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Eine Verscharfung des Satzes von Dirichlet iiber diophantische
Approximation

PETER THURNHEER

I. Einleitung, Resultat

Nach Dirichlet konnen zwei reelle Zahlen a, 8 von der Ordnung 2 diophantisch
approximiert werden in dem Sinne, dass unendlich viele Gitterpunkte (a, b) e R?,
ab # 0, existieren, sodass mit einem positiven k,= kq(a, B) gilt

[aa + Bbl= kofmax (al, [b])} 2,

wobei [ ] den Abstand von der niachsten ganzen Zahl bezeichnet. In dieser
Arbeit sollen folgende Fragen untersucht werden:

(A) Wie gut lassen sich a und B diophantisch approximieren, wenn man dazu
nur Gitterpunkte aus einem gewissen vorgegebenen Teilgebiet von R? verwendet?

(B) Lasst sich der Satz von Dirichlet verscharfen, indem gezeigt wird, dass es
nichttriviale Teilmengen @ von R? gibt, sodass @ und 8 schon von der Ordnung 2
diophantisch approximiert werden konnen durch Gitterpunkte ausschliesslich aus
D?

Bei gegebenem reellem m bezeichne w(m) die grosste reelle Nullstelle des
Polynoms dritten Grades '

fx;m) :=x*n-2x*(n-1)—x(n+1)—-1,
und sei

T=7(n):=4 w(n), fir 1=n=2.5. 1)
i(1+V1+4y), fir 0<n=1.

Ist 0 reell und tgf rational (siche unten, Bemerkung (iv)), so setzt man

u(&y, &):=§&,cos 8+ ¢,sin 6, v(&, &) :=—& sin 0+ &, cos 6.

60



Eine Verschirfung des Satzes von Dirichlet 61

Mit positiven v, v; und m, 0<v <wv,, definiert man

(p = ¢(Va mn, 0)-= {(gl’ €2) €R2 ‘ iv(éli €2)| =y |u(§1’ 62)‘11},

D(v,m, 0)UD(vy, 1, 0), fir 1<n=2.

(pl ::@1(1” Vi, M, 0):2{ .
D(v,m, 0)U D°(vy, (4—n)/(5-27m), 0), fir 2=n<2.5.

Dabei stehe ®° fiirr das Komplement der Menge & = R2.

SATZ. Seien die reellen Zahlen 1, a, B linear unabhdngig iiber den rationalen
Zahlen Q und die Parameter v, v, sowie e beliebig positiv, 0<v<v,. Zu
gegebenem m > 0 existieren unendlich viele Paare a, b ganzer Zahlen, ab+# 0, sodass
im Fall

(A) 0<n<2.5 gilt: (a, b)e ®(v,n, 0) und [aa +Bb] =< e{max (|a|, |b))}"™.

(B) m=2.5 gilt: (a,b)e P(v, m, 0) und [aa+Bb]=<k,{max (|a|, |b)} 2.

(B1) 1<n<2.5 gilt: (a, b)e (v, vy, n, 0) und [aa + Bb] =< k,{max (|a|, |b])} 2.
Dabei hdngt die positive Schranke k, hochstens von a, B, v, vy, n und 8 ab.

Bemerkungen. (i) Fir 1<m =<2 kann k; = ko[(v,/v)"™ P+ 17 gewihlt werden
(siche Kapitel IV, Fall 1), wobei [r] den Ganzteil der reellen Zahl r bezeichnet.
Mit Hilfe der nachfolgenden Ueberlegungen konnten auch in den anderen Fillen
mogliche Abhingigkeiten der Grosse k; von den Parametern v, v,, n und 6
angegeben werden.

(i) Auf dem Intervall 1<m<2.5 ist w(n) monoton wachsend und konkav.
Man beweist dies, indem man sich iberlegt, dass fur (1+v5)2=x=<2 die
Umkehrfunktion w!™'(x) von o existiert und gegeben ist durch ©™H(x)=
(=2x%+x+1)/x(x2—2x—1). Damit lisst sich zeigen, dass die ersten beiden
Ableitungen von o™(x) positiv sind fiir (1++5)/2=<x =<2, sodass w"'(x) auf
diesem Intervall monoton wachsend und konvex ist, was die entsprechenden
Eigenschaften von o impliziert. Es ist (1)=(1++5)/2=1.618... und w(2.5)=
2,

(iii) Die Aussage im Fall (B,) kann auch wie folgt formuliert werden: Unter
den Voraussetzungen des Satzes, lassen sich a und B diophantisch approximieren
von der Ordnung 2 entweder durch Gitterpunkte ausschliesslich aus

d°(vy, 1, 0), fir 1<n=2.

