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Formes différentielles fermées non singulières sur le m-tore

Jean-Claude Sikorav

Introduction

On désigne par Hn l&apos;ensemble des 1-formes fermées non singulières sur le
n-tore Tn; on le munit de la topologie C°° (en fait C\ 0&lt;k&lt;oo? donnerait les
mêmes résultats). Dans fïn opère naturellement par conjugaison le groupe Diflf Tn
(resp. la composante connexe de l&apos;élément neutre dans DifïT&quot;); deux formes
équivalentes pour cette relation sont dites conjuguées (resp. isotopes).

On dit qu&apos;une forme &lt;o e ûn est linéarisable (resp. linéarisable par isotopie), si
(o est conjuguée (resp. isotope) à une forme linéaire £ ^ dxx (puisque &lt;o est non
singulière, nécessairement (aJeR&quot; -{0}); on note Oln (resp. /2||) le sous-espace de

fln correspondant.
On note ~ la relation d&apos;isotopie, [co] la classe d&apos;isotopie de &lt;o e Dn, et fînI^

l&apos;espace topologique quotient: c&apos;est cet espace que nous allons étudier.
Par un lemme de Moser (cf. [Mo], [LB] appendice 1), coq — co! équivaut à

l&apos;existence d&apos;un chemin de formes de iln cohomologues joignant û&gt;0 à &lt;o1.

L&apos;application naturelle de ftn sur Hl{Tn, R)-{0HRn -{0} définit par passage au
quotient une application notée cl de ilM/œ sur Rn-{0}; en utilisant le lemme de

Moser, le fait que la relation ~ est ouverte et l&apos;existence de sections locales, on
voit que c&apos;est un homéomorphisme local.

Notons une autre conséquence du lemme de Moser: si ù)1=f*&lt;o0, avec

feDiftTn homotope à l&apos;identité, et si o&gt;&apos;o et a&gt;i sont cohomologues et assez

proches respectivement de coo et de œu alors o)\ ^/*û&gt;o- On en déduit que /}Jj et
Oln sont ouverts dans ûn (pour Qln9 on remarque que toute forme linéarisable l&apos;est

par un difféomorphisme homotope à l&apos;identité: si &lt;o =/*Glï &amp;% dxt) et si ug
Gln Z c Diflf Tn, v homotope à /, alors co (u&quot;1/)*(u*Œ? a. dx,))).

D&apos;autre part, si une forme &lt;o de Qn a une classe de cohomologie rationnelle, il
existe une submersion p : Tn -» S1, p(0,..., 0) 0, à fibre connexe, et un rationnel

A &gt;0 uniques telles que &lt;o Ap* dd, où d0 est la forme de Lebesgue de cercle
(cf. [T], [LJ); deux formes û)0 p* d$ et w^pUdd sont cohomologues si et
seulement si p0 et px sont homotopes et leur conjugaison (resp. leur isotopie)
équivaut à celle de p0 et de px. Cette remarque permet à F. Laudenbach d&apos;étudier

dans [LJ la fibre de cl au-dessus d&apos;un point rationnel, sous l&apos;hypothèse
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80 JEAN-CLAUDE SIKORAV

supplémentaire n ^6; en particulier, une telle fibre contient une infinité de classes

d&apos;isotopie non conjuguées.
Par contraste, pour n &lt;3, l&apos;application cl est un homéomorphisme (cf. [RR]).
A partir de maintenant on supposera n assez grand (n&gt;6ou 7). F. Lauden-

bach m&apos;a proposé le problème de l&apos;existence d&apos;une forme irrationnelle non
linéarisable. Pour l&apos;aborder il m&apos;a conseillé d&apos;étudier l&apos;invariant d&apos;isotopie des

formes rationnelles (cf. [LJ); cet invariant se compose de deux parties, et il
pensait que la seconde (pseudo-isotopie de la fibre) n&apos;était pas stable par
approximation: c&apos;est effectivement le cas et l&apos;on peut en déduire le résultat suivant
(cf. IV. 1).

THEOREME 1. Pour n&gt;6, il existe des formes non linéarisables qui sont
limites de formes linéarisables par isotopie; donc ûnt^ n&apos;est pas séparée.

Cece est un résultat &quot;négatif,&quot; mais il reste la première partie de l&apos;invariant

(pseudo-isotopie de l&apos;espace total); en utilisant une construction de Farrell que
m&apos;a indiquée Laudenbach, j&apos;ai pu en compléter la description (propositions 1.9 et
1.10) et en déduire l&apos;existence de formes irrationnelles linéarisables mais pas par
isotopie. Plus généralement on a le théorème suivant (cf. II.5).

THEOREME 2. Munissant 7ro(DiffPI Tn) de la topologie discrète, l&apos;application

de &lt;7To(DiffPI Tn)x(Rn-{0}) dans Ûln/x définie par ([/], (o,)) -&gt; /*(£; a» dxt) est un
homéomorphisme pour n&gt;7.

Remarque. D&apos;après [HsS] et [Ha], 7ro(DiffPI Tn) est une somme dénombrable
de groupes cycliques d&apos;ordre 2.

Enfin j&apos;ai pu prouver les résultats suivants:

THEOREME 3 (cf. IV. 1). Les formes linéarisables sont denses dans On.

THEOREME 4 (cf. IV.3). Vespace Qn est connexe par arcs.

Remarque. Le théorème 4 détruit l&apos;espoir qu&apos;il existe un invariant d&apos;isotopie

stable par approximation (cf. [LJ, p. 447).

THEOREME 5 (cf. IV.2). Toute classe de cohomologie ayant un groupe de

périodes de rang &lt; n — 1 contient une forme non linéarisable.

THEOREME 6 (cf. IV.4). Uensemble des classes de cohomologie contenant
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une forme non linéarisable est une réunion dénombrable de fermés d&apos;intérieur vide
dans Rn-{0}.

Le plan de ce travail est le suivant.
Dans le chapitre I, on précise certains détails de la classification isotopique des

submersions sur le cercle et Ton énonce une proposition (1.9) qui la complète dans
le cas du tore Tn. La démonstration de cette proposition a été placée à la fin de ce
travail dont elle constitue les chapitres V et VI.

Dans le chapitre II, on utilise ces résultats et la détermination de 7ro(Difï Tn)
faite par [HsS] et [Ha] pour prouver le théorème 2.

Dans le chapitre III, on démontre une proposition (III.4) décrivant un
voisinage dans /2n/« d&apos;une forme rationnelle: pour cela, on utilise tous les résultats
précédents.

Enfin dans le chapitre IV on démontre les théorèmes 1,3,4,5 et 6 comme
conséquences de cette proposition III.4.

Outre F. Laudenbach, qui m&apos;a proposé le sujet et fourni les méthodes pour
l&apos;aborder, je tiens à remercier J. Barge et P. Vogel, dont les suggestions m&apos;ont mis

sur la voie des théorèmes 3 et 4, et aussi le rapporteur de cet article, pour les

améliorations qu&apos;il y a apportées.

Préliminaires

Par &quot;variété&quot; on entendra une variété différentielle de classe C°°, compacte
sauf mention contraire.

Si M est une variété, une pseudo-isotopie de (M, dM) est un difféomorphisme
de Mx/relMx{0} dont la restriction à dM*I est une isotopie. Les pseudo-
isotopies de (M,dM) forment un groupe que l&apos;on note 0&gt;(M,dM) et que l&apos;on

munit de la topologie C°°; on note P(MydM) le groupe de ses composantes

connexes, ou classes d&apos;isotopie, et [&lt;P] la classe d&apos;isotopie d&apos;une pseudo-isotopie
&lt;Ê.

On note jllm (ou iin si M=Tn, ou fi s&apos;il n&apos;y a pas de risque de confusion)
l&apos;automorphisme &quot;miroir&quot; de 0&gt;(M, dM) (cf. [Lj), on notera de même l&apos;automor-

phisme induit de P(M, dM).
On note Diff (M, dM) (resp. DiffH (M, dM), DiffPI (M, dM)) le groupe des

difféomorphismes de M dont la restriction au bord est isotope à l&apos;identité (resp. le

sous-groupe de ceux qui sont homotopes ou pseudo-isotopes à l&apos;identité), et pM

(ou pn, p) la surjection canonique de 0&gt;(M, dM) sur DiffPI (M, dM); on notera de

même pM la surjection induite de P(M, dM) sur Tro(DiffPI (M, dM)). Il est clair que
l&apos;on a toujours im (id+ julm) c ker Pm.



