmittelbar aus dem folgenden

HILFSSATZ 1. Fur c&gt;0, 0&lt;r&lt;TO und p&gt;l ist

sinh ((p + c)f) &lt; &lt;p(c ; t0) • sinh (pt)

mit einer von t unabhângigen Funktion &lt;p(c; t0), fur die limc_^0 &lt;p(c; r0) 1 gilt.

Beweis des Hilfssatzes. Es ist

sinh((p + c)0 X / v sinh (et)— &quot;p /;=œsh (a)+œsh (Pt) • ; ;sinh (pt) smh (pf

» / / x sinh (et) _.&lt; cosh (ct0) + cosh (pO 1
(6)

smh (pt)

Fur (pt)&gt;l liegt der Quotient cosh (pf)/sinh (pf) &gt; 1 unterhalb einer von pt
unabhângigen festen Schranke M, so daB man sinh((p + c)t)/sinh(pt) durch

T0) abschâtzen kann.

Ist pt&lt;l, so auch t&lt;l und daher

sinh (et)

mit einer von t unabhângigen Funktion &lt;p, fur die limc_J&gt;o&lt;p(c) 0 gilt.
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Wegen cosh (pt) &lt; 2 fur pt &lt; 1 folgt daher wegen der Ungleichung (6) auch in
diesem Fall die Behauptung ¦

Die Formel (5) gestattet eine weitere Folgerung:

LEMMA 2. v(r) wàchst exponentiell, d.h. es existieren Konstanten cx&gt;l,
c2&gt;0 mit v(r)&gt;c2 • c\.

Bemerkung. In der Sprechweise von [9] S. 57 besagt Lemma 2, daB das
Wachstum von X exponentiell ist. Zum Beweis des Lemmas beribtigen wir einen

HILFSSATZ 2. Fur wenigstens ein x in p ist Tx^0.

Beweis des Hilfssatzes. Fur die Killingform B(.,.) auf g gilt

B((ad x)\ x&gt;) -B([s, t)J, [j, i)]) x, i) g g (7)

B(.,.) ist auf I negativ définit. Da [p,p]ç ï ist, wùrde daher aus Tx 0 mit (7)
folgen: [x, t)] 0 fur aile ï, rjep. Wegen [p,ï]^p hâtte man ferner fur sef, t)Gï:

d.h. (adae)2 ist auf ganz g trivial fur beliebige xep. Andererseits ist aber die

Killingform B auf der halbeinfachen Liealgebra g nicht ausgeartetet, das ergibt
den gewûnschten Widerspruch ¦

Bemerkung. Wie der Réfèrent bemerkte, lâBt sich Hilfssatz 2 sogar zu &quot;T, £ 0
fur aile *€p\{0}&quot; verschârfen. Zum Nachweis von Lemma 2 genùgt allerdings die
schwâchere Aussage.

Nun zum Beweis von Lemma 2. Nach dem Hilfssatz verschwinden nicht aile

Eigenwerte p • t, p^Ot,..., 0n_i) von Tx fur *€p\{0} identisch in den Variablen

Es sei etwa ^(0^0,. •., 0n-i,o)&gt;O und j;(0lf..., 0n_x)&gt;c&gt;O in einer ofïenen

Umgebung U= l/(0ltO, • • •, 0n-i,o) von 0O (0UO,..., 0n_1,o) imRn&quot;1. Dann ist

wegen (5) offenbar

fr sinh (pc) ,tt\ /ox&gt; p»-i ^ dp voln-i (^ (8)
Jo pc

wenn voln_x (U) das gewôhnliche LebesguemaB von L/çR*&quot;1 bezeichnet. Aus (8)
ergibt sich die Behauptung des Lemmas unmittelbar ¦
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Bemerkung. Nach einem bekannten Satz von A. Selberg enthâlt F eine
torsionsfreie Untergruppe Ft von endlichem Index. Fj\X ist dann Mannigfaltig-
keit mit Fundamentalgruppe Ft. Als kokompakte Untergruppen von G sind
sowohl F als auch I\ endlich erzeugt [20]. Lemma 2 besagt dann: X ist von
exponentiellem Wachstum, nach [9] S. 57 ist daher Fx und damit auch F von
exponentiellem Wachstum.(1) Zieht man die tiefer liegenden Resultate von A.
Borel [2] ûber die Zariski-Dichtheit von F in G (fur linear algebraisches G) und
einen Satz von Tits [19] heran, so Ià8t sich-wie der Réfèrent bemerkte-
unabhângig von Volumenbetrachtungen allgemeiner zeigen, daB diskrete

