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Formes differentielles fermées non singuli¢res sur le n-tore

JEAN-CLAUDE SIKORAV

Introduction

On désigne par (2, ’ensemble des 1-formes fermées non singulieres sur le
n-tore T"; on le munit de la topologie C* (en fait C*, 0 <k <o, donnerait les
mémes résultats). Dans (2,, opere naturellement par conjugaison le groupe Diff T"
(resp. la composante connexe de I’élément neutre dans Diff T"); deux formes
équivalentes pour cette relation sont dites conjuguées (resp. isotopes).

On dit qu’une forme w € (2, est linéarisable (resp. linéarisable par isotopie), si
w est conjuguée (resp. isotope) a une forme linéaire Y a; dx; (puisque w est non
singuliere, nécessairement (a;) € R" —{0}); on note (2, (resp. 2%) le sous-espace de
2, correspondant.

On note = la relation d’isotopie, [w] la classe d’isotopie de w e £2,, et 02,
’espace topologique quotient: c’est cet espace que nous allons étudier.

Par un lemme de Moser (cf. [Mo], [LB] appendice 1), wy=w; équivaut a
Iexistence d’un chemin de formes de (2, cohomologues joignant wy a w;.
L’application naturelle de £, sur H'(T", R) —{0} =~R" —{0} définit par passage au
quotient une application notée cl de ,,~ sur R" —{0}; en utilisant le lemme de
Moser, le fait que la relation = est ouverte et 'existence de sections locales, on
voit que c’est un homéomorphisme local.

Notons une autre conséquence du lemme de Moser: si w;=f*w, avec
feDiff T* homotope a l'identité, et si w; et w] sont cohomologues et assez
proches respectivement de w, et de w,, alors w} = f*w§. On en déduit que NV et
!, sont ouverts dans {2, (pour £, on remarque que toute forme linéarisable I’est
par un difféomorphisme homotope a lidentité: si o =f*}} a;dx;) et si ve
Gl, Z < Diff T", v homotope 2 f, alors w = (v 'H*(V*QT a; dx,))).

D’autre part, si une forme w de (2, a une classe de cohomologie rationnelle, il
existe une submersion p:T" — S', p(0, ...,0)=0, a fibre connexe, et un ration-
nel A >0 uniques telles que @ = Ap™ d6, ou d6 est la forme de Lebesgue de cercle
(cf. [T], [L,]); deux formes wo=p& do et w;=pT d6 sont cohomologues si et
seulement si p, et p, sont homotopes et leur conjugaison (resp. leur isotopie)
€quivaut 3 celle de p, et de p,. Cette remarque permet a F. Laudenbach d’étudier
dans [L,] la fibre de cl au-dessus d’un point rationnel, sous I’hypothese
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80 JEAN-CLAUDE SIKORAV

supplémentaire n = 6; en particulier, une telle fibre contient une infinité de classes
d’isotopie non conjuguées.

Par contraste, pour n <3, I’application cl est un homéomorphisme (cf. [RR)).

A partir de maintenant on supposera n assez grand (n =6 ou 7). F. Lauden-
bach m’a proposé le probleme de l’existence d’une forme irrationnelle non
linéarisable. Pour I’aborder il m’a conseillé d’étudier I'invariant d’isotopie des
formes rationnelles (cf. [L,]); cet invariant se compose de deux parties, et il
pensait que la seconde (pseudo-isotopie de la fibre) n’était pas stable par
approximation: c’est effectivement le cas et I’on peut en déduire le résultat suivant
(cf. IV.1).

THEOREME 1. Pour n=6, il existe des formes non linéarisables qui sont
limites de formes linéarisables par isotopie; donc (},,. n’est pas séparée.

Cece est un résultat “négatif,” mais il reste la premiere partie de I’invariant
(pseudo-isotopie de I’espace total); en utilisant une construction de Farrell que
m’a indiquée Laudenbach, j’ai pu en compléter la description (propositions 1.9 et
1.10) et en déduire I’existence de formes irrationnelles linéarisables mais pas par
isotopie. Plus généralement on a le théoréme suivant (cf. I1.5).

THEOREME 2. Munissant wo(Diffp; T") de la topologie discrete, I’ application
de mo(Diffp; T") X (R" —{0}) dans 2, définie par ([f], (a;)) = f*(X} a; dx;) est un
homéomorphisme pour n=17.

Remarque. D’apres [HsS] et [Ha], mo(Diffp; T") est une somme dénombrable
de groupes cycliques d’ordre 2.
Enfin j’ai pu prouver les résultats suivants:

THEOREME 3 (cf. IV.1). Les formes linéarisables sont denses dans (2,.

THEOREME 4 (cf. IV.3). L’espace {2, est connexe par arcs.

Remarque. Le théoreme 4 détruit I’espoir qu’il existe un invariant d’isotopie
stable par approximation (cf. [L,], p. 447).

THEOREME 5 (cf. IV.2). Toute classe de cohomologie ayant un groupe de
périodes de rang =<n—1 contient une forme non linéarisable. -

THEOREME 6 (cf. IV.4). L’ensemble des classes de cohomologie contenant
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une forme non linéarisable est une réunion dénombrable de fermés d’intérieur vide
dans R" —{0}.

Le plan de ce travail est le suivant.

Dans le chapitre I, on précise certains détails de la classification isotopique des
submersions sur le cercle et I’on énonce une proposition (1.9) qui la compléte dans
le cas du tore T". La démonstration de cette proposition a été placée a la fin de ce
travail dont elle constitue les chapitres V et VI.

Dans le chapitre II, on utilise ces résultats et la détermination de m(Diff T")
faite par [HsS] et [Ha] pour prouver le théoréeme 2.

Dans le chapitre III, on démontre une proposition (III.4) décrivant un
voisinage dans {2, d’une forme rationnelle: pour cela, on utilise tous les résultats
précédents.

Enfin dans le chapitre IV on démontre les théorémes 1,3,4,5 et 6 comme
conséquences de cette proposition III.4.

Outre F. Laudenbach, qui m’a proposé le sujet et fourni les méthodes pour
I’aborder, je tiens a remercier J. Barge et P. Vogel, dont les suggestions m’ont mis
sur la voie des théorémes 3 et 4, et aussi le rapporteur de cet article, pour les
améliorations qu’il y a apportées.

Préliminaires

Par “variété” on entendra une variété différentielle de classe C*, compacte
sauf mention contraire.

Si M est une variété, une pseudo-isotopie de (M, dM) est un difféomorphisme
de M xIrel Mx{0} dont la restriction a dM X1 est une isotopie. Les pseudo-
isotopies de (M, dM) forment un groupe que ’on note #(M,dM) et que l'on
munit de la topologie C”; on note P(M,dM) le groupe de ses composantes
connexes, ou classes d’isotopie, et [@] la classe d’isotopie d’une pseudo-isotopie
D

On note py (ou w, si M=T", ou wu s’il n’y a pas de risque de confusion)
I’automorphisme “miroir”’ de #(M, aM) (cf. [L,]), on notera de méme I’automor-
phisme induit de P(M, dM).

On note Diff (M,3M) (resp. Diffy; (M, 0M), Diffp; (M, 0M)) le groupe des
diffomorphismes de M dont la restriction au bord est isotope a I’identité (resp. le
sous-groupe de ceux qui sont homotopes ou pseudo-isotopes a l'identité), et py,
(ou p,, p) la surjection canonique de ?(M, dM) sur Diffp (M, dM); on notera de
méme p,, la surjection induite de P(M, aM) sur mo(Diffp; (M, oM)). 1l est clair que

'on a toujours im (id + par) < ker pay.
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1. Pseudo-isotopies de Wall

Dans ce chapitre, on considere une variété E munie d’une submersion p, sur
S, de fibre-base F, connexe. Pour simplifier, on supposera que le bord de E est
vide, mais les résultats se généralisent facilement au cas ou il ne I’est pas: on doit
alors supposer que p, | dE est la projection d’une structure produit.

