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Su una congettura di Pétri

Enrico Arbarello e Maurizio Cornalba*

Introduzione

Nel suo lavoro "Ùber Spezialkurven," [19] p. 184, K. Pétri, in modo quasi
parentetico, afferma quanto, in linguaggio moderno, puô essere espresso corne

segue

(0.1) Dato un qualsiasi divisore D su di una curva C a moduli generali il prodotto
"cup"

0(D))®H°(Q O^-D)) -+ H°(Q Olc)

è iniettivo.

Chiameremo (0.1) la congettura di Pétri. Questa congettura giuoca un ruolo
centrale nella teoria dei divisori speciali su di una curva e précisa la bella
congettura di A. Brill e M. Noether che è stata recentemente dimostrata da P.
Griffiths e J. Harris, [6], [1]. Ricordiamo il contenuto di questa congettura. Sia C
una curva di génère g. Indichiamo con W^ l'insieme délie classi di equivalenza
lineare dei divisori di grado d su C che si muovono in un sistema lineare di
dimensione almeno r. Vi è su W^ una struttura naturale di varietà algebrica (anche
non ridotta). La congettura di Brill e Noether afferma che

(0.2) Se C è una curva a moduli generali allora:
a) W^ è ridotta.
b) Ogni componente irriducibile di W^ ha dimensione

* Lavoro eseguito nell'ambito dei Gruppi per la Matematica dei C.N.R. e finanziato in parte dalla
N.S.F. (Grant MCS-78-07348).
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Nella prima parte di questo lavoro daremo un primo significato geometrico
délia congettura di Pétri, mostrando che essa puô essere pensata corne un teorema
di singolarità di Riemann per W^ su di una curva a moduli generali. Più
precisamente mostreremo che

(0.3)
a) La congettura di Pétri implica (0.2).
b) Se voie la congettura di Pétri e C è a moduli generali, il luogo singolare di

Wrd è esattamente WJ4"1.

lue teeniche da noi usate nello studiare la struttura di W^ sono simili a quelle
usate da Kleiman e Laksov [14].

Seguendo il metodo usato da Kempf [12] nel dimostrare la sua generaliz-
zazione del teorema di singolarità di Riemann mostreremo inoltre corne la
congettura di Pétri permetta, su di una curva a moduli generali, di calcolare i coni
tangenti a W^ e i loro gradi.

Il lavoro prosegue poi col dare una ulteriore interpretazione geometrica délia
congettura di Pétri, e cioè:

(0.4) Se C è una curva a moduli generali e

<p:C-*Pr

è un qualsiasi morfismo, ogni deformazione infinitesima di <p è non ostruita. Più
precisamente9 denotando con N^ il fascio normale a <p, si ha

Usando questa versione délia congettura di Pétri, dimostreremo la congettura
stessa nel caso r 2, cioè per le curve piane (il caso r l è stato studiato
classicamente e risolto da numerosi autori moderni).

La dimostrazione délia congettura per r 2 sarà basata su un curioso risultato
di natura générale riguardante le deformazioni di curve con cuspidi. Più

esattamente, dato un morfismo

individueremo un sottofascio Xv di Nv avente supporto nei punti di diramazione
di ç (le "cuspidi" di <p(C)) con le seguenti proprietà:
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a) Gli elementi di H^iC.JC^) corrispondono aile deformazioni infinitesime di <p

che non mutano cp(C).

b) Se <p non è composto con una involuzione, ogni deformazione effettiva di <p,

definita, al primo ordine, da un elemento non nullo di H®(C, Sif^), ha Veffetto di far
diminuire la complessità délie cuspidi di <p(C).

I terni e le idée sviluppate in questo lavoro hanno avuto origine da una lunga e

amichevole collaborazione con P. Griffiths e J. Harris (vedi [1]). Cogliamo qui
Toccasione per ringraziarli vivamente entrambi. Vogliamo anche ringraziare
Edoardo Sernesi per le numerose e interessanti conversazioni che abbiamo avuto
con lui su questi problemi.

§1. Notazioni e preliminari

L'ambiente in cui opereremo è quello délie varietà algebriche su C. Una taie
varietà algebrica potrà anche essere non ridotta o riducibile. Poichè cio non darà
mai adito ad ambiguità, ci riterremo liberi, ove necessario, di trattare tali varietà
corne varietà analitiche complesse avvertendone, beninteso, il lettore.

Il termine curva sarà sempre usato nel senso di "varietà algebrica compléta,
irriducibile, non singolare e di dimensione uno." Per convenzione useremo il
termine "fibrato in rette" in luogo di "fascio algebrico invertibile." Data una
varietà algebrica liscia indicheremo con i simboli JCX, @x (° più semplicemente
K, 0) il fibrato canonico su X e il fascio tangente su X.

