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Graph theoretic techniques in algebraic geometry II: construction of
singular complex surfaces of the rational cohomology type of CP?

LAWRENCE BRENTON,* DANIEL DRUCKER and Geert C. E. PriNs

Abstract. Methods of graph theory are used to obtain rational projective surfaces with only rational
double points as singularities and with rational cohomology rings isomorphic to that of the complex
projective plane. Uniqueness results for such cohomology CP?’s and for rational and integral

homology CP?’s are given in terms of the types A,, D,, or E, of singularities allowed by the
construction.

This paper continues our discussion [4] of the use of graph theoretic methods
in the construction of compact projective algebraic surfaces with rational sing-
ularities. In [4] we were concerned with complex spaces which compactify affine
2-space C2. The purpose of the present work is to apply similar techniques to
provide examples of, and to classify according to singularity type, certain singular
complex projective surfaces which have the same rational cohomology ring as the
complex projective plane CP?. Our main result is:

THEOREM 1. For each of the following twelve 8-point Dynkin diagrams I'
there exists a complete rational complex projective algebraic surface of the rational
cohomology type of CP? whose singularities are precisely the rational double points
associated to the components of I': Az, Dg, Eg, A;+A,, E;,+A,, E¢+A,,
D+ A;, As+A,, D,+D,, As+A,+A,, D¢+ A, +A,, and A;+A;+A,+A,.

Introduction

In an earlier paper ([2]), methods of the classical geometry of algebraic
surfaces were applied to questions of existence and uniqueness of complex spaces
of the homotopy or cohomology type of CP>. Although there is an error in the
examples of [2] (corrected in [3]), the main result of [2] gives the uniqueness
result below. The statement of the result requires a bit of terminology. A compact

* Supported in part by National Science Foundation grant no. MCS 77-03540.
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40 L. BRENTON, D. DRUCKER, AND G. C. E. PRINS

complex surface X is a rational homology CP? if Vi,

Q fori=0,2,4
0 otherwise

H'(X, Q=H'(CF, @) = |

X is a rational cohomology CP? if there is a natural ring isomorphism H*
(X,Z) —»> H*(CP?,Z), where H* means H */(Torsion subgroup). ‘Natural”
means that the isomorphism preserves the duals of the homology class of a point
and of the entire space, regarded respectively as oriented 0- and 4-cycles.

THEOREM 2 ([2], Theorem 6). Let X be a compact two-dimensional complex
analytic space whose singularities are rational double points. Suppose further that X
is a rational homology CP? and that H*(X, Z) is generated by an effective analytic
divisor. Then X is a rational projective algebraic surface. Indeed, one of the
following holds:

(a) X is biholomorphic to CP? (& X is non-singular).

(b) X is biholomorphic to the singular complex quadratic cone
Qi={x’+y>+2z2=0}cC>=CP>.

(c) For some integer n with 3=n=<8, X is derived from CP? by the successive
application of n monoidal point transformations, followed by the blowing down of
precisely n non-singular rational curves having self-intersection —2. In this case, the
cohomology ring structure is determined by the fact that g*=9—n, where g is a
generator of H*(X,Z)=7Z. X is a rational cohomology CP? exactly when n =8.

Note: It was mistakenly supposed in [2] that for n = 8 these spaces are in fact
homotopy equivalent to CP?. This error is rectified in [3]. The necessity of the
condition “H*(X,Z) is generated by an effective divisor’” was recently shown by
Mumford in [9], where an example is presented of a rational cohomology CP?
which is a non-singular projective surface of general type.

Following the algorithm of (c), examples of cohomology CP*’s were constructed
in [2]. The details of the method are as follows. For some integer m <8, start with
m projective lines L; on CP? and blow up 8 points, possibly including infinitely
near points, on C=U!", L,. Call the resulting surface X and let p : X — CP? be
the map inverse to the monoidal transformations. Suppose that among the m +8
components C; of the curve p~'(C)c X there are precisely 8 that together
comprise the exceptional set for the minimal resolution of one or more of the
classical rational double points (that is, each of the 8 C; in question satisfies
C?=-2 and the dual intersection graph is the disjoint union of one or more of
the Dynkin diagrams A,, D,, or E;), while the remaining C; are exceptional of
the first kind (non-singular rational with C}=-1). Then the unique normal
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analytic space X obtained from X by collapsing each of the connected compo-
nents of the union of these 8 C, separately to a point will satisfy the conditions of
the theorem and will have the rational cohomology type of CP>.