Untergruppen von endlichem Kovolumen in halbeinfachen zusammenhângenden
Liegruppen mit endlichem Zentrum und ohne kompakte Faktoren von exponentiellem

Wachstum sind.
2. Es bezeichne im folgenden 8 :IR+—»R+ eine beliebige stetige, streng monoton
fallende Funktion mit 8(t)&gt;0 fur aile f&gt;0 und limt_ooÔ(t) 0. Es seien ferner
Ft:R+-*IR+ bzw. Gt:R+-*(R+ stetige Funktionen mit

Î&lt;1 falls t&lt;x&lt;t + 8(t)

Î &lt;1 falls t-8(t)&lt;x&lt;t

goeG sei beliebig gewâhlt aber im folgenden fest. Fur g€ G setze man

/c(g):=lFt(d(sg,g0)) (9)

gt(g):=lGt(d(sg,g0)). (10)

Dann sind ft und g, stetige Funktionen auf G, die offensichtlich F-links und
K-rechtsinvariant sind, und die daher wegen der Kompaktheit von F\G in dem
Hilbertraum L^iFXG/K) der quadratintegrierbaren komplexen Funktionen auf

F\G/K liegen. Nach [8] S. 23 ff. zerlegt sich die rechtsregulâre Darstellung von

1 Zur Définition dièses Begriffis vgl. etwa [9] S. 53.
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G auf L2(F\G) in eine hôchstens abzàhlbarunendliche direkte Summe irreduzi-
bler Darstellungen ttv von G:

L2(r\G)=

wobei jede Darstellung irv von G auf Hv endliche Multiplizitât in L2(r\G)
besitzt. L2(r\G/K) lâBt sich dann in der Form

L2(r\GIK)= I L2(r\G/K)C\Hv= £ H*
13 1 U l

zerlegen (vgl. auch [17] S. 172). Nach [13] S. 146 ist dimH*&lt;l. Die Wahl von
Vektoren der Lange 1 in den von Null verschiedenen H* liefert dann insgesamt
ein Orthonormalsystem {&lt;p,}ieN des Hilbertraums L2{F\GIK). Dabei kann man
noch H1=Ccp1 annehmen, wobei &lt;px die konstante Funktion &lt;p(x) l/Vjx($) ist,
3f ç X ein Fundamentalbereich von X modulo F.

Dann hat man Reihenentwicklungen

bzw.

&amp;(g)=îw.(
i=i

mit

bzw.

f /t(g) &apos;

&lt;P&gt;

V%t &amp;(g) &apos; &lt;Pi(g) dp.

LEMMA 3. Fur aile ieN i£\ gilt
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Beweis. Es ist wegen der F-Linksinvarianz von &lt;pt

K, f 1 F,(d(sg, go))9.(g) dg

f F,(d(g,

(S) .„ (n)

Die Funktion

x _iqFt(d(g, x))&lt;p,(g)dg

ist stetig in x und F-links- und K-rechtsinvariant, liegt also in L2(r\G/K). Ist &lt;p,

Elément des Hilbertraums Hv mit v v(i), so ist wegen

J F^dCg^^Cg)^ J F.CdCx^ga^

f Ff(d(g,l)te(xg)dg f fKdt&amp;

auch ifc.t Elément des Hilbertraums Hv^L2(r\G). i^l&gt;t ist also ein K-invarianter
Vektor des Darstellungsraums H,,. Wegen dimHf Hf(l) 1 lâBt sich i^t in der
Form

darstellen, wobei sich der réelle Koeffizient ÀIt folgendermaBen berechnet:

dabei ist mit das Skalarprodukt des Hilbertraums H^ bezeichnet.

