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Nichteuklidische Gitterpunktprobleme und Gleichverteilung in
linearen algebraischen Gruppen

HANs-JOCHEN BARTELS

Einleitung

Es sei G eine zusammenhangende halbeinfache reelle Liegruppe mit end-
lichem Zentrum, g bezeichne die Liealgebra von G; es wird vorausgesetzt, dal3 g
einfache Liealgebra ist; dann besitzt G keine abgeschlossenen Normalteiler
positiver Dimension. G sei ferner nicht kompakt und K=G sei maximale
kompakte Untergruppe, I'=G sei diskrete Untergruppe und kokompakt, d.h.
I'\ G ist kompakt. Der Raum X = G/K der maximal-kompakten Untergruppen in
G ist ein Riemannscher symmetrischer Raum. Es bezeichne 7 :G — G/K die
kanonische Projektion. Die Killingform auf der Liealgebra von G induziert auf X
eine G-linksinvariante Riemannsche Metrik, fiir zwei Punkte m(g), m(g,) € X sei
mit d(g, go) der zugehorige geodatische Abstand in X bezeichnet und mit B,(g)
die geoditische Kugel um 7(g) mit dem Radius t=0. Ist nun N,(g, go; )=
N,(g, go) die Anzahl der sel’ mit d(sg, g,)=t, so gilt fir t — o« das folgende
asymptotische Verhalten:

. vol (B,(1))
e N.(g 8o) vol &, )
wenn vol (.) das Volumen beziiglich der Riemannschen Metrik d auf X und < X
einen Fundamentalbereich von I' in X bezeichnen. Fir G = SL,(R) ist (1) zuerst
in der Habilitationsschrift von H. Huber [15] mit Hilfe von Reihenentwicklungen
nach Eigenfunktionen des Laplace-Operators auf der oberen Halbebene H =
SL(R)/SO(2) bewiesen worden. Fiir hoherdimensionale hyperbolische Raume
sind entsprechende Resultate in [5], [10] und [16] bewiesen worden. Man
vergleiche hierzu auch den Ubersichtsartikel [4] von Elstrodt sowie die dort
angegebene Literatur. Fir keinen der in [5] und [10] behandelten Spezialfille von
(1) ist ein geometrischer Beweis bekannt. Fiir G = SL,(R) kann man sogar zeigen,
daB sich (1) mit genauer Fehlerabschatzung jedenfalls nicht “gleichmaBig in I’
geometrisch beweisen 148t (vgl. [4] S. 66). Der in dieser Arbeit gegebene Beweis
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Nichteuklidische Gitterpunktprobleme und Gleichverteilung 159

von (1) fir den Fall einer halbeinfachen Liegruppe G mit den am Anfang
genannten Voraussetzungen benutzt Darstellungstheorie von G und stellt eine
Kombination der in [5], [15] und [17] verwendeten Ansatze dar. In der
letztgenannten Arbeit [17] von Murase wird unter bestimmten einschrinkenden
Voraussetzungen fir lineare algebraische Gruppen & iiber Zahlkorpern k eine
Art Gleichverteilung von &(k) in &(A) bewiesen (B(A) bezeichnet dabei die
zugehorige Adele-Gruppe und ®&(k) sind die k-rationalen Punkte von &). Allerd-
ings werden in [17] nur die leichter zuginglichen endlichen Primstellen von k
betrachtet, wahrend der technisch mithsamere (vgl. unten die Lemmata 1, 3 und
4) Fall der archimedischen Primstellen offenbleibt. Wie bei [17] gehen auch in
unserem Beweis wesentlich Resultate von Howe und Moore iiber das Verhalten
im Unendlichen von Matrixkoeffizienten irreduzibler Darstellungen ein [14].

Das in (1) festgestellte asymptotische Verhalten hiangt eng zusammen mit der
Frage nach dem Wachstumsgesetz in der Gruppe I': Da man zeigen kann, da
unter den gemachten Voraussetzungen iiber G vol (B,(1)) von exponentiellem
Wachstum fiir t— o ist, ergibt sich unmittelbar: I' ist von exponentiellem
Wachstum® (vgl. die Bemerkung zu Lemma 2). Wenn man will, kann man die
Gleichung (1) als quantitative Prazisierung dieser qualitativen Aussage verstehen.

