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Combinatorics and intersections of Schubert varieties

Howarp HILLER

Let G be a semi-simple, simply connected algebraic group over an algebrai-
cally closed field k and P, a parabolic subgroup of G corresponding to a subset
of the simple roots 3. The Bruhat decomposition of G/P, yields a poset (=
partially ordered set) W° of Schubert varieties. Actually, this poset can be defined
group theoretically in terms of the Weyl group W (and more generally for any,
not necessarily finite, Coxeter group). The combinatorial study of W° has been
initiated in the work of Verma [26], Deodhar [8] (computation of Mobius
functions), Stanley [23] (Sperner properties, rank unimodality), Proctor [17], and
Bjorner and Wachs [3] (shellability).

The goal of this paper is to explain an interesting connection between counting
“paths” in the poset W® and the intersection theory on the variety G/P,. This
observation is related to recent work of Seshadri [20] describing a standard
monomial theory for representations of G. Indeed, his work immediately yields an
interpretation of the zeta polynomial of W?° and intervals contained in it. In
particular, it gives a combinatorial interpretation of Demazure’s Weyl dimension
formula for the Schubert varieties [7].

In section 1, we record some basic combinatorial definitions and introduce
some important lattices. In section 2, the Chow ring of G/B and G/P, is described
and the poset W* is introduced. As an example, we indicate how the hook
formula in the representation theory of symmetric groups makes its appearance in
the Schubert calculus.

In section 3, we discuss the notion of a miniscule weight w, from several
different points of view. In particular, we see that this condition implies that the
intersection theory on the corresponding G/P, is multiplicity-free. We also
explain the connection between Seshadri’s work and the zeta polynomial of W<,

In section 4, we turn to the analysis of the miniscule weight , in B,. (In some
sense, this is the only interesting case). This leads us to a notion of shifted Young
tableaux and we can invoke a formula of Schur to solve our problem. Similarly, in
section 5 we consider the weight w, in C, and get an analogous result.

It is a pleasure to thank Richard Stanley for his helpful correspondence and
Robert Proctor for a copy of his thesis.
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42 HOWARD HILLER

§1. Combinatorics

We recall some basic combinatorial language. A good reference is [1]. Let
(P, <) be a finite poset. If p,q € P, we say q covers p (notation: p — q) if p<q and
whenever p<x =gq then x =q. A chain of length n—1 from p to q is a sequence
p=p;=--=p,=q in P. The chain is said to be maximal if p = p;.,, 1=i=
n —1 and we call a maximal chain a path. Suppose our poset has a least element 0
and a greatest element 1. We define (see [1, p. 143]) the zeta polynomial of P by

Z(P, n)=# {chains from 0 to 1 of length n}
where # denotes cardinality. We also define similarly the kappa polynomial
K(P, n)=# {paths from 0 to 1 of length n}.

A rank function for a poset p is a function r: P — N with r(0)=0 and if p — g
then r(q) =r(p)+1. Clearly, P admits a rank function if and only if all maximal
chains from p to g have the same length (and that length is r(q)—r(p)). It rules
out subposets of the form

so, in particular, the poset is decomposed into levels P, ={p € P: r(p) = n}. We call
the formal power series

PS(P, t)= i (#P)t"= ), '®
n=0,

peP

the generating function (or Poincaré series) of the poset P. The height of a ranked
poset P is H(P)=max, pr(p)=r(1). If p=<gq and [p,q]={xe P:p=x=gq} is the
interval between them we define

k(p, 9) = K([p, q], r(q) — r(p)).

Notice that for a ranked poset the kappa polynomial degenerates to a single
number since it only makes sense at one argument. We abbreviate «(0, q) by
k(q). The following result is immediate.
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LEMMA 1.1. If P is a ranked poset, p, q € P, then

k(p,a)= ). (p,q)

a'—q
p=q’

In particular, k(q) =4 k(q").

An ideal I in a poset P is a subposet satisfying: if p<q € I, then p € I. Clearly,
{p:p=q} is an ideal in P and is called the principal ideal generated by q.