I.1. Définitions

a) Un anneau (issu de F;) est une sous-variété W de E X I, image de F,Xx I par
un plongement propre i tel que i| Fox{0}=id et i(F,x{1})<= E x{1} (rappelons
que la propreté de i signifie i '(E xaI)=F,x4dI et i transverse au bord). On
notera 9, W la projection sur E du bord supérieur WN(E x{1}).

b) Un anneau W (issu de F,) est dit ‘““de Wall au sens strict” si la restriction a
W de la projection q: E XI — E est une immersion de W dans E qui envoie du
cOté positif de F, un voisinage de F,x{0}.

Plus généralement, un anneau est dit de Wall s’il est isotope a un anneau de
Wall au sens strict.

c) Une pseudo-isotopie @ de E est dite de Wall (resp. au sens strict) pour F,
si @(F,x1I) est un anneau de Wall (resp. au sens strict). Nous noterons Wa (F,)
I’ensemble des classes dans P(E) des pseudo-isotopies de Wall pour F,; remar-
quons que Wa (F;) dépend de 'orientation transversale de F,.

1.2. Premicéres propriétés

(1) L’anneau “vertical” Fyx I est de Wall; donc Wa (F,) contient 'image de la
suspension 3 : P(F,) — P(E) définie a 'aide d’un voisinage tubulaire de F, dans
E (cf. [L,], p. 422).

(2) Si f est un élément de Diffy E et en particulier si f est dans Diffp; E, alors
Wa (f(F,)) = Wa (Fy): cela vient de ce que la conjugaison par f induit ’identité de
P(E).

I.3. La proposition suivante montre que les notions ainsi définies sont substantiel-
lement équivalentes a celles de [L,] (cf. remarque p. 419).

PROPOSITION. Si W et W' sont deux anneaux de Wall issus de F, tels que
3. W et 3, W' sont isotopes, alors W et W' sont isotopes parmi les anneaux issus de
F,.

Avant de démontrer cette proposition, nous aurons besoin de quelques
notations.
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a) w:E — E le revétement infini cyclique induit par po; on identifiera E 2
FyXR en sorte que le diagramme suivant commute:

E=F,xR-—Z->E

po=prz2 l lpo

R—> S'=R/Z.

b) F,= FOX{O} le relévement privilégié de F, dans E;

o :E—>E le générateur canonique du groupe des transformations du
revétement;

d) G la projection de E xI sur E;

e) Si W est un anneau issu de F,, il se reléve isomorphiquement dans E x I en
W 5 F, x{0}; nous noterons 3, W x{1} = WN(E x{1}).

La proposition est une conséquence immédiate des lemmes 1.5 et 1.6 ci-
desous. Le corollaire du lemme 1.4 sert a prouver LS.

1.4. LEMME. Soit W un anneau de Wall au sens strict issu de F,. Alors F, et
d., W sont disjoints et la restriction de § a W est un plongement dont I’image est la
partie de E comprise entre F, et 3, W.

Démonstration. On voit facilement que ExI—W a deux composantes con-
nexes et qu’il en est de méme pour E —6+W (ceci est vrai pour tout anneau). Soit
D la composante de E—a, W qui ne contient pas le germe de 4| W le long de
3. W et soit X I'espace topologique:

X =FoX ], 0 U vUD

LW

C’est une variété topologique de méme dimension que E; I'immersion 4 | W,
qui induit Iidentité de F, et de 8, W, se prolonge par I'identité de FyX]—x, 0 et
de D en une immersion a de X dans E. Cette immersion est propre (I'image
réciproque d’un compact est compacte), donc c’est un revétement; de plus,
’application induite entre les groupes fondamentaux est surjective, donc a est un
homeomorphlsme ce qui prouve que:

a) a| W=g|W est un plongement, donc F, et 3, W sont disjoints;

b) E admet une partition E= Fyx]-o , 0L U q(W) U D:donc G(W) =
A(F,, 3. W), partie de E comprise entre F, et a,.W. O
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A(F,.8,W)

Donc W est le graphe d’une fonction ¢ : A(F,, dW) — I vérifiant ¢1(0) = F,,
¢ Y1) =49, W (et transverse au bord); il est alors clair que la composante “droite”
de ExXI—W (celle qui contient (7 xid)(W)) est:

P={(x,t)e ExI|xeD ou xe A(F,, 3, W), t <c(x)}.

L]
]
|
|
'
t |
'
|
]
) c(x) >t

— D x {0}
Ax{0}

COROLLAIRE. Si xe A(F,,0,W), t*xe A(F,,0,W) avec keN* alors
c(7*x)> c(x). [En effet, on a (7*x, c(x)) € (v* Xid)(W) = 9.]

©

f
\

1.5. LEMME. Si W et W' sont deux anneaux de Wall au sens strict issus de F,,
tels que 3, W =09, W, alors W et W' sont isotopes rel le bord.

Démonstration. W et W' sont les graphes de deux fonctions ¢ et ¢’ de
A(F,, 3, W) dans I; d’apreés le corollaire ci-dessus, le graphe W) de (1=A)c+
Ac’ est, pour 0=A =1, projeté injectivement par w Xid. Le projeté W(A)=
(w xid)(W(A)) donne P’isotopie cherchée. O

1.6. LEMME. Si W et W’ sont deux anneaux de Wall au sens strict issus de F,
tels que 3, W et 0, W’ sont isotopes, il existe une zsotople W()\) d’anneaux de Wall
au sens strict issus de F,, telle que 9. W(O) o, W et 6+W(1) o, W'

Démonstration. a) Il existe une pseudo- isotopie @ telle que P(FyxI)=W (cf.
[L,], p. 419). Posons p; = poo®7?, p;=pooP;! et soit f: E — R telle que fomr =
D1~ Po-

b) Construction de Tischler (cf. [LB], p. 175): définissons P = =potif:EXI —
S* (t coordonnée sur I) et W(0)=P~*(0), que I'on reléve en W(0).
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Le fait que f<O sur W(0) entraine que:

i) P est transverse a 0 sur W(0).

if) W)) est un graphe au-dessus de q(ﬁ/\(()))=A(l:"0, 3, W) =q(W). Donc
W(0) est un anneau de Wall au sens strict, et son bord coincide avec celui de W.

Par hypothese, il existe une isotopie p* : E — S' telle que p°®=p,, (p,)"}(0) =
9.W’; en la modifiant convenablement on peut supposer que le relévement
p*:E — R issu de p, a les propriétés suivantes:

. P1=Di-

. (") (0) = Fyx 10, + oo pour tout A.

On peut alors faire la construction de b) pour tout A:

. On définit f* telle que f*eom =p* —p,, et 'on pose P* = py+tf*;

. On pose W(A)=(P*)"%(0), que I’on reléve en W\(X).

Le fait que f* <0 sur W(A) entraine que W(\) est un graphe et que P* est
transverse a 0 sur W(A); comme de plus W(0) est un anneau, (W(A)) est une
isotopie d’anneaux de Wall au sens strict (issus de F,;). Comme d,W(1)=
(p")"'(0) =9, W', ceci acheve la preuve du lemme. O

I.7. COROLLAIRE. Si @ et ¥ sont deux pseudo-isotopies de Wall pour F,
telles que ®@,(F,) est isotope a V,(F,), alors leurs classes [®] et [V] sont congrues
modulo ’image de X : P(F,) — P(E).