Das aymptotische Verhalten (1) gestattet einige Anwendungen: Speziell fiir
arithmetisch definierte Untergruppen I' von G ergeben sich aus (1) asymptotische
Formeln fiir die Anzahl der Losungen gewisser diophantischer Gleichungen bzw.
Gleichungssysteme. Sind z.B. G =SL,([R) und I' die Gruppe der Elemente der
reduzierten Norm eins in einer Ordnung einer indefiniten nichtzerfallenden
Quaternionenalgebra iiber Q, so erhalt man mit (1) asymptotisch die Anzahl der
Gitterpunkte auf einem dreidimensionalen Hyperboloid imR*, die innerhalb
eines durch die Metrik d(., .) definierten affinen Ellipsoids liegen. Man vergleiche
auch die verwandten Resultate in [6], [11] und [18]. Die in [11] angegebenen
asymptotischen Anzahlformeln fiir Losungen von Normformgleichungen gaben
ubrigens den AnstoB fiir die hier durchgefiihrten Untersuchungen. Allerdings
gestaltet sich die “Geometrie der Zahlen” in anisotropen algebraischen Tori — das
entspricht gerade dem in [11] betrachteten Fall -erheblich einfacher als in
halbeinfachen Gruppen und erfordert keine Riickgriffe auf tiefer liegende
analytische Theorien. In einer spiteren Arbeit werde ich auf die zuletzt genann-
ten arithmetischen Fragen sowie die Ubertragung des Ergebnisses (1) auf den
adelischen Fall, d.h. die Verallgemeinerung der Resultate von Murase unter
EinschluB der unendlichen Primstellen zuriickkommen.

Diese Arbeit ist folgendermaBen aufgebaut: Im ersten Abschnitt werden

! Zur Definition dieses Begriffs vgl. etwa [9] Seite 53.
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einige Volumenabschiatzungen zusammengestellt, die im zweiten Abschnitt beim
Beweis der asymptotischen Formel (1) bendtigt werden.

An dieser Stelle danke ich Herrn Professor S. J. Patterson fiir eine Reihe

nutzlicher Gesprache und einige Literaturhinweise und ebenso dem Referenten
fir Kritik und einige Ratschliage sehr herzlich.
1. G, K, I, X=G/K, d(.,.) und B,(g) seien wie in der Einleitung. Da G und K
unimodular sind, tragt X ein G-linksinvariantes Maf3 w. w 1af3t sich so normieren,
daB3 es mit dem von der Killingform induzierten G-linksinvarianten MaB3 auf X
ibereinstimmt. dk bezeichne das Haar-Maf auf K mit fx dk = 1. Bei geeigneter
Normierung des Haar-MaBes dg auf G gilt dann fiir stetiges f auf G mit
kompaktem Trager

| r@dg=] | sig0)diau @

Das MaB3 u kann nach [7], [12] noch genauer berechnet werden. Dies sei dem
besseren Verstindnis wegen hier kurz zusammengestellt. g bezeichne die
Liealgebra von G und g= k®p sei Cartan-Zerlegung von g derart, da3 k die zu K
gehorige Liealgebra ist; dann kann man p mit dem Tangentialraum von G/K = X
im Punkte #(1) identifizieren. Bezeichnet Exp die Exponentialabbildung von p in
die Riemannsche Mannigfaltigkeit X, so wei3 man, da Exp:p— G/K =X ein
Isomorphismus ist (vgl. [12], S. 251, [13] S. 379). Ferner berechnet sich das MaB
w auf X folgendermaBen:

L f(x) du = L f(Exp 1) det A, d, 3)

wenn x = Exp x, dx das Volumenelement auf p beziiglich der Killingform bezeich-
nen und A,:p— p der folgende Endomorphismus ist:

A=Y (myei+ ),

i=0

T, die Restriktion von (adx)? auf p (vgl. [7], [12], [13]). Fur die folgenden
Volumenabschiatzungen ist es zweckmaBig, das Mal p weiter umzuformen und
beziiglich geodatischer Polarkoordinaten zu berechnen: r,0,,...,60,_, seien
Polarkoordinaten um 0 in dem euklidischen Raum p (euklidisch beziiglich der
Killingform), so daB sich jedes xe p\{0} eindeutig in der Form x=r - ¥ darstellen
14Bt, wobei ¥ep die Linge 1 hat und nur von 6,,..., 6,_, abhingt. Betrachtet
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man vermoge der Abbildung Exp:p— X diese Polarkoordinaten als Koor-
dinatensystem in X, so erhdlt man gerade die geodatischen Polarkoordinaten mit
Pol w(1)e X (vgl. [7] S. 166).