We introduce an important lattice. Let A =(A;=\A,=" - ) denote an infinite
sequence in N which is eventually zero. Define A <A’ if A, <A for all i=1. We
call the poset of such sequences the Young lattice ¥ [1, p. 17]. The rank function
is the obvious one r(A)=);~; A,. In particular, A — A" if for exactly one i,
A;=A; +1; all other values unchanged. One can view A as a partition of r(A) and

represent it diagrammatically by its shape, e.g. A =(4=3=1) has shape

We will be concerned with certain ideals in ¥. Define:
oyk,n :{,\ Eoy:/\lsn and Ai :0, l>k}.

It is easy to see %,, is the ideal generated by the “rectangular” partition
n=---=n=0..., (with k non-zero terms)

The generating function of %, , is the Gaussian polynomial; namely

n+k
k

(1_tn+1) .. (l_tn+k)
(1-t)--- (119

PS@,.., =" ] =
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Let % denote the sublattice of strict sequences A =(A;=\,=" - -) satisfying
A; > A4, unless A; =0. We also write @k,n =Y n N%. This is the principal ideal
generated by (n>n—-1>n-2>--:) with k non-zero entries. In particular,
Yy, =®, , is generated by (n>n—1>--->1), so the shape is

for n=5. The generating function of ¥, can also be computed

r(1__tn+2)(1_.tn+4) .. (l_tzn) . B

- A-ni-r)---a-rn 1 =02
PS(Y,, t) =4

AzeHA=e) A=) 4 o)

[ 1-A-¢%)---(1-1") st

As we will see later, these lattices occur naturally in the geometry of certain
homogeneous spaces.

§2. G/B

We recall here some basic facts about intersection theory on the flag variety
G/B [2], [7]. We begin with a barrage of notation:

G = split, simple, simply-connected algebraic group over a field k =k
B = Borel subgroup
T=maximal torus <B

X(T)=character group on T

V=R®,X(T)

A=root system in V

3={a,,...,a;} a set of simple roots <A
A" =positive roots, A" =—A".

3V =coroots {a},...,ay} where ay =2(a;, a;) 'o;
w; = i™ fundamental weight, satisfying (w;, o)) = §;
W=Weyl group generated by simple reflections S ={s,:a €3} with length
function [(w) and longest word wy; so that [(wy) =|A*| and wo(A*)=A4".
A'(-)=Chow group of codimension i cycles up to rational equivalence.
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It is a consequence of the Bruhat decomposition for G that G/B possesses a
“cell-decomposition” given by the B-orbits B, = BwB/B, we W, where B, is
isomorphic to an affine variety of dimension Il(w). We let X, denote the
(Schubert) class in A'(G/B) corresponding to the closure B,,, (Schubert
variety). This gives a Z-basis {X,,},,cw for the Chow ring A*(G/B). In order to
complete the description of A*(G/B) we must compute intersection multiplicities.
The first reduction is that every Schubert class is a polynomial in the X.’s, a €.
For example, if N = [(w,), then

Xw0=1—vl—' (¥ XSG)N 2, p. 171

© ael

The other polynomials are obtained by applying appropriate polynomial
operators to X,, [2, p. 15]. (These results are like the Giambelli (or determinan-
tal) formula of the Schubert calculus.) The upshot of this is that it suffices to
compute X, - X, , a €3, we W. We have the following Pieri-type formula.

THEOREM 2.1 (Chevalley [5]). If we W, a € X then
X, X, =2 (BY, 0) X,

where Be A™ satisfies l(wsg) = 1(w)+1.

This range of summation gives us our definition of the Bruhat order on the
Weyl group W. Namely, the covering relation w — w’ requires that there exist a
reflection sg, Be A", so that w' = wsg and I(w’) =l(w)+ 1. The Bruhat order < is
the transitive closure of this relation. This algebraic definition is equivalent to the
geometric condition B,, < B,,.

Remark [6]. If V= X(T), then there is a map
C:S(V,)— A*(G/B)

where S denotes polynomial ring over Z. This is obtained by taking the first
Chern class of the line bundle L, associated to a character x of T. This map
satisfies

(i) Ker(c) is the ideal generated by the positive W-invariants, i.e.
Do S;(V)WV.