D
(v, m, 8), oder durch solche aus {dbc(vl, (4-m)/(5—2m), 0), fir 2=n<2.5.
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(iv) Die Voraussetzung, dass tgf rational ist, wird nur beim Beweis des Satzes
in den Fallen A, B fir n>1 gebraucht. Sie ware nicht notig, wenn man anstelle
von @ fiir beliebiges positives & Gebiete

D(v,m, 8, 0):=D(v, m, 0) U{(&1, &) e R? | |u(g,, &)| < 8} betrachten wiirde.

(v) Fur m =1 wurde der obige Satz von W. M. Schmidt [1] hergeleitet. Im
nachfolgenden Beweis wird die von ihm dabei eingefithrte Methode verwendet.
Insbesondere dient Kapitel II im wesentlichen dazu, die in [1] bewiesenen
Hilfssdtze der hier betrachteten Situation anzupassen.

(vi) Der im Satz angegebene Exponent 7(n) ist sicher nicht fiir alle n € (0, 5/2)
bestmoglich. Es lasst sich namlich folgende Aussage herleiten:

BEHAUPTUNG C. Seien die Zahlen A(1), n und A(n) gegeben, A(1)<2,
n>1,A(n) <2, wobei gelte

@) n/A{AM)—-1}>1, )
(ii)) MAZ(MAD) =2A(A(D{n—1}—nA(n)—A(1)—-1=0.

Unter den Voraussetzungen des Satzes ist dann die Aussage

“Es gibt unendlich viele Paare a, b ganzer Zahlen, ab# 0, mit 3)
(a, b) e ®(v, x, 0) und [aa + Bb] < e{max (|a|, |b))} >

erfullt fiir mindestens einen der Werte x =1 und x = .

Dabei kdnnen fiir 1 € (1, 5/2) beide der Grossen A(1) und A(n) so gewahlt werden,
dass sowohl (2) gilt, als auch '

Ax)>7(x) fur x=1 und x=n.

Auch fir n € (0, 1] kann man eine zu Behauptung C analoge Aussage beweisen:

BEHAUPTUNG D. Sei A eine Funktion, welche fiir alle n e (0, 1] den folgen-
den Bedingungen geniigt:

() 1<A()<2, (i) nA(MHA(M)-1}>1+n,
@iil) n*(n):={rA*(n)—A(M)—n}rA(n)/ne[0, 1], (4)
(iv) nAA(m)—1}=A(n*(n)).
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Unter den Voraussetzungen des Satzes (mit beliebigem reellem 0), sowie fiir irgend
ein n € (0, 1] ist dann die Aussage (3) erfiillt fiir mindestens einen der Werte x =
und x =n*(n).

Dabei existieren Funktionen A mit den Eigenschaften (4), die grosser sind als 7.
Um eine relativ einfache solche anzugeben-durch entsprechenden Aufwand,
liesse sich die Konstruktion von A in Kapitel V an verschiedenen Stellen
verbessern —setzt man mit

21:=3-+5=0.7639 ..., z,:=(1+2x—vV1+4x)/x?|,_¢201 = 1.4571 .. .:

‘/(4" n21)2+ 2nz,{12 -4z, nz,(2— z,)} —(4—mz,)
12—422—’"21(2" Zz)

w(n):=

und

g(x;m):=x>—x*—mx—nw(n).

Bei gegebenem m €(0, 1] ist g(x; m) ein Polynom dritten Grades in x. Bezeichnet
A(n) seine grosste reelle Nullstelle, so lasst sich zeigen

@D A(n)>7(n), } 5)
(ii) A(m) erfiillt die Voraussetzungen (4).

Speziell ist zum Beispiel

A(1)=1.6704...>1.6180...=7(1).