82 JEAN-CLAUDE SIKORAV

I. Pseudo-isotopies de Wall

Dans ce chapitre, on considère une variété E munie d&apos;une submersion p0 sur
S1, de fibre-base Fo connexe. Pour simplifier, on supposera que le bord de E est
vide, mais les résultats se généralisent facilement au cas où il ne l&apos;est pas: on doit
alors supposer que p0 | dE est la projection d&apos;une structure produit.

1.1. Définitions

a) Un anneau (issu de Fo) est une sous-variété WdeExI, image de Fo x I par
un plongement propre i tel que i|Fox{0} id et i(F0x{l})cEx{l} (rappelons
que la propreté de i signifie i~1(ExdI) FoxdI et i transverse au bord). On
notera d+W la projection sur E du bord supérieur Wn(J5x{l}).

b) Un anneau W (issu de Fo) est dit &quot;de Wall au sens strict&quot; si la restriction à

W de la projection q : E x I —» E est une immersion de W dans E qui envoie du
côté positif de Fo un voisinage de Fox{0}.

Plus généralement, un anneau est dit de Wall s&apos;il est isotope à un anneau de
Wall au sens strict.

c) Une pseudo-isotopie &lt;P de E est dite de Wall (resp. au sens strict) pour Fo
si &lt;P(FoxI) est un anneau de Wall (resp. au sens strict). Nous noterons Wa(F0)
l&apos;ensemble des classes dans P(E) des pseudo-isotopies de Wall pour Fo; remarquons

que Wa (Fo) dépend de l&apos;orientation transversale de Fo.

1.2. Premières propriétés

(1) L&apos;anneau &quot;vertical&quot; Foxl est de Wall; donc Wa (Fo) contient l&apos;image de la
suspension X : P(F0) —» P(E) définie à l&apos;aide d&apos;un voisinage tubulaire de Fo dans

E (cf. [LJ, p. 422).
(2) Si / est un élément de DifïH E et en particulier si / est dans DiffPI E, alors

Wa (/(Fo)) Wa (Fo): cela vient de ce que la conjugaison par / induit l&apos;identité de

PUS).

1.3. La proposition suivante montre que les notions ainsi définies sont substantiellement

équivalentes à celles de [LJ (cf. remarque p. 419).

PROPOSITION. Si W et W sont deux anneaux de Wall issus de Fo tels que
d+W et d+W sont isotopes, alors W et W sont isotopes parmi les anneaux issus de

Fo.

Avant de démontrer cette proposition, nous aurons besoin de quelques
notations.
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a) tt:É —» E le revêtement infini cyclique induit par p0; on identifiera É à

FoxR en sorte que le diagramme suivant commute:

E

Po

b) Fo Fox {0} le relèvement privilégié de Fo dans É ;

c) t : É —&gt; É le générateur canonique du groupe des transformations du
revêtement;

d) q la projection de Éxl sur É;
e) Si W est un anneau issu de Fo, il se relève isomorphiquement dans É x I en

WzdFox{0}; nous noterons a+Wx{l}=Wfl(£x{l}).
La proposition est une conséquence immédiate des lemmes 1.5 et 1.6 ci-

desous. Le corollaire du lemme 1.4 sert à prouver 1.5.

1.4. LEMME. Soif W un anneau de Wall au sens strict issu de Fo. Alors Fo et

d+W sont disjoints et la restriction de q à W est un plongement dont Vimage est la
partie de É comprise entre Fo et d+ W.

Démonstration. On voit facilement que Éxl-W a deux composantes
connexes et qu&apos;il en est de même pour É-d+W (ceci est vrai pour tout anneau). Soit
D la composante de É-d+W qui ne contient pas le germe de q \ W le long de

d+W et soit X l&apos;espace topologique:

X Fox]-œ 0[U W\J D.
Fo d+W

C&apos;est une variété topologique de même dimension que E; l&apos;immersion q \ W,

qui induit l&apos;identité de Fo et de d+ W, se prolonge par l&apos;identité de Fox]-oo, 0[ et
de D en une immersion a de X dans E. Cette immersion est propre (l&apos;image

réciproque d&apos;un compact est compacte), donc c&apos;est un revêtement; de plus,
l&apos;application induite entre les groupes fondamentaux est surjective, donc a est un
homéomorphisme, ce qui prouve que:

a) a | W q \ W est un plongement, donc Fo et d+ W sont disjoints;
b) É admet une partition É Fo x ]- », 0[ U q( W) U *&gt; : donc q( W)

A(F0,d+W), partie de É comprise entre Fo et d+W. D



84 JEAN-CLAUDE SIKORAV

A(F0.3+W)

aj/v

Donc W est le graphe d&apos;une fonction c :A(F0, dW) —&gt; I vérifiant c 1(0) Fo,

c~1(ï) d+W (et transverse au bord); il est alors clair que la composante &quot;droite&quot;

de ExI~W (celle qui contient (rXid)(W)) est:

&gt; {(x,t)€ÉxI\xeD ou xe A(F0,d+W), t&lt;c(x)}.

Dx{0}

Ax{0}

COROLLAIRE. Si xeA(F0,d+W), TkxGA(F0,ô+W) avec keN*, alors

c(rkx)&gt;c(x). [En effet, on a (Tkx, c(jc))e(Tk xid)(W)c®J

1.5. LEMME. Si W et W sont deux anneaux de Wall au sens strict issus de Fo,
tels que d+W d+W, alors W et W sont isotopes rel le bord.

Démonstration. W et W&apos; sont les graphes de deux fonctions c et c&apos; de

A(F0, d+W) dans I; d&apos;après le corollaire ci-dessus, le graphe W(À) de (1-À)c +
Àc&apos; est, pour O&lt;À&lt;1, projeté injectivement par Trxid. Le projeté W(À)
(7rXid)(W(A)) donne l&apos;isotopie cherchée.

1.6. LEMME. Si W et W sont deux anneaux de Wall au sens strict issus de Fo
tels que d+W et d+W&apos; sont isotopes, il existe une isotopie W(À) d&apos;anneaux de Wall
au sens strict issus de Fo, telle que d+W(0) d+W et d+W(l) d+Wr.

Démonstration, a) II existe une pseudo-isotopie 0 telle que &lt;Î&gt;(FO xI) W (cf.

[LJ, p. 419). Posons Pi Po0&lt;£ï&quot;\ Pi Po°^r1 et soit f:E -&gt; R telle que /°tt
Pi-Po-

b) Construction de Tischler (cf. [LB], p. 175): définissons P po+t/:ExJ-»
S1 (t coordonnée sur I) et W(0) P~1(0), que l&apos;on relève en W(0).
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Le fait que /&lt;0 sur W(0) entraîne que:
i) P est transverse à 0 sur W(0).
ii) W(0) est un graphe au-dessus de q(W(0)) A(F(hd+W) q(W). Donc

W(0) est un anneau de Wall au sens strict, et son bord coïncide avec celui de W.
Par hypothèse, il existe une isotopie pk :E —? S1 telle que p° Pi, (Pi)~1(0)

d+W&apos;\ en la modifiant convenablement on peut supposer que le relèvement
pK :É —» R issu de px a les propriétés suivantes:

• Pi Pi.
(pxr1(0)c=Fox]0,+oo[ pour tout A.

On peut alors faire la construction de b) pour tout A:

On définit fk telle que /x °ir pk-p0, et Ton pose Px po + tfK ;

On pose W(A) (PX)&quot;1(O), que l&apos;on relève^en W(A).
Le fait que fk &lt;0 sur W(A) entraîne que W(A) est un graphe et que Px est

transverse à 0 sur W(A); comme de plus W(0) est un anneau, (W(A)) est une
isotopie d&apos;anneaux de Wall au sens strict (issus de Fo). Comme d+W(l)
(p1)~l(0) d+W\ ceci achève la preuve du lemme.

1.7. COROLLAIRE. Si &lt;P et V sont deux pseudo-isotopies de Wall pour Fo
telles que ^i(F0) est isotope à ^(Fq), alors leurs classes [0] et [W] sont congrues
modulo Vimage de X:P(F0) ~* P(E).

Démonstration. D&apos;après la proposition 1.3, on a &lt;P(FoxI)^ty(FQxJ), et
d&apos;après [LJ, p. 421-22, les pseudo-isotopies de E laissant FQxI invariant à

isotopie près sont celles dont la classe est dans im S.