(ttv,Hv) ist nichttrivial, da H! die Multiplizitât 1 in L2(r\G/K) besitzt. G ist
halbeinfach, daher kann die Darstellung ttv von G auch nicht eindimensional
sein; und da die einzigen abgeschlossenen von G verschiedenen Normalteiler in G
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endlich sind, verschwindet nach [14] (irv(g)&lt;pl9 &lt;pj als Funktion von g im Unend-
lichen, d.h. zu e&gt;0 existiert ein Kompaktum Ce^G mit \(irv(g)&lt;pl,&lt;pl)\&lt;e fur
aile geG\Ge. Andererseits wâchst jz(Bt(l)) monoton mit t gegen Unendlich, wie
in [17] Lemma 5 folgt dann limf^^ ÀM 0, d.h. limace i/fM 0 in dem Hilbertraum
H,,. Als Reprâsentanten fur den Vektor &lt;p, €L2(r\G/K) lâBt sich eine stetige
Funktion wâhlen (vgl. Gleichung (12)), dann gilt tylt ÀM • &lt;p, nicht nur als

Identitât zwischen Vektoren in dem Hilbertraum Hv czL2(r\G/K), sondern
punktweise, und es folgt sogar limt_^oo ^M(go) 0 und damit nach (11) auch

Die Identitât

folgt analog ¦
Es bezeichnen bzw. ||-|| das Skalarprodukt bzw. die Norm in dem

Hilbertraum L2(r\G/K) und

Mit Lemma 1 schlieBt man, daB /t(g) und gt(g) gleichmâBig bezûglich t in g
beschrânkt sind: Denn die Anzahl der &quot;Gitterpunkte&quot; F-irig) in der Kugel
Bt+ô(0(g0) ist offenbar beschrânkt durch

wenn d(%) den maximalen Durchmesser von g bezûglich der Riemannschen

Metrik auf X bezeichnet. Wegen ii(Bt+8it)+dm(g0) yi(Bt+8(t)+dm(l)) ist daher
nach Lemma 1 fur aile t&gt;0 und geG:

&lt;constans.
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Wegen

ku ~= | Ft(d(g, g0)) dg &lt;(n(%)rm*(Bt+s(t)(l)) ^ constans. j*(Bf (1))

ist damit |/,(g)| gleichmâBig bezûglich f in ^ abgeschâtzt. Die Abschâtzung
fur |gt(g)| ist âhnlich einfach. Insbesondere sind ||/t|| und ||gtj| gleichmâBig
in t beschrânkt, daher folgt aus Lemma 3 unmittelbar das

KOROLLAR. Fur aile &lt;peL2(r\G/K) gilt:

lim (ft9 &lt;p) 0, lim (gt, &lt;p) 0.
t—*oo t—*&lt;x&gt;

Daruber hinaus gilt sogar:

LEMMA 4. limt_^oo/t(g) limt_&gt;oo gt(g) O fur beliebiges geG.

Beweis. Wie oben gezeigt wurde, ist {ft(g) \ t &gt;0} beschrânkt, und damit hat
jede Folge {/^(g)} mit f,, —&gt; oo fiir u-*oo mindestens einen Hâufungspunkt. Falls
die Aussage &quot;limt_^oo/t(g) 0&quot; nicht richtig ist, gibt es daher eine Folge positiver
reeller Zahlen t» mit lim^oo io =°° und

lim /Jg) tî mit r\ &gt;0. (14)
tj—*oo

Wegen

f F,(d(g, g0)) dg

ist nach Lemma 1:

f F,(d(g,go))dg

und daher folgt aus (14) und (13);
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Nun ist offenbar fur g,g&apos;eG nach Définition von /t(g):

Setzt man wie in Lemma 1 abkûrzend v(t):= /x(Bt(l)), so ist fur c&gt;0 und aile
g&apos;eG mit d(g&apos;, g)&lt;c-ô(tu).