%k — —
mT () =w1)=0.2003... und ", Cxqy)_11047...>1.1710. .. = r(n*(1)).

Behauptung D und (5) werden in Kapitel V bewiesen. Die Herleitung von
Behauptung C wird weggelassen. Sie besteht fast ausschliesslich darin, innerhalb
des in Kapitel V angewandten Vorgehens die Ueberlegungen von Kapitel III zu
wiederholen, wobei man nun beniitzt, dass der in Kapitel III, Fall 2.1 gefundene
Punkt g; nicht nur in @(v, n, 0), sondern sogar in ®(v, 1, 9) liegt.

(vii) Professor K. Chandrasekharan méchte ich danken fiir seine Unterstiitzung
bei dieser Arbeit, Professor W. M. Schmidt fiir dic Anregung und klarende
Bemerkungen dazu - insbesondere den Hinweis, tgf rational vorauszusetzen — sowie
das Ueberlassen eines Preprints seiner Arbeit [1].

Im weitern bezeichnen grosse Buchstaben in deutscher Schrift Elemente aus dem
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auf die Koordinaten ‘¢;, &,, & bezogenen R>® mit Ursprung O, entsprechende
Kleinbuchstaben stehen fiir ihre Projektionen parallel &; in die (&, &)-Ebene. Ist

X =(&, &, &). so sei
LX):=aé +BE+E, X|:={&1+E£+6)7
und fur x = (&, &) bedeute

u@:=u(, &), vE:=v(, &),
le|:={&+ 32, |all:=max (&), |&)).

Unter einem Gitterpunkt versteht man von nun an ein Element des R* oder R?,
dessen Koordinaten im (&, &,, &;)-respektive (&, &,)-System ganze Zahlen sind.
Positive Grossen, die hochstens von «, B, v, v, 1, @ und ¢ abhangen, werden mit
k,, k5 . .. bezeichnet. Die in den < -Abschiatzungen implizit auftretenden Schran-

ken sind stets von der Art der k,, ks, . ...
Mit diesen Bezeichnungen lassen sich die zu beweisenden Aussagen des Satzes

folgendermassen formulieren:

BEHAUPTUNG AB. Zu gegebenem m > (0 existieren unendlich viele Gitter-
punkte & mit

<e|gl™, fir 0<n<2.5.

« g™, fir n=2.5. (6)

s#0,0c® und L@

BEHAUPTUNG B,. Zu gegebenem 7, 1 <7 <2.5 existieren unendlich viele
Gitterpunkte & mit

g#0,ge®; und |L@)|«l|lg]|™>. (7)

I1. Hilfssitze

Seien a, B, v, v;, 0 und & die im Satz auftretenden Parameter. Sei h >0 und
®* eine Teilmenge von R?, welche ®(v, h, 6) enthilt.
Alle Aussagen in diesem Kapitel beweist man entweder unter der
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VORAUSSETZUNG 1.

(i) Fiir die Zahl t gelte 1<t<2und ht/(t—1)>1+h. (8)
(i) Es existieren hochstens endlich viele Gitterpunkte & mit

g#0,ge®* und |L(@)|=<elg|™
oder unter der
VORAUSSETZUNG 2.

(1) Sei h>1 und t=2.
(i) Es existieren hochstens endlich viele Gitterpunkte & mit

g#0,ge®* und |L(®)|«]g|>.

Wiederholt wird man beniitzen, dass
aus

IL@E)|=1 und |dl=1 folgt [X|«]l. (10)

LEMMA 1. Zu geniigend grossem N >0 existiert ein Gitterpunkt ¥ # £, sodass
gilt
|| < NP, fir h=1.

~ht/(t—1)
IL@)|« N und {I%‘«N, lv(I=N*, fiir O<h=1.

