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On the quantitative boundary behavior of conformal maps

CH. PoMMERENKE® and S. E. WARSCHAWSKT™

1. Introduction

Let I' be a closed Jordan curve in C and let f map the unit disk D conformally
onto the inner domain of I'. For w,, w, €T, let I'(w,, w,) denote the arc (of smaller
diameter) of I' between w;, and w,. We shall study the relation between the
geometric quantity

- + — 1/2
n(8)= sup  sup (l“’2 ol flo "’1‘-1) (1.1)
lw1—wsy|=8 wel(w;,wy) l(l)z - (01'
and the analytic quantity
- s -l [E2|  ©o<s=n. (1.2)

()

1-8=|Z|<1

The relation between 1(8) and other properties of f has been investigated in two
papers by F. D. Lesley and the second author [4][5], and our main theorem is

based in part on these results.
The curve I' (which need not be rectifiable) is called asymptotically conformal

if n(8) = 0 as & — 0; this holds [7, Th. 1] if and only if B(8) = 0 as § — 0. The
connection with quasiconformal mappings was studied in a paper with J. Becker

[2].

THEOREM 1. Let f map D conformally onto the inner domain of the asymp-
totically conformal curve I'. Then, for 0<e <1/2, there exists 8,(¢) >0 such that

en(81+) < B(8) < M[n(817°)+ 8]  (0<8<8(e)) (1.3)

where ¢ >0 and M depend only on f.

*This research was in part supported by the National Science Foundation.

107



108 CH. POMMERENKE AND S. E. WARSCHAWSKI

This theorem gives the best result if I' is “not too smooth.” For instance, if
c,(log 1/8)™* <n(8)<M,(log 1/8)* for 0<8< 8, and some a >0 then Theorem
1 (with € =1/4) shows that

c,m(8) < B(8) <M;n(8) (0<6<H,). (1.4)

We shall study B(8) and n(8) in Section 2 and prove the lower estimate
(1.3). The much more difficult proof of the upper estimate (1.3) will be given in
Section 3.

In the last section, we derive some consequences of Theorem 1 and construct

examples (using lacunary series):
(a) The curve I' is smooth if [4, Prop. 3]

Ll -1—'?2 dt <oo, (1.5)

and we shall see that this condition is best possible and that it does not imply that
I' is Dini-smooth. It follows from (1.5) that

m(®) jl m (1) dt (0<8<8,), (1.6)

5
¢c;M(8) < B(8) < M; L —Tdt+M38 -l

and this estimate is better than (1.3) if n(8) behaves like 6. It also follows [4, Th.
3] from (1.5) that log f’ is continuous in D, and we shall improve the estimate for

the modulus of continuity.
(b) The curve I' is rectifiable and even asymptotically smooth if

1 2
J; '"(t’) dt <o, (1.7)

and this condition is again best possible. Hence log f'€ VMOA [7, Th. 2], and we
shall show that

log f'€e BMO,p, (p)

for a certain p(8); see Sarason’s lecture notes [11, Chapter 5] for a discussion of
these function classes.

Throughout the paper, we denote by 8y, 6;,...,byc,c;,...and by M, M,, ...
positive constants that depend only on the function f and possibly on displayed
parameters, while K, K;, ... will denote absolute constants.
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2. The lower estimate

2.1. Some properties of B. let B(5) be defined by (1.2). The maximum principle
shows that

(9]
()

B(3)

1-1¢) o= <(t+8)———— for 1-t—-8=|{|=1-6.

Hence 8B(t+8)=(t+86)B(8) and similarly tB(t+8)=(t+8)B(f), and it follows
that

B(t+8)=B(t)+B(8) for t8>0, t+8=1. (2.1)

Thus B is increasing and subadditive.
It follows from (1.2) by integration that

f'(pe*) <B(6)log—-§—- for 1-86=p<1.

lo ——
EF(1-8)e™ -

If B(8) — 0 as & — 0 we conclude that, for £ >0,
-l =lF@Ql=A-1gh™ (A-8,(e)=|ZI<). (2.2)

THEOREM 2.1. Let f map D conformally onto the inner domain of an
asymptotically conformal curve. If |{|=1-86<1 and a=1 then

B(3)

—_——
2 zeD
lz—¢|=ad

DO | - comas -
or | Foves® 23

for 0< 8 < 85(a).