(ii) Coker (c) is finite and annihilated by #W. For example, if w, € S;(Vy) is
the fundamental weight dual to aV, then c(w,) = X,_.
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It is possible to “‘restrict’’ this Schubert calculus description of G/B to G/P, P
a parabolic in G. We usually suppose P is a maximal parabolic P, corresponding
to a fundamental weight w,. It is helpful to recall the following (see [4]).

LEMMA 2.2. (i) If W* =(\ges—(o) {iw € W: l(wsg) = l(w)+ 1}, then W* is a set
of minimal length left coset representatives of W* in W. (W, is the subgroup of W
generated by {sg:B €3 —{a}}).

(ii)) If we W, then there exist unique elements w® e W*, w,e W, such that
w = w*-w,. Furthermore, l(w)=1l(w*)+1(w,).

From this fact and a computation of the action of W on A*(G/B) one finds
A*(G/P,) is Z-free on {X,:we W=}. Hence the projection G/B ——> G/P,
induces an inclusion A*(G/P,) = A*(G/B). Observe that the unique codimen-
sion one class is H=X, € A'(G/P,).

Remark [2]. Under the map =% one can actually identify A*(G/P,) with
A*(G/B)%Y-, where the superscript denotes invariants.

EXAMPLE. If G=SL,,,, a=¢,—¢.,,€3, then W=3 .. W*=3 %3
and W*={oceX¥:1=0(1)<---<og(k)=n+k and o(k+1)<::-<ag(k+n)}. As-
sociate to o€ W*, the non-increasing k-tuple (a,,...,a,) where a;=
o(k—i+1)—(k—i+1). This is a bijection and (a4, . .., a,) is a partition or, in the
notation of §1, an element of ¥; actually %, ,, as one can check. It is not difficult
to see that this bijection is a poset isomorphism. Hence the Chevalley formula
(2.1) becomes in A*(G/P,)

X, H= )} X,

A—A’

when one computes the coefficients (8", w,). (It is actually possible to derive the
full Pieri formula in this framework [14].)

In particular, one gets H"* =«k(n, n, ..., n). The number on the right counts
the number of standard Young tableaux on a rectangular shape, so is given by the
hook formula [1, p. 132]. Hence

(nk)!
1122 k* - (n+ 1) - (n+k—1)

an -

a fact that was observed in [13]. This leads one to the following general question.
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PROBLEM. 2.3. If P, is a maximal parabolic corresponding to a fundamental
weight w,, He A'(G/P,) is the class of the unique codimension one subvariety,
compute the number

H’e A4G/P,)=Z

where d =dim, (G/P,).
In the next section we determine which weights are reasonable to handle and
in §4 we analyze these cases.

§3. Miniscule weights

In this section, we introduce the notion of a miniscule weight. The main fact is
that these weights can be characterized abstractly, or from the points of view of
representation theory or intersection theory.

Let A,3,... be as in §2. Let Q=Y);_; Zo; denote the lattice of roots and
similarly for QY. Recall that if A is a lattice in V, then A*=
{xe V:(A, x)eZ VA e A} is the dual lattice. The weight lattice P=Y:_, Zw; is, by
definition, dual to Q¥ and P2Q. We let C denote the Weyl chamber {x¢e
V:(x,a¥)>0} and P, =PNC is the set of dominant weights. The weights are
ordered by A=A’ if A'— A\ is a non-negative sum of simple roots.

DEFINITION 3.1. A set Sc P is saturated if whenever A€ S, ac A, 0=i=<
(A, @Y), then also A —ix € S.

A typical saturated set arises in the representation theory of the complex,
simple Lie algebra g =lie (G¢). If A e P,, we let V, denote the corresponding
finite-dimensional irreducible representation with highest weight A and P(A) the
weights that occur in the weight-space decomposition:

Vi= 2 V¢ [15]

weP)
The set P(A) is saturated.

PROPOSITION-DEFINITION 3.2. A dominant weight A is miniscule if one
of the following equivalent conditions hold:

(i) The W-orbit WA is saturated

(ii) A is minimal, i.e. if p€ P, and w <A then p=A
(iii) P(A)= WA
(iv) (BY,A\)=0o0r 1, forall BeAd™.
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Remark. According to the formula of Chevalley (2.1), condition (iv) precisely
says that intersections with H in A*(G/P,) are multiplicity-free. (see [20]).