Beweis. Man wahlt k, = k,(a, B) so, dass der konvexe, zu O symmetrische
Korper 5:={X | |L(X)| = ksN""* "} {ZX | |u@)| = (ko/ks)N"D, Jv(x)| =< N*} das-
von k; unabhingige — Volumen 8 hat. Man setzt

koo {{(Zkz)'/e}”(‘“”, falls Voraussetzung 1 erfiillt ist,
> 1, falls Voraussetzung 2 erfiillt ist,

sodass im ersten Fall gilt k; = €(2k,/ks)"". Nach dem ersten Satz von Minkowski

aus der Geometrie der Zahlen enthilt = einen Gitterpunkt & # €, fir den nur
noch die Bedingung iiber |¥| zu verifizieren bleibt. Man beniitzt nun (8), be-

ziechungsweise (9). Ist N geniigend gross, hat man

(2k,/kz)NWE—D, unter Voraussetzung 1.
max (2, 2k,)NM¢~D_ unter Voraussetzung 2.

nﬂtsms{
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Also ist

|L(®)| < ks N~H/e—D {5 e |lfll”*, unter Voraussetzung 1.
«|Ifl”*,  unter Voraussetzung 2.

Wieder fiir grosses N folgt deshalb auf Grund der Voraussetzung 1 (ii), respektive
2(ii), dass f¢ @* und damit f¢ ®(v, h, ) ist. Das heisst, wegen |v(f)|=<N" muss
|lu(f)|« N sein und darum

N" fir h=1,

Il {N, fir 0<h=1,

was wegen (10) Lemma 1 beweist.

Sei &,.., m=1,2,... eine Folge von Gitterpunkten ungleich O mit v(f,,)=0,
sodass fir jedes m=1,2,... gilt:

Es gibt keinen Gitterpunkt § # O mit

1] <|Xml, : fur h=1.

IL&®|=<|L@&,.)| und {
max {|[o(D|"", |F} <max {v({,) """, |F.]}, fir 0<h=1.

Setzt man

N .={|8‘ml”", fir h=1,
" lmax{v(f, )" @.l), fir 0<h=1,

so ist N,,, m=1,2,... eine strikt monoton gegen « wachsende Folge und mit
Up :=U(f)s U :=0(f)> L :=|L(&n)| gilt

LEMMA 2. Es gibt einen Index m,, sodass fiir alle m=m, folgende Be-
ziehungen erfiillt sind

L, « NS0, (11)
fmé %, (12)

|th| € Npw, Np € 0 = N7, (13)
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Beweis. Abschatzung (11) ist eine Folge von Lemma 1. Mit ihr, (8) oder (9)
und

Nt fir h=1
fll=< ™ ’

o] {Nm, fir O>h=1, (14)
uiberlegt man sich wie oben, dass (12) gilt und somit auch f{,, & @(v, h, 9) ist fur
genugend grosses m. Beachtet man zusétzlich zu (14) noch (10), ergeben sich
daraus die Beziehungen unter (13), womit Lemma 2 bewiesen ist.

LEMMA 3. Fiir unendlich viele j sind &;_,, &; und &;., linear unabhdngig.

Die Herleitung von Lemma 3 verlauft—unter Verwendung der linearen
Unabhingigkeit von a, B und 1 iber Q-gleich wie der Beweis der ent-
sprechenden Aussage in [1] respektive [2]. Zum dabei benéotigten Nachweis, dass
die rechte Seite der Gleichung |v,_;L(Fk) — 0 L(Fr—1)| = |0nL(Fns1) — Vp1 L&)l
gegen 0 geht fiir n — oo, beniitzt man nun Lemma 2 und (8) oder (9).

Im weitern bezeichne j stets ein Element der unendlichen Folge von Indizes,
fur welche Lemma 3 erfillt ist. Zudem sei j=m, und so gross, dass L; <1 ist.

LEMMA 4. Es ist D; := |uv; 1 — u;,,0;] > Np/¢D,
Beweis. Ist &, :=(&™, &7, €§™), so gilt
‘g(lm—l)g(ZM)_ ggm—l)g(lm)' = ‘um~lvm - vm——lum‘, m= 27 3’ e (15)

Mit Hilfe dieser Formel, den Lemmas 2 und 3, sowie (8) oder (9) zeigt man wie in
[1], dass [£P&§+D—gi*DeD|» LY » NP jst, woraus wieder wegen (15)
Lemma 4 folgt.