Proof. (a) Since

A= _ IO . pioleatd (2o
z-of@ T 9rolmih

the left-hand inequality (2.3) follows from a well-known coefficient estimate

applied to {|z—¢|=
(b) Let zeD and |z—¢|=ad. We see from (2.1) that B((a+1)8)=
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(a+2)B(8)=3B(8). Hence, by definition (1.2),

f'(z) f'(v) 6apB(d)
o E5Q0) U f()d‘ J TP 4
= 34B(5) logi+: { =6aB(5) log - 1| |

where we integrated along the non-euclidean segment from ¢ to z and where
s =(z—{)/(1—{z). Writing B = B(8) we deduce that

f'(z) f'(z)
() ()

Since |dz/ds|=|1-Zz|*/(1—|Z|?) =5a28 we obtain by another integration that

1=

exp {log ——|—-1=(1~|s|)7* -

[(1 —a)**® -1]do

)~ _1‘ 5425
lz=¢|

z-Of O iy
 5a% (1-(1—|s)"™*® \_
‘|1——Zz|< (1—6aB)}s| 1)s600°p

for 0 <8 =4, if §, is chosen so small that 6aB(6) <1/2. This proves the right-hand
inequality (2.3).

2.2. Geometric properties of . By elementary geometry, the definition (1.1) of
n means that I'(w,, w,) lies in an ellipse with loci w; and w, and with minor half
axis (2+1(8)*)?n(8)8/2; this is <mn(8)8 for small 8. We need a somewhat
different description in terms of the width of a strip; this result was independently
proved by C. FitzGerald.

LEMMA 2.1. If n(8) — 0 (6 — 0) then, for 0<8 <34,

ul )< sup sup ‘Imw w1|<n(8). (2.5)

3 lw1—w7|=8 wel(w;,wy) Wy — W,

Proof. The right-hand inequality follows at once from the remark about the
enclosing ellipse. We prove now that n(8)<3n™*(8) where n*(8) denotes the
middle term in (2.5).

Let wq, w, €I’ with |w; —w,|=8 and let w € I'(w,, w,). We may assume that

w, =0, w,=3J; w=re", 0=s0<m, r cos 6 =< §/2. (2.6)
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If 6 is sufficiently small then n*(8) <n(8) < 1/2. Hence r sin 8 = 8n*(8) < §/2 which,
together with r cos 6 =8/2, shows that r<§//2. Since x+y—/x=y/(2Jx) for
x>0, y>0, we conclude that

w2~ o|+|o—w { [(8—r)>+4r5 sin® (0/2)]'*—(8~7r)
|w2~w1| )
_2r sin? (6/2) - 26m*(8)?
T 8-r T 8(1-1/y2)°

and thus that n*(8)*><8n(8)? for small 8.

Remark 2.1. The last result implies that n(28) = Kn(8). We only indicate the
proof. With the convention (2.6), choose wf, w5 e I'(0, 8) such that |w] — wj| = §/2,
w € I'(w}, w5) and [w}, w4] is parallel to [0, 8]. Let w € I'(w}, w5) be a point on the
perpendicular bisector of [w), w5]. We consider now the pairs {0, o}, {w, 8},
{w}, w5} and see by elementary geometry that

dn™*(8) = max |Im w| <31n™*(8//3)

for small 8. Applying this twice we obtain n*(8) <9n™*(8/3) <9In*(8/2).

2.3. Proof of the lower estimate (1.3). Let z,, z,€3D, |z, —z,| =8 and choose
¢ €D on the perpendicular bisector of [z, z,] such that [{| = 1—8. It follows from
Theorem 2.1 with a =2 that, for z on D between z; and z,,

f(z)-f(0) ’
T2 (=) + W b|=K,86B(8). 2.7

Writing b, instead of b for the cases z = z;, we thus see that

f(2)=f(z) _(z=2)+(b=b) 2.8
f(z2)=f(z) (z2—z)+(b—by)

Since |Im [(z — z,)(Z,— Z,)]| = 8> we deduce from (2.7) and (2.8) that

f(z)—~f(z1)

- _ 8°+K,8%8(8) _
f(z2) = f(z4)

=M,B(5 2.9
=f-aK,BF 2 29

I

for sufficiently small & because 8 =M;B(8) by (2.1).
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Since I’ is a quasiconformal curve it follows [6, p. 315] that

f(z) = f(za)| _ =~ diam I'(f(z), f(z2)) _

aA-lrol= a-lror - .
Hence (2.2) with ¢/2 instead of € shows that
‘f(l1) - f(zz)‘ =c(1- K‘)Helz = Czslﬂlz =8 (2.11)

if 0<8 < 8,(g), and the lower estimate (1.3) follows from (2.9) and -Lemma 2.1.