Beziglich dieser Polarkoordinaten berechnet sich det A, - dx folgendermafB3en
([7] S. 166, [12] S. 251):

sinh (rt;)
rt;

det A, dx=r"""]] drd@, - - - de,_,, (4)
i=1

dabei sind 13, . . ., t2 die Eigenwerte von Tj, t, =0. Die ¢; sind stetige Funktionen
von 0,,...,0,_, i=1,...,n. Fir ;=0 ersetze man in (4) sinh (rt;)/rt; durch 1.
Damit ergibt sich fiir das Volumen v(r):= u(B,(1)) die Formel:

v(r)= Ir (J’1r e Jm r“p"_l E §1_‘ll_‘_§££l de, - - - d6n_.1) dp (5)

0 0 0 <0 i

und man hat das

LEMMA 1. Bezeichnet v(r) = w(B,(1)) das Volumen der geoddtischen Kugel
vom Radius r um w(1) in X, so ist fiirr, c=0

v(r+c)=v(c)+alc)v(r)—v(1)+¢(c)
mit von r unabhdngigen Funktionen ¢, a, so daf}

lim a(c)=1,  lim P(c)=v(1).

Beweis. Nach (5) ist

r+c far T 27 n . h 3
v(r+c)=j j J J p""lnwdﬂl‘“dﬂn_ldp

o o 0 Y0 i=1 ptx
ropmw w (2w _, 5 sinh ((p +o)t,)
— + + =i d()-"d()n_d
v(c) L L L L (p+c) E (p+o)t, ! 1P
Mit
1 w (2n _, vy sinh ((p+o)t)
t= +c) ! dé, - - - de,_, d
¥(c) J; L L L (p+c) Ul (p+olt, ' L
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hat man daher:

r T 2 n .
[ [T ey TS g, . g, , dp

v(r+c)=v(C)+¢‘(C)+j 5 ! -1 (p+ox

1

Zum Beweis des Lemmas geniigt es, in dem rechts stehenden Integral den
Integranden geeignet abzuschatzen. Dazu ist:

(p+o)" t=sp"t-(1+c)"! fir p=1,c=0

und
1 <-1— fur p>0,t#0,c=0
(p+o)t pt; pomATRE=
Beachtet man nun, daB die ¢ =¢t(0,,...,6,_;) als stetige Funktionen von
0,,...,0,_; nach oben beschrankt sind, etwa durch 7, so ergibt sich die Behaup-

tung des Lemmas unmittelbar aus dem folgenden
HILFSSATZ 1. Fiir c=0, 0<t<7y und p=1 ist
sinh ((p + ¢)t) = ¢(c; 7o) * sinh (pt)

mit einer von t unabhdngigen Funktion ¢(c; 7o), fur die lim._,o ¢(c; 7o) =1 gilt.

Beweis des Hilfssatzes. Es ist

sinh ((p+o)t) _sinh (ct)
sinh (o) = cosh (ct) + cosh (pt) sinh (1)
- sinh (ct)

=< cosh (c7,) +cosh (pt) sinh (o)’ (6)

Fir (pt)=1 liegt der Quotient cosh (pt)/sinh (pt)=1 unterhalb einer von pt
unabhéngigen festen Schranke M, so dal man sinh ((p +c)t)/sinh (pt) durch
cosh (¢1o) + M sinh (ct,) abschiatzen kann.