We call P/Q the fundamental group of G. It is a finite group of order equal to
the determinant of the Cartan matrix. Every non-zero coset contains a non-zero
miniscule weight. Hence the number of non-zero miniscule weights is |P/Q|— 1. If
& is the highest root of A and @¥ =) n,a) then the number of miniscule weights is
#{i : n; = 1}. The following table lists all miniscule weights and information about
the associated poset W<,

Miniscule weights

Miniscule
G Dynkin diagram weights #|We| H(W<)=dim¢(G/P,)
n+k

Akt *—eo— --- —0—O o,1=l=n+k-1 ( K ) kn
B, O—0— -+ —C=—® , o (";1)
C, *—O0— ... —(—D @, 2n 2n
D, *—0— -.- —o<j , 2n 2n+1
D, o—0— ... —O< W, _1, 0, n-1 (")

2,
Eg *—oO- ’I Oo—e Wy, W 27 16
E, O—-0 I O Oo—e W4 56 27

Remark. The vertex representations of the affine Lie algebras [9] play a role
analogous to that of the miniscule representations in the classical theory. One new
feature is that the action of the Weyl group must be replaced by that of that of the
affine Weyl group plus an appropriate infinite-dimensional Heisenberg sub-

algebra.

The following result combines the ideas of §§1 and 2.
COROLLARY 3.3. If o, is a miniscule weight then in A*(G/P,)

X,-H= Y X, weWe
w—w’
w'eW*
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Proof. According to (3.2iv) we need only check: if BeA™, l(wsg)=1(w)+1
and we W, ws; e W* then (BY, w,) #0. This is a consequence of the following
more general result.

PROPOSITION 3.4. If we W* and l(wsg)=1l(w)+1 then wsge W* if and
only if (BY, w,)#0. (We are no longer assuming w, is miniscule.)

Proof. Suppose wsge W* and (BY,w,)=0. Then if B is written as a
non-negative sum of simple roots, a does not appear. Hence sz € W*. Since
we W, by (2.2ii)) l(wsg)=1(w)+1(sg), so I(szg)=1. Then Be 3 —{a} and this
contradicts wsg € W=

The other direction is a consequence of (2.1) and the fact that A*(G/P,) is a
subalgebra of A*(G/B), (see also [23, 2.2] or construct an elementary argument).

Concretely, (3.4) says that any class that can occur in the intersection with H
does occur. We now have:

COROLLARY 3.5. If w, is a miniscule weight, then in A*(G/P,)
X, HY=) k(w, w)X,, we W*

where the summation ranges over w' € W*, w<w', l(w") =l(w)+d. In particular, if
d =dim, (G/P,)=H(W*®) and w=1, then

H? = K(W*, d) = k(W

where w§ is the longest word in W*.

Proof. Combine (3.3), (1.1) and an induction argument,
We can now use Poincaré duality on G/P, to write x(w, w') as a triple

intersection product.

COROLLARY 3.6. If w, is a miniscule weight then in A*(G/P,)
K(Wa W') = Xwow'w‘awo. Xw ' Hd

under the usual identification.

Proof. One need only check that the map w — wowwiw, on W< induces the
Poincaré duality map.
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Miniscule weights also appear naturally in the work of Seshadri [20]. He shows
that if o, is miniscule weight then the induced representation HI' =
H°(G/P,, LZ™) admits a k-basis of “standard monomials” parametrized by chains
O=w=w,=---=w,,,=1in W* of length m + 1. In characteristic zero, HY' is
the irreducible G-module with highest weight mi(w,) where i is the Weyl
involution. This implies, in the language of §1,

PROPOSITION 3.7. If w, is a miniscule weight
Z(W*, m+1)=dim, (HY).

In particular, dim, (V) =#W*.

It is now possible to use the Weyl dimension formula to get a product
expansion for this zeta polynomial. Notice also that the graded object ®,, Hy' can
be interpreted as the coordinate algebra of G/P under an appropriate projective
embedding. Hence, its Poincaré series can be described by the Weyl character
formula. (See final comment before remarks in §4).

Seshardri has a relative version of his result. If X, is a Schubert variety one
can compute the character of H°(X,,, L™ | X,,,). The dimension of this represen-
tation is now related, as in (3.7) to the zeta polynomial of the interval [1, w] in
W<. Demazure [7] also has an abstract Weyl dimension formula for the Schubert
variety that one can invoke in this situation.

