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A remark on two dimensional periodic potentials

B. E. J. DaHLBERG! and E. TruBowrTZ!*?

1. Introduction

Let A = a,Z® a,Z be the lattice generated by the linearly independent vectors
a,, a,€ R?. Suppose q is a bounded, real-valued function periodic with respect to
A. It is known that (see [2] and [5]) the spectrum of the self-adjoint operator
—A +q acting on L?(R?) is purely absolutely continuous and is the union of the
bands B,(q) (n=1). The nth band B,(q) =R! (n=1) is by definition the image of
the function A, (-, q) defined on R?, where A, (k, q) (k € R?) is the nth eigenvalue
(counting with multiplicity) of the boundary value problem

(—A +q)f = Af,
f(x+a)= e uf(x), i=12,...

Let || be the area of a fundamental cell § for the lattice B dual to A.

THEOREM. There exist positive constants c(q), C(q) such that for all n = N(q)

il

[ i, B (B, g, 3

~n+cnV ]CB (@< n+Cn”3].

Suppose q(x) is a bounded, real-valued, periodic function on R'. Then the
spectrum of — (d?/dx?)+ q(x) acting on L%(R?") is purely absolutely continuous and
its complement generically consists of an infinite number of intervals tending to
+oo [see [1], p. 161]; i.e., there are infinitely many gaps. In two dimensions,
however, we have the following immediate consequence of the Theorem.

COROLLARY. The spectrum of —A +q contains a ray [A*, «). In particular,
there are at most a finite number of gaps.

IThe present work has been completed at the Forschungsinstitut fiir Mathematik, ETH Ziirich.
2Research supported by the Sloan Foundation and NSF Grant No. MCS-8002561.
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The corollary has been announced in [3] for the special case of rational
lattices.

2. Proofs

Let Ng(r, k) be the number of lattice points of B in the open disk of radius r
centered at k € R?. Denote by ¢, C generic positive constants.

LEMMA 1. For every 6>0 there is a constant ¢ = c(8)>0 such that

Sup Ng(r, k)>'— r’+crl2

keR? I%}l
inf Ng(r, k) <— 2 cp12
kGRz B b l%l Cr

for all r=38.

Proof. Let h, be the characteristic function of the open disk {k e R*:|k|<r}
and set Eg(r, k) = Ng(r, k)—('n-/l?yl)r2 If ae A\{0} we have

LEB(r, k)e % dk = j ( I%|+ Y h(k— b)) —ik-a gk

beB
= L h,(k)e * dk

=—2ﬁf 5(rlal)

where J, is the Bessel function of order 1. A similar calculation yields
I Eg(r, k) dk =0.
%

It follows that for all a € A \{0}

L Eg(r, k)e ™ dk\, \L Eg(r, k)e 2% dk‘)
(1l b2rlabl

L |Eg (r, k)| dk =max (

= 2qrr max lal 214l
Isin (r |a|—7/4)| |sin (2r |a|—=/4)|
= (82rr)"/? max ( PIEG > 124

_ Cr—1/2 ‘al-—S/Z

= cr!”?| a2 - cr 17| al™5"2.
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The asymptotic estimate

Ji(x) = (;2—)6-)1/2 sin (x —i—r) +0(x737?)

was used in the third line and
, |sin (2t — 7r/4)|) -0

sin (t——-;—r) 78

in the fourth. Consequently, for any fixed a* e A \ {0} there is an r* such that

inf max (
teR

[ 1Batr 0l k= er?

%

for all r=r*. Moreover, for all 0<8<1 there is a c(8) for which
J |Eg (r, k)| dk = c(8)r'/?
¥

when 8§ <r<r*. This is achieved by picking an a€ A with |a| sufficiently large.
Therefore,

L Ej(r, k) dk = J Eg(r, k) dk > cr'’2.
&

Here, Ef =max (Eg, 0) and Eg =min (—Eg, 0).
The statement of Lemma 1 follows at once. [

Let [x,, y.], n=1, be the nth band corresponding to q =0.

LEMMA 2. For! n=1

sup Ng(Vx,, k)<n=< inf NB(\/yn +—1—— , k)
keR? k eR? A

Proof. Suppose sup, Ng(vx,, k)=n+1. Then there is a k such that
An+1(k, 0)<x,. This contradicts the definition of A,.;(k,0). Similarly, suppose
inf, Ng(V/y, + 1/J/yn, k)< n—1. Then there is a k such that A,(k, 0)>y,. But this
contradicts the definition of A,(k,0). O

1Observe that 0<x,<y,, n=1.
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We can now prove the theorem.
Combining Lemmas 1, 2 with the obvious estimate (\/y, + 1//y,)"2> yV/4, w
have

xn+Cx1/4\n\

a2 o)

r,1/4

Y= C'yn'".
|8'I

I3

By similar arguments it is easy to show that

1
n<sup N, (J +—-,k)$cxn
kp B x‘n \/Xn

and

n<sup Ng (VYn k)= cy,.

Consequently,
xnsli—ln—cnlm, |—§—|n+cnl’4$yn,

This proves the left hand inclusion of the theorem for B,(0). The statement for
general q follows from the min-max characterization of A, (k, q):

A.(k,q)=sup inf (Y, (-4 +q)¢)
b Yyedt
flwli=1
where @ ={®,, ..., D,_}= LAR?), ¢ is the orthogonal complement of the span
of @ and ¢(x+q;)=e™ %P(x), j=1,2. It gives
1An (k, @) — A, (k, O) <|Iqll

which yields the results.
The right hand inclusion is verified in almost the same way. The only

significant difference is that Lemma 1 is replaced by the well known estimate

Nz (r, k)—lg‘l <cr’?

one derives from the Poisson summation formula (c is independent of k). The
proof of the theorem is finished.
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Remark. The overlap of B,(0) and B, ,,(0) is uniformly bounded away from
0; i.e., |B,(0)NB,.1(0)|=c>0 for all n=1. For

€
e )
n s‘,‘!p B\/xnl an+1k

2

?é‘l (xn+1 —28+Xi+1) + C(\/xn-i—l "7;3‘:)1/2

and

E
nsian(J L+ ,k)
k y VYn

g!%l (Yn +2¢ +—§:2)—C(Jyn +‘/;n)1/2.

Combining the inequalities and letting € tend to 0 we find

1/4 1/4
Xpi1= ¥Yn —C(yn + Xn+1)-

It is an immediate consequence that the spectrum of —A4 +q has no gaps at all
when |q|.. is sufficiently small. this reproves the result of [4].
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