Ist pt<1, so auch t=1 und daher

sinh (ct)
sinh (t)

=e¢(c)

mit einer von t unabhingigen Funktion ¢, fiir die lim,_,o ¢(c) =0 gilt.
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Wegen cosh (pt) <2 fiir pt =<1 folgt daher wegen der Ungleichung (6) auch in
diesem Fall die Behauptung W

Die Formel (5) gestattet eine weitere Folgerung:

LEMMA 2. v(r) wdchst exponentiell, d.h. es existieren Konstanten c,>1,
¢, >0 mit v(r)>c, - cj.

Bemerkung. In der Sprechweise von [9] S. 57 besagt Lemma 2, daB das
Wachstum von X exponentiell ist. Zum Beweis des Lemmas beriotigen wir einen

HILFSSATZ 2. Fiir wenigstens ein x in p ist T, #0.
Beweis des Hilfssatzes. Fir die Killingform B(.,.) auf g gilt

B((ad ®)’y,9) =—B(x,n),[x,9) =z peg (7

B(.,.) ist auf T negativ definit. Da [p, p]< I ist, wiirde daher aus T,=0 mit (7)
folgen: [x, p]=0 fiir alle x, pep. Wegen [p, I]< p hatte man ferner fir xet, yet:

(ad x)*(y) =[x, [, »]]=0,

d.h. (adx)? ist auf ganz g trivial fiir beliebige xep. Andererseits ist aber die
Killingform B auf der halbeinfachen Liealgebra g nicht ausgeartetet, das ergibt
den gewiinschten Widerspruch W

Bemerkung. Wie der Referent bemerkte, 148t sich Hilfssatz 2 sogar zu “T, # 0
fiir alle x€ p\ {0}’ verschiarfen. Zum Nachweis von Lemma 2 geniigt allerdings die

schwachere Aussage.
Nun zum Beweis von Lemma 2. Nach dem Hilfssatz verschwinden nicht alle

Eigenwerte p - t, = pt;(04, . . ., 6,,_,) von T, fiir xe p\ {0} identisch in den Variablen
01, “ ey 0,,-1.
Es sei etwa (0;0,...,0,_10)>0 und (6,,...,0,-1)=c>0 in einer offenen

Umgebung U=U(8,,...,0.,-10) von 6,=(6,0,...,0,_10) ImR"™'. Dann ist
wegen (5) offenbar

r

v(r)= I p" ! sinh (pc) dp - vol,_, (U), (8
pc

0

wenn vol,, _, (U) das gewdhnliche LebesguemaB von U <R"™! bezeichnet. Aus (8)
ergibt sich die Behauptung des Lemmas unmittelbar W
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Bemerkung. Nach einem bekannten Satz von A. Selberg enthilt I' eine
torsionsfreie Untergruppe I'; von endlichem Index. I'\X ist dann Mannigfaltig-
keit mit Fundamentalgruppe I';. Als kokompakte Untergruppen von G sind
sowohl I' als auch I'; endlich erzeugt [20]. Lemma 2 besagt dann: X ist von
exponentiellem Wachstum, nach [9] S. 57 ist daher I'; und damit auch I" von
exponentiellem Wachstum. Zieht man die tiefer liegenden Resultate von A.
Borel [2] iiber die Zariski-Dichtheit von I" in G (fur linear algebraisches G) und
einen Satz von Tits [19] heran, so laBt sich—wie der Referent bemerkte —
unabhangig von Volumenbetrachtungen allgemeiner zeigen, daB diskrete Un-
tergruppen von endlichem Kovolumen in halbeinfachen zusammenhingenden
Liegruppen mit endlichem Zentrum und ohne kompakte Faktoren von exponen-
tiellem Wachstum sind.

2. Es bezeichne im folgenden 6 :R, — R, eine beliebige stetige, streng monoton
fallende Funktion mit 8(¢t) >0 fiir alle t>0 und lim,_,. 6(t) =0. Es seien ferner
F,:R,—R, bzw. G,:R, — R, stetige Funktionen mit

1 X<t
F(x)=<=<1 falls t<x<t+8(t)
0 x=t+6(t)
bzw.
1 x=t—6()
G (x)=<=1 falls t—-8(t)<x<t
0 x=t

go€ G sei beliebig gewahit aber im folgenden fest. Fiir g € G setze man

f.(g):= 2, F.(d(sg, g0)) 9)

sell

g(8):= 2. G,(d(sg, g0)). (10)

sell

Dann sind f, und g, stetige Funktionen auf G, die offensichtlich I'-links und
K-rechtsinvariant sind, und die daher wegen der Kompaktheit von I'\ G in dem
Hilbertraum L,(I'\ G/K) der quadratintegrierbaren komplexen Funktionen auf
I'\ G/K liegen. Nach [8] S. 23 ff. zerlegt sich die rechtsregulire Darstellung von