At the time that [2] was written it was not known how many different
constructions of this type were possible nor what combinations of singular points
the resulting surfaces could have. A priori there are 39 different graphs with 8
vertices and with components of the form A,, D,, or E,, but not all 39 occur. To
discover which of the 39 occur and which do not is the ‘“thankless task’
mentioned in [2], page 429. This question has assumed new interest with recent
work of Ronald Fintushel on rational cohomology CP>s which are singular
4-manifolds, each singularity being the cone on a rational homology 3-sphere.
Considered as topological spaces, the surfaces X of type (c) constructed as above
are certainly such objects — indeed, they are singular 4-manifolds with singularities
of the required type which i addition support a complex analytic structure.

In this paper we will give the complete list of all rational cohomology CP?’s that
can arise by this construction.

THEOREM 3. Let X be a rational cohomology CP? constructed by the above
technique. Then X has at most 4 singular points x;. Let I' = U,I’; be the disjoint
union of the Dynkin diagrams associated to the x; and let det (I") be the determinant
of the Cartan matrix associated to I'. Then det (I') is the square of an integer less
than or equal to 8. Conversely, for each 8-point graph I'#+ D,+2A, with 4 or fewer
components, each a Dynkin diagram of type Ay, Dy, or E,, and with det (I') = j? for
some integer j=<8, at least one such space X exists. Explicitly, the graphs I’
satisfying these conditions are the 12 listed in Theorem 1 above.

The method of proof is purely graph theoretical, but at several important
points the graph theory sheds light on matters of topological and geometric
interest as well. We thank Paul Catlin, Daniel Frohardt, Peter Malcolmson, and
the other participants of the Wayne State University Graph Theory Seminar
(April, 1979) for valuable conversations about these ideas.

Preliminaries

By a hypergraph on a set V of m distinct vertices v,,...,v, We mean a
system (V, I') where I is a set of non-empty subsets (called edges) of V. A graph
is a hypergraph in which each edge has cardinality 2. A singleton edge {v;} is
pictured as a loop at v;. In this paper however, we will deal only with hypergraphs
that have no singleton edges. Edges of cardinality k >2 will be indicated by the
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symbol «w—=——- . If a hypergraph I' has no singleton edges and in' addition
satisfies the condition that for each pair of distinct vertices v, v; there exists a
unique edge Sel with v, v,€S, then I' will be called minimally complete. For
example, the minimally complete hypergraphs on 4 vertices are

&, &, and coE e e

A weighted hypergraph is a hypergraph in which each vertex v, is assigned an
integer “weight” n,.

If I' is a weighted hypergraph on m vertices v, with weight n; on v, the
intersection matrix of I' is the m by m square symmetric matrix (a;) where a;
equals n; if i=j, —1 if i#j and some element of I' contains {v, v;}, and 0
otherwise. By the determinant (respectively, trace) of I' (abbreviated det (I'),
tr (I')), we shall mean the determinant (trace) of the intersection matrix. Note that
the trace is just the sum ), n; of the weights.

Now let Y be an algebraic surface and let C = |J~, C, be a curve on Y whose
components C; meet transversally with C; meeting C; in at most one point
whenever i# j. By the dual intersection hypergraph associated to C < Y we mean
the weighted hypergraph on m vertices v, ..., v, defined by {v;,,..., v, }eI'e
C,N---NG, #0, with weight —C; on v. (We use the negatives of the self-
intersection numbers to avoid having to alternate the signs of the determinants
with successive monoidal transformations — see below.) A hypergraph I is called
(complex) projective planar if it is dual to a collection of projective lines on CP%. A
projective planar hypergraph is necessarily minimally complete, reflecting the fact
that any two lines on the projective plane meet in exactly one point.