Démonstration. D’aprés la proposition 1.3, on a ®(FyxI)=W(F,xI), et
d’apres [L,], p. 421-22, les pseudo-isotopies de E laissant Fyx I invariant a
isotopie prés sont celles dont la classe est dans im %. [

1.8. PROPOSITION. Wa (F,) est stable pour la loi de groupe de P(E).

‘Démonstration. Sovient [®] et [¥] deux éléments de Wa (Fp); notons F, =
®,(F,). Puisque Wa (F;) =Wa (F,) (cf. 1.2), on peut supposer @ strictement de
Wall pour F, et ¥ strictement de Wall pour F;; alors, q°® envoie du coté négatif
de F, un voisinage de F,x{1} dans FoXI (cf. 1.4, lemme 1), et g ¥o(P, Xid)
envoie du coté positif de F, un voisinage de Fy X {0} dans Fy X I. On peut dong, en
gardant les propriétés de @ et de ¥, modifier @ pres de E,x{1} et ¥ pres de
E x{0} pour que la pseudo-isotopie topologique H, définie par:

{H(x, )= d(x,2t), pour (=%
H(x, ) = ¥(®;(x),2t—1), pour t>3

soit un difféomorphisme; alors H est isotope a2 ¥ o @ et est strictement de Wall
pour F,.
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1.9. Cas ou E =D""'xS': Proposition fondamentale

Rappelons que d’aprés [HaW] le groupe de pseudo-isotopie P(D"'x S, )
est, pour n =6, canoniquement isomorphe au groupe ZJ[ T, T~ '] des polyndmes
de Laurent a coefficients dans Z, sans terme constant. Le principal résultat sur les
pseudo-isotopies de Wall est alors le suivant.

PROPOSITION. Pour n=17, il existe une pseudo-isotopie de (D" " x S, 3) qui
est de Wall pour D" ' x{0} (avec l’orientation transverse naturelle) et dont I’in-
variant est T.

La démonstration de cette proposition fait I’objet des chapitres V et VI; elle
repose sur un lemme facile concernant les cobordismes élémentaires de paires
(V.6) et sur la comparaison de deux chemins élémentaires d’élimination pour une
paire de points critiques d’une fonction de Morse.

1.10. Cas ou E =T": Détermination des pseudo-isotopies de Wall

D’aprés [HaW] on a, pour n =6, un isomorphisme canonique:
P(TY)=Z3T,, T;,..., T,, T:'].

Si p, est une submersion de T" sur S homotope a la coordonnée x,, on a des
isomorphismes canoniques:

P(FO)zP(Tn_lx{O})::'Zg[TI’ veey T;—l-l]’

la suspension X : P(F,) — P(T") correspondant a l’inclusion. L’application miroir
Wy :P(T") — P(T") (resp. pn—;:P(Fy) — P(F,)) est le morphisme  d’anneaux
induit par T;—T; !, 1<i<n (resp. 1=i<n—1).

On a alors le résultat suivant.

PROPOSITION. Pour n=7, Wa (F,) est le sous-groupe de ZT,,..., T."']
engendré par les monémes T4 - - - Tk, avec k, =0.

Démonstration. D’aprés [L,] p. 419, il exist une pseudo-isotopie @ de T" telle
que: Fo=@,(T" ' x{0}), donc (cf. 1.2), Wa (F,) = Wa (T" 1 x{0}).

a) Considérons un mondéme T%i--- Tk k,>0; soit i un plongement de
D" 'x S' dans T" tel que x, °i =k, pr, et qui envoie le générateur canonique de
m (D" 'x8Y) sur Tk - - - Thne 7y (T™).

Prenons une pseudo-isotopie @ de (D""'x S, d) ayant les propriétés de 1.9,
transportons-la sur (D" 'xS') et étendons-la par une isotopie de T"-—
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i(D""'x S'): on obtient une pseudo-isotopie de T" qui est de Wall pour T" ' X
{0} (la condition d’immersion positive est préservée car k,>0) et qui a pour
invariant T%:- - - Tk»,

Comme Wa (T" ' x{0}) est stable pour I’addition et contient 3(P(T" 1)) =
Z3[T,, ..., T,',], il contient le sous-groupe de I’énoncé.

b) Réciproquement, soit P € Wa (F;); écrivons-le P = Q + R, ou Q (resp. R) ne
contient T, qu’avec des exposants =0 (resp. <0). D’apres le a), P'=Q+ u,R est
aussi dans Wa (Fj); de plus P et P’ ont méme image dans m(Diffp; T"), donc 1.7
entraine P'—Peim 3. Comme P'—P =R+ pu,R, cela signifie que T, n’apparait
pas dans R. []

I.11. Remarque. Le résultat de 1.10 complete la classification isotopique des
submersions de T" sur S'. En effet, a une paire de submersions homotopes py, p;,
[L,] associe un élément de Wa (F,) X P(F,), défini modulo I'image de
(—3,id+ ) : P(F,) — Wa (F,) X P(F,), qui classifie a isotopie pres les submersions
homotopes a p,. Cet invariant sera appelé invariant d’isotopie de p, par rapport a
Po-

1.12. Remarque. On déduit immédiatement de 1.10 que Wa (Fy)+
im (id+ w,,) = P(T™), quelle que soit la submersion p, de T" sur S'.

I1. Formes linéarisables: classification isotopique en grande dimension

I1.1.* PROPOSITION. Soit ® une pseudo-isotopie de T", n="7. Les propriétés
suivantes sont équivalentes:

a) la classe de @ est dans im (id+ w,)) < P(T");

b) @, est isotope a [Didentité, autrement dit [P]eker (p,:P(T")—
mo(Diffp; T™));

¢) Il existe une forme w dans €, telle que PTw soit isotope a w.

Démonstration. 11 suffit de prouver que c) entraine a): or, si ¢ est vérifiée, le
lemme de Moser permet de supposer w rationnelle.

Soit alors p la submersion associée a w; on a pe®;~p. De plus, d’apres 1.12,
on peut écrire [®]= Q+ R, avec Qe Wa (F) [F=p~'(0)] et R € im (id+ p,). Soit
¥ une pseudo-isotopie de classe Q: on a po ¥, ~p, et comme ¥ est de Wall pour
F, linvariant de p par rapport a p est représenté par (Q,0). On a donc
(Q,0)eim (3,id+p,_,), soit QeZ(ker (id+ p,-)) <ker (id+m,) =im (id+p,);
finalement, [®]= Q+ R est bien dans im (id+ p,). O

* Voir remarque 2 la fin.
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I1.2. Le groupe my(Diff T™)

L’équivalence de a) et b) dans la proposition précédente était déja connue de
[HsS] (p. 410), [Ha] (p. 9), qui calculent pour n =6:

mo(Diffy T") = mo(Diffp; T")D #,,,

avec ’n'()(DiﬂpI Tn) = P(T")/im (id+ “'n) et %n = @;‘=2 Hi(Tn, "lTl_._l(TOP/O))
(remarque: ¥, = ker (mwo(Diff T") — mo(Homéo T™)). Notons que ¥, est un groupe
fini.

La suite exacte 0 — my(Diffy T") = wo(Diff T") = Gl,, (Z) —> 1 est une
décomposition de mo(Diff T") en produit semi-direct, I’action de Gl, Z par
conjugaison étant ’action canonique sur:

2Ty, ..., T, Yim (id+u,) & H'(T"; m.,(TOP/O)).

I1.3. LEMME. Pour n=7, une forme rationnelle linéarisable ’est par un
diffeomorphisme pseudo-isotope a l’identité.

Démonstration. On peut supposer que la submersion p; associée est homotope
a x,. Soit ([(¥], [¢]) un représentant de I'invariant de p, par rapport a x,: le fait
que p; est conjuguée a x, s’exprime par p,_([e])=0 (cf. [L,] p. 424), soit
[¢]leim (id + m, ;) puisque n—1=6 (cf. IV.2). On a donc [¢]=[¢¥]+ w,._1[¥],
d’ot (@];[e])~([P]+2[¢], 0): donc il existe une pseudo-isotopie ¥ de T", de
classe [@]+ 3[y], telle que p,o¥;=x,. O

I1.4. PROPOSITION. Pour n=7, laction de ¥, sur Q,,., donnée par
[f]1- [w]=[f*w], est triviale.

Démonstration. Comme wy(Diff; T") est abélien, il suffit de prouver
f* X1 aidx; =37 a; dx; pour [f]le ¥, et (a;)eR"—{0}.

a) Traitons d’abord le cas rationnel. Il suffit de prouver que [f]e #, entraine
f* dx, =~dx,; or, d’aprés II.1 et IL.3, on peut écrire f* dx,=g™ dx,, avec ge
Diffp; T", 1a classe [g]e mo(Diffp;T") étant bien définie. L’application a ainsi
définie de ¥, vers my(Diffp; T") est un morphisme de groupes d’apres la
commutativité de my(Diffy T"); de plus elle est compatible avec les actions par
conjugaison de G ={veGl, Z | v*x, =x,}.