Es bezeichne A = A; das von f; und f;.; in der (£, §&;)-Ebene aufgespannte
Gitter und w, = u,(j), pr= uo(j) seien dessen sukzessive Minima beziiglich der
Eichfunktion g(x):=max (lu(x)|, |v(x)]). Nach dem zweiten Satz von Minkowski

und Lemma 4 gilt
N;u/(t—l) &« D] & TRy TR < Dj.
Da 1<¢=2 impliziert ¢/(t—1)=2, und weil nach (10) [ffjll>» N} ist, h =1, folgt

o h . 13
daraus, dass p, fir h=1 von der Grdssenordnung Nj sein muss, und es ergibt
sich
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LEMMA 5. Fiir h=1 ist u,< D,/N".

Folgende Tatsache wird spdter gebraucht:

Ist x=sf; +tf;.q, so gilt (16)

sl = o Tl +o@l 1= (@l + o) 1,

denn es ist
SU; Uiy SUit it Uiy
D; |s| = | det .= | det =lu@vj 1 — @)U

Daraus folgt die Abschitzung fiir |s|. Eine analoge Rechnung ergibt diejenige fur

|2

IIl. Beweis der Behauptung AB

Fiir die unter (1) definierte Funktion T =71(n) gelten folgende Beziehungen:

1<r<2 und 797/(r—1D>1+7, fir 0<n<2.5, 17)
>1, fir n>1.
/(T 1){=1, fir 0<n=1. (18)

Aussage (17) und die Gleichung in (18) sind leicht zu verifizieren. Zum Beweis
der Ungleichung in (18) setzt man p = p(n):=3{1+v1+4n}. Dann ist p>1.6 fir
n>1 und p®>—p=m, sowie f(p;n)=(p—1)(n—1)>>0, fir n>0. Bei festem
n>1 ist f(x; ) eine monoton wachsende Funktion von x fiir

x>1.6>§-(2+\/7)>31;{2(n —1)+vTn2=5n+4}.

Deshalb muss fiir das in der Einleitung definierte w(n) gelten w(n)<p(n), n>1,
woraus die zu beweisende Ungleichung folgt.
Die Behauptung AB wird indirekt bewiesen. Man geht somit aus von der

GEGENANNAHME AB. Zu gegebenem n >0 existieren hochstens endlich
viele Gitterpunkte & # O, welche (6) erfiillen.
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Beachtet man zudem (17) sieht man, dass fiir jedes >0 eine der zu Beginn von
Kapitel II formulierten Voraussetzungen 1 und 2 erfillt ist, wenn man setzt

h=mn, =r=7(n) und P*=P=P(y, 7, 0).

Fiir diese Wahl gelten somit alle in Kapitel II bewiesenen Aussagen.

Fall 1. 0<n=1.

Wegen (13) ist
8 =8 :=[v;1/; 1< (N 11/N)™

Setzt man &; :=%,., — 8%, so ist &, ein Gitterpunkt ungleich © und es gilt
[olg)|=v=N. 19)

Aus (16) angewandt auf x:=g;= —&f; +f;.;, erhdlt man unter Beachtung der
Lemmas 2 und 4, sowie von (17)

|u(g)] > {D; = v (gl Iy [Yo;* »{NT" =P = NP "IN > NpeD,
sodass wegen n/(r—1)>1 fiir n >0 zusammen mit (19) gilt

g; € P fiir geniigend grosses j.
Weiter ist

“Qj” <Ny
und mit (11)

|L(®;)| « N7 "N;HeP.

Beachtet man (18) und die lineare Unabhangigkeit von a, B und 1 uber Q, so
folgt aus diesen letzten drei Formeln

Igl——’a% fﬁr .—-)OO,
j ) } (20)

gi€ ® und |L(®;)|<¢ |lg;|| " fiir alle geniigend grossen j.
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Das ist ein Widerspruch zur Gegenannahme AB. Damit ist die Behauptung AB
fur 0<m =1 bewiesen.

Den verbleibenden Fall n>1 unterteilt man in mehrere Unterfille, wobei
man den Beweis im ersten mit Hilfe der in [1] eingefithrten Ueberlegungen
beendet.