1.8. PROPOSITION. Wa (Fo) est stable pour la loi de groupe de P(E).

Démonstration. Sovient [&lt;P] et [^] deux éléments de Wa (Fo); notons Fx

«ÊxCFo). Puisque Wa (Ft) Wa (Fo) (cf. 1.2), on peut supposer &lt;P strictement de

Wall pour Fo et ^ strictement de Wall pour Ft; alors, q°&lt;P envoie du côté négatif
de F1 un voisinage de Fox{l} dans Foxl (cf. 1.4, lemme 1), et qo^o($1 xid)
envoie du côté positif de Fx un voisinage de Fox{0} dans FoxI. On peut donc, en

gardant les propriétés de &lt;P et de % modifier &lt;P près de JEox{l} et ^ près de

Ex{0} pour que la pseudo-isotopie topologique H, définie par:

fH(x,r) &lt;£(*, 2f), pour f&lt;è

lH(x, 0=^(*iW,2r-1), pour t&gt;l

soit un difïéomorphisme; alors H est isotope à #•&lt;&gt;# et est strictement de Wall

pour Fo.
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1.9. Cas où E DnlxS1: Proposition fondamentale

Rappelons que d&apos;après [HaW] le groupe de pseudo-isotopie P(Dn~1xSl,d)
est, pour n ^6, canoniquement isomorphe au groupe Z^tT, T&quot;1] des polynômes
de Laurent à coefficients dans Z2 sans terme constant. Le principal résultat sur les

pseudo-isotopies de Wall est alors le suivant.

PROPOSITION. Pour n &gt; 7, il existe une pseudo-isotopie de (D&quot;&quot;1 x S1, d) qui
est de Wall pour Dn~1x{0} (avec Vorientation transverse naturelle) et dont
Vinvariant est T.

La démonstration de cette proposition fait l&apos;objet des chapitres V et VI; elle

repose sur un lemme facile concernant les cobordismes élémentaires de paires
(V.6) et sur la comparaison de deux chemins élémentaires d&apos;élimination pour une
paire de points critiques d&apos;une fonction de Morse.

1.10. Cas où E Tn: Détermination des pseudo-isotopies de Wall

D&apos;après [HaW] on a, pour n&gt;6, un isomorphisme canonique:

Si p0 est une submersion de Tn sur S1 homotope à la coordonnée x^ on a des

isomorphismes canoniques:

P(F0) « P(Tnl x {0}) ~ZÏTi,..., T-iJ,

la suspension S:P(F0) —» P(Tn) correspondant à l&apos;inclusion. L&apos;application miroir
jutn :P(Tn)-+ P(Tn) (resp. jutn_1 : P(F0) -* P(F0)) est le morphisme d&apos;anneaux

induit par T^T^1, l^i^n (resp. l&lt;i^n-l).
On a alors le résultat suivant.

PROPOSITION. Pour n&gt;7, Wa(F0) est le sous-groupe de Z%[TU T&quot;1]

engendré par les monômes TÏ1 • • • T£% avec kn^O.

Démonstration. D&apos;après [LJ p. 419, il exist une pseudo-isotopie 0 de T1 telle
que: Fo *1(Tn~1x{0}), donc (cf. 1.2), Wa (Fo) Wa (T^xlO}).

a) Considérons un monôme Ti1 • • • T£n, fen&gt;0; soit i un plongement de
Dn~1 x S1 dans Tn tel que xn°i knpr2 et qui envoie le générateur canonique de
7T1(Dn&quot;1xS1) sur T^ - • • TÎ»€ir1(Tn).

Prenons une pseudo-isotopie &lt;P de (Dn~1xS1,d) ayant les propriétés de 1.9,

transportons-la sur i(Dn~1xS1) et étendons-la par une isotopie de Tn —
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i(Dn~1xS1): on obtient une pseudo-isotopie de Tn qui est de Wall pour T^x
{0} (la condition d&apos;immersion positive est préservée car kn&gt;0) et qui a pour
invariant T^ • • • T|J».

Comme WaCF^xjO}) est stable pour l&apos;addition et contient X(P(Tn~l))
Z^ITi» - - •&gt;

T^-i]&gt; il contient le sous-groupe de l&apos;énoncé.

b) Réciproquement, soit P e Wa (Fo) ; écrivons-le P Q + J?, où Q (resp. JR) ne
contient Tn qu&apos;avec des exposants &gt;0 (resp. &lt;0). D&apos;après le a), P&apos; Q-\-yunR est
aussi dans Wa (Fo); de plus P et P&apos; ont même image dans 7ro(DiffPI Tn), donc 1.7

entraîne P&apos;-PeimX. Comme P&apos;-P R + iinR, cela signifie que Tn n&apos;apparaît

pas dans R.

1.11. Remarque. Le résultat de 1.10 complète la classification isotopique des

submersions de Tn sur S1. En effet, à une paire de submersions homotopes p0, pu
[LJ associe un élément de Wa (F0)xP(F0), défini modulo l&apos;image de

(- X, id4- fx) : P(F0) —» Wa (Fo) x P(F0), qui classifie à isotopie près les submersions

homotopes à p0. Cet invariant sera appelé invariant dyisotopie de px par rapport à

Po-

1.12. Remarque. On déduit immédiatement de 1.10 que Wa(F0) +
im(id + |LLn) P(Tn), quelle que soit la submersion p0 de Tn sur S1.

II. Formes linéarisâmes: classification isotopique en grande dimension

II.1.* PROPOSITION. Soit 0 une pseudo-isotopie de Tn, n &gt;7. Les propriétés

suivantes sont équivalentes:
a) la classe de &lt;P est dans im(id+jLtn)c:P(Tn);
b) &lt;P1 est isotope à Videntité, autrement dit [&lt;P] e ker (pn :P(Tn) -&gt;

7ro(DiffPITn));
c) II existe une forme a) dans ùn telle que &lt;PX&lt;a soit isotope à co.

Démonstration. Il suffit de prouver que c) entraîne a): or, si c est vérifiée, le

lemme de Moser permet de supposer w rationnelle.
Soit alors p la submersion associée à co; on a poQ^p. De plus, d&apos;après 1.12,

on peut écrire [&lt;P]=Q + R, avec QeWa(F) [F p~H0)] et Reim (id+jtzj. Soit

V une pseudo-isotopie de classe Q: on a potPi«p, et comme ^ est de Wall pour
F, l&apos;invariant de p par rapport à p est représenté par (O,0). On a donc

(Q, 0) g im (2, id + &lt;Xn-i)&gt; soit Q e 2(ker (id + ju*-!» &lt;= ker (id + jxn) im (id + mJ ;

finalement, [&lt;P]=Q + R est bien dans im(id+/xn). D

* Voir remarque à la fin.
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II.2. Le groupe 7ro(Difï Tn)

L&apos;équivalence de a) et b) dans la proposition précédente était déjà connue de

[HsS] (p. 410), [Ha] (p. 9), qui calculent pour n&gt;6:

7T0(DiffH Tn)-7r0(DiffPI Tn)©^n,

avec 7ro(DiffPI Tn)~P(Tn)/im(id + |uin) et Xn =0r=2Hl(Tn, tt1+1(TOF/O))
(remarque: %tn ker (7ro(Diff Tn) -&gt; 7r0(Homéo Tn)). Notons que Sifn est un groupe
fini.

La suite exacte 0 -* 7ro(DiffH Tn) -* 7ro(Diff Tn) -* Gln (Z) -&gt; 1 est une
décomposition de 7ro(Diff Tn) en produit semi-direct, l&apos;action de Gln Z par
conjugaison étant l&apos;action canonique sur:

ZÏTls..., T^/im (id + fxj £ Hl(Tn; tt1+1(TOP/O)).

II.3. LEMME. Pour n&gt;7, une /orme rationnelle linéarisable Vest par un
difféomorphisme pseudo-isotope à Videntité.

Démonstration. On peut supposer que la submersion px associée est homotope
à xn. Soit ([^P],[&lt;p]) un représentant de l&apos;invariant de px par rapport à xn: le fait
que Pi est conjuguée à ^ s&apos;exprime par pn-i([&lt;p]) 0 (cf. [LJ p. 424), soit
[&lt;p]eim(id + /uin_1) puisque n —1&gt;6 (cf. IV.2). On a donc [&lt;p] [i/&gt;]+fAn-i[^l
d&apos;où ([#];[&lt;?])-([&lt;£] + £[&gt;],0): donc il existe une pseudo-isotopie \P de Tn, de
classe [&lt;P] + 2M, telle que p1°V1 xn.

II.4. PROPOSITION. Pour n&gt;7, Vaction de Wn sur Oln/^ donnée par
[/] &apos; [w] [/*&lt;*&gt;], est triviale.

Démonstration. Comme 7ro(DifïH Tn) est abélien, il suffit de prouver
f*Iïaldxl~Zn1aldxl pour [f]eWn et

a) Traitons d&apos;abord le cas rationnel. Il suffit de prouver que [/]e$?n entraîne

/*d*n«dxn; or, d&apos;après II. 1 et II.3, on peut écrire /*dxn g*dxn, avec ge
DiffPITn, la classe [g]€7ro(DifïpITn) étant bien définie. L&apos;application a ainsi
définie de $fn vers 7T0(DiffPI Tn) est un morphisme de groupes d&apos;après la
commutativité de 7ro(DiffH Tn); de plus elle est compatible avec les actions par
conjugaison de G {v e Gln Z | v*xn — x^J.