Soit alors [f] un générateur de %, d’invariant (X, A---AX)®y (i=2,
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y € ;.1(TOP/O)) et soit beZJ[T,, ..., T,'] tel que p,(b) = a(f]) € mo(Diffp; T").
On a:

brub= T TheeTh

(ki ..., k,)eK
ou K est une partie finie de Z" —{0}, invariante par le sous-groupe
G'={veG|v*(x, A" Ax)=X A - - Ax, mod #m,,(TOP/O)}.

Comme les orbites de G’ sont infinies (exercice), K est vide: donc a([f]) =0, et a
est I'application nulle. [

b) Définissons A ={(a;)eR" {0} | f* 31 a,dx; =3} a; dx;, pour tout [f]e ¥,}.
On a les propriétés suivantes:

. A est un cdne contenant Q" —{0}, donc non vide;

. A est invariant par Gl, Z: cela vient du fait que #, est distingué dans
wo(Diff T");

. A est ouvert: cela résulte de lemme de Moser et du fait que ¥, est fini.

Comme toute orbite de I’action de Gl, Z sur P" 'R est dense, on en déduit
A=R"-{0}. O

Conséquence. Toutes les formes linéarisables le sont par pseudo-isotopie
(généralisation de I1.3).

I1.5. THEOREME. On munit mwo(Diffp; T") de la topologie discréete; alors,
l

pour n =7, I’application a, : my(Diffp; T") X (R" —{0}) — £,

1) @) = |r* Ya d|

est un homéomorphisme.

Démonstration. On sait déja que c’est un homéomorphisme local (pour tout n)
De plus, la proposition I1.1 entraine I'injectivité et la remarque alafindeIl4la

surjectivité. [

En particulier, 3 une forme linéarisable est associée un unique ¢lément de
. . s . l
wo(Diffp; T™), qui précise sa composante connexe dans (2,..
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IIl. Voisinage dans (),,. d’une forme rationnelle

Dans ce chapitre, on suppose n=7. Si n =6, une partie des résultats subsiste
(voir III.5).

III.1. LEMME. Dans toute classe de Wa (D" ' x{0)[<P(D" " 'xS8,9)], il y
a un représentant P tel que tous les anneaux ® (D" ' x{u}xI) (ue S?") sont de Wall
au sens strict.

Démonstration. Soit ¥ une pseudo-isotopie de Wall pour D" 'x{0}.
Désignant par po:D" 'xS!'— S! la deuxiéme projection, choisissons un
releévement f: D" 'XS' — R de pyo ¥i'—p, tel que f<0, et posons

W) ={(x, ) e D" ' x S X I| po(x)+ tf(x) = u} (ueSh).

Le raisonnement de 1.6.b) prouve que tous les W(u) sont des anneaux de Wall
au sens strict; en utilisant la nullit¢ de P(D"?,d) on trouve facilement une
pseudo-isotopie @ de D" "' x S! telle que @(D" ' x{u}xI)= W(u) pour tout u.
Comme @,(D™ "' x{0}) = ¥,(D""*x{0}), 1.7 entraine que P est isotope a2 ¥. [

II1.2. Remarque. La propriété géométrique du lemme précédent se traduit
analytiquement par (38/3t)(poe®')<0. En particulier, les formes dt et
(poo @ 1)* dO sur D" ' xS'XI n’ont pas de contact positif et il en est de méme
pour les formes d(te®) et p§ d: donc d(ted)+rp§dd est une forme non
singuliére pour tout r<0.

I11.3. LEMME. Soient p, et p5:T" — S' deux submersions homotopes a x,,
Pinvariant de p} par rapport a p, étant représenté par (0, Q), Q=Y,-, a;T;; on
pose wo=p4 do et wh=p,* db. Soit r=(ry,...,r,_,) un élément de R assez
proche de (0) et soient w, et @’ des formes (de £2,) cohomologues a dx,, + Y7 r; dx;
et proches respectivement de w, et de wy. Alors

a) Sir, <0, w, et w! sont isotopes.

b) Si r;>0, w! est conjuguée a w, par un difféeomorphisme pseudo-isotope a
I’identité de classe p,(Q).

Démonstration. On peut supposer que p, et py coincident hors d’une boite

B=S; xD: 2, xI, et que de plus:

Po|B=x,
ps| B =x, ¢, ¢ pseudo-isotopie de S*x D" 2 de classe Q.
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D’apres la remarque précédente, on peut de plus choisir ¢ de sorte que
(wg+r; dx; | B) soit non singuliere pour r; =0.

On peut (d’aprés Moser) supposer que w, =wo+Y; ' r,dx; (voir la figure)
0;=w,+XY1 " rdx,. Alors pour r;#0 la restriction 3 B de w'/r, est une forme
cohomologue dans H'(B;R) a dx,, et dont la restriction au bord est linéaire; de
plus, elle est non singuliere dans les deux cas suivants:

—r assez proche de (0);

-r=(r,0,...,0) avec r, <0 quelconque.

feuille de(w,|B) Dx|

a) On a lim,_, . (dx;+wg/r))=dx,; donc, par Moser, il existe feDiff B
isotope a l'identité parmi les difféomorphismes dont la restriction au bord est
linéaire, et tel que ((w!/r;) | B) = f*(dx, | B). Notons W le difféomorphisme linéaire
de B coincidant avec f sur le bord, il vient ((w!/r;)|B)=("")*((w,/r,) | B);
comme ¢ 'of est isotope a I'identité rel le bord et que w} coincide avec w, hors
de B, on en déduit que w! est isotope a w,.

b) Notons v I’élément de Gl, Z<Diff T* défini par v(xq,...,x,)=
(—=xq, X3, - . ., X, ). Comme x, °v =X, et que ve@ov est isotope au miroir u(¢), on
a:

1

Xpo@ov=1x,c@o(¢™ cvopov)

Xpo@Qov=Xx,°¢°8g,
ol g est un élément de P(S' x D"?) de classe Q +n(Q); & priori g | S*'x D x {1}
est seulement isotope a I'identité, mais il est clair que 'on peut isotoper g de
fagon & avoir g|9B =id tout en conservant x,c@ov=Xx,°¢@°g alors g est un

élément de Diffp(B,dB) égal a id sur 98B, et de classe [g]=ps(Q)e
mo(Diffp (B, 8B)): en effet, on a un diagramme commutatif

P(B, 0B) %, P(B, 9B) = mo(Diff B x I rel L))
by
P(B x 1, 3) —> mo(Dif (B x I rel 9))
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(cf. [HaW] p. 270). On a alors:
v*(wh | B) = g*(w} | B),
donc le lemme de Moser entraine v*(w!| B) ng*(w’_,\ B), et si r; >0, il vient

v*(w! | B) ~_ g¥(w_, | B) = g*v*(w, | B)

(w;|B)=f*(w,|B), f = vogov = g

rel 0B rel B

Comme w! coincide avec w, hors de B, ceci achéve la démonstration du
lemme. O

I11.4. PROPOSITION. Soit w,=pd db, ot py: T" — S' est une submersion
homotope a x, d’invariant relatif représenté par (P, Q); on suppose (ce qui est
toujours possible) Q “réduit” dans le sens suivant: Q =Y¥_, P,(M;), ot les M; sont
des mondémes primitifs non conjugués (soit M;#M;') de la forme
Tk -+ Tkeg (ky, ..., k,_,€Z) et les P; des polynémes non nuls de Z3[T].

Notons H, E; et E; I’hyperplan de R"™' et les demi-espaces positif et
négatif définis par M; (c’est-a-dire Y3 " k;x; respectivement nul, positif, négatif).

Soit alors w une forme voisine de w, cohomologue a dx, +Y17 ' r. dx;; notons
r=(ry,...,r-)eR" ™

a) Si r¢ U; H;, o est linéarisable et I’élément de my(Diffp; T™) associé est

=n(P+ T BM))

reE;

b) Sire|J; H;, w est non linéarisable.