The picture that emerges is that chains in W* are connected to the representa-
tion theory of G, while in a similar way the paths in W* are tied to the
intersection theory of G/P,. Can one explain this relation between representations
and intersections in an intrinsic way? Finally, we remark that Proctor [17] has
proven the persuasive result that W° is a distributive lattice precisely when w, is a .
miniscule weights and W = W* (excluding the trivial case of G,).

Let us look at what the table of miniscule weights tells us about the problem
(2.3). The case A, is a classical and analyzed in §2. The poset corresponding to
the pair (C,, w,) is a simple chain, so H? = 1. The poset corresponding to (D,, ;)
is only slightly more complicated, e.g. n =4 is
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so H*=2. The posets of (D,, ®,_;) or (D,, »,) are both actually identical to
(B,.-1, w,—1). The cases of E¢ and E, are covered in the penultimate remark of §4.
So it remains to consider the case (B,, w,) which we turn to now.

§4. Orthogonal groups

Let V denote a real vector space of dimension n equipped with the standard
Euclidean inner product (,). We recall the usual realization of the root system of
type B, [4]. If {e,, ..., e,} denotes the standard basis of V, then A is the set of
vectors

{xe e :l=<isj=n}lU{xe:1=i=<n}.
a basis 3 ={ay, ..., a,} of simple roots is obtained by letting
e—¢. 1=i<n
a; = ‘
e, i=n
so that the positive roots A" are
{e.—e:1=i<j=n}U{e+e¢:1=i<j=n}U{e:1=<i=n}

The Weyl group W is the semi-direct product },, X Z5 where the symmetric group
Y. acts in the obvious way. W has a natural integral representation as signed
permutation matrices; it is the symmetry group of an n-dimensional cube (the
hyperoctahedral group). We write a typical element we W as a pair (o0, €), 0 €},
g €Z3. It is not hard to show, by induction on I(w), that

LEMMA 4.1. If w=(o, €)e W, then

I(w)=1(0)+ Y, (2d;+1)
g=—1
where d, =d(ag)=#{x>j:0(x)<o(j)} and [ is the length function on Y, with
respect t0 Sy, . .., Sn_1.

We also recall that [(o)=Y"_{ ¢, where ¢ =¢;(0)={x>j:0(x)<o(j)}. This
yields

COROLLARY 4.2. If w= (0, €)e W, then

w)= Y (n+1-D+ 2 d+ 2 &
g=—1 g=-1

e’=+1
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Proof. Clearly d;+e¢;=n—1 so

Iw)=I(m)+ ), (2d,+1)

g=-1

§+Zd,+2d,+21

(n ])+1+Ze+ Z d;.

g =—1

IlM

€

Our first task is to explicitly identify W<, where a =a, (see also [23]). We
begin with

COROLLARY 43. If w=(0,¢e)e W, i<n, s;=s,, then l(ws)=1(w)+1 if
and only if g ,,0()<go(i+1).

Proof. The length goes up by one if and only if w(e—e,q)=
£i€s)— Ei+1€sa+n€EAT. The argument is finished by checking the four possible
cases.

If {x;,<:--<x}is a subset of {1,2,...,n} arranged in increasing order, let
{y1:>:+>y.-«} be the complementary subset arranged in decreasing order.
Define an element (x,,..., x) of W by

(,)__{x,. i<k e_{l i<k
Tl ik -1 i>k

We now have

PROPOSITION 4.4. The set W* ={(x,..., X))} where x;<---<Xx varies
over the 2" subsets of {1,2,...,n}.

Proof. Each (x,, ..., x,)€ W* by (2.2i) and (4.3). But |W*|=2" and the result
follows.