Soit alors [/] un générateur de 5ifn, d&apos;invariant (xkiA • • • Axki)®7 (i^2,
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y e tt1+1(TOP/O)) et soit b eZ§[Tlf..., T&quot;1] tel que pn{b) «([/])€ 7ro(DiffPI Tn).
On a:

où K est une partie finie de Zn-{0}, invariante par le sous-groupe

G&apos; {veG | ^*(xklA • • • Axki) xklA &apos;&quot;AxK mod#tt1+1(TOP/O)}.

Comme les orbites de G&apos; sont infinies (exercice), K est vide: donc «([/]) 0, et a
est l&apos;application nulle.

b) Définissons A={(al)eRn-{0}|/*Iïoldxl«lraldxl, pour tout
On a les propriétés suivantes:

A est un cône contenant Qn-{0}, donc non vide;
A est invariant par Gln Z: cela vient du fait que %tn est distingué dans

7ro(DifiTn);
A est ouvert: cela résulte de lemme de Moser et du fait que 3€n est fini.

Comme toute orbite de l&apos;action de Gln Z sur PnlR est dense, on en déduit
A=Rn-{0}.

Conséquence. Toutes les formes linéarisâmes le sont par pseudo-isotopie
(généralisation de II.3).

II.5. THEOREME. On munit 7ro(DiffPI Tn) de la topologie discrète; alors,

pour n &gt; 7, l&apos;application an : 7ro(DiffPI Tn) x (Rn -{0}) -&gt; Ùlnl^

est un homéomorphisme.

Démonstration. On sait déjà que c&apos;est un homéomorphisme local (pour tout n)
De plus, la proposition II.l entraîne l&apos;injectivité et la remarque à la fin de II.4 la

surjectivité.

En particulier, à une forme linéarisable est associée un unique élément de

îro(DifïpI Tn), qui précise sa composante connexe dans illn.



90 JEAN-CLAUDE SIKORAV

III. Voisinage dans On/^ d&apos;une forme rationnelle

Dans ce chapitre, on suppose n &gt;7. Si n 6, une partie des résultats subsiste

(voir III.5).

III.l. LEMME. Dans toute classe de Wa(Dn-1x{O})[cF(Dn&quot;1xS1,a)], il y

a un représentant &lt;P tel que tous les anneaux 0(Dn~1 x {u} x I) (ueS1) sont de Wall
au sens strict.

Démonstration. Soit \P une pseudo-isotopie de Wall pour Dn~1x{0}.
Désignant par pQ:Dn~1xS1 —» S1 la deuxième projection, choisissons un
relèvement f:Dn~lxSl -&gt; R de po°yIrï1-Po tel que /&lt;0, et posons

W(u) {(x,t)eDn~1xS1xI\pQ(x) + tf(x) u} (ueS1).

Le raisonnement de I.6.b) prouve que tous les W(u) sont des anneaux de Wall
au sens strict; en utilisant la nullité de PCD&quot;&quot;1,^) on trouve facilement une
pseudo-isotopie &lt;2&gt; de Dn~1xS1 telle que &lt;t&gt;(Dn~1x{u}xI) W(u) pour tout u.
Comme ^(D11&quot;1 x{0}) ^(D&quot;&quot;1 x{0}), 1.7 entraîne que &lt;ï&gt; est isotope à ^.

III.2. Remarque. La propriété géométrique du lemme précédent se traduit
analytiquement par (d/dt)(po°&lt;P~1)&lt;0. En particulier, les formes dt et
(po0^&quot;1)* dd sur Dn~1xS1xI n&apos;ont pas de contact positif et il en est de même

pour les formes d(t°&lt;P) et p*dQ: donc d(t°&lt;f&gt;) + rpo dO est une forme non
singulière pour tout r&lt;0.

III.3. LEMME. Soient p0 et p&apos;o&apos;.Y1 ~&gt; S1 deux submersions homotopes à xn,

Vinvariant de p&apos;Q par rapport à p0 étant représenté par (0, Q), Q=Zi&gt;o OiT\; on

pose a)o p*d0 et a&gt;o Po*d0. Soit r (r1?..., rn_i) un élément de Rn-1 assez

proche de (0) et soient &lt;ar et a)rT des formes (de Ûn) cohomologues à dx^ +SÎ&quot;1 rt dxl
et proches respectivement de o&gt;0 et de &lt;û&apos;o. Alors

a) Si r!&lt;0, &lt;or et o)&apos;r sont isotopes.

b) Si TxX), o)&apos;r est conjuguée à a&gt;T par un difféomorphisme pseudo-isotope à
Videntité de classe pw(Q)«

Démonstration. On peut supposer que p0 et p&apos;o coïncident hors d&apos;une boîte
B SxXlxD;-2,^x 1^, et que de plus:

Po\B xn

Po|B xno&lt;p, ç pseudo-isotopie de SxxDn~2 de classe Q.
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D&apos;après la remarque précédente, on peut de plus choisir &lt;p de sorte que
ri dxx | JB) soit non singulière pour r^O.

On peut (d&apos;après Moser) supposer que ù)r co0 + Ir1 rt dxx (voir la figure)
tor^tob + YXT1 Txd^. Alors pour rt^0 la restriction à B de ù)&apos;rlrl est une forme
cohomologue dans HHB;R) à dxu et dont la restriction au bord est linéaire; de
plus, elle est non singulière dans les deux cas suivants:

-r assez proche de (0);

-r (ru 0,..., 0) avec rl&lt;0 quelconque.

feuille de(corlB)

a) On a \imri_+-O0(dxi + a)&apos;0lr1) dx1; donc, par Moser, il existe /eDiffB
isotope à l&apos;identité parmi les difïéomorphismes dont la restriction au bord est

linéaire, et tel que (((o&apos;Jr^ \ B) f*(dx1 \ B). Notons é le difféomorphisme linéaire
de B coïncidant avec / sur le bord, il vient {(a&gt;&apos;rl*\) I B) (i/T1°/)*((&lt;or/r1) | B);
comme i(/~lof est isotope à l&apos;identité rel le bord et que (o[ coïncide avec (or hors
de B, on en déduit que a)&apos;r est isotope à (or.

b) Notons v l&apos;élément de Gln Z c Difï Tn défini par v(xl9 ...,xn)
(~xu x2,..., *J. Comme xn°v xn et que i/°&lt;p°v est isotope au miroir jx(&lt;p), on
a:

xn°&lt;p°v

où g est un élément de &amp;{SlxDn~2) de classe 0 + ^(0); à priori g | S^Dxfl}
est seulement isotope à l&apos;identité, mais il est clair que l&apos;on peut isotoper g de

façon à avoir g|dB=id tout en conservant xn°&lt;p°v xn°&lt;p°g. alors g est un
élément de DiffPI (B,dB) égal à id sur dB, et de classe [g]
7ro(DiffPI (B,3B)): en effet, on a un diagramme commutatif

P(B, dB)^ P(B, dB) iro(Diff B x / rel U))

i I
P(BXl,d)-^-*TT0(DÏ xl rel d))



92 JEAN-CLAUDE SIKORAV

(cf. [HaW] p. 270). On a alors:

v*(&lt;o&apos;0\B) g*(&lt;o&apos;0\B),

donc le lemme de Moser entraîne v*(û&gt;M B) « g*(coLr| B), et si rt&gt;0, il vient
rel aB

v*{f*&apos;t | B) - g*(o&gt;_r | B) g*v*(a&gt;r | B)
reldB

|B), /* V°g°V g.
rel dB rel dB

Comme co, coïncide avec &lt;or hors de B, ceci achève la démonstration du
lemme.

III.4. PROPOSITION. Soir &lt;o0 ptd6, où po:Tn -&gt; S1 est une submersion

homotope à xn d&apos;invariant relatif représenté par (P, Q); on suppose (ce qui est

toujours possible) Q &quot;réduit&quot; dans le sens suivant: O =Sjk=i Pj(Mj), où les M, sont
des monômes primitifs non conjugués (soit M^Mf1) de la forme
Ti1 • • • T^L-f (ku kn_i€Z) et les P, des polynômes non nuls de Z5[T].