Démonstration. On peut supposer P=0. Pour j=1,...,k, soit pl, une sub-
mersion homotope 2 x,, d’invariant relatif (0, P,(M,)+ - - - +P,(M;)), avec pg=
X, P&=Dpo; notons wh=(ph)*dh, et soit w’ une forme proche de w) et
cohomologue 4 w: on prend de plus w° linéaire et * = w. Comme I’invariant de p}
par raport a py " est représenté par (0, P;(M;)), le lemme précédent implique (en
changeant de coordonnées pour avoir M, = T)):

1) si re E;, o' est isotope & o'™;

2) si reE}, o' est conjuguée & w'~' par un élément de Diff,; T, de classe
o (P, (M)

Ceci prouve immédiatement le a). De plus, la différence entre deux éléments
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de m,(Diffp; T™) associés a2 deux composantes distinctes de R" ™! —J; H; est de la
forme: A =p,(Y;cs Pi(M;)), avec $<{1,...,k}, $+O.

Comme Q est réduit, elle n’est jamais nulle; donc, si re | J; H;, tout voisinage
de ® rencontre au moins deux composantes de (2 et w ne peut &tre
linéarisable. [

ITII.5. Remarque. Si n =6, on a les résultats plus faibles suivants.

a) Avec les hypotheses de III.3: si r# 0, w! est conjuguée a w, par un €lément
de Diffy; T" de classe ne dépendant que de T,. Pour cela, on utilise le fait que
deux submersions homotopes de D" !x S* and S' sont conjuguées par pseudo-
isotopie.

b) Avec les hypotheses de II1.4: si r¢|J; H;, o est linéarisable par pseudo-
isotopie.

IV. Densité des formes linéarisables. Formes irrationnelles non linéarisables

IV.1. PROPOSITION. On suppose n=6. L’ensemble (2, des formes
linéarisables est dense dans (2, (pour la topologie C™ ou, ce qui revient au méme,
C*, 0=k =o). Plus précisément, pour toute forme w € (2, rationnelle, il existe
f € Diffp; T tel que f*w est limite de formes linéarisables par isotopie.

Démonstration. C’est un corollaire immédiat de II1.4 (ou de IILS, si n =6).

Remarque. Soit a la forme linéaire cohomologue a o, alors, tout voisinage de
[«] dans (2, rencontre tout voisinage de [f*w]; prenant @ non linéarisable, cela
prouve que 2, n’est pas séparée.

IV.2. PROPOSITION. On suppose n=7. Toute classe de cohomologie ayant
un groupe de périodes de rang <n—1 contient une forme non linéarisable.

Démonstration. L’action de Gl, Z permet de supposer la classe égale a
©,v,,...,v,), |nl«|v.] pour 2=i=n-1; par homothétie, on obtient
,r,,...,r._1,1) avec (ra...,r,—1) aussi petit qu'on veut. La proposition V.4
appliquée avec Q =T, par exemple, montre que le résultat est vrai dans ce
dernier cas. [J]

IV.3. PROPOSITION. On suppose n=7. L’espace {1,, muni de la topologie
C™, est connexe par arcs. En d’autres termes, deux 1-formes différentielles fermées
non singuliéres sur T™ peuvent toujours étre jointes par un chemin de telles formes.

o, 2 — li o,z
Démonstration. D’aprés la densité de 2, =Usepittn f*Q! et l1a connexité de
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0L il suffit de joindre 02 a f*QY pour tout fe Diffp; T". Or la proposition I11.4
montre que c’est possible pour [f]=p(T}), donc par naturalité pour [f]=

-~

p(T¥ -+ - Tk). 11 en résulte que I'on peut joindre g*N% a g*f*Q% pour f, ge
Diffp; T, [f1=p(T%: - - - T%); ceci achéve la démonstration. [J

IV.4. La proposition IV.2 laisse ouverte la question de I’existence d’une forme
non linéarisable ‘“‘totalement irrationnelle.” Dans cet ordre d’idées, on a la prop-
osition suivante.

PROPOSITION. Pour n=6, ’ensemble N ={(a;)eR" —{0} | Jw =31 aq, dx;,
non linéarisable} est une réunion dénombrable de fermés d’intérieur vide.

Démonstration. Posons d’abord quelques notations: choisissant une norme | |
sur R", définissons, pour une 1-forme w sur T", considérée comme une applica-
tion de T" dans R": ||| =sup, 1~ |w(x)|

m(w) = inf |w(x)|.

xeT™

La norme || | donne une distance définissant la topologie C° sur £,; d’autre
part, le lemme de Moser entraine que, pour o € {2, la restriction de

cl: B(w, m(w))/=~ — B(cl w, m(w))
est un homéomorphisme (quelle que soit la topologie C* sur £2,).

LEMME 1. L’espace {2, contient une suite dense (,);cn-

Démonstration. 11 suffit de considérer les formes dont les coefficients sont des
polynémes trigonométriques a coefficients rationnels.

LEMME 2. Si (w);cn est dense dans ,, on a J;cn B(w,, m(w,)/2)=0,.

Démonstration. Soit w € £2,, il existe ieN tel que |jw —w;|<m(w)/3; on en
déduit m(w;)>m(w)—m(w)/3 =5m(w), donc |lw —w;||<ix3m(w). O

Fin de la démonstration. soit (w;);cn une suite dense dans {2,, et posons:

m(w;)

Ny= {w € B’(wi, T)
m(w;)

N=d W)= B wi,——z——)cn"—{O}.

® non linéarisable} (B’ : boule fermée)
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Alors

a) Comme {2, est un ouvert dense de (2, Ny~ est un fermé d’intérieur vide
dans B'(w;, m(w;)/2)/~.

b) Comme la restriction cl: B’ (w;, m(®,)/2)~ B’ (clw,m(w;)/2) est un
homéomorphisme, N; est un compact d’intérieur vide dans R”— (0}.

¢) D’apres le lemme 2, on a N =|J;.n N, ce qui termine la démonstration. [

Remarque. D’apres II1.4 et III.5, N, a la propriété suivante: si ae B} =
B'(cl w;, m(w;)/2) et si a est sur une droite rationnelle (A tel que Aa e Q" —{0}), il
existe des hyperplans “entiers” H, ..., H, de R", contenant a (k=0 n’est pas
exclus) et un voisinage v de a dans B! tels que:

k
Mﬂv=( Hj)ﬂv, si n=7
j=1
ou

MHVC( H,-)ﬂv, si n=6.

iCr

)

V. Préparatifs a la démonstration de 1.9. Cobordisme élémentaire de paires en
codimension un

V.1. Généralités. Nous considérons dans les paragraphes 1 a 6 de ce chapitre
un cobordisme élémentaire compact (A; Ay, A;) dont la face latérale est un
produit dA, X I'; pour simplifier, nous supposerons 0A, = . Nous nous donnons
une fonction de Morse f: A — I vérifiant f1(0) = A,, f '(1) = A, et ayant un seul
point critique et un champ de vecteurs ¢ de pseudo-gradient pour f (voir
définition dans [Mi]); nous noterons c le point critique de f, i son indice et n la
dimension de A, et nous supposerons f(c)=3.

Le point ¢ admet un voisinage de Morse v(c) avec les propriétés suivantes:
il existe un difféomorphisme A de v(c) sur L,.,=
{(x,y)eRIXR"*'7 | - 1= —|x]*+|y|*=1 et |x| |[y|=ch 1 sh 1}c R**, et dans ces
coordonnées (x, y), on a f(x,y)=@(—|x+|y|*+1),

i a n-i——i a

La nappe descendante de ¢ pour & correspond alors a3 D x{0}; son bord est
une (i—1)-sphere S, plongée dans A,: c’est la “sphére d’attachment.” Cette
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spheére a un voisinage tubulaire trivial N(S,, Ag) =v(c)NA,, image du plonge-
ment ¢:S'XD""'" — g, défini par @(u, 0u)=A"'(ch0-u,sh-u’) (ueS,
6el, u'eS" ). Ainsi ¢ donne une trivalisation du fibré normal »(S,, A,).

