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A remark on two dimensional periodic potentials

B. E. J. Dahlberg1 and E. Trubowttz1*2

1. Introduction

Let A aJLQa^L be the lattice generated by the linearly independent vectors

al9 a2eR2. Suppose q is a bounded, real-valued function periodic with respect to
A. It is known that (see [2] and [5]) the spectrum of the self-adjoint operator
—A + q acting on L2(R2) is purely absolutely continuous and is the union of the
bands Bn(q) (n ^ 1). The nth band Bn(q) c R1 (n 5* 1) is by définition the image of
thè function An(-, q) defined on R2, where Àn(fc, q) (feeR2) is the nth eigenvalue
(counting with multiplicity) of the boundary value problem

Let \$\ be the area of a fundamental cell $ for the lattice B dual to A.

THEOREM. There exist positive constants c(q), C(q) such that for ail n ^ N(q)

n(,)
it tt J Ltt tt

Suppose q(x) is a bounded, real-valued, periodic function on R1. Then the

spectrum of — (d2/dx2) + q(x) acting on L2(R1) is purely absolutely continuous and

its complément generically consists of an infinité number of intervais tending to
+oo [see [1], p. 161]; Le., there are infinitely many gaps. In two dimensions,
however, we hâve the following immédiate conséquence of the Theorem.

COROLLARY. The spectrum of —A + q contains a ray [À*, &lt;*&gt;). in particular,
there are at most a finite number of gaps.

lrThe présent work has been complétée at the Forschungsinstitut fur Mathematik, ETH Zurich.
2Research supported by the Sloan Foundation and NSF Grant No. MCS-8002561.
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The corollary has been announced in [3] for the spécial case of rational
lattices.

2. Proofs

Let NB(r, fc) be the number of lattice points of JB in the open disk of radius r
centered at fceR2. Dénote by c, C generic positive constants.

LEMMA 1. For every ô&gt;0 there is a constant c c(8)&gt;0 such that

for ail r^8.

Proof. Let h, be the characteristic function of the open disk {fc€R2:|fc|&lt;r}
and set EB(r, k) NB(r, fc)-(7r/|g|)r2. If a g A\{0} we hâve

f hr(k)e-lkadk

where Jx is the Bessel function of order 1. A similar calculation yields

J EB(r,fc)dfc 0.

It follows that for ail a e A \{0}

f /If If l\
|EB(r,fc)|dfc^max EB(r, k)e-k a dk ,\\ EB(r, k)e~2lka dk\)

h(r\a\y

/|sin(r|o|-ir/4)| |sin(2r|a|-ir/4)|
&gt; (8irr)1/2 max y ^

ll2\a\-512-crll2\a
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The asymptotic estimate

was used in the third line and

(\ - l WM |si

V8

in the fourth. Consequently, for any fixed a*eA\{0} there is an r* such that

\EB(r,k)\dk^crm
i

for ail r^r*. Moreover, for ail 0&lt;ô&lt;l there is a c(ô) for which

\EB(r,k)\dk^c(8)r112

when 8&lt;r&lt;r*. This is achieved by picking anaeA with \a\ sufficiently large.
Therefore,

f EUr,k)dk= f Eê(r, fc) dk &gt; cr1/2.

Hère, Eg max (EB, 0) and EB min (—EB, 0).
The statement of Lemma 1 follows at once.

yn], n^= 1, be the nth band corresponding to q 0.

LEMMA 2. For1 n^l

k)^n^ inf NB(Vyn +-7—, k)
keR2 V Vyn &apos;

sup
2

Proof. Suppose supkNBCv/ji^, fc)^w + l. Then there is a k such that
An+1(fc, O)&lt;jcn. This contradicts the définition of Àn+1(fc, 0). Similarly, suppose
infk NBUyn + l/&gt;/yn, fc)^ n -1. Then there is a k such that An(fc, 0) &gt; yn. But this
contradicts the définition of Àn(k, 0).

Observe that 0^xn&lt;yn,
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We can now prove the theorem.
Combining Lemmas 1,2 with the obvious estimate (&gt;/yn + lA/yn)1/2&gt;yi/4, we

hâve

By similar arguments it is easy to show that

1

n^sup NB[y/xn +

and

Consequently,

17 7T

This proves the left hand inclusion of the theorem for Bn(0). The statement for
gênerai q follows from the min-max characterization of An(fc, q):

An(fc,q) sup inf &lt;^,(-

where &lt;P {&amp;1,..., ^.Jc: L2(R2), ^x is the orthogonal complément of the span
of ^ and iK* + a,) elk a^(x), / 1,2. It gives

which yields the results.
The right hand inclusion is verified in almost the same way. The only

significant différence is that Lemma 1 is replaced by the well known estimate

,2/3

one dérives from the Poisson summation formula (c is independent of k). The

proof of the theorem is finished.
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Remark. The overlap of Bn(0) and Bn+1(0) is uniformly bounded away from
0; Le., |Bn(0)nBn+1(0)|^c&gt;0 for ail n^l. For

n^sup JVB(

il/2

and

/2

Combining the inequalities and letting e tend to 0 we find

It is an immédiate conséquence that the spectrum of —A + q has no gaps at ail
when Iqlc» is sufficiently small. this reproves the resuit of [4].
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