Notons HPE* et E~ Vhyperplan de Rn-1 et les demi-espaces positif et

négatif définis par M, (c&apos;est-à-dire Xî&quot;1 fc,^ respectivement nul, positif, négatif).
Soit alors œ une forme voisine de a), cohomologue à dXn+Xï&quot;1 ^d^; notons

a) Si r£ \JjHj, û&gt; est linéarisable et Vêlement de 7ro(DiffPI Tn) associé est

b) Si r g (Jj Hp &lt;»&gt; est non linéarisable.

Démonstration. On peut supposer P 0. Pour j 1,..., k, soit pJ0 une
submersion homotope à x^, d&apos;invariant relatif (0, P1(M1)+ • • • +Pj(Mj)), avec Po

*m Po Poî notons o&gt;{) (po)* d^, et soit co1 une forme proche de (o&apos;q et
cohomologue à o&gt; : on prend de plus &lt;o° linéaire et &lt;ok &lt;y. Comme l&apos;invariant de pJ0

par raport à p1^1 est représenté par (0, P}(Mj)), le lemme précédent implique (en

changeant de coordonnées pour avoir M, TV):

1) si reE~, w1 est isotope à g*1&quot;1;

2) si r€Ef, a)1 est conjuguée à co1&quot;1 par un élément de DiffPI Tn de classe

Ceci prouve immédiatement le a). De plus, la différence entre deux éléments
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de 7ro(DiffPI Tn) associés à deux composantes distinctes de Rn&quot;1-|Jj H, est de la
forme: A pn(Ije^ P^M,)), avec S&gt; c {1,..., fc}, 3± 0.

Comme Q est réduit, elle n&apos;est jamais nulle; donc, si r e Uj H,, tout voisinage
de a) rencontre au moins deux composantes de Oln et a) ne peut être
linéarisable.

III.5. Remarque. Si n 6, on a les résultats plus faibles suivants.
a) Avec les hypothèses de III.3: si r£ 0, coj est conjuguée à &lt;or par un élément

de DiffPI Tn de classe ne dépendant que de 7\. Pour cela, on utilise le fait que
deux submersions homotopes de Dn~1xS1 and S1 sont conjuguées par pseudo-
isotopie.

b) Avec les hypothèses de III.4: si r^(J, Hp eu est linéarisable par pseudo-
isotopie.

IV. Densité des tonnes linéarisâmes. Formes irrationnelles non linéarisâmes

IV.l. PROPOSITION. On suppose n&gt;6. L&apos;ensemble flln des formes

linéarisâmes est dense dans fln (pour la topologie C°° ou, ce qui revient au même,

Ck, 0&lt;fc&lt;°o). Plus précisément, pour toute forme &lt;oeQn rationnelle, il existe

/eDiffPI Tn tel que /*cu est limite de formes linéarisables par isotopie.

Démonstration. C&apos;est un corollaire immédiat de III.4 (ou de III.5, si n=6).

Remarque. Soit a la forme linéaire cohomologue à co, alors, tout voisinage de

[a] dans fln/as rencontre tout voisinage de [/*a&gt;]; prenant w non linéarisable, cela

prouve que I2n/sss n&apos;est pas séparée.

IV.2. PROPOSITION. On suppose n&gt;7. Toute classe de cohomologie ayant

un groupe de périodes de rang &lt; n -1 contient une forme non linéarisable.

Démonstration. L&apos;action de Gln Z permet de supposer la classe égale à

(0, y2,..., vn), | vx| « | vn| pour 2 &lt; i &lt; n -1 ; par homothétie, on obtient

(0, r2,..., rn_l51) avec (r2,..., rn_i) aussi petit qu&apos;on veut. La proposition V.4

appliquée avec Q TX par exemple, montre que le résultat est vrai dans ce

dernier cas.

IV.3. PROPOSITION. On suppose n&gt;7. Uespace On, muni de la topologie

C°°, est connexe par arcs. En d&apos;autres termes, deux 1-formes différentielles fermées

non singulières sur Tn peuvent toujours être jointes par un chemin de telles formes.

Démonstration. D&apos;après la densité de nln \Jfei»s»T»f*alt et la connexité de



94 JEAN-CLAUDE SIKORAV

flj|, il suffit de joindre Uj; à /*I2J; pour tout /eDiffPI Tn. Or la proposition III.4
montre que c&apos;est possible pour [/] p(Tjc), donc par naturalité pour [/]
pCït1 • • • Tj«). Il en résulte que l&apos;on peut joindre g*/2j; à g*f*On pour f, ge
DiffPI Tn, [/] p(T^ • • • T»; ceci achève la démonstration.

IV.4. La proposition IV.2 laisse ouverte la question de l&apos;existence d&apos;une forme
non linéarisable &quot;totalement irrationnelle.&quot; Dans cet ordre d&apos;idées, on a la
proposition suivante.

PROPOSITION. Pour n&gt;6, Vensemble N {(al)eRn-{0}\ Beo-I? atdxl9 &lt;o

non linéarisable} est une réunion dénombrable de fermés d&apos;intérieur vide.

Démonstration. Posons d&apos;abord quelques notations: choisissant une norme | |

sur Rn, définissons, pour une 1-forme co sur Tn, considérée comme une application

de Tn dans Rn: |M| supxeT»|û&gt;(x)|

m(û&gt;)= inf |û&gt;(x)|.

xeTn

La norme || || donne une distance définissant la topologie C° sur fln ; d&apos;autre

part, le lemme de Moser entraîne que, pour o&gt; e Qny la restriction de

cl : B(cj, m(oi))/« -» B(cl co, m(&lt;o))

est un homéomorphisme (quelle que soit la topologie Ck sur fln).

LEMME 1. Uespace fln contient une suite dense (&lt;«,), 6N.

Démonstration. Il suffit de considérer les formes dont les coefficients sont des

polynômes trigonométriques à coefficients rationnels.

LEMME 2. Si (&lt;*))l(=N est dense dans Ï2n, on a LLn#(&lt;»i&gt; m(&lt;ol)/2) On.

Démonstration. Soit &lt;oe{}n, il existe ieN tel que ||o&gt; —û&gt;l||&lt;m(co)/3; on en
déduit m(û&gt;l)&gt;m(co)-m(cu)/3=|m(co), donc ||oi-oii||&lt;Jx|m(a^).

Fin de la démonstration, soit (&lt;ot)l&lt;EN une suite dense dans f2n, et posons:

M2 | o&gt; e B&apos;
û&gt;,, —r-1-1 co non linéarisable \ (Bf : boule fermée)

N, cl Qf^) c B&apos;(cl a,,,^^ )cR« -{0}.
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Alors
a) Comme Oln est un ouvert dense de On, JflJm, est un fermé d&apos;intérieur vide

dans B&apos;K, m(ûO/2)/~.
b) Comme la restriction cl: B&apos;{œnm (œ,)/!)-*!}&apos; (cl(onm(cot)/2) est un

hornéomorphisme, N, est un compact d&apos;intérieur vide dans Rn- (0}.
c) D&apos;après le lemme 2, on a N LUn N,, ce qui termine la démonstration.

Remarque. D&apos;après III.4 et III.5, N, a la propriété suivante: si aeB[
B&apos;(cl û&gt;,, m(û)l)/2) et si a est sur une droite rationnelle (3À tel que ka € Qn - {0}), il
existe des hyperplans &quot;entiers&quot; Hl9..., Hk de Rn, contenant a (fe 0 n&apos;est pas
exclus) et un voisinage v de a dans B[ tels que:

ou

^ni/=(|J hAc\v, si n&gt;l
W /

*. H1/ c |J H, H v, si n 6.

V. Préparatifs à la démonstration de 1.9. Cobordisme élémentaire de paires en
codimension un

V.l. Généralités. Nous considérons dans les paragraphes 1 à 6 de ce chapitre
un cobordisme élémentaire compact (A\Aq,A^ dont la face latérale est un
produit dAoxI; pour simplifier, nous supposerons dA0= 0. Nous nous donnons

une fonction de Morse f:A-+I vérifiant f~x(0) Ao, f~l{\) Ax et ayant un seul

point critique et un champ de vecteurs £ de pseudo-gradient pour / (voir
définition dans [Mi]); nous noterons c le point critique de /, i son indice et n la

dimension de Ao et nous supposerons f(c) \.
Le point c admet un voisinage de Morse v(c) avec les propriétés suivantes:

il existe un difïéomorphisme A de v(c) sur LltH+l

{(x, y)6RlxRn+1-l|-l&lt;-|x|2 + |y|2^l et |x||y|&lt;ch 1 sh l}cRn+1, et dans ces

coordonnées (x, y), on a /(x, y) (è)H*|2 + ly|2+l)&gt;

n + l-iI
La nappe descendante de c pour i correspond alors à Dl x{0}; son bord est

une (i-l)-sphère So plongée dans Ao: c&apos;est la &quot;sphère d&apos;attachment.&quot; Cette
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sphère a un voisinage tabulaire trivial N(S0, Ao) v(c)H Ao, image du plonge-
ment &lt;p:Slx Dn+1~l -» a0 défini par &lt;p(u, Ou&apos;) A&apos;^ch 0 • m, sh 0 • u&apos;) (u g S1&quot;1,

0€l, m&apos;gS&quot;&quot;1). Ainsi &lt;p donne une trivalisation du fibre normal v(S0, Ao).