V.2. LEMME. Soit B, une sous-variété de codimension 1 de A,, contenant la
sphere d’attachement S,; on suppose que le sous-fibré v(S,, B,) de v(Sy, Ay) est un
champ de (n—i)-plans homotope a une constante dans la trivialisation donnée de
v(So, Ag). Alors, quitte a modifier (f, £) par une isotopie de A, on peut supposer que,
dans le voisinage tubulaire N(S,, A,), B, est définie par y, ,_; =0.

Démonstration. L’utilisation de ’astuce d’Alexander (Alexander trick) dans
chaque fibre de N(So, Ag) = (S x D"*'7') permet de supposer, a une isotopie
de B, dans A, pres, que ¢ (N(So, Apg) NBy) ={u}x(P,ND*"** )| ue S}, ou
u—P, est une application de S'~! dans la grassmannienne G,_;(R"*"'7)
homotope a une constante. Choisissant cette constante égale au plan (y,_; =0), on
trouve une deuxiéme isotopie de B, dans A, qui permet d’obtenir ¢ '(ByN
N(Sy, Ag)) =S"1x D", Pour terminer la démonstration, il suffit de prolonger
’isotopie de B, dans A, a une isotopie de A et de modifier (f, £) par I'isotopie
inverse. ([J

V.3. COROLLAIRE. On suppose (f, £) modifié comme I’indique le lemme.
Soit alors B ’adhérence de la réunion des orbites de & issues de B, et soit
B,=BNA,. Alors (B;B,, B,) est un sous-cobordisme de codimension 1 de
(A; Ag, Ay); de plus, f | B est une fonction de Morse ayant ¢ pour seul point critique,
avec le méme indice que pour f et £ est tangent a B, £ | B étant de pseudo-gradient
pour f| B.

Démonstration. Cela résulte immédiatement du fait que B est défini dans v(c)
par y,.1-; =0.

La paire (A, B) est alors appelée cobordisme élémentaire de paires de codimen-
sion un (en abrégé C.E.P.C.U.); elle est caractérisée par I’existence d’une fonction
de Morse f: A — I avec un seul point critique, telle que f | B soit une fonction de
Morse avec un seul point critique, ce point étant le méme et ayant le méme indice
que pour f.

Remarque. Si B est a deux cOtés dans A, on convient que le cOté positif est
défini dans le voisinage de Morse par y,,.;—; =0.

V.4. LEMME. Soit (A, B) un C.E.P.C.U; soient f, £ et v(c) ayant toutes les
propriétés de V.1, 2, 3. On suppose de plus que B est a deux cotés dans A. Alors, il
existe un voisinage V de B dans A et une fonction sans point critique z : V' — R, avec
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les propriétés:

Voulc) et z|v(c)=yuii;
z Y 0)=B et ¢-z=2z

Démonstration. L’hypothese que B est a deux cOtés dans A équivaut a: a) B,
est a deux cOtés dans A, et b) ©(S'™' x D17 est situé d’un seul coté de B, (b)
résulte de a), si i =2). Dong, il existe un voisinage V', de B, dans A,, contenant
N(So, Ap), et une fonction sans point critique u : ¥y — R telle que u | N(S,, Ag) =
Yni1—:i €t u~'(0)=B,. D’autre part, le champ & et la fonction f permettent
d’identifier le complémentaire des nappes dans A a (A,—Sy)XI; on a alors
fla,t)=t et &(a, t)=a(a, t)(8/0t) (a€ Ag— Sy, tel), ou a est a valeurs >0. De
cette fagon, (v(c) moins les nappes) s’identifie a (N(Sy, Ag)—So)XI et la
coordonnée y,.1-; sur v(c) définit sur (N(S,, Ag) —So) X I une fonction sans point
critique encore notée y,.,_;, vérifiant y,,,_,(a, 0)=u(a) et

9 __ 1
a1 Yn+1-i a(a 1) Yn+1-i

Il en résulte y,.,_;(a,t)=u(a)-exp (Jo dv/a(a, v)) sur (N(Sy, Ag)—So¢)XI; or,
cette expression est définie sur (V,—So) X I, ce qui permet de prolonger y,.;—; €n
une fonction z définie sur ¥V =(V,—So) XIUv(c). V est bien un voisinage de B
dans A et, par construction, z vérifie £-z=2z et z71(0)=0. Enfin, z est sans

point critique car:
&-z=2z#0 hors de B;

z | v(c)=vy,,1_: est sans point critique;

‘' d
sur BN[(Vo—So) XI1=(Bo—So) X1,0nadz ==exp<L ? ) -du#0. O
a(bo, v)

V.5. LEMME. Sous les hypothéses de V.4 il existe un voisinage tubulaire N(B)
de B dans A et une rétraction r:N(B) — B tels que A =(r,z) définisse un
difféomorphisme de N(B) sur B X[—¢, €] avec les propriétés:

a) foA (b, z) = f(b) si b est prés de BoU By;

b) £ (fer)+1—for>0 sur N(B).

Démonstration. La fonction z est sans point critique et elle est transverse aux
niveaux de f prés de B, U B ; donc, il existe un voisinage Y de Bdans A, U<V et
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un champ m sur % vérifiant n - z =1 sur ¥ et n + f =0 sur un voisinage dans ¥ de
(AQUA,)NAU. Par intégration de m, on construit Ny(B) et une rétraction
ro: No(B) — B tels que Ay=(ry, z) soit un difféomorphisme de Ny(B) sur B X
[—€o, €0) Vérifiant a); de plus, on a, sur B, £ - foro=(£¢| B) - (f| B), qui est >0 sur
B—{c}; on a aussi 1—fory=0 sur B et 1—fory(c)=3>0: donc, & forg+1—fe
ro>>0 sur B. Comme B est compact, il suffit de remplacer Ny(B) par N(B)=
Ao (B X[—¢, €]) avec & assez petit pour obtenir la propriété b). [

V.6 PROPOSITION. Soit ((A, B); (Ag, By), (A;, By) un corbordisme
élémentaire de paires de codimension 1, muni d’une fonction de Morse f et d’un
champ de pseudo-gradient &; on suppose que B est a deux cotés dans A. Alors, il
exisite une isotopie de plongements propres G, : B — A issue de U’inclusion, avec les
propriétés:

a) G, | B, =inclusion B, = A, pour tout s; foG, ={f prés de BoU B;;

b) Pour s>0, G,(B) admet —& pour champ normal positif ;

¢) Pour s>0, G,(B) est situé du coté négatif de B et g.(B) N\ B = B,.

COROLLAIRE. Pour toute isotopie vy, : B — A issue de ’inclusion, telle que
v, | By est assez petite et que vy,(B) admet —& pour champ normal positif prés de
v1(By), il existe G,:B — A issue de ’inclusion, coincidant avec vy, prés de B, et
telle que G{(B) admet —¢& pour champ normal positif. Si y,(B,) est situé du coté
négatif de B, et disjoint de B,, on peut imposer que G'(B) soit disjoint de B.

Démonstration. Soient N(B) et A=(r,z):N(B) = BX[—¢,e] avec les
propriétés de V.5; on définit G, : B — N(B) par G,(b) =A"'(b, es(f(b)—1)).

B1 Aq

Gs(B) B

Ao

Les propriétés a) et c) sont évidentes; de plus, G,(B) admet 1’équation
“orientée” z —es(foer—1)=0; donc, un vecteur X, tangent a3 A en un point de
G,(B), est un vecteur normal positif si et seulement si X - (z —es(fer—1))=0. Or,
ona (—§&) - (z—es(for—1)) =es¢ - fer—z, donc, en un point de G,(B), on trouve
es(&- fer+1—fer), qui est >0 pour s <0 d’apres la propriété b) de V.5. O
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Indication sur la preuve du corollaire. On utilise la transversalité de ¢ au bord
supérieur A, pour fabriquer G} comme I’indique la figure ci-dessous.