Fall 2.1. n>1; p, &« NYCD,

Jede Kreisscheibe in der (¢, &,)-Ebene vom Radius 2w, enthilt einen Punkt des
Gitters A. Deshalb existiert ein Gitterpunkt g; € A, g;#o, fiir den gilt

gi L= ¢a ‘u(gj)|<< 2, lv(gj)|<< 2. (21)
Mit ganzen Zahlen a;, b; lisst sich g; darstellen in der Form g; = a;f; + b;f; 1. Setzt

man die Abschatzungen unter (21) in (16) ein und beachtet die Lemmas 2 und 5,
erhalt man

lai| <« (Nl /N, [yl 1,

Fir den Gitterpunkt &, := ;F; + b;F;.1 # O, dessen Projektion der Punkt g; ist,
ergibt sich daraus mit (11)

IL(®))]« Ny "N .

Zusammen mit (21) und p, < NP5"Y impliziert diese Abschitzung erneut (20)
was, wie man sich iiberlegt hat, die Behauptung in diesem Fall beweist.

Fall 2.2 n>1; py=k3NPo D,

Nach Lemma 5 und (13) gilt
KINPNVE V& D < || NP,y + NNy,

woraus wegen (18) zusammen mit (13) fiir geniigend grosses k, folgt
k2NN =D < |y |« N, (22)

Fall 22.1. n>1; p,=kINYTV; NyksN} 170D,
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Nach (22) ist u;# 0. Da tg6 rational vorausgesetzt wurde, existiert also ein ke mit

lu;| = k.

Sei

§ =§;:=[NV"V],

Aus (13) folgt dann fiir genligend grosses ganzes k,>{v *(2/k¢)"}/™V:

g]' o= k76f]’ € ¢, (23)
sowie
llgl| = 2k, N7/, (24)

Sei &; :=k,6%;. Dann ist &; ein Gitterpunkt ungleich £ mit der Projektion g;.
Man beniitzt nun (11) und die im Fall 2.2.1 giiltige Voraussetzung iiber N,. Wahlt
man in letzterer ks klein genug — zum Beispiel ks ={e/(2k;)**"kg}™* """ V""* wobei
ks die implizit in (11) auftretende Schranke ist—so erfilllt &; zudem die
Abschitzung

|L(@])| <g (2k7)—1‘N}—(1'|1'2/('rz—-'r"1))+‘n/(7|“l)‘ (25)
Es gilt
~(r/(@? == D)+~ D=-m’/(n-1) firalle n>1, (26)

denn diese Ungleichung ist aquivalent zu

f(r(m); n)=0 firalle m>1, (27)

wobei (27) fiir 1<mn<2.5 erfiillt ist nach Definition von 7(n) respektive w(n)

und fiir n =2.5 sofort nachgepriift werden kann.
Aus (24) bis (26) ergibt sich zusammen mit (23) wieder Aussage (20), sodass

die Behauptung AB nur noch zu beweisen ist im

Fall 222. n>1; w,= ngJT'fl(f—l); N, > ksN};}’T("‘”,
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2

Y {1-1/7(r—1)}, sodass gilt

Fir n>1 setzt man ¢ =¢(n):=

g—m+a/r(r—1)=4¢/n

und wegen (22) wieder fiir geniligend grosses k,
kNP=NY,

ist. Mit

NY,
a=a,.:-[Nﬂk4+1]

sowie (28) ergibt sich aus (22)

|u(87;)l-—-k4N¢ n+n/ft(r—1 _ | N}‘T{

Zudem existiert nach (13) und (29) ein kg mit

k
Iv(Sf,-)|SI6f,-IS——k9 N¥...
4

Diese letzten beiden Formeln zeigen, dass

gi:=o6fed

(28)

(29)

(30)

(31)

ist, falls man k, auch grosser (ko/v)”™ " wiihlt. Die Projektion des Gitterpunktes

®,:=8%, # L ist g;. Gemass (30) gilt

k
“gi" < 2 N'I'+1,

(32)

und nach (11), (29), sowie der in diesem Fall giiltigen Voraussetzung iiber N;

existiert eine Schranke k,,, sodass man hat

|L(@ )‘< 10 N!ll-(n'r/(-r—-l))——nu 1/,(.,._.1))
4

(33)
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Aequivalent zu (27) ist die Bezichung
g—(t/(r—1)—q(A-1/7(r—1))<—1¢ fiir alle 7>1.
Wiéhlt man schliesslich k, auch grosser {kik,o/e}*/" P, so implizieren also (32)

und (33) zusammen mit (31) weider Aussage (20), und die Behauptung AB ist
vollstindig bewiesen.