V.2. LEMME. Soit Bo wrce sous-variété de codimension 1 de Ao, contenant la
sphère d&apos;attachement So; on suppose que le sous-fibré v(S0, Bo) de v(S0, Ao) est un
champ de (n — i)-plans homotope à une constante dans la trivialisation donnée de

v(S0, Ao). Alors, quitte à modifier (/, £) par une isotopie de A, on peut supposer que,
dans le voisinage tubulaire N(S0,A0), Bo est définie par yn+1-t 0.

Démonstration. L&apos;utilisation de l&apos;astuce d&apos;Alexander (Alexander trick) dans

chaque fibre de N(S0, Ao) (piS1&apos;1 xDn+1&quot;&apos;) permet de supposer, à une isotopie
de Bo dans Ao près, que &lt;p-\N(S0, Ao) H Bo) {{u} x (Ptt n Dn+1~l) \ u e S1&apos;1}, où
u—&gt;PU est une application de S1&quot;1 dans la grassmannienne Gn-^R&quot;&quot;1&quot;1&quot;&quot;1)

homotope à une constante. Choisissant cette constante égale au plan (yn_t 0), on
trouve une deuxième isotopie de Bo dans Ao qui permet d&apos;obtenir (p&apos;^BoH

N(S0, Ao)) S1&quot;1 x Dn~\ Pour terminer la démonstration, il suffit de prolonger
l&apos;isotopie de Bo dans Ao à une isotopie de A et de modifier (/, £) par l&apos;isotopie

inverse.

V.3. COROLLAIRE. On suppose (/, £) modifié comme l&apos;indique le lemme.

Soit alors B V adhérence de la réunion des orbites de £ issues de Bo et soit

B1 JBflA1. Alors (B,B0,B^) est un sous-cobordisme de codimension 1 de

(A ; Ao, Ax); de plus, f\B est une fonction de Morse ayant c pour seul point critique,
avec le même indice que pour f et £ est tangent à B, $ \ B étant de pseudo-gradient

pour f \ B.

Démonstration. Cela résulte immédiatement du fait que B est défini dans v(c)
par yn+1_t 0.

La paire (A, B) est alors appelée cobordisme élémentaire de paires de codimension

un (en abrégé C.E.P.C.U.); elle est caractérisée par l&apos;existence d&apos;une fonction
de Morse f:A-+I avec un seul point critique, telle que /1 B soit une fonction de

Morse avec un seul point critique, ce point étant le même et ayant le même indice

que pour /.

Remarque. Si B est à deux côtés dans A, on convient que le côté positif est
défini dans le voisinage de Morse par yn+1_, ^0.

V.4. LEMME. Soit (A,B) un C.E.P.C.U; soient f, g et v(c) ayant toutes les

propriétés de V.l, 2, 3. On suppose de plus que B est à deux côtés dans A. Alors, il
existe un voisinage YdeB dans A et une fonction sans point critique z:V-+1H, avec
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les propriétés:

et z

Démonstration. L&apos;hypothèse que B est à deux côtés dans A équivaut à: a) Bo
est à deux côtés dans Ao et b) cpiS1&apos;1 xDf1&quot;1) est situé d&apos;un seul côté de Bo (b)
résulte de a), si i &gt;: 2). Donc, il existe un voisinage Vo de Bo dans Ao, contenant
N(S0, Ao), et une fonction sans point critique u : VQ —? R telle que m | N(So, Ao)
yn+i-« et u~1(0) Bo. D&apos;autre part, le champ £ et la fonction / permettent
d&apos;identifier le complémentaire des nappes dans A à (AQ-S0)xI; on a alors

f(a,t) t et |(a, f) a(a, t)(a/dr) (a€ Ao-So, te J), où a est à valeurs &gt;0. De
cette façon, (v(c) moins les nappes) s&apos;identifie à (N(S0,A0)-S0)xI et la
coordonnée yn+i_, sur v(c) définit sur (JV(S0, Ao)-So)xl une fonction sans point
critique encore notée yn+1_t, vérifiant yn+1_t(a, 0) u(a) et

Il en résulte Vn+i-, (a, t) u(a)- exp(Jo dv/a(a, v)) sur (N(S0,A0)-S0)xI; or,
cette expression est définie sur (Yo-So)xl, ce qui permet de prolonger yn+i-, en

une fonction z définie sur V (V0-S0)xIUv(c). Y est bien un voisinage de B
dans A et, par construction, z vérifie £• z z et z~1(0) 0. Enfin, z est sans

point critique car:

£ • z z ^ 0 hors de B ;

z | v(c) yn+i_, est sans point critique;

d»
sur

V.5. LEMME. Sous les hypothèses de V.4 il existe un voisinage tubulaire N(B)
de B dans A et une rétraction r:N(B)-+B tels que A=(r,z) définisse un
difféomorphisme de N(B) sur B x[-e, e] avec les propriétés:

a) fo\-\b, z) f(b) si b est près de BOUBX;
b) £-(/or)+l-/or&gt;0 sur N(B).

Démonstration. La fonction z est sans point critique et elle est transverse aux

niveaux de / près de Bo U Bt ; donc, il existe un voisinage °U de B dans A, %
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un champ tj sur °U vérifiant i\ • z 1 sur °U et rj • / 0 sur un voisinage dans °U de

(A0UA1)n%. Par intégration de tj, on construit N0(B) et une rétraction
ro:No(B) —» B tels que À0 (r0, z) soit un difféomorphisme de N0(B) sur fîx
[-£o&gt; €0] vérifiant a); de plus, on a, sur B, £ • f°ro (£ | B) • (/1 B), qui est &gt;0 sur

B-{c}; on a aussi l-/or0&gt;0 sur B et l-/°ro(c) è&gt;0: donc, £-/°ro+l-/°
ro&gt;0 sur B. Comme B est compact, il suffit de remplacer N0(B) par N(B)
Àôa(B x[-e, g]) avec e assez petit pour obtenir la propriété b).

V.6 PROPOSITION. Soit ((A,B); (A0,B0), (A^BJ) un corbordisme
élémentaire de paires de codimension 1, muni d&apos;une fonction de Morse f et d&apos;un

champ de pseudo-gradient £; on suppose que B est à deux côtés dans A. Alors, il
exisite une isotopie de plongements propres GS:B —» A issue de V inclusion, avec les

propriétés:
a) Gs | Bx inclusion Bt —» A1 pour tout s; f°Gs=f près de B0UB1;
b) Pour s&gt;0, GS(B) admet -| pour champ normal positif;
c) Pour s&gt;0, GS(B) est situé du côté négatif de B et gs(B)HB=B1.

COROLLAIRE. Pour toute isotopie ys:B —&gt; A issue de Vinclusion, telle que
ys | Bi est assez petite et que 7i(B) admet —f pour champ normal positif près de

YiCBi), il existe G&apos;S:B-*A issue de Vinclusion, coïncidant avec ys près de Bx et
telle que G[(B) admet —( pour champ normal positif. Si yiiBJ est situé du côté

négatif de Bx et disjoint de Bl5 on peut imposer que Gi(B) soit disjoint de B.

Démonstration. Soient N(B) et A (r, z) : N(B) -» B x [-e, e] avec les

propriétés de V.5; on définit GS:B -* N(B) par Gs(b) \-\b, es(f(b)-l)).
AL

Les propriétés a) et c) sont évidentes; de plus, GS(B) admet l&apos;équation

&quot;orientée&quot; z-es(/°r-l) 0; donc, un vecteur X, tangent à A en un point de

GS(B), est un vecteur normal positif si et seulement si X • (z -es(f°r — 1)) 0. Or,
on a (—£) • (z — es(f°r— 1)) esi; • f°r — z, donc, en un point de GS(B), on trouve
es(Ç • /°r+ l-/°r), qui est &gt;0 pour s &lt;0 d&apos;après la propriété b) de V.5.
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Indication sur la preuve du corollaire. On utilise la transversalité de £ au bord
supérieur A1 pour fabriquer Grs comme l&apos;indique la figure ci-dessous.