Sia ora C una curva di génère g. Indicheremo con Cd il prodotto simmetrico
d-esimo di C e con u ud il morfismo

(1.1) ud:Cd-*Pica(C)

che a ogni divisore D associa il fibrato in rette 6(D). Indicheremo altresi con il
simbolo Cd la sottovarietà di Cd di "equazioni":

rango u#<d--r

Più esattamente, l'idéale di Cd è generato, localmente, dai minori (d — r + l)x
(d-r 4-1) délia matrice jacobiana di u. E'un fatto classico [2] che Cd, corne
insieme di punti, non è altro che il luogo dei DeCd tali che

Esporremo ora, per convenienza del lettore, alcuni rudimenti délia teoria délia
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deformazioni di fibrati in rette su curve (cf. [15], [1] per una trattazione più
ampia).

In primo luogo, se C è una curva di génère g e L è un fibrato in rette di grado
d su C, vi è un isomorfismo naturale tra Hl(C, 6C) e lo spazio tangente a Picd (C)
in L. Analogamente, se D è un punto di Cd, si ha una identificazione naturale tra
lo spazio tangente a Cd nel punto D e H°{Q ÛD(D)).

(1.2) Con queste identificazioni, Vomomorfismo

u*,D:TD(Cd)-> Tu(D)(Picd (C))

si identifica alVomomorfismo cobordo

H°(C,ÛD(D))-*H\QCC)

délia successione esatta di coomologia di

Indichiamo con il simbolo C[e] l'anello dei numeri duali. Per la propriété
universale di Picd (C) [7], un elemento <p di H\C, 0) corrisponde a un fibrato in
rette SE su CxSpecC[e] la cui restrizione a C è L. Nel seguito un taie fibrato in
rette sarà chiamato una deformazione infinitesima di L e <p la sua classe di
Kodaira-Spencer.

Si ha una successione esatta

(1.3) H°(C x Spec C[e], SE) -* H°(Q L) -4 H\Q L)

ove / è il prodotto "cup" con <p.

Analogamente, per deformazione infinitesima di L —» C intenderemo il dato di
una deformazione di C, X-*SpecC[e], e di un fibrato in rette SB su X la cui
restrizione a C è isomorfa a L.

Sia ora 2L VOc-Tnodulo localmente libero di rango 2 le cui sezioni sono gli
operatori differenziali, di ordine al più eguale a uno, agenti su sezioni di L.

A ogni deformazione infinitesima di L -> C è associato un elemento di
HX{C> Xi} che è chiamato la sua classe di Kodaira-Spencer. Si mostra facilmente
che ciô induce una corrispondenza biunivoca tra l'insieme délie classi di
equivalenza di deformazioni infinitesime di L —> C e H1^, XL).

Sia ora or un elemento di H\C9Xl) e ^~"»X—»SpecC[e] la corrispondente
deformazione infinitesima di L —> C. In analogia con quanto si è osservato per le
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deformazioni infinitesirne di un fibrato in rette su di una curva fissa, vi sono un
prodotto "cup"

(1.4) Hl(Q

e una successione esatta

H°(X, X) -h> H°(Q L) -^ H\Q L)

dove F è il prodotto "cup" con o\
Si ha infine una successione esatta

(1.5) O-+Oc^>Xl-*0c-+O

e Timmagine di cr in Hl(C, 0C) è la classe di Kodaira-Spencer délia deformazione

X->SpecC[e].
Sia ora X-2> S un morfismo liscio e proiettivo di varietà algebriche le cui fibre

sono curve di génère g. Supporremo che p possegga una sezione. Esistono allora
[7] una varietà Picd (p), un morfismo liscio e proiettivo Picd(p) -^Seun fibrato in
rette 5£d su XxsPica (p), detto fibrato di Poincaré, con la seguente proprietà.

(1.6) Per ogni morfismo S'-^S e ogni fibrato in rette !£ su XxsS\ taie che la

restrizione di «Sf a ogni fibra di q:XxsS' —»S' abbia grado d, esiste un unico
morfismo S;-^Picd (p) taie che ttq<p $ e

per qualche fibrato in rette â su S'.
Naturalmente, se s è un punto di S

In particolare, se S è un punto, Picd(p) Picd(X).

§2. Le varietà W^ e G^.

In tutto questo paragrafo indicheremo con X-^S un morfismo liscio e
proiettivo di varietà algebriche le cui fibre sono curve di génère g. Supporremo
anche che p abbia una sezione.