Let I' be a weighted hypergraph on vertices vy, ..., v, with weight n;, on v,
and for S={v,,...,v,} an edge of I' define a new hypergraph os(I') on m+1
vertices Uy, ..., Upn4+1 DY

O-S(I‘) = F—{S}U{{vi19 vm+1}a AR {vika vm+1}}

with weights 1 onv,,.,,m;+10on v, if v;€ S, and n; on v, if v,;¢ S, i =m. Similarly,
if v; is a vertex of I', denote by o, (I') the hypergraph on vy, . .., v, defined by

O'vi (F) = FU{UD vm+1}

with weights 1 on v,,,;, n;+1 on v, and n; on v, for j# i, m + 1. These operations
are dual to the monoidal transformation for non-singular curves meeting transver-
sally on an algebraic surface. The operation og (respectively, a,,) is called the
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a-process centered at S (resp., v;), and applying og (resp., o,) to I' is called
“blowing up” the edge S (resp., the vertex v;). Any hypergraph can be trans-
formed into a graph by blowing up all of its edges of cardinality k>2. If
S={v,,...,v,} is an edge of I' of cardinality k, then tr (os(I))=tr (IN+k+1,
since each of the k weights n,, j=1, ..., k, is raised by 1 and a new vertex v,,,, of
weight 1 is inserted, while the other weights remain the same. Similarly,
tr (o, (I)) =tr (I)+2. Finally, we remind the reader of the Dynkin diagrams
(Coxeter graphs)

Ekt o—.—L —e k=6,7,01'8

(all weights are 2). These are the graphs associated to the fundamental root
systems of the simple complex Lie algebras sl(k +1,C), o(2k, C), e (cf., eg., [8],
§81, 11). They are also the weighted dual intersection graphs of the exceptional
curves appearing in the minimal resolutions of the double points

A x?=x*"1+y% Dy z22=x"+xy?,  Eg z22=x*+y?,

E,. z2?=x%y+y3?  Eg z’=x°+y>.

These are the only two-dimensional hypersurface singularities x € X which are
rational (R'm40x vanishes at x for 7: X — X a resolution - see Artin [1]). They
are precisely the singularities of the form C*/G where G is a finite subgroup of
SL(2, C) (namely, a cyclic group or a binary dihedral, tetrahedral, octahedral, or
icosahedral group). Indeed, much attention has been directed toward understand-
ing the relations among the various settings in which these graphs occur (see
especially [10], [5], and [7]).

The determinants of these graphs are det(A,)=k+1, det(D,)=4, and
det (E,)=9—k. This can be verified directly, or by the method of [6], or by
computing the quotients G/G’ for G = SL(2, C) the appropriate Kleinian group,
where G’ is the commutator subgroup of G. Since G/G' is also the first homology
group of a spherical neighborhood of the associated rational double point, these

determinants have topological significance in the construction of the complex
surfaces X.
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The main result

The problem of constructing rational homology and cohomology CP*’s by the
technique described in the introduction reduces to the following question. Let n
be an integer <8, and let I', be a projective planar hypergraph on m vertices,
m = n, with each vertex of weight —1. Perform n successive o-processes on I, in
such a way that the final hypergraph I = ¢"(I',) has m vertices of weight 1 and n
vertices — including the m original ones— of weight 2. Require further that the
sub-hypergraph I of I obtained by deleting all the vertices of weight 1 and all the
edges adjoining them be the disjoint union of Dynkin diagrams of the form A,,
D,, or E,. In how many ways can this be done?

The complete solution is contained in the first 51 rows of the following table.
The last 3 rows show the only 3 examples which satisfy every condition except
complex projective planarity of the initial hypergraph. That is, these represent
solutions to the dual graph theoretic problem for minimally complete hyper-
graphs, but do not translate into the geometric construction. In the last column
the rational cohomology type of the resulting space X is given. By —S—,., i=3,4,...,
we mean the singular complex rational surface obtained by collapsing to a point
the zero section of the CP'-bundle on CP' with Chern class —j (S, = the singular
quadric surface Q3, S, =CP?). These are the prototypical homology CP?’s with
cohomology ring structure given by g>=j, for g a generator of H*(X,Z). In the
final graphs the (proper transforms of) the original vertices are denoted by the
symbol [@],

The next section will be devoted to justifying the table. Note that Theorems 1
and 3 follow from the table. That is, in the 31 rows of the table which represent
cohomology CP?’s, the distinct Dynkin diagrams that appear are exactly the 12
listed in Theorem 1. To check the characterization in terms of determinants
(Theorem 3) it is sufficient to calculate the determinants of the twelve 8-point
Dynkin diagrams that appear in the table and the 27 which do not. (Recall that in
all there are thirty-nine 8-point graphs with components of type A,, D,, or E,.)
Note that, except for A,+ A,, each of the disconnected diagrams which appear
consists of two disjoint graphs I" and I"” (not necessarily connected) with
det (I") =det (I'"). Thus det (I') is the square (det(I"))>. (The “missing” graph
D,+2A, does not have this property, although its determinant is the square of an
integer =8 and it has 4 or fewer components.)