V.7. Elimination de deux cobordismes élémentaires de paires

Nous considérons maintenant un cobordisme (A;A0, A2), Ao étant compacte
connexe de dimension n, muni d&apos;une fonction de Morse /: A —&gt; [0, 2] avec deux
points critiques, c d&apos;indice i et c&apos; d&apos;indice i + 1, l&lt;i&lt;n-l, en position
d&apos;élimination (cf. [Ce]). Nous supposerons f(c) \ et /(c&apos;) §. On a un plonge-
ment d&apos;un modèle standard d&apos;élimination (cf. [Ce]) ;:Dnx[0, 2]-* A; il existe
un champ £ de pseudo-gradient pour /, de la forme £ gradm /, la restriction de m
à /(Dnx[0, 2]) correspondant à la métrique euclidienne. Soient si la f-nappe
ascendante de c et S la £-nappe descendante de c&apos;, limitées par Ax =/&quot;1(l); les

bords dsd T0~Sn~l et dâ&gt; S0~Sl se coupent transversalement en un point
dans Ax. C&apos;est ce que l&apos;on exprime en disant que (si, 2b) est un couple de nappes
en bonne position. Noutons ^0 •&apos; S1 -* At un plongement d&apos;image So.

D&apos;après [Ce] p. 252-253, on peut définir une application de l&apos;ensemble des

composantes connexes de l&apos;espace M des couples de nappes en bonne position
vers P(A0)a : 7ro(^, (si, 2&gt;)) -» P(A0) de la façon suivante. L&apos;élimination des

points critiques de / donnée par (si, 2) donne une fonction fx : A -» [0, 2] sans

point critique, ce qui munit A d&apos;une structure produit Ao x [0,2] définie à isotopie
près; si (sir,Qf) est un autre couple en bonne position, l&apos;élimination des points
critiques donnée par (si1, Qf) donne une fonction f\ : Aq[0, 2] -» [0,2] sans point
critique, donc une pseudo-isotopie &lt;J&gt; de Ao (ici l&apos;on remplace [0,1] par [0, 2]
dans la définition d&apos;une pseudo-isotopie) telle que /i=/i°*; alors a([si&apos;,2)&apos;])

[*].
Soit maintenant Bo une sous-variété de Ao de codimension 1; à isotopie près,

on peut supposer Bonj(Dn x{0}) /(Dn-1x{0}). Soient alors B l&apos;adhérence des

orbites de £ issues de Bo et B1 BnAl, B2 BCiA2. On obtient ainsi un
sous-cobordisme (B;B0, B2) de codimension 1 de (A;A0, A2); de plus, /| B est

une fonction de Morse à deux points critiques c et c&apos;, de même indice que pour /
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et £ est tangent à B, £ | B étant de pseudo-gradient pour f\B: en effet, ces

propositions sont immédiates dans le modèle Dnx[0, 2] avec Bo Dn~1x{0}.

Remarque essentielle. Soit L Vunique orbite de £ joignant c et c&apos; et soit V un
voisinage arbitraire de L dans A; alors, la structure produit définie sur A par
(si, 2&gt;) peut être obtenue par intégration d&apos;un champ £x tangent à B et coïncidant
avec £ hors de V (la partie de cette remarque relative à V revient à dire que la
méthode d&apos;élimination de [Ce] donne le même résultat que celle de [Mi]).

Démonstration. Soit (ft) un chemin d&apos;élimination associé à (M, 9)), défini par
un modèle standard sur /(Dnx[0, 2]) (cf. [Ce] p. 244-252); il exisite alors un
voisinage U de L(= {0} x [|, §]) dans Dn x [0,2] sur lequel on a:

On a alors, sur U,

2Îxl^+2Îxk
et

On peut supposer V contenu dans 17; soit alors |x un champ sur A égal à £ hors
de V et tel que:

1 d n d B

lil V -2lxJ —+ 2 X xk—+A(x1,...,xn,xn+1)-
1 OXj n+1 ÔXk OXn-l

avec À(0,... ,0, xn+1)&gt;0; un tel £t existe car (xn+1 —1)2-|&gt;constante&gt;0 si

(0,0,..., 0, xn+1)£ V. Alors &amp; est tangent à B car B est défini dans j(Dn x[0,2])
par xn — 0. De plus, le champ t|s (1 — s) gradm fx + s^ est sans zéros pour 0 ^ s ^
1. Enfin, d&apos;après [Mi] (p. 50), on peut supposer qu&apos;il n&apos;y a aucune orbite de £ qui
aille de V à V en passant hors de U; on en déduit, en suivant exactement la

preuve de Milnor, que les orbites de tjs vont de Ao k A2: donc, on obtient une
isotopie des structures produits définies par gradm/! et £i- d

Dans le chapitre VI, nous supposerons Ao Dn~xxS1et3&lt;i&lt;n—4; d&apos;après
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[ChL] et [HaW], on obtient alors un diagramme commutatif d&apos;isomorphismes:

TToiJf, (M, %) -* P(Dnl X S1, d)

I \Trf T°(Plgt (S1, Ax); (Ao) -+ Z2[tt1A1 -{0}] Z2(T, T&quot;1],

où iriel T° désigne l&apos;ensemble des classes d&apos;homotopie de chemins I -&gt;

Plgt (S1, Ai) issus de */r0 et aboutissant en un plongement transverse à To en un
point, et où T est le générateur canonique de ir^Ax)** ir^Ao).

VL Démonstration de la proposition 1.9

Le plan de la démonstration est le suivant. Nous construisons un lacet de

plongements de i-sphères dans Ax dont la classe dans 7TielT°(Plgt (S1, Ax); t|r0) est
le polynôme T. Soit Qf la nouvelle nappe descendante de c&apos; associée à ce lacet.
Quelques propriétés de la construction permettent d&apos;affirmer que 9f est l&apos;image de
3&gt; par un diflféomorphisme de A qui est l&apos;identité sur le cobordisme inférieur
A_ /~1([0,1]) et qui préserve /. Si l&apos;on regarde A comme un produit grâce à

l&apos;élimination des points critiques donnée par les nappes (sd, 20, ce

difféomorphisme devient une pseudo-isotopie d&apos;invariant T. On vérifie sur la
construction qu&apos;il s&apos;agit d&apos;une pseudo-isotopie de Wall.

VI. 1. Construction du lacet de sphères

PROPOSITION. H, existe un plongement F : S1 x S1 -* int Ax avec les propriétés

suivantes:
a) Le lacet (Fs) dans Plgt(Sl,Ax) est basé en «/r0 et sa classe dans

7rf1To(Plgt (S1, AO; ^0) est le polynôme T;
b) II existe un voisinage collier N_(Bt) du côté négatif tel que, pour tout

s^O, 1 Vimage de Fs ne le rencontre pas;
c) F a un fibre normal trivial
Démonstration. Nous allons faire la construction de ([ChL]), pp. 425-427) en

la précisant pour obtenir les propriétés b) et c). Nous construisons d&apos;abord une

(i + l)-sphère X plongée dans le voisinage tubulaire de So, représentant l&apos;élément

non nul de iri+i(Sl); comme la construction se fait par chirurgie sur un plongement de

SlxSl à fibre normal trivial, S a un fibre normal trival. On impose en plus que X

soit disjoint de Bx et contenue dans un voisinage collier négatif de Bt.
Considérons d&apos;autre part un plongement F de S1 x S1 dans un collier positif de Bt
tel que le lacet associé (F&apos;s) est basé en ^0 et reste dans un petit voisinage de i^0
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dans Plgt(Sl, A0, et que l&apos;image de FJ est disjointe de Bt pour s^O, 1. Comme
ijj0 a un fibre normal trivial, il en est de même pour F&apos;.

Choisissons un arc simple a joignant l&apos;image de F&apos; à X et ne rencontrant ni Bx
ni To (il en existe car Ai-Bx-Tq est connexe). La somme connexe de X et de
FiS&apos;xS1) donne l&apos;image du plongement F cherché. D&apos;après [ChL], la propriété
a) est satisfaite; les b) et c) sont évidents.

VI.2. PROPOSITION. On utilise les notions de VI. 1. Soit M un voisinage de

Vinclusion Bx ~&gt; Ax dans Plgt (Bl5 Ax). Alors, il existe des isotopies Gt:A1-^ Ax
et gt:Bt-^ Ax avec les propriétés suivantes:

a) g0 id, Gt °F0 Ft pour tout t e [0,1] et Gx est Videntité au voisinage de So;

b) La collection des gt donne un plongement positif de Bxxl dans A1? avec

c) Les isotopies (gt) et (Gt \ Bt) sont homotopes à travers les chemins de

plongements de Bx dans Ax commençant dans Jf et finissant en gx.

Démonstration. Comme le plongement F donné en VI. 1 a un fibre normal
trivial, on construit G vérifiant la condition a); de plus, on peut choisir Gt à

support dans un voisinage arbitrairement petit de l&apos;image de F.