71(B)

V.7. Elimination de deux cobordismes élémentaires de paires

Nous considérons maintenant un cobordisme (A; Ay, A,), Ay étant compacte
connexe de dimension n, muni d’une fonction de Morse f: A — [0, 2] avec deux
points critiques, ¢ d’indice i et ¢’ d’indice i+1, 1<i=n-1, en position
d’élimination (cf. [Ce]). Nous supposerons f(c) =3 et f(c’)=3. On a un plonge-
ment d’un mode¢le standard d’élimination (cf. [Ce]) j: D" X[0,2] = A; il existe
un champ ¢ de pseudo-gradient pour f, de la forme £ = grad,, f, 1a restriction de m
a j(D" x[0,2]) correspondant a la métrique euclidienne. Soient & la &-nappe
ascendante de. ¢ et @ la £-nappe descendante de ¢’, limitées par A; =f"'(1); les
bords 9 =Ty=S""" et 09=S,~S' se coupent transversalement en un point
dans A;. Clest ce que I’on exprime en disant que (&, D) est un couple de nappes
en bonne position. Noutons i, : S' — A; un plongement d’image S,,.

D’apres [Ce] p. 252-253, on peut définir une application de I’ensemble des
composantes connexes de I’espace N des couples de nappes en bonne position
vers P(Ag)a : mo(N, (A, D)) = P(Ay) de la fagon suivante. L’élimination des
points critiques de f donnée par (4, D) donne une fonction f;: A — [0, 2] sans
point critique, ce qui munit A d’une structure produit A, %[0, 2] définie a isotopie
pres; si (', 9’) est un autre couple en bonne position, I’élimination des points
critiques donnée par (', 9') donne une fonction f;: A0, 2] — [0, 2] sans point
critique, donc une pseudo-isotopie @ de A, (ici I'on remplace [0, 1] par [0, 2]
dans la définition d’une pseudo-isotopie) telle que f; =f,°®@; alors a(({', D] =
[D].

Soit maintenant B, une sous-variété de A, de codimension 1; a isotopie pres,
on peut supposer B, N j(D" x{0}) = j(D""'x{0}). Soient alors B I'adhérence des
orbites de ¢ issues de B, et B,=BNA,, B,=BMNA,. On obtient ainsi un
sous-cobordisme (B; By, B,) de codimension 1 de (A; Ao, Ay); de plus, f|B est
une fonction de Morse 2 deux points critiques ¢ et ¢’, de méme indice que pour f
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et & est tangent & B, £| B étant de pseudo-gradient pour f| B: en effet, ces
propositions sont immédiates dans le modeéle D" x[0, 2] avec B,=D""! x{0}.

Remarque essentielle. Soit L ’unique orbite de ¢ joignant c et ¢’ et soit V un
voisinage arbitraire de L dans A; alors, la structure produit définie sur A par
(A, D) peut étre obtenue par intégration d’un champ &, tangent a B et coincidant
avec £ hors de V (la partie de cette remarque relative a V revient a dire que la
méthode d’élimination de [Ce] donne le méme résultat que celle de [Mi]).

Démonstration. Soit (f,) un chemin d’élimination associé a (A, @), défini par
un modele standard sur j(D" %[0, 2]) (cf. [Ce] p. 244-252); il exisite alors un
voisinage U de L(={0}X[3,3]) dans D" X[0, 2] sur lequel on a:

Fi(X1s e v s Xy X1) = — Zx2+2xk+(xn+1 1> = 3)(1-20)(Xpey — 1).

i+1

On a alors, sur U,

9
ad f,=—2 x———+2 x-——+3( a—1*-1
=grad f, Z : lg kaxk [(xn41 axnﬂ
et
rad f,=-—2 ——+2 x—+3( = 1D%+ 1]
grad fy ; T ox; +Z1 * 8%, LG %Xpsr

On peut supposer V contenu dans U ; soit alors &, un champ sur A égal a ¢ hors
de V et tel que:

d
& V=- 2Zx a——+2 y xka——+A(x1,...,xn, Xoi1) 3

i n+1 X Xn—-1

avec A(0,...,0,x,,,)>0; un tel & existe car (x,.,—1)>—3>constante>0 si
(0,0,...,0,x,.1)¢ V. Alors &, est tangent & B car B est défini dans j(D" X[0, 2])
par x,, =0. De plus, le champ 1, =(1—s) grad,, f, +s&; est sans z€ros pour 0 =s=<
1. Enfin, d’aprés [Mi] (p. 50), on peut supposer qu’il n’y a aucune orbite de £ qui
aille de V a V en passant hors de U; on en déduit, en suivant exactement la
preuve de Milnor, que les orbites de n, vont de Ay a A,: donc, on obtient une
isotopie des structures produits définies par grad,, f; et &. O

Dans le chapitre VI, nous supposerons A,=D""'x S et 3=<i=n—4; d’aprés
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[ChL] et [HaW], on obtient alors un diagramme commutatif d’isomorphismes:

wo(N, (A, D)) - P(D" ' xS, 9)

i N\

i To(Plgt (S, A,); o) — Zo[m A, — {0} =Z(T, T,

ou w'To désigne I’ensemble des classes d’homotopie de chemins I —

Plgt (S, A,) issus de y, et aboutissant en un plongement transverse 2 T, en un
point, et ou T est le générateur canonique de m;(A,)=m,(A,).

VL. Démonstration de la proposition 1.9

Le plan de la démonstration est le suivant. Nous construisons un lacet de
plongements de i-sphéres dans A, dont la classe dans 77 To(Plgt (S', A,); ¢,) est
le polyndme T. Soit @' la nouvelle nappe descendante de ¢’ associée a ce lacet.
Quelques propriétés de la construction permettent d’affirmer que @' est I'image de
2 par un diffomorphisme de A qui est I'identité sur le cobordisme inférieur
A_=f"10,1]) et qui préserve f. Si ’on regarde A comme un produit grice 2
I’élimination des points critiques donnée par les nappes (o, D), ce
difffomorphisme devient une pseudo-isotopie d’invariant T. On vérifie sur la
construction qu’il s’agit d’'une pseudo-isotopie de Wall.

VI.1. Construction du lacet de sphéeres

PROPOSITION. Il existe un plongement F:S* xS' — int A, avec les propriétés
suivantes:

a) Le lacet (F,) dans Plgt(S’, A,) est basé en ¢, et sa classe dans
7 To(Plgt (S, A,); W) est le polynome T;

b) Il existe un voisinage collier N_(B,) du coté négatif tel que, pour tout
$#0,1 I’image de F, ne le rencontre pas,

¢) F a un fibré normal trivial.

Démonstration. Nous allons faire la construction de ({ChL]), pp. 425-427) en
la précisant pour obtenir les propriétés b) et c). Nous construisons d’abord une
(i +1)-sphere 3 plongée dans le voisinage tubulaire de S,, représentant 'élément
non nul de =, ,(S*); comme la construction se fait par chirurgie sur un plongement de
Six S! 3 fibré normal trivial, 3 a un fibré normal trival. On impose en plus que 3
soit disjoint de B, et contenue dans un voisinage collier négatif de B,.
Considérons d’autre part un plongement F' de S' X S* dans un collier positif de B,
tel que le lacet associé (F’) est basé en ¢ et reste dans un petit voisinage de ¢,
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dans Plgt (S, A,), et que I'image de F! est disjointe de B, pour s#0, 1. Comme
Yo a un fibré normal trivial, il en est de méme pour F'.

Choisissons un arc simple « joignant 'image de F’' a 3 et ne rencontrant ni B,
ni T, (il en existe car A, — B, — T, est connexe). La somme connexe de 3 et de
F'(S* xS") donne I'image du plongement F cherché. D’aprés [ChL], la propriété
a) est satisfaite; les b) et c) sont évidents. [

VI1.2. PROPOSITION. On utilise les notions de VI1.1. Soit N’ un voisinage de
Iinclusion B, — A, dans Plgt (B,, A,). Alors, il existe des isotopies G,: A; — A,
et g :B, — A, avec les propriétés suivantes:

a) Go=id, G,°oF,=F, pour tout t [0, 1] et G, est I’identité au voisinage de S;

b) La collection des g donne un plongement positif de B; X1 dans A, avec
go€N et g=Gy|By;

c) Les isotopies (g) et (G,|B;) sont homotopes a travers les chemins de
plongements de B, dans A, commencant dans N et finissant en g,.