3. The upper estimate

3.1. Connection with conformal mapping of strips. To obtain an upper bound
for B(8) we map D and the inner domain of I' conformally onto infinite strips.
Let, as above, f denote a univalent function in D, as well as its continuous
extension to D, which maps D onto 2, and let f(,) = wo(|¢o| = 1). The functions

fot{
Co“g

z=x+iy=h({)=Log and w=u+iv=H(w)=-log(w—w,), (3.1)

where Log denotes the principal value for { €D and log is a determination of the
logarithm for w € {2 obtained by fixing a branch at a point of O —{w,}, map D
onto the strip 3 ={z|-o<x<+x, |y|<#/2} and 2 onto a striplike domain S,
depending on w,. Its boundary is a closed Jordan curve C with a point, w,, at
w =00, Then F=hof *oH™! is a conformal map of S onto 3. Let f(— ;) = w} and
w{ = H(w}); then lim,,_,,_ Re F(w)=« and lim,_,,; Re F(w)=—x. The points
wj and w, decompose C into two subarcs C, and C_, where the notation is so
chosen that, under the mapping F, C, corresponds to {y==/2} and C_ to
{y=—mn/2).
A simple calculation leads to the equation (w = —log (f({) — (&)

F'(w) 1 Ll B-8fQ
FP Fm T 2 i< (32)

3.2. A comparison strip. Let 0<g <1/10. We assume in the following that I
is an asymptotically conformal curve and use the notations of Section 3.1;
K, K,,K,, ... denote absolute constants, M, M;, M,, ... depend only on f and
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parameters. We write
n(u)=n2e™™)+2e 4. (3.3)

LEMMA 3.1. There exists a constant a, which depends only on f (but not on
wo) and a strip

Si={w=u+iv|v>a, e (W)<v<o,(u)<S

where @_ and . are continuous, piecewise linear functions in [a,, ) with the
following properties:

(i) The corners of both curves {v=¢.(u)} occur at most at points u=u,
(n=1,2,..) with u,.;—u,=1/2.

(ii) If foru=a,

e(u)=sup {le%(1)], l—(O)|}

t=u
then

g(u)=ew)+2e ™ =Kn(u-1) (uza,;+1). (3.4)

(iii) For u>a,, let 6, denote the crosscut {Re w =u, ¢_(u)<v<e,(u)} of S,
and 0(u) = ¢, (u)— @_(u) its length. Then there exists exactly one crosscut @, of S
which contains 6, and joins a point of C, to one on C_. If ©(u) is the length of 6,
then

Ow)—0w)+2e ™ =Kn(u—1) (uza,+1) 3.5
and

|0(u)— 7|=Ksn(u—1) (u=a;+1). (3.6)

It should be noted that, while S and S, change with woeI', a, is independent
of wy.

The proof of this lemma is contained in Section 2.2 of [4]. Note the difference
in the definition of 7(u) here in (3.3) and in [4]. The strip S, constructed there is
denoted here by S,. The fact that for u>a, the region S has one and only one
crosscut @, is stated in Section 1.2 of [4] which is referred to in 2.2.
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LEMMA 3.2. There exists an a>a;+1 which depends only on f which the
following properties. Let So={w=u+iv|u>a, ¢o_(u)<v<e,(u)} where ¢, and
¢@_ are the functions in the definition of S; of Lemma 1; thus S,<S. Let
Fy=X,+iY,:So— X denote the one-to-one conformal map of S, onto 3 such
that, for we S,, lim,_,,.Re Foy(w)=4+x and Fy(a+ip.(a))==in/2. Then for
Y(w)=Im F(w)

|Y(w)— Yo(w)|<M;7 ( ) for weS, u<M,(e). (3.7)

u
1+3¢
Again we note that our constants are independent of w,.

Proof. We refer to the proof of Lemma 2 in Section 2.6 of [4] up to and
including equation (2.6.14). There an a is determined such that S, satisfies the
hypotheses (a) and (b) of Theorem 2 of [5] with L =2, [ =1/8, ¢ replaced by c¢,,
an absolute constant defined in ([4],(2.6.13)), w=1/2, a.(W)=a_(u)=
2v2 7j(u)/m, and, by ([4], (2.6.14)),

Au) = [1 +3:-:3 ﬁ(u)]_l.

Note that a depends only on n and thus on f, but not on &. Furthermore, in the
notation of this theorem, e(u)=¢(u)=¢e(u)+2e¢ ™ =K;n(u—1) by (3.4) and
S(u)=6,(u)=8(u)+2e ** =K,m(u—1) by (3.5). (Theorem 2 of [5] assumes that
e(u)=2e™ and 8(u)=e™™ for some p>0. However, if this condition is not
satisfied for any p >0, £(u) and 8(u) may be replaced by £,(u)=e(u)+2e™™ and
8,(u)=086(u)+e™™ for some p=>0.) Hence we can apply the result of Part (i) of
the proof of Theorem 2 in [5], namely, the inequality (4.5). Here we take p =&,
p1=5¢/4, v1=1+2-5¢/4=1+5¢/2 and we obtain for we S,

|Y(W) - Yo(W)I =M;[q(u/v,— 1)]A(u/v1—1)
for u=qsv, (see [5], (4.5)). We now determine M,>q;v, such that

u
1+ 3¢

)< e ! for u>M,(e).