Proof of the main result. To justify the table, we must determine all initial
hypergraphs I',, and for each I, all sequences of n =<8 blow-ups permitted by the
conditions on the final hypergraph I', as given in the first paragraph of the
previous section.

First we note that since each of the original vertices of I', becomes part of the
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Table for the construction of rational homology QP "'s

Final graph Singularities Determinant Cohomology type
Initial hypergraph e
»—-o—jQ
A2+A1 6 S6
A A
o1
A 5 s
2 02 2 4 5
0——4——T—1<——‘
DS 4 84
P U S S SR
‘—a—j—lo—o—-‘
- E 3 s
2 2 2 PO B 6 3
*—o—L—o—o——o
2
By 2 Q
X A A x el A \
A
E8 1 Pz
E - S U T R S
Initial hypergraph ©¢—e
s
B—e—o—o g —-—o—a A3+2A1 16 b
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Initial hypergraph

~—e

I S U S U W X
*—o—o (i —o—a—e
- - G 2 S S I N

3A

(continued)

12

12

27

18

wni

w

(2]

N

N



Graph theoretic techniques

Initial hypergraph —o (continued)

I U G S U U S S

v—-o——4-—l—°;6-—0—+—‘—-@
E7+Al 4

R - U S S G- S - §

\
h‘—l—i@@—Qﬂ—‘
E, +A, 9

.S S U SRR U T A

Initial hypergraph A

A
| Q
P i
3A2 27
2 Q
2
QA
&2
1]
A

!
|
.
|

47

wi



48 L. BRENTON, D. DRUCKER, AND G. C. E. PRINS

Initial hypergraph A (continued)

A
! Y
oy =,
! AS +A2 18
A 2
| a
2A3 +A1 32
A8 9
A8 9
9
E6 -0-A2
E__+ A 9

N
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Initial hypergraph A (continued)

Initial hypergraph x>

D, + 3A

16

16

16

36

32

49



50

L. BRENTON, D. DRUCKER, AND G. C. E. PRINS

Initial hypergraph -—x>» (continued)

16

16

16

25

25
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Initial hypergraph A

32

32

16

16

16

16

51
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Initial hypergraph ‘ét; (continued)

16
16
16
25 ~
A5 + AZ + A1 36
Initial hypergraph
A_+A_ +A 36
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Initial hypergraph &

2
64 P
( 2A3 + 2A1
Initial hypergraph
7A1 128 Does not occur over @
D4 + 3A1 64 Does not occur over @

Does not occur over (&
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graph I' < T, all of the multiple edges of I, must be blown up. Furthermore, I,
can have no edges of cardinality greater than 3. For if S={v,,..., v, } is an edge
of I'y with k =4, then o5(I'y) contains k vertices v, of weight 0 with no two in an
edge of o4(I',), and these k vertices must have weight 2 in the final graph I'. Thus
each v; must be at the center of 2 more blow-ups, neither of which can involve v,
for # j. This makes a total of at least 1+ 2k > 8 blow-ups, violating the restriction
n<8§.

Using the fact that in a minimally complete hypergraph each pair of triple edges
shares at most 1 vertex, the following lemma is quite easy to check case by case.

SUBLEMMA. The maximum number e of triple edges in a minimally complete
hypergraph on m points, 1<=m =<8, is as follows:

m=1,2 e=0 m=6 e=4
m=3,4 e=1 m=17 e="7
m=>5 e=2 m=28 e=8

Furthermore, the minimally complete hypergraphs realizing these maxima are
unique up to isomorphism.

Let x, y, and z denote the number of 3-edges, 2-edges, and vertices blown up
in passing from I'y to I". Then x+y+z=n=<8, and the traces satisfy tr (I")=
tr (Ip)+4x+3y+2z=tr(I'y)+2n+2x+y. Since tr(I'y)=—m (m vertices, each
with weight —1) and tr (') =2n+m (n vertices of weight 2, m vertices of weight
1) we obtain 2Zn+m=—m+2n+2x+y, or

(*) m=((yR)+x=4+(x/2).
We want to determine all possibilities for Iy, and the triple (x, y, z).