1 Zur Definition dieses Begriffs vgl. etwa [9] S. 53.
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G auf L,(I'\ G) in eine hOchstens abzahlbarunendliche direkte Summe irreduzi-
bler Darstellungen 7, von G:

L\G)= ¥ H,

wobei jede Darstellung w, von G auf H, endliche Multiplizitat in L,(I'\ G)
besitzt. L,(I'\ G/K) 1aBt sich dann in der Form

Ly(I'\G/K) = i Ly(I'\G/K)NH, = i HX

v=1 v=1

zerlegen (vgl. auch [17] S. 172). Nach [13] S. 146 ist dim HX<1. Die Wahl von
Vektoren der Lange 1 in den von Null verschiedenen HY liefert dann insgesamt
ein Orthonormalsystem {¢;};n des Hilbertraums L,(I'\ G/K). Dabei kann man
noch H, =C¢, annehmen, wobei ¢, die konstante Funktion ¢(x)=1/vu() ist,
& < X ein Fundamentalbereich von X modulo I.

Dann hat man Reihenentwicklungen

f(®= 1 Aale)
bzw.

g(g)= Z i (8)
mit

A =L @ e@du=|  f(®)- el d

(@

bzw.

i = L E(—g—} : (Pi(g) du.

LEMMA 3. Fiir alle ieN i#1 gilt

i

A
lim —=%—=0.
t—= p(B,(1))

lim ——>-—=0,
== u(B,(1))
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Beweis. Es ist wegen der I'-Linksinvarianz von ¢,

Mo=| T R oo dg
7w (¥ sel (11)

=I F,(d(g, 80)¢i(g) dg.
G
Die Funktion

._Ic Fi(d(g, x))¢.(g) dg
) w(B,(1)

ist stetig in x und I'-links- und K-rechtsinvariant, liegt also in L,(I"\ G/K). Ist ¢,
Element des Hilbertraums H, mit v = v(i), so ist wegen

| Ruea@d | E@es Do de
g (x) = = ==
' w(B.(D) w(B,D)

L Fld(e Do) dg | Fld(z D)m (o)) dg
= w(B,(1) B w(B,(1)

auch ¢, Element des Hilbertraums H, < L,(I"'\ G). ¢, ist also ein K-invarianter
Vektor des Darstellungsraums H,. Wegen dim HY = HY;, =1 148t sich ¢, in der

Form
U, = ):i,t * @ (12)

darstellen, wobei sich der reelle Koeffizient /\',-,, folgendermaflen berechnet:

L F,(d(g, D)(m,(8)es @:) dg
p (B, (1))

~

Ai,t =

dabei ist mit (.,.) das Skalarprodukt des Hilbertraums H, bezeichnet.

(m,, H,) ist nichttrivial, da H, die Multiplizitit 1 in L,(I"\ G/K) besitzt. G ist
halbeinfach, daher kann die Darstellung 7, von G auch nicht eindimensional
sein; und da die einzigen abgeschlossenen von G verschiedenen Normalteiler in G
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endlich sind, verschwindet nach [14] (r,(g)¢;, ¢;) als Funktion von g im Unend-
lichen, d.h. zu £>0 existiert ein Kompaktum C, € G mit |(m,(g)¢;, ¢;)|<e fiir
alle g € G\ G,. Andererseits wéachst u(Bt(l)) monoton mit ¢ gegen Unendlich, wie
in [17] Lemma 5 folgt dann lim, .. A;, =0, d.h. lim,_,.. ¢, =0 in dem Hilbertraum
H,. Als Reprisentanten fiir den Vektor ¢; € L,(I'\ G/K) laBt sich eine stetige
Funktion wihlen (vgl. Gleichung (12)), dann gilt ¢;, =A;, - ¢; nicht nur als
Identitat zwischen Vektoren in dem Hilbertraum H, < L2(F \ G/K), sondern
punktweise, und es folgt sogar lim,_,.. ¥;,(g,) =0 und damit nach (11) auch