“ 1> and ﬁ(

1+3¢ 1+43¢

Since [7(u)P*™ increases with decreasing u, the factor of M is

; u Au/(1+3¢)) B 1 K#A/(1+K#) 1 K# 2\/2
<[alsl ™ [ < 2
€ n n w

A
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For u> M,(e) we have 7(u/(1+3¢))<e™! and, therefore [1/7 <" <exp (24/2/we).
Hence we obtain (3.7) with M, = M, exp (2./2/we).

3.3. Estimates for Fo(w) and Fg(w). The following Lemma is in part a
quantative version of a known result on L-strips [13, Theorem X] adapted to our
special situation.

We choose an absolute constant a with 3/4<a®<1, say
a= (4/5)1/3

and use the notation of Lemma 3.3. Let ¢(u) =3¢, (u)+¢_(u)] and A ={u=a,
v =y(u)}

LEMMA 3.3. There exists a (&) and x,(e) depending only on € and f such that,
with S(a)={u=ale), |v—y¥u)| = a?*n/2},

{lw—w¥=an/2}cS, for w*eA, Rew*=al(e), (3.8)
|Fi{(w)—1|= K7 (1 +u48) for weS(a), (3.9)

oW _ - ( u 10
F'(w) =Kn (1+48) for weS(a), (3.10)
F([xo(g), +)) = S(a). (3.11)

Proof. Let {u,} be the sequence of points, u,.,;—u, =1/2, u,=a, at which
possible corners of the graphs represented by ¢, and ¢_ occur. By considering the
module of the quadrilateral formed by the crosscuts 6, and 6, ., and the arcs
{u,=u=u,_,,v=¢.(u)} with respect to the family of curves joining these arcs,
we obtain by a known argument (see e.g. [8, pp. 598-599]) that, for w, =

u, +i(u,), Xo(w)=Xo(u, v),

n+1 Uy ,2+ {._2
du WI £+———qi—-du+0'(u,,)+0'(un+1) (3.11)
Uy,

Xo(Wn11) = Xo(w,) = 7 L o) 2 0(u)

and

Xo(W, ) Xo(w)Z 7 L‘"*‘-é?%—[a(u,ow(um)]. (3.12)
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Here

o(u) =Max Re (Fo(w,) — Fo(wy)),

WjEGu

the oscillation of Re Fy(w) on 6,. We note that (using 0(u)=2m)

“1 du Un+1—Up 1
WL 8 w) g om 2 (3.13)

v

Now, integrating along A, we have

aX0 aXO

Xo(Wns1) — Xo(wa) = L %o yuy|au

and by use of the (generalized) mean value theorem we obtain

Xo(Wp+1) = Xo(W, ) 0(uy) [0X, aXO
"“_C_lu_ o [ au dj ( )]u=u:‘,v=tb(u,’.)
i L 6(u)

since ¢'(u) is continuous (even constant) on (U, U,.1); U, <u,<u,.,. If we write
A(w) = Arg Fy(w), we obtain

Q.=

0, =242 |Fy (i)l (cos Awi)—sin AGWDW(L),  wh=uid(u). (319

We now use estimates from [5] for |Arg Fy(w)| in the Remark to Theorem 1 (at
the end of its proof) and for o (u) in [5], (2.3). We apply these inequalities with
L =2, p=¢, p' =5¢/4 and obtain using (3.4) in Lemma 3.1 of the present paper

<K, 7 (—%—— )s' ~ ( u ) = M,(e) =
|A(W)|=2K 71 (1+58/2 1)=2K ;7 TR for u=M,(e)=M,(¢).
(3.15)
We can also choose M,(¢) so large that, by [5], (2.3),
. u
o(u)=4nw - K0 (1+3s)’ u=M,(e). (3.16)
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Furthermore |y’ (u)I Se(W)=Kiqu-1)=K;7(w/(1+3¢)) for u= M,(e). Writing
cos A =1—2sin* (A/2) we obtain

1-Ksn? (1 +u38> =cos A(w!)—sin A(w)¢'(ul)
=1+Kn? ( “ ) =M,. .
Ksq 1+3.) UYEM. (3.17)