We now compute the length function restricted to W<,

PROPOSITION 4.5. If (x4, ..., x.)€ W, then

(Xyyeves X )= .gx,- +(n+ 1)(—;-‘—k).
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Proof. By (4.2), we have

n n

l(xl,...,xk)=._§ (n+1——j)+._§ dﬁ-;e,-
=(n+1)(n—k)—__g i+0+ ), (1)
k
=(n+1)(n-k)—"(n2+1)+,zx,-

and the result follows.
We would like a notation for the elements of W* so that the length function

has a simpler form. Associate to the symbol (x;>" + - > x;) the element (y; <- - - <
Vo_i) € W?, where y;,..., Y- is an ordered enumeration of the complement to

the set {(n+1)—x;:1=<i<k}. Then we get

PROPOSITION 4.6. If n=x,>"-->x,=1, then

k
l(xb # 85 ’xk)= Z X;.
i=1

Proof. By (4.5) and the definition of ( ),

(G150 = Ly +Hn+ D(5- (=)

n(n+1)
2

k
= Z xi°
i=1

nn+1)
2

+k(n+1)

—_Z(n+1~xi)—

Hence we view (x;>-:->Xx) as a natural notation for elements of W<

. n+1
Clearly, (n,n—1,...,1) is the unique element of maximal length ( ) ) It

remains to understand the Bruhat order restricted to W. If we view (x;>* - ->x;)
as a strict partition in the sense of §1, we get:

PROPOSITION 4.7. There is an isomorphism of posets Wy, where the
latter poset is the ideal of (n,n—1,...,1) in Y (as in §1).
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Here is a picture of the Hasse diagram of %,.

(4321)
(432)
(431)

In order to understand the intersection multiplicities in the d-fold self-
intersection of H=X,, we must compute the function (x,>:-->x). Fortu-
nately, this combinatorial problem has been solved by Schur (see also Thrall [25]).
We record the result:

PROPOSITION 4.8. (Schur [19]). The number of paths from ¢ to (x,>:-->
X, ) in Y is given by
(x4 +x)! Xi — X
Xl x! isici=k XX .

k(x>0 >x)=

Remark. According to Schur [19] the irreducible projective characters of ),
are parametrized by the n™ level of ¥, but there are two corresponding irreduci-
ble projective characters if Yr_; (x; —1) is odd, in the notation of (4.8). The
formula of Schur above can be thought of a projective version of the hook
formula discussed in §2.

We can now solve the remaining case of problem (2.3) for miniscule weights.

COROLLARY 4.9. The intersection H* =K, - X (. n—1....1 in A*(G/P,) where

.....

1
d=dim, 6Py = (", ") and
[ d12141- - (n—2)! _
D=3 =D =)
"] 412141 (-1 ~
a1 (n+2)!- - @n-1)! n=1().
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So, for example, in A*(SO,;/Us), H*' = 33,592 times the class X,;.

Remark. We use the notation of the remark following (2.1). If G is the group
of type B,, a = «,, there is a map

c:S(V)* - A*(G/P,).
It 1s possible to compute this map explicitly; namely
c(ay) =2X;

where (j)=S$,41-; * * * S.—18, in terms of the fundamental reflections. (The coeffi-
cient 2 arises because the index of torsion for G is 2 [6].) These Schubert classes
X, play the same role as the special Schubert cycles in the classical Schubert
calculus (see [14]). We hope to write down a Pieri formula for j>1 in a future
paper (j=1 is (3.3)); the result is complicated by the multiplicities.

In the case of groups of type A,, a path in W* admitted an interpretation as a
standard Young tableaux. We give a similar notion for the poset %,

DEFINITION 4.10. A Strict Young tableau on a strict partition x=
(x;>-:+->x,) is an assignment of the numbers 1,...,r(x)=x;+ - +x, to the
boxes of the shape of x so that entries in each row and antidiagonal increase.

For example, 32 is a strict Young tableau, but ;> is not. Notice the definition
forces that the entries increase in each column so a strict Young tableau is a
standard Young tableau, but not conversely as our example shows. It is trivial to
check

PROPOSITION 4.11. There is a bijection:

paths in W* strict Young tableaux}
<> .
from ¢ to x=(x,>--->x) on the shape of x
Now suppose we take a strict shape and shift each row over to the right by one

box relative to the row above it. For example, the shape of (4 >3> 1) corresponds
to the shifted shape
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We now observe

PROPOSITION 4.12. There is a bijection

{strict Young tableaux} {standard Young tableaux}
€«——> .