A,
o B

Die Identitat

lim _ P
t—e 1 (B,(1))

=0
folgt analog W

Es bezeichnen (.,.) bzw. ||| das Skalarprodukt bzw. die Norm in dem
Hilbertraum L,(I'\ G/K) und

oy _f@)—ALei(g) ¥

Fo:="Smay -~ Lamay ® )
sy 8@ w8 v e

@="""Ea) T L ama w®

Mit Lemma 1 schlieBt man, daB f,(g) und §(g) gleichmiBig beziiglich ¢t in &
beschrinkt sind: Denn die Anzahl der “Gitterpunkte” I'-m(g) in der Kugel
B, 5 (8o) ist offenbar beschrinkt durch

[ (Bt+8(t)+d @ go)
© () ’

wenn d(F) den maximalen Durchmesser von § beziiglich der Riemannschen
Metrik auf X bezeichnet. Wegen M(Bt+8(t)+d(?'y)(g0):u(Bt+8(l)+d(%)(1)) ist daher
nach Lemma 1 fiir alle t>0 und ge G:

f.(g) - p(Bis@y+am(1)
pBM)I w@Ewr(B/(1)

=constans.
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Wegen
1
A= —5 L F,(d(g, g0)) dg =(u(®)) *w(B,45¢(1)) = constans. u(B,(1))

ist damit |f,(g)| gleichmiBig beziiglich ¢ in ¥ abgeschiatzt. Die Abschitzung
fiir |g,(g)| ist dhnlich einfach. Insbesondere sind ||f,| und ||g| gleichmaBig
in t beschrankt, daher folgt aus Lemma 3 unmittelbar das

KOROLILAR. Fiir alle ¢ € L,(I'\ G/K) gilt:
lim (f, ¢)=0,  lim (&, ¢)=0.

Dariiber hinaus gilt sogar:

LEMMA 4. lim,_,.. f.(g) =lim,_. g(g) =0 fiir beliebiges g e G.

Beweis. Wie oben gezeigt wurde, ist {f.(g) | t =0} beschrinkt, und damit hat
jede Folge {f,ﬂ(g)} mit t, — o fiir v — o mindestens einen Haufungspunkt. Falls
die Aussage “lim,_,.. f,(g) = 0" nicht richtig ist, gibt es daher eine Folge positiver
reeller Zahlen t, mit lim,_,. t, =% und

lim f, (g)=n mit 7>0. (14)
Wegen
1<IG F,(d(g, gO)) ngl"(Bt+8(t)(1))
- “’(Bt(l)) - M(Bt(l))
ist nach Lemma 1:
| Fdte g0 d
lim =< =1, (15)

== u(B(1))

und daher folgt aus (14) und (13);

. f.(8) 1
.._.i__...____: e
31111 (B, (1) n+ @ (16)
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Nun ist offenbar fiir g, g'€ G nach Definition von f,(g):
F:(8) = firswyrae.e)(8)-

Setzt man wie in Lemma 1 abkiirzend v(t):= w(B,(1)), so ist fiir ¢ >0 und alle
g'e G mit d(g', g)=c—8(t,).

fore(8) _fi(8) _v(&)
v(t,+c) v(t,) v(t,+c)’

(17)

Nach Lemma 1 ist

o(t) | o) _ v()tdl) 1
v(t,+c) v, +c) al)v(t,+c) alc)’

Man kann daher zu vorgegebenem & >0 positive t, und ¢, finden, so daf3

olk) _q_.
T o(t,t+c)

fur 0=c=c, und t=1t, gilt.