IV. Beweis der Behauptung B,

Fall 1. 1<m=2.

Nach dem Satz von Dirichlet existiert eine unendliche Folge von Gitterpunkten
%m, fm%o, m = 1, 2, e mit

IL@)I=kolfml™ m=1,2,.... 34)

Man darf annehmen, dass f{, ¢ @, ist fiir geniigend grosses m, da andernfalls die
Behauptung mit (34) bewiesen wire. Also ist |u(f,.)|" = (1/v)|v(§,)|, sodass fiir
kll = [(Vl/V)ll(“_'l)"*' 1] gi]t

8 = k11§, € P, fur alle gentigend grossen m. (35)

Zudem zeigt (34), dass der Gitterpunkt &,, := k1§, # O, dessen Projektion der
Punkt g,, ist, die Abschitzung

|L(®,,)| = kok31llgml 2

erfiillt, was zusammen mit (35) die Behauptung B, fiir 1<n =2 beweist.

Fall 2. 2<n<?2.5.

Das weitere Vorgehen ist ganz analog wie beim Beweis der Behauptung AB. Man
macht die

GEGENANNAHME B,. Zu gegebenem 7, 2<1<2.5, existieren hdchstens
endlich viele Gitterpunkte ® # £, welche (7) geniigen.

Das zeigt, dass die Voraussetzung 2 in Kapitel II erfiillt ist und alle dort
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bewiesenen Aussagen gelten fir die Wahl
h’ =Mn § = 29 ¢* = ¢1 = (pl(v9 Vi, M, 6)’

Insbesondere ist nach (12) und der Definition von @, zusitzlich zu (13) die
Abschitzung

Iu)‘ > N;n(s-zn)/(4—‘n) (36)

erfiillt. Im
Fall 2.1. 2<n<2.5; u,<NM2,

kann die Behauptung durch genau dieselbe Argumentation bewiesen werden, wie
im entsprechenden Fall 2.1 des Kapitels III.

Fall 2.2. 2<n<2.5; N; < N4 m/2a-D,
Jetzt ist wegen (11)

L, « N74ne=D/t=m), (37)
Man definiert

8 = 8, 1= [N2(-/@-m),

Die Abschitzungen (13) und (36) zeigen, dass ein ganzes k,, existiert, sodass gilt

g]' . k125f1- S @1. (38)
Es ist
lg, ||« Npa=m, (39)

Die Projektion des Gitterpunktes &, :=k,8%, # % ist g;, und mit (37) sowie (39)
hat man

IL@)|« N7/« |lgyf| 2.

Der Widerspruch, der sich daraus zusammen mit (38) zur Gegenannahme B,
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ergibt, beweist die Behauptung B, in diesem Fall.

Fall 2.3. 2<m<2.5; pp,>NJ3; N;» N 2D,

Man benutzt nun, dass > 2 vorausgesetzt ist. Wegen w, > N3 erhilt man dann
aus (13) und Lemma 4

NPN7{2<|u| < N, (40)
Also ist

Ny« Ny,
und mit

8 =8; :=[1+Np""V/N7],
sowie geniigend grossem ganzem k.3 gilt nach (13) und (36)

g;:= k138f, € P, (41)
und

lggl| « N2,

Fur den Gitterpunkt &, := k;38%;# £, dessen Projektion der Punkt g; ist, folgt,
wenn man (11) und die Bedingung iiber N; beachtet

IL(®))|« Ny "N 20D« NERTO P < gy 72,

Zusammen mit (41) ist dies fiir grosse j ein Widerspruch zur Gegenannahme B;.
Damit ist der Satz vollstindig bewiesen.

V. Beweis der Behauptungen D und (5)

Zum Beweis der Behauptung D betrachtet man eine Funktion A mit den
Eigenschaften (4) und ein m € (0, 1]. Man nimmt an, dass, ausser wenn es explizit
angegeben wird, das Argument von A gleich 7 ist, das heisst A :=A(n). Wieder
fiihrt man den Beweis indirekt und geht somit aus von der
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GEGENANNAHME D. Sowohl fiir x =7 als auch fir x =n™(n) gibt es
hochstens endlich viele Gitterpunkte & = (a, b, ¢) # © mit den unter (3) angegebe-
nen Eigenschaften.