We can determine Ms(g)> M,(¢) such that

nf U 1
- > =M, 3.18
1=Ksn (1+3e) p for u=M; %15}

From (3.11), (3.12), and (3.13) we have
1-4o(u,)+ 00U )= Q=1+ 7%(u,_y) +4[o(u,) + o (u, )]

and using (3.16), (3.17), and (3.18) we obtain for u, = M,

Fawil=1+ Ko (=2 ),

- Un 6(uy)
1~K6"( ) 1+3e

1+3¢

and we may assume 1—Kgn(u/(1+3¢))>0 for u> Ms. Finally, by (3.6) we find

u,
1+3e

u
1- Ko )IFo(w)|_1+K7n(l+3) W > 4, = My(e).

or

IE5 w11 Ko () for w, > Mie). (3.19)

1+3¢

Now we come to the proof of (3.8) and (3.9). Here we make use of Lemma 2
in [5]. According to this lemma we can determine an Mg> Ms+ 7 such that for
any w*=u*+iv*e A with u*=M; there is an r=r(u*) such that the disk
{lw —w*|<r}c S,. Moreover, we can, because of (3.4) and (3.6) and the expres-
sion for r(u™), assume that

r(u*)gg():ro for u*> Mg(e).

Thus the disk {|w — w*|= 0m/2} = S, for w*e A, u*=Mq(e).
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We consider now g(w) =log (F5(w)/|Fhy(w™)|) with Im g(w) = Arg Fhy(w), w*e
A, u*> Mg(e). By (3.15),

* _
L1‘+3:) for |lw—w¥=r,

IIm g(w)|=2K;7 (

and, therefore, we have in |w—w*| = ary = a?(7/2).

\log E‘ﬁ%

2 . (u*-—'n') 1+a
<
- 2K 1136 log 1~ o (3.20)

Given w*e A we can find a u), in the sequence determined above such that
|u’,—u*|=1. Since |¢/(u)| =% in the interval between u/, and u™ (except when u is
a corner-point), we have |w!,—w*| <./5/4 < ar, for a >3/4. Hence we may apply
(3.20) for w=w/, and obtain thus

‘log

From (3.20) and (3.21) we have for |w—w*|= ar,, |w,—w*|=./5/4:

Fo(w,)
Fy(w™)

4 ,(u*—’n') 1+a
<__
=2 Ky (357 ) log 1o - (3.21)

F{(w) “ . (u*—w) ( 8K, 1+a)
1 = K.= 1
|og Fi(w)) Kgn 1+ 3¢ 8 r Ogl—a
Hence
6(W) - u*—=
Fow) 4| exg ( )
(W) e e

We use (3.19) to estimate |F(w?)|. We have u, = u*—31>u™*— 7. We choose now
M, (g) > Mq(€) so large that K,f(u*—n/(1+3¢))<1 for u*> M,. Then we have
|Fo(w?)|=2 and therefore

u*—ar

= eKs
1+38), Ky, =e"sKjg. (3.22)

IE5wl— Fs(wll = 2Koh
We take now Re w =Re w™ =u. Writing

we S(a)= {u =M, tlt(u)—az-g<v<d;(u)+a2—g} (3.23)
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we have by (3.22) and (3.19)

IEo(w)l = 1| = ||Fo(w)l - |Fo(will +|IFo(w)| - 1|

. fu—
=QKs+ K70 (1 +3e)'

Using this in conjunction with (3.15) we obtain

=k ({5r) =K (%)
IFo(w)—1]= K"(1+3s Kn\1i2e

for we S(a) and u = Mg(e). If we now set a(e) =max (M,(e), Mg(e)) we obtain
(3.9).
To prove (3.10) note that for |w —w*|=ar,, u*>al(e)

Fo(w)| _
Fo(w)

2 . 8K, _( u* )
<
Max |Arg FO(VV)L—‘rroz(l——oz)2 M\1+4¢

ro(l a) IW—w*=r,

by (3.15). Taking here Re w =u =u™ we obtain the inequality (3.10).
Let A,={u>a(e), v=¢(u)xa’n/2}. For w=u+iv,e A, and w=u+iv_e
A_ we have

Yo(u, v,.)— Yo(u,v_) = j aYO(u U) r+ M dv

u

= J ’ |F5(u +iv)| cos A(u+ iv) dv.