Identifions un voisinage tubulaire NiBj à Bxx[-l, 1] de sorte que N_(B1)
Bx x[-1, 0]. Etant donné jV, il existe e &gt;0 tel que, pour tout ue[-e, 0], Bx x{u}
soit l&apos;image d&apos;un plongement appartenant à Ji. Maintenant, on suppose que le

support de Gt évite BxX{—e}.
L&apos;image G1(B1x[-e,0]) a naturellement une structure produit Bxx[0,1].

Elle définit la collection des g, cherchés.

VI.3. Construction d&apos;un difféomorphisme &lt;P de A

On choisit une fonction /u, : [0,1] -&gt; [0,1] égale aux fonctions constantes 0 et
1 respectivement au voisinage de 0 et de 1. On pose &lt;&amp; \ A_ id. Sur f&quot;1^!,!]),
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que / et £ permettent d&apos;identifier à A1x[l,|], on pose &lt;P(a91 +1/4)
G(x(t)(a, l + f/4). Sur /&quot;^[f, 2]) moins les nappes de c\ que / et £ permettent
d&apos;identifier à (Ax - St) x [f, 2], on pose &lt;P(a, î) (G^a), 0- Enfin, sur ce qui reste,
on pose &lt;P id. Comme Gx est l&apos;identité sur un voisinage de Su &amp; | f&quot;1^, 2]) est
l&apos;identité près des nappes de c&apos;, donc &lt;2&gt; est un difféomorphisme.

niveau 2

nappes de c&apos;

Remarque. Le difféomorphisme
l&apos;idée en est attribuée à Farrell.

| d+A est celui décrit dans [Ha] p. 9-10, où

VI.4. Preuve que &lt;P est une pseudo-isotopie d&apos;invariant T

Soit ft un chemin d&apos;élimination associé à («2#, 3&gt;); par construction, fo&lt;p~f et
/ j s&amp; id, donc, si l&apos;on pose 9f 4&gt;(0), le couple (*(j&lt;), *(®)) (trf, 9f) est un
couple de nappes en bonne position pour (c, c&apos;) auquel est associé le chemin
d&apos;élimination /{= ft ° 4&gt;~x.

La structure produit sur A donnée par fx fait de &lt;P une pseudo-isotopie de Ao;
comme /i =fl&lt;&gt;&lt;p~1, l&apos;invariant de ^-1, qui est aussi celui de &lt;f&gt;, est donné par
l&apos;invariant de (st,9f) dans tto(N, (si,®)): par la construction de 2&gt;&apos;, c&apos;est le
polynôme T.

VI.5. Preuve que &lt;P est une pseudo-isotopie de Wall

On pose B&apos; &lt;P(B) et Br2 BfC\ A2. Par l&apos;application successive de la proposition

V.6, de la proposition VI.2 et de nouveau de la proposition V.6, nous allons
isotoper B&apos; de façon à rendre &quot;positivement transverse&quot; à -f dans chacun des

sous-cobordismes rx([i2]), /^([U]) et /^([0,1]).
Par la proposition V.6, il existe une petite isotopie de Br à B&quot;, situé du côté

négatif de B&apos;, ne rencontrant Bf qu&apos;en B&apos;2 et dont l&apos;intersection avec /&quot;a([£ 2])
admet -Ç pour champ normal positif.
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La proposition VI.2 donne une isotopie de B&apos; le rendant positivement transverse

à -f dans la bande /&quot;1([l,4])«A1x[l,|]; comme pour le corollaire de

V.6, on en déduit une isotopie de B&quot; jusqu&apos;à B&apos;&quot;, constante au-dessus du niveau f
et telle que B&quot;&apos; admet -£ pour champ normal positif au-dessus du niveau 1. Plus
précisément, dans la bande /~1([l,4])SS!SA1x[l,|], la projection
q :B&apos;&quot;nf 1([l,9)-&gt; Ai est un plongement positif, et q(B&apos;&quot;nA1) B&quot;{&apos; est

proche de B[, du côte négatif (voir figure). Remarquons que le point So H To est dans
q(B&apos; H/&quot;1!!)) B&apos;s/49 et que q(Bwn/&quot;1d)) B^4 est situé du côté négatif de B&apos;5/4,

avec B5/4nBJ/4= 0. Donc qCB^H/&quot;1^!,!])) est situé du côté négatif de B%IA et
ne le rencontre pas; en particulier, SonTo n&apos;est pas dans q(B&quot;&apos;nf~1([l,|])). Si L
désigne l&apos;unique orbite de g liant c et c&apos; (cf. V.7), on a donc: LnB&apos;&quot;n

&quot;&quot;B#5/4~9i(ÉM

sonTo^

1

^

m, &apos;ni

JLL.—^

Bi

=5^ — -—
_q(B&quot; _

En appliquant la proposition V.6 (corollaire) au cobordisme inférieur, on
trouve finalement une isotopie de B&apos; jusqu&apos;à É&apos; admettant — £ pour champ
normal positif. De plus, É&apos; est disjoint de B1 au-dessous du niveau 1 et coïncide
avec B&apos;&quot; au-dessus; donc, il ne rencontre pas L. D&apos;après V.7, on peut supposer
que la structure produit sur A est donnée par l&apos;intégration de ^ tangent à B et
coïncidant avec £ sur B&apos;; ainsi, nous venons de prouver que B&apos; est un anneau de

Wall et qu&apos;il est l&apos;image par &lt;£ de l&apos;anneau &quot;vertical&quot; Box[0,2]; donc 0 est une
pseudo-isotopie de Wall.

Remarque sur la Proposition II. 1. Après avoir écrit cet article, je me suis

aperçu, en suivant une suggestion du rapporteur, que l&apos;on pouvait démontrer la
proposition II.l, et donc les résultats du chapitre II, sans utiliser la proposition
L9. Ceci se fait de la façon suivante.

LEMME. On suppose n&gt;6. Soit /€DiffPI(Dn~1xS1rela) tel que
/(Dn~1x{0}) Dn-1x{0}. Alors, f est isotope à Videntité.

Démonstration. L&apos;hypothèse /(Dn~1x{0}) Dn~1x{0} entraîne que la classe
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d&apos;isotopie [/] est dans l&apos;image de l&apos;application naturelle:

a :Tn©rn+1 -&gt;

Or les classes d&apos;isotopie dans im(a) sont PL-isotopes à l&apos;identité, donc la
considération du tore de l&apos;application g, Mg =(Dn&quot;1xS1)xJ/(x, l)~(g(x),0),
donne une application à valeurs dans l&apos;espace des structures difïérentiables:

p : rn®rn+1 -* ^pl/oCD&quot;&quot;1 x S1 x S1, Dnl x S1 x 0 U Sn~2 xS&apos;xS1).

On calcule:

(^n&quot;x x S1 x S1, Dnl x S1 x 0 U S&quot;&quot;2 xS&apos;xS1)

[Dn+1 x S1 x S1, Dnl x S1 x 0 U Sn~2 xSlxSl; PL/O, *]
« rn®rn+l

et l&apos;application |8 est l&apos;identité.

L&apos;hypothèse que / est pseudo-isotope à l&apos;identité entraîne que Mf est

difïéomorphe à Dn-1xS1xS1relDn&quot;1xS1xOUSn&quot;2xS1xS1. Donc, on a[/]
a(x) avec |8(x) x 0, ce qui entraîne [/] 0.

[En fait, d&apos;après [HaW] p. 273, on a la proposition plus forte:

7ro(Diff D&quot;&quot;1 x S1 rel a) « TToCDiflfpï D&quot;&quot;1 x S1 rel ô)©rn ©rn+1,

de façon tout à fait analogue à ce qui se passe pour Tn. Mais pour prouver cela,

[HaW] se réfère à un article de E. C. Turner (Invent. Math. 8, 1969) qui ne me

paraît pas convaincant, aussi ai-je préféré donner cette démonstration.]

En faisant le raisonnement de II. 1 à l&apos;envers, on en déduit que:

p : Wa (Dnl x {0}) -&gt; 7ro(DiflfPI (Dn~l x S1 rel d)) Z£[T, T&quot;1]

est surjective. La construction faite en 1.10 montre alors que:

pn : Wa (T1-1 x{0}) -* 7ro(DiffPI Tn)

est aussi surjective, ce qui est une autre façon d&apos;énoncer 1.12 (l&apos;équivalence de a)

et b) dans II.l étant déjà connue, voir II.2). La démonstration de II. 1 se fait alors

sans changement.
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En revanche, les résultats de III et IV dépendent de 1.9, mais cette
dépendance est concentrée dans le lemme III.3.
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