Wegen (4) ist also Voraussetzung 1 in Kapitel II erfullt fir

h=m, t=A=A(n), @*=&(v,7,0), (42)

und alle dort bewiesenen Aussagen gelten fiir diese Wahl. Wie in Kapitel 111, Fall
1, zeigt man, dass man fir 6 =38, :=[v;,1/v;], ®; :=F;., — 6F; # O und geeignete
k14, kqs hat

[o(g)| =N}, (43)
"91‘” =ky4Nj1, (44)
g}' € ¢(V) n, 0), ‘L(®])| = leI\Iy'_Tl ;:]{(A—l). (45)

Fiir NP =k;cN} VA7, ki = kysk}a/e, ergibt sich aus diesen Formeln wie in den
vorangehenden Beweisen ein Widerspruch zur Gegenannahme D, sodass es
genugt, folgende Falle zu betrachten:

Fall 1. NP <kyeN}TVO7Y; u(g| < NPAAD,
Da aus (4) (iii) folgt A —n/(A—1)<n/A(A —1) ist nun

(o(g)l < NFAO,
und (44) lasst sich ersetzen durch

llg;ll « N5

Zusammen mit (45) widerspricht dies fiir grosse j wieder der Gegenannahme D.

Fall 2. N7 <keN27V*70: Julg;)| = k3, NP,
Jetzt ist fiir genligend grosses k-
|u(g))| = kyy NJAOZA—m),
also mit (43) und wenn man k,; auch grosser v~ VA** "2~ wihit:

gj € ¢(V, "l*("'l), 6)-
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Beachtet man (44), die Abschdtzung in (45) und (4) (iv), ergibt sich daraus erneut
ein Widerspruch zur Gegenannahme D, und die Behauptung D ist bewiesen. Fiir
die spezielle, mit Hilfe von g in Bemerkung (vi) definierte Funktion A sind noch
die Behauptungen (5) zu verifizieren. Sei von nun an 7 irgend eine feste Zahl aus
(0, 1]. Dann ist g(x;n) eine monoton wachsende Funktion von x fiir x>1=
(1+v1+37%)/3, und da w(n)>0 ist, gilt g(r(n); n) <0, woraus wegen 7(n)>1 die
Behauptung (5) (i) folgt. Es bleibt zu zeigen, dass A die Bedingungen (4) erfiillt.
Nach der Definition von A ist n*(n)=w(n) und da firr alle xe(0,1] mit
7(x) = p(x):=(1+v1+4x)/2 gilt

p(x) <A(x)<p(x)+xw(x), (46)

ist dies fir (4) (i) and (iii) nicht schwierig. Aequivalent zu (4) (i) ist die
Ungleichung

An)<l+m.

Diese ist aber erfiillt, was man wegen g(1+m;n)>0 einsicht mit Hilfe einer
analogen Ueberlegung wie beim Beweis von (5) (i). Die letzte Beziehung (4) (iv)
hat auf Grund der Definition von A die Form

{A(m) -1} = A(w(n)). (47)

Auf dem Intervall 0<x=1 ist die Funktion w(x) monoton wachsend und
0<w(x)=x. Man kann dies zum Beispiel zeigen, indem man die entsprechende
Eigenschaft zuerst fiir die Umkehrfunktion von w nachweist, respektive indem
man analog argumentiert wie beim Beweis von (5) (i). Also ist

wi(n)=w?(n) und w(w(n))=w(n),
sowie wegen n =<1, w(n)<0,201 auch

Vi+4n=1+2n-2z,7%

Vi+4w(n)=<1+2w(n)—z,w(n).

Unter Verwendung von (46) und diesen letzten 4 Formeln sieht man, dass (47)
sicher erfiillt ist, falls gilt

{12—-42z,— nz,2— z)}w?(n) +2{4 — nz,}w(n) — 27z, =0.
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Da w so gewiahlt wurde, dass man in dieser Beziehung Gleichheit hat, ist auch (4)
(iv) verifiziert.
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