Mit (17) besagt dies, daB zu gegebenem & >0 f ,.(g)=n—¢ gilt firr alle
genugend groBen v und alle g’ aus einer nur von & abhdngigen offenen
Umgebung U von g in G. Dabei kann man - bei geeigneter Wahl des Fundamen-
talbereichs & —noch ohne Einschrinkung den AbschluB U von U als kompakt
und in 7 '(§) gelegen voraussetzen. Wihlt man 0<e <m, so folgt fiir die
charakteristische Funktion xy.x von U - K

[\ Ferce) xuatg) dg' = ta() - (n-e)>0 (8

fur alle v =v,. Andererseits mu3 nach dem Korollar zu Lemma 3 die linke Seite
der Ungleichung (18) fiir wachsendes v gegen Null konvergieren. Damit kann
(14) nicht mit 7 >0 gelten, und das beweist lim,_. f.(g) =0. Entsprechend
beweist man lim,_,.. &(g)=0. W

KOROLLAR.

linrlﬁ(g)—g.(g)

=0 fur alle g€ G.
== u(B,(1) 8
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Der Beweis ergibt sich aus dem Lemma 4 zusammen mit Gleichung (15) bzw. der
(15) entsprechenden Gleichung fiir g anstelle von f.

Ist wie in der Einleitung N, (g, g,) die Anzahl der s e I' mit d(sg, g,) <t, so gilt
nach (9) und (10) offenbar

& (8)=N:(g, g8)=£.(8),
so daBB man insgesamt folgendes Resultat erhalten hat:
SATZ. G sei eine zusammenhdngende, halbeinfache, reelle Liegruppe mit

endlichem Zentrum und mit einfacher Lie-Algebra g. I' < G sei diskrete, kokom-
pakte Untergruppe. Dann ist fiir beliebige g, go<€ G:

. Nt(g7 80) _ 1
B0 rE®)’

& < G/K ein Fundamentalbereich modulo I

Bemerkung 1. Der hier benutzte Ansatz liefert dann mehr, d.h. genauere
Fehlerabschiatzungen fiir die asymptotische Beziehung

M(g, g0)~ 1
n(B(1) n@’

wenn man genauere Abschidtzungen fiir die Matrixkoeffizienten irreduzibler
unitirer Darstellungen von G kennt. Das ist zumindest fiir spezielle Beispiele wie
etwa SL,(R) der Fall (vgl. [1] §10, 11 und [3] S. 115); allgemeine Ergebnisse
scheinen aber zumindest nicht in veroffentlichter Form zu existieren (vgl. in [3]
den Literaturhinweis [50]). Einen Schonheitsfehler haben allerdings auch die
Abschitzungen des Restgliedes in [15], [5] und [18]: man kennt i.a. das Spektrum
0<A;=A,=<A;3=---des Laplace-Operators nicht; man kann meines Wissens nur
Abschatzungen fur A, angeben.

Bemerkung 2. Moglicherweise gilt die asymptotische Beziehung

Nt(gs g0)~ 1
pn(B(1)) p@)

auch fiir beliebiges diskretes I' in G von endlichem Kovolumen in G. Fur
G =SL,(R) ist dies in [18] gezeigt worden. Allerdings benétigt man schon fiir die
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Behandlung dieses speziellen Falles bei nicht kompaktem Quotienten I'\ X
Eisensteinreihen, die dem kontinuierlichem Spektrum in L,(I"\ G/K) entsprechen

(vgl. [18]).

Bemerkung 3. Inwieweit die asymptotische Beziehung (1) auch fur nicht
einfaches g gilt, bleibt zu untersuchen. Sind etwa G, I'; (i =1, 2) wie im Satz, so
bleibt die Gleichung (1) selbstverstindlich richtig fir G, X G, und I'; X I',, wenn
man anstelle einer geodatischen Kugel in G,/K, X G,/K, das Produkt von zwei
geodatischen Kugeln in G,/K; bzw. G,/K, betrachtet. Aber das entspricht nicht
der Aussage des Satzes. Immerhin — und das wurde unabhéngig von mir auch vom
Referenten bemerkt — kann man den Satz von Howe und Moore auch fiir Pro-
dukte von Liegruppen verwenden, sofern man sich auf irreduzible kokompakte
Gitter I' beschriankt, und das liefert die Aussage des Satzes auch fiir nichtein-
faches g unter der obigen Einschrinkung an I'. Letzteres spielt fiir die Behandlung
des adelischen Falles eine Rolle (vgl. auch das Lemma 3 in [17], dessen Voraus-
setzungen sich allerdings noch abschwachen lassen) und wird an anderer Stelle
genauer ausgefuhrt.
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