By the first inequality in (3.9) and (3.15) the integrand

IFo(u+ i”)'<1 S asine é_(ﬁzﬁv—))g (1 —Kn (1 +u4e>)(1 2Kt (1 +u3e))> *

for u= M, for a sufficiently large My>a(e). Hence for u=M,

Yo(u, v,)— Yo(u, v)Z(v,—v )a=ma’ a= o,

Since a?=% this implies that, for u=M,, Fy(u+iv,) lies above the line y =
— /2 + 47/5 = 37/10 and Fy(u + iv_) lies below the line y = m/2—4x/5 = —37/10.
By Lemma 3.2 we can determine an M,(e)=My(e) so large that
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|Y(w)— Yo(w)|<#/20 for Re w>M;,(e) (weS). If w=u+iv,, u>M,q(e), then
F(u+iv,) lies above the line y =(3#/10)—#/20 = n/4 and F(u+iv_) lies below
the line y=—m/4. Hence the substrip {u>Mo(e), P(u)—a’m/2<v<y(u)+
a’m/2} of S(a) contains the image C, of a part of the real axis {x = x,(¢), y =0}
under the mapping z — F '(z). That this x,(g) can be determined uniformly for
all woeI” and depends only M,,(¢e) and f follows from the uniform continuity of
f on dD and the application of the mappings (3.1).

3.4. Proof of the upper estimate (1.3). We consider F(w)—Fy(w) in the disk
{lw — w*|= am/2 = ry}, where w* e A and Re w*> a(e) so that this disk is in S,. By
Lemma 3.2, if we S, and u > M,(¢), then |Im (F(w)— Fo(w))|= M, 7 (u/(1+ 3¢)).
Hence by the Schwarz-Poisson representation we have in the disk {{w—w*|=
ar, = a’xf2}

4 M, -
(o)~ Pyl S (%) (3.24)

and

, . - 16 M, . u
[F"(w) =~ Fg(w)| = (ma)*(1—a)? 4 (1 + 38).

We set 8,(¢) =2e /(1 + e *)), Substracting from and adding to the left-
hand side of (3.2) the term

F5(w) 1
T [Fa(w) 1]

and using (3.24), (3.25) and (3.9) we obtain for { =pl,, 0<p <1, 1—p=38,(¢)

=(1—-p)+Mq ( ) =1—p+M [n(2e W14+ 2e7=4],

}_:_e‘f_@ u
2 1+4¢

f

Here M depends only on the function n. Since e™ =|f({)—f({)|=3(1—-p)' ¢ if
1-p=6,(e)=8,(¢) by (2.2) we have

D e—W1+4e) é(l - p)(l——e)/(1+4e) < (1 - ,;;)1‘5"3 for 1-p= 50(8).
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(Note that 84(¢) is independent of ¢, w,.) Hence, for 1—p =8,
BB)=8+M[n(8'7°)+28%/%] for &=25y(e),

because £(1—¢)>5¢/6. If we replace now € by £/5 we obtain the upper estimate.

4. Consequences and examples

4.1. Smooth curves. We derive now some results of Lesley and the second
author [4] from Theorem 1.

THEOREM 4.1. Let f map D conformally onto the inner domain of I' and let
L # dt <oo (4.1)

Then T is smooth, log {' has a continuous extension to D and

max Jlog /() - logf(cz>|<Mj D 414 M(e)s e 4.2)

[E1—Lol=8
for 0<eg<i and 0<6<1.

As Rubel, Shields and Taylor have shown [9], it does not matter whether the
maximum is taken for ¢, {,€oD or for {,,{,€D. The upper bound in [4,
Application 1] is, instead of (4.2),

! 11(t)1 1

dt.
I ogn(t)

o "](t) 1 1-¢
M(e) L . log 200 dt+M(e)d J;

Integration of (1.6) gives the same bound with 8'7¢ replaced by 8. The estimate
(4.2) is still better for “not too smooth” curves.

Proof. It follows from (1.2) that, for {;€dD and 0<8 <1,

1 1__
l ‘ log f'(z) BU-D) 4
1-8)¢,

= —d
|dz|_<_L‘75 -
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By Theorem 1, this is

1) tl——-e + tE/6
§§1»11.[ 1?( ) (it——

- J:Hn(t) dt+ M1 ser6.
0 t ]." E

t £

Hence (4.1) implies that log f' is continuous in D so that I' is smooth. If ¢, €D
and |{; —¢,| =8, a similar argument shows that

S1—e
Idzléfﬂ L ":t) dt+12:41 /6.

T s
—log f'(z
'[I—S)Cl dz gf

Adding these two estimates we obtain (4.2); the range 8,(e)=8<1 is trivial.
We prove now that (1.5) implies (1.6). Since ¢, =|f'({)|=M, for (D by
Theorem 4.1, it follows (see (2.10)) that

28 =|f(z) —f(z)|=M,8 for |z,—2,|=8, 24, 2,€D. (4.3)

The lower estimate (1.6) is proved as in 2.3 with (2.11) replaced by (4.3).
Furthermore, it was shown in [4, Cor. 1] that

larg £/(Z,) - arg (L) = Ms L 20 1+5: (4.4)

we have used Remark 2.1 to bring that result to this form. Now the upper
estimate (1.6) follows by applying (4.4) to the derivative of the Poisson-Schwarz
formula; see [14, Lemma 3].