Démonstration. Comme le plongement F donné en VI.1 a un fibré normal
trivial, on construit G vérifiant la condition a); de plus, on peut choisir G, a
support dans un voisinage arbitrairement petit de I'image de F.

Identifions un voisinage tubulaire N(B,) a B, X[—1, 1] de sorte que N_(B,) =
B, x[—1, 0]. Etant donné 4, il existe € >0 tel que, pour tout u €[—¢, 0], B, x{u}
soit I'image d’un plongement appartenant a /. Maintenant, on suppose que le
support de G, évite B, X{—&}.

L’image G,(B;X[—¢,0]) a naturellement une structure produit B, X[0, 1].
Elle définit la collection des g, cherchés. []

g4(By)

G1(B]x(_8,0]) ———— e

4T
go(B)=A(Byx {-¢})

V1.3. Construction d’un difféeomorphisme @ de A

On choisit une fonction u : [0, 1] — [0, 1] égale aux fonctions constantes O et
1 respectivement au voisinage de 0 et de 1. On pose & | A_=id. Sur f'([1,3)),
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que f et & permettent d’identifier a A;X[1,5], on pose @D(a,1+1/4)=
G,.on(a, 1+1/4). Sur (3, 2]) moins les nappes de c', que f et £ permettent
d’identifier a (A, —S,;) X[, 2], on pose ®(a, t) = (G,(a), t). Enfin, sur ce qui reste,
on pose ¢ =id. Comme G, est I'identité sur un voisinage de S, @ | f~1([3, 2]) est
I'identité pres des nappes de ¢’, donc @ est un diff€omorphisme.

niveau 2

b

—
nappes de ¢’ niveau 3/2

niveau 5/4

niveau 1

Remarque. Le difféomorphisme @ |3, A est celui décrit dans [Ha] p. 9-10, ou
I'idée en est attribuée a Farrell.

V1.4. Preuve que @ est une pseudo-isotopie d’invariant T

Soit f; un chemin d’élimination associé a (4, @); par construction, fo® = f et
fis =id, donc, si ’on pose @' = ®(D), le couple (D(H), P(D)) = (A, D') est un
couple de nappes en bonne position pour (c, c’) auquel est associé le chemin
d’élimination f/=fo® .

La structure produit sur A donnée par f, fait de @ une pseudo-isotopie de A,;
comme f}=f,c® !, invariant de @', qui est aussi celui de P, est donné par
Pinvariant de (&, @) dans my(W, (&, D)): par la construction de %', c’est le
polynbme T. [

VL5. Preuve que ® est une pseudo-isotopie de Wall

On pose B’ = ¢(B) et B5=B'N A,. Par ’application successive de la proposi-
tion V.6, de la proposition V1.2 et de nouveau de la proposition V.6, nous allons
isotoper B’ de facon a rendre ‘“‘positivement transverse” a —& dans chacun des
sous-cobordismes f~'([3, 2]), f*([1,3) et f7'((0, 1].

Par la proposition V.6, il existe une petite isotopie de B’ a B”, situé du coté
négatif de B’, ne rencontrant B’ qu’en B} et dont lintersection avec f~'([3, 2])
admet —¢ pour champ normal positif.
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La proposition V1.2 donne une isotopie de B’ le rendant positivement trans-
verse & —¢ dans la bande f7'([1,3])=A,X%[1,3]; comme pour le corollaire de
V.6, on en déduit une isotopie de B” jusqu’a B", constante au-dessus du niveau 3
et telle que B"” admet —¢ pour champ normal positif au-dessus du niveau 1. Plus
précisément, dans la bande f'([1,3)=A,%x[1,3], la projection
q:B"Nf'([1,5]) = A, est un plongement positif, et q(B"NA,) =B  est
proche de B/, du cOte négatif (voir figure). Remarquons que le point S, N T, est dans
q(B'Nf13) =By, et que q(B"Nf () = B, est situé du coté négatif de B Lrdo
avec BY,,NB%,,= <. Donc q(B"Nf (1, 5]) est situé du coté négatif de S1a €t
ne le rencontre pas; en particulier, S,N T, n’est pas dans q(B”Nf'([(1,3]). Si L
désigne 1'unique orbite de ¢ liant ¢ et ¢’ (cf. V.7), on a donc: LNB"N

LD =SoNTY)X[1,3DNB" = J.

q(B"NE([1.3])

En appliquant la proposition V.6 (corollaire) au cobordisme inférieur, on
trouve finalement une isotopie de B’ jusqu’a B’ admettant —¢& pour champ
normal positif. De plus, B’ est disjoint de B’ au-dessous du niveau 1 et coincide
avec B" au-dessus; donc, il ne rencontre pas L. D’aprés V.7, on_peut supposer
que la structure produit sur A est donnée par l'intégration de &, tangent a B et
coincidant avec ¢ sur B’; ainsi, nous venons de prouver que B’ est un anneau de
Wall et qu’il est 'image par @ de I’anneau “‘vertical” By X [0, 2]; donc @ est une
pseudo-isotopie de Wall. [J

Remarque sur la Proposition I1.1. Aprés avoir écrit cet article, je me suis
apergu, en suivant une suggestion du rapporteur, que ’on pouvait démontrer la
proposition I1.1, et donc les résultats du chapitre II, sans utiliser la proposition
1.9. Ceci se fait de la fagon suivante.

LEMME. On suppose n=6. Soit feDiffp;(D" 'xS'reld) tel que
f(D™ ' x{0}) = D" x{0}. Alors, f est isotope a I’identité.

Démonstration. L’hypothése f(D"~'x{0})=D""'x{0} entraine que la classe
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d’isotopie [f] est dans 'image de I’application naturelle:
a:I,0r,,., » my(Diff D" ' X S!rel 9).

Or les classes d’isotopie dans im (a) sont PL-isotopes a I’identité, donc la
considération du tore de I'application g, M, =(D""'XxS")x I/(x, 1)~ (g(x), 0),
donne une application a valeurs dans I’espace des structures différentiables:

B:I,®I,.i = FproD" 'xS'xS, D" 'x8'x0US"2x S xSY).
On calcule:

FerLio(DP xS xS D" xS x0US"2Xx S x SY)
~[D"*"'xS'xS!, D" 'x8'x0US"2xS'xS!; PL/O, *]
= wn(PL/O)@Wn+1(PL/O) zI‘n ®Fn+l

et 'application B est 'identité.

L’hypothése que f est pseudo-isotope a lidentité entraine que M; est
difféomorphe 4 D" 'xS'xS'rel D" 'xS'x0US"?xS'xS'. Donc, on a [f]=
a(x) avec B(x)=x=0, ce qui entraine [f]=0. O

[En fait, d’aprés [HaW] p. 273, on a la proposition plus forte:

7o(Diff D" X S* rel ) = mo(Diffp; D" ' X S' 11 ) B, BT, 1,

de fagon tout a fait analogue a ce qui se passe pour T". Mais pour prouver cela,
[HaW] se référe a un article de E. C. Turner (Invent. Math. 8, 1969) qui ne me
parait pas convaincant, aussi ai-je préféré donner cette démonstration.]

En faisant le raisonnement de II.1 a ’envers, on en déduit que:
p : Wa (D" x{0}) — mo(Diffp; (D" xS" rel 8)) =Z3[T, T™']
est surjective. La construction faite en 1.10 montre alors que:
pn : Wa (T 1 x{0}) = mo(Diffp; T™)
est aussi surjective, ce qui est une autre fagon d’énoncer 1.12 (I’équivalence de a)

et b) dans II.1 étant déja connue, voir I1.2). La démonstration de II.1 se fait alors
sans changement.
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En revanche, les résultats de III et IV dépendent de 1.9, mais cette
dépendance est concentrée dans le lemme III1.3.
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