on the shape of x on the shifted shape of x

The objects on the right-hand side of the bijection of (4.12) are called shifted
Young tableaux and have been studied extensively by students of R. Stanley [11],
[12], [18]. Schur’s formula (4.9) counts these objects. Indeed, it possible to assign
a shifted hook-length to each box of the shifted shape, so that (4.9) has the form
of the usual Frame-Robinson-Thrall hook formula (see [16, p. 135]). For exam-
ple, the shifted hook-lengths for (4>3>1) are indicated

It seems to be an open problem to compute the relative function «(w, w’) in
this case. In the case of the lattice ¥, ,, (i.e. groups of type A,) such a skew-hook
formula is known. Indeed, it made its first appearance in an 1891 computation of
H. Schubert in enumerative geometry and was rediscovered in this century by W.
Feit in the context of representations of 3X,,.

According to Seshadri’s theory (see the end of §3) the chains of length m +1
in W* will parametrize a k-basis of the representation V,,, . Observe that m =1
is the spinor representation of dimension 2". A chain in W determines a shifted
plane partition. But Stanley [24] shows that such an object is equivalent to a
column strict plane partition (see [21] for definitions). By writing down a speciali-
zation of the Weyl character formula one can derive the generating function for
these objects (see [17, 4.2]).

We conclude with two remarks. The first completes the solution of problem
(2.3) for the remaining exceptional groups. The second gives an interpretation of
X, - H? in terms of the degree of a Schubert variety.

Remarks. 1. In the Chow ring of the homogeneous varieties E,/E¢ and E¢/Ds
one can try to compute the multiplicity of the highest self-intersection of H(2.3).
Fortunately, there is a picture of the respective Bruhat orders in [17]. So we can
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just count and get

H'$=78 in A*(E¢/D,)
H>=13,188 in A*(E,/E,).

2. (Geometric application). There is a projective embedding of G/P, into a
large enough projective space PV (coming from the ample line bundle L, ). For
G = GL, , this is the classical Pliicker embedding of the Grassmannian into PV,

+k
N = (n K )— 1. We show how to compute the classical degree of Schubert
varieties in G/P,, with o, a miniscule weight. This amounts to successively cutting
X,, with a hyperplane until one is reduced to counting points. By (3.5)

X, - HY'™ = e (w, wd) - X, = we W*

where d =dim¢ (G/P,,). So if ?, denotes Poincaré duality for G/P,, then
deg (X,,) = k(P (W)).

For example, referring to the Hasse diagram of a, for SO,/ U,
deg (X(3) =«(421)=7

since Poincaré duality is given by complementation.

§5. Sympletic groups

Let w, = w, denote the “right-most’’ fundamental weight in the root system of
type C,. The corresponding homogeneous space G/P, is homeomorphic to
Sp./U,. Let He A*(Sp,/U,) denote the unique codimension one class. We show
how to solve problem (2.3) for this non-miniscule weight by extending the
technique of §4. )

Since Weyl (B,) = Weyl (C,.), the relevant poset W* is identical to %, of §4.
But by computing inner products (8, ,) [4, p. 254] one gets

H'(x1>"'>xk)=2 Z (xl,---axi+1,°--9xk)+(l'—6xk,1)(x1,-'-9xka 1)'

x|+1<x\—-1

Let us write x for (x,,..., %) and define k(X) by the equation

H= ) &EX1..., %) (5.0)
(X)=j
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The k-function can easily be computed in terms of the x-function of §4. We have
PROPOSITION 5.1. If x € w®, then &(X) =2'®k(X), where I(X) =Y*_, (x; — 1).
First we leave it as an exercise to check

LEMMA 5.2. I(x(i)) = I(x)—1+38,,_16;; where X(i)=(xy,...,x—1,...x) if
X = 1> x4

Proof of (5.1). We induct on [(X).

k(%) =2 R(Z®{)+217 %k (%(k))

i*k

=2 ) 21ED e (£(i)) + 21 21T TEE 2 (£(k))

i*k

= 21<x>( Y k(®@1) +k(x(k)) = 2"’”K(f)>

i*k
by (5.0), (5.2) and (1.1).

COROLLARY 5.3. If He AXSpJU,), then H":"=2®K  where K, is as in
(4.9).

EXAMPLE. For Sps/Us, H'®=21°-286=292864, so the degree of the sym-
plectic variety grows much faster than its orthogonal counterpart.
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