Remark 4.1. The condition that log f’ is continuous in D does not conversely

imply (4.1). To see this, let h be analytic in D and continuous in D with h(D) <D
such that

Ll |h'(x)|dx = . (4.5)

The function f defined by log f' =2+ h satisfies |arg f'(z)| < n/4 for z eD. Hence f
is one-to-one in D and I is a Jordan curve. The proof of Theorem 4.1 shows that
(4.1) does not hold because of (4.5).

4.2. Asymptotically smooth curves. The Jordan curve I' is called asymptotically
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smooth if it is rectifiable and if

I(I'(w,, ®,))

jwi—wo|=8 le - (.02|

-1 as 6§—>0 (4.6)

where | denotes the length. This is equivalent [7, Th. 2] to logf'e VMOA
(vanishing mean oscillation [10]). If p is a positive increasing function with
p(8) — 0 as 8 — +0, let BMO,;, (p) denote the space of all g e L'(dD) such that

. _ 1
[6)) f l8(2) il ldz|=Mp(3),  &r=y5 j g(0) ld| 4.7)

for all arcs I < oD with I(I)=8. The space H' N L'(3D) is a subspace of VMOA.
See [11, Chapter 5] for a discussion of these concepts.

THEOREM 4.2. Let f map D conformally onto the inner domain of I. If
1
J; t™In(t)? dt <o (4.8)

then I' is asymptotically smooth and
log f'e BMO,p, (p.) (4.9)

for 0<e <3 where

p.(8) = LSH tT ()2 dt+8%°  (0<8<1). (4.10)

We need a lemma on functions of bounded mean oscillation.

LEMMA 4.1. Let g be analytic in D and let
lg'@)=ed) (z|=1-9) (4.11)

for 0<&<1. If

1 172
p(8)= (L ;-% o(1)? dt) <o (4.12)
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then g € BMO,p, (p) and moreover, for 1-8 =|¢|<1,

1 2

oy J;D |g(z)— g(£)|2| ML |dz| = K,p(8)>. (4.13)
Proof. For { €D, let

w@=g{17)-s0) (zeD) (419

It easily follows from Parseval’s formula that

ledE= [ [ - 1zPleioP dx ay. @15

D

Substituting z+>(z —¢{)/(1—Zz) we therefore obtain from (4.14) that

112V 1 #12
e =2 [ [CER0 D 10 ax ay
D

[1-gzf?

= L (1= -lPe-r? (s L “ll__‘:g-ei.‘z)rdr

by (4.11). Hence it follows from the Poisson integral formula that, for |{|=1 -8,

'(1-r)é
ledi=K [ 125 -1 dr

Another substitution shows that this estimate is equivalent to (4.13).
Given an arc I < 3D we choose ¢ €dD such that 1—|¢|=2I(I) and /|| is the
midpoint of I. Then we obtain from (4.13) that

15 | 18@-@P @215, | 1620~ s@P L5 14215 Kopto)

for |¢{|=1-6. Since the left-hand side is not increased if we replace g({) by the
mean value g; we see that (4.7) holds.

Proof of Theorem 4.2. Let g=1logf'. It follows from Theorem 1 that, for
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|z|=1-8,

If'(2)| _M(e)
IF()|= &

1g'(z)| = (M(8'7%)+8%%).

Hence the function defined in (4.12) satisfies

p(8)°>=2M(e)? L [n(t' %)+ 53] dt.

t(t+9)

Writing 7 =8'"*> we deduce that

p@r=My(e) [ [1ELy ]

0 pu

18
dt+M2(e)J ;—2-dt

§M3(8) 3-(1)- dt+ M,(¢) 75’3+§].

9 L T

Since (1—¢/3)(1—¢€)>1—4¢/3 we obtain (4.10) replacing & by 3¢/4.

Remark 4.2. We mention that (4.8) implies

sup M<1+M£ @ 4, (4.16)

lw1—w,|=5 |(01 - (1)2|

We shall not give the proof; it is purely geometric and proceeds by successive
subdivisions of I'(w;, w,).

4.3. A class of examples. We show now that B can be prescribed up to
multiplicative bounds and that the assumptions (4.1) of Theorem 4.1 and (4.8) of
Theorem 4.2 cannot be replaced by weaker conditions of the same general type.
Note that B is subadditive, by (2.1).