Nach Lemma 1 ist

Man kann daher zu vorgegebenem e&gt;0 positive te und ce finden, so da8

fur 0&lt;c&lt;ce und r&gt;re gilt.
Mit (17) besagt dies, daB zu gegebenem e&gt;0 /^^(gO^Tï-e gilt fur aile

genùgend groBen v und aile g&apos; aus einer nur von e abhângigen offenen
Umgebung U von g in G. Dabei kann man - bei geeigneter Wahl des Fundamen-
talbereichs g-noch ohne Einschrânkung den Abschlufî 0 von U als kompakt
und in 7r-1(g) gelegen voraussetzen. Wâhlt man 0&lt;e&lt;Tj, so folgt fur die
charakteristische Funktion Xuk von U • K

L, dg&apos;&gt;ii(ir(U)) • (n-e)&gt;0 (18)

fur aile v ^ ve. Andererseits muB nach dem Korollar zu Lemma 3 die linke Seite
der Ungleichung (18) fur wachsendes v gegen Null konvergieren. Damit kann
(14) nicht mit tj&gt;0 gelten, und das beweist limt^oo/t(g) 0. Entsprechend
beweist man limf_*oo g* (g)= 0. H

KOROLLAR.

it(Bt(ï))
^0 fur allège G.
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Der Beweis ergibt sich aus dem Lemma 4 zusammen mit Gleichung (15) bzw. der
(15) entsprechenden Gleichung fur gt anstelle von ft. ¦

Ist wie in der Einleitung Nt(g, g0) die Anzahl der s g F mit d(sg, g0) ^ t, so gilt
nach (9) und (10) ofïenbar

so daB man insgesamt folgendes Résultat erhalten hat:

SATZ. G sei eine zusammenhàngende, halbeinfache, réelle Liegruppe mit
endlichem Zentrum und mit einfacher Lie-Algebra q. F&lt;G sei diskrete, kokom-
pakte Untergruppe. Dann ist fur beliebige g, g0 e G:

Nt(g,g0)= 1

z$ £ G/K ein Fundamentalbereich modulo F.

Bemerkung 1. Der hier benutzte Ansatz liefert dann mehr, d.h. genauere
Fehlerabschâtzungen fur die asymptotische Beziehung

g0) 1

wenn man genauere Abschâtzungen fur die Matrixkoeffizienten irreduzibler
unitârer Darstellungen von G kennt. Das ist zumindest fur spezielle Beispiele wie
etwa SL2(U) der Fall (vgl. [1] §10, 11 und [3] S. 115); allgemeine Ergebnisse
scheinen aber zumindest nicht in verôffentlichter Form zu existieren (vgl. in [3]
den Literaturhinweis [50]). Einen Schônheitsfehler haben allerdings auch die

Abschâtzungen des Restgliedes in [15], [5] und [18]: man kennt i.a. das Spektrum
0&lt;À1&lt;À2^À3&lt;- • • des Laplace-Operators nicht; man kann meines Wissens nur
Abschâtzungen fur \x angeben.

Bemerkung 2. Môglicherweise gilt die asymptotische Beziehung

Nt(g,g0) 1

auch fur beliebiges diskretes F in G von endlichem Kovolumen in G. Fur
G SL2(U) ist dies in [18] gezeigt worden. Allerdings benôtigt man schon fur die
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Behandlung dièses speziellen Falles bei nicht kompaktem Quotienten F\X
Eisensteinreihen, die dem kontinuierlichem Spektrum in L2(r\G/K) entsprechen
(vgi. [18]).

Bemerkung 3. Inwieweit die asymptotische Beziehung (1) auch fur nicht
emfaches g gilt, bleibt zu untersuchen. Sind etwa Gt, F, (i 1, 2) wie im Satz, so
bleibt die Gleichung (1) selbstverstândlich richtig fur GtxG2 und rxxr2, wenn
man anstelle einer geodàtischen Kugel in GJK1 x G2/K2 das Produkt von zwei
geodâtischen Kugeln in GJKl bzw. G2/K2 betrachtet. Aber das entspricht nicht
der Aussage des Satzes. Immerhin - und das wurde unabhangig von mir auch vom
Referenten bemerkt - kann man den Satz von Howe und Moore auch fur Pro-
dukte von Liegruppen verwenden, sofern man sich auf irreduzible kokompakte
Gitter F beschrànkt, und das liefert die Aussage des Satzes auch fur nichtein-
faches g unter der obigen Einschrankung an F. Letzteres spielt fur die Behandlung
des adelischen Falles eine Rolle (vgl. auch das Lemma 3 in [17], dessen Voraus-
setzungen sich allerdings noch abschwâchen lassen) und wird an anderer Stelle

genauer ausgefuhrt.
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