Case 1. x=0, m=y/2=<4. I'j, having no triple edges, is the complete graph
K,, on m points (1=m=4), and y =2m. If m =1, of course z cannot be zero, for
K, has no edge to be blown up. Likewise if m =2 (& y =4) then z# 0 since it is
impossible to insert 4 new vertices by o-processes into the lone edge of K, without
increasing the weight of one of the vertices to more than 2. Thus the possible
initial hypergraphs and their triples (x, y, z) are in this case:

Iy (x, ¥, 2)

K, 0,2,2),1=z2=6
K, 0,4,2),1=z=<4
K, 0,6,2),0=z=<2
K, (0, 8, 0).

Case 2. x =1, m =(y/2)+1=4. Since I';, has a triple edge, m must be at least 3,
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so the only choices for I'y are «==> and & . If m =3, y=4. After the triple
0 0

edge of «=> is blown up to obtain Y , at most one of the three 2-edges
0

can be blown up, and no weight can be added to the other two original vertices
except by blowing them up. Thus z =2 in this case. The possibilities are

fg (x,y,2)
(1,4,2)
(1,4,3)

& (19 69 0)
(1,6,1)
Case 3. x=2, m=(y/2)+2=<S5. By the sublemma, m>4. Thus m=5, y=6,

and I, is the unique minimally complete hypergraph on 5 points with 2 triple
edges.

FO (x, y, Z)

(2,6,0)

Case 4. x = 3, m =(y/2)+3=5. By the sublemma, this cannot occur.

Case 5. x = 5, m =(y/2) +4=6. The sublemma gives m =6, whence y =4.

I, (x,y, 2)

Case 6. x =5, m =(y/2)+4=<6. This, too, is impossible by the sublemma.

Cases 7, 8, and 9 similarly give the following possibilities

FO (xs y, Z)

(the unique minimally
complete hypergraph on
7 points with 6 triple
edges)
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(7,0,0)
(7,0,1)

(the Fano projective
plane P*(Z,))

l“d&\\ 4
LSRN

m=x=28

(8,0,0)

It is easy to verify directly that the first 9 candidates for I', on this list are
complex projective planar and that the last 2 are not. For instance, the hyper-

graph
% is dual to the collection
of projective lines

(The 7-point graph of Fano and the 8-point graph do, however, occur over fields
of characteristic 2 and 3 respectively. This phenomenon will be explored in part
IIT of this series of papers.)

From here, an easy but tedious exhaustion of cases yields the possible final
graphs I" for each pair (I'y, (x, y, z)). We will give one example to illustrate the

technique.
U U,
K. oo
v ) b4 b

5 4

After blowing up the 2 triple edges we obtain the weighted graph

1
Vg
0 0
Dl 04
v v
0’ 0
Uy

where v¢ and v, are the new vertices inserted by blowing up the triples {vy, v3, v4}
and {v,, v;, vs} respectively. Since no vertices can be blown up (z =0), the only
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way to raise the weight of v; is by blowing up one of the two edges to which it
belongs. By symmetry we may suppose that {v,, ve} is blown up.

Uy
1
0 0
Uy Us
Consider the subgraph I = . In the 5 remaining o-processes sup-

pose that y’ edges of I"' are blown up, together with z'<5—7y’ “vertices” of I
(i.e., edges of one of the graphs o“(I'y), 3=k =3+7y’ which contain only 1 of the
vertices v;, v,, U4, and vs). Since the weight of each vertex of I'"" must be raised by
2, 2y'+z' = 8. The only solutions are

(A) y'=3,z'=2, and (B) y'=4,z'=0.

Case (B) cannot occur, for after blowing up each edge of I'" we obtain the dead

ey
!

in which no further blow-ups of edges are possible. In case (A), by symmetry we
may suppose that {v,, vs}, {v,, v,}, and {v,, vs} are blown up.

2
v

-
oS(Iy): ’4
Ll

1
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The remaining edge {v,, v,} of I’ cannot be blown up, no edge of a®(I';) can
be subdivided twice, and v, can be involved in only one more blow-up, so it is
clear that the remaining 2 o-processes must blow up {v,, ve} and either {v,, v,,} or
{v,, v,}. The resulting final graphs are

1 and

(As+A,+A)) (A +AY

These are lines 49 and 48 of the table, and, up to the order in which the 8
o-processes are performed, these are the only permissible constructions with an
initial hypergraph on 5 points.

The other 52 lines of the table are derived similarly. This completes the proof.
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