THEOREM 4.3. For every increasing subadditive function ¢(8) (0<8=1), a
univalent function f(z) (z €D) can be constructed such that
(i) co(8)=B(B)=Mp(8) for 0<8=1,;

(ii) L n(t )dt<°° & T smooth & logf' continuous in D;

2
(iii) L 71(:) dt <o & T rectifiable & log f'e VMOA.
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Proof. Let b be a positive constant to be chosen later. We define

1 b 1
bo=be(1), b, = b¢(2—k)—§ <p(2k_1> (k=1,2,...);

it follows from the subadditivity that b, =0. Induction shows that
Y 2 "b =be(2™) (n=0,1,...).
k=0
We define now f by f(0) =0 and
logf(2)=g(z)= 2 bz™  (zeD);
k=0
this is a lacunary series with Hadamard gaps. If 0<r<1 then

f"@)| _

@) '””22“

max

|zl=r

Let 2" 1=1-r<2™ (n=1). We see from (4.20) and (4.18) that

A-nrg'(n= i 2k np (1—2"""1)**

k=0

=bp(2™™)+ Y. 25b exp (—27Y).

k=n+1

Since b, =bp(27%)=be(1—r) for k=n+1, we conclude that

(1-rrg (=26 [1+ 5 2 exp (20| el1-1)

' (4.17)

(4. 18)

(4.19)

(4.20)

(4.21)

Hence we see from (4.20) that (1—|z|) |f"(2)/f(z)|<3 for zeD if b is chosen
sufficiently small, and Becker’s criterion [2] shows that f maps D conformally onto
the inner domain of a quasiconformal Jordan curve I. We verify now that this

function f satisfies (i)—(iii).
(i) It follows from (4.20) and (4.21) that

B(®)= sup (1-ng'(N=M sup ¢(1-r)=Me(d).

1-8=r<1 1-8=r<1
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Furthermore we see from (4.20) that, if 27" !<1—r=2" (n=1),

< 1\2_ b 1 b
(1—r)rg’(r)§k}_:0 2k'"‘1bk(1—§;> égcp (2n)>—<p(l—r)

Hence the lower estimate (i) also holds.
(ii) In view of Theorem 4.1, it is sufficient to show that the smoothness of I"
implies (4.1). If I" is smooth then, by Lindelof’s theorem [6, p. 295],

arg f'(z)= i b, r*" sin (2“9) (z =re")

k=0

is continuous in D. Hence Szidon’s theorem [1, p. 246] shows that Y b, <. Since
()= M, B(t"?) = M,e(t"?) by Theorem 1 and by (i), we see from (4.17) that

j B%d <2M2L ‘—"—(—Qaus_zM2 Zow(j;z)

_ M, i by <oo.

k=0

(iii) Because of Theorem 4.2 and the remarks preceding it, we have only to
show that the rectifiability of I" implies (4.8). If I' is rectifiable then log f'(re®) has
a limit as r — 1—0 for almost all 8 [6, p. 320]. Hence it follows from Zygmund’s
theorem [1, p. 237] applied to the lacunary series (4.19) that Y bz <x. As above
we deduce that

=0

LI"(:)Z dt=M, L oW yi=m, Z o),

and, by (4.18) and Schwarz’s inequality, this is

[~}

=2M, Y. (i 2"“"bi)=4M3 k§0 b} <.

=0 ‘k=0

Remark 4.3. A smooth curve I is called Dini-smooth if the modulus of
continuity »(8) of the tangent angle (as a function of arc length) satisfies

L o) . o (4.22)
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It is easy to see that n(8) = K,w(8). Hence (4.22) implies (4.1). This gives a new
proof of the well-known fact [12] that log f' is continuous in D if I" is Dini-
smooth.

We show now that (4.1) does not conversely imply (4.22). Let f again be

defined by (4.19) where b, >0 and
Y bo<w, ) kb, =c. (4.23)
k=1 k=1

The proof of Theorem 4.3(ii) shows that (4.1) holds. If w*(t) denotes the modulus
of continuity of arg f'(e*®), it follows from Theorem 4.1 that w(t)=w*(c,t). By
Szidon’s theorem [1, p. 246],

(x)*(t) — Sl;p |Im [log f:(eie+it/2) —log fr(eie—it/Z)]l

=2 sup Z b, cos (2¥0) sin (2 1t)|=c, Z b, |sin (2 1)|.
(] k=1 k=1

Hence

1, % o 1 |in (Pk—1 o
L ® (t)dtzcz y bkL l_s_l_l.l%__tlldt;% Y. kb, =
k=1 =

t k=1

because of (4.23), so that (4.22) does not hold.
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