6 ENRICO ARBARELLO E MAURIZIO CORNALBA

Siano ifd un fibrato di Poincaré su XxsPicd (p) e

Picd(p)-^S,

XxsPicd(p)APicd(p)

le proiezioni naturali. I teoremi fondamentali sul cambiamento di base in

coomologia [8], [18], implicano che, per ogni punto x di Picd (p) esistono un
intorno affine U di x e un omomorfismo di O^-moduli liberi

(2.1) K0-^^

con la seguente proprietà. Per ogni morfismo di varietà affini V—> U vi sono
isomorfismi funtoriali

In particolare se m e n sono i ranghi di K° e K1, segue dal teorema di
Riemann-Roch che

m — n d — g +1

Se si scelgono isomorfismi di r(l7, K°) e r(l7, K1) con r(U, OJJ) e r(LT, <?£,), ad a
è associata unamatrice nxm A, con coefficienti in F(l/, Cu). Definiamo ora W^lt
corne la sottovarietà di U il cui idéale è il (g - d 4- r)-esimo idéale di Fitting délia

presentazione

nu, ovr -> nu, ^r -> H^q-^i/), ^^j -^ o

cioè l'idéale generato dai minori di ordine n — g + d~r+l m-r di A. La
formazione degli ideali di Fitting è compatibile con il cambiamento di base; è

inoltre noto [4] che due diverse presentazioni di uno stesso modulo di tipo finito
su un anello noetheriano hanno gli stessi ideali di Fitting. Esiste perciô una
sottovarietà Wd(p) di Picd (p) taie che

dove {I/J è un opportuno ricoprimento affine di Picd (p).
Sia ora G Gr (r +1, m) la Grassmanniana degli (r + l)-piani in Cm e sia M la

varietà délie matrici complesse n x m. Su M vi è un omomorfismo naturale di fasci

(2.2) C^CnM
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la cui matrice è il morfismo identità di M. La matrice A associata a (2.1) puô
essere pensata corne un morfismo di U in M. L'omomorfismo (2.1) è indotto da

(2.2) tramite A. Inoltre (2.2) induce un omomorfismo

Indichiamo con F il sottofascio tautologico (localmente libero di rango r +1) di
Ûg e poniamo F CMxF.

Sia V il luogo dei punti x di MxG per cui F(8>fc(x) è contenuto nel nucleo di

<px:k(xr-+k(x)n

V è una sottovarietà liscia di MxG. Indichiamo con V la sua immagine in M. E'
noto [26] che l'idéale di V è generato dai minori di ordine m — r. D'altro canto
Wrd{p)DU è l'immagine inversa di V tramite il morfismo A.

Poniamo

Grdu è una sottovarietà di 1/xG. Riassumendo si ha che

(2.3) I diagrammi

Grdu—> u wd(P) n u—> u
ï h 1

V >M V

sono diagrammi cartesiani.

Sia ora

il morfismo naturale e

la proiezione. Indichiamo con il simbolo Mu il fascio immagine inversa di S£d

tramite il morfismo

Picd (p)
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Allora 9V — ;*(F) è un sottofascio localmente libero di

g*Mv Ker (K°®€ij<9G, u -> Kl®Ou€Gkv)

Quanto sopra puô essere riassunto dicendo che sul morfismo q~l(U)-+ U vi è

una famiglia naturale di grd parametrizzata da GrdU -^> U, secondo la seguente:

(2.4) DEFINIZIONE. Una famiglia di grd su X^S parametrizzata da f è

una terna (/, % W) ove:
a) f:Sr —» S è un morfismo
b) J? è un fibrato in rette su XxsSf la cui restrizione a ogni fibra di

XxsS'-^S' ha grado d
c) ffl è un sottofascio localmente libero di rango r + 1 di p*(££) taie che, per ogni

se S', Vomomorfismo

sia iniettivo.

Abbiamo il seguente

(2.5) TEOREMA. Sia X-^S un morfismo liscio e proiettivo di varietà alge-
briche le cui fibre sono curve di génère g. Supponiamo che p abbia una sezione. Sia

Picd (p) -*> S la proiezione naturale. Allora esistono una varietà Grd(p), un morfismo

proiettivo

e una famiglia (ttoc,M, 9?) di gd suX-^S con la seguente proprietà universale. Se

(f : S' -> S, «Sf, 9f) è una famiglia di gd su X-%> S, esiste un unico morfismo

di varietà su S taie che Vimmagine inversa di (ttqc, M, W), tramite r\, sia isomorfa a

per qualche fibrato in rette SI su S'. Inoltre, nel caso in cui /=tt°^, S' GrdLh
5£ Mu, 3€ &u, il morfismo tj è un isomorfismo di Gdu su c"1(l7). Infine
M {lxxc)*£d, dove 5£d è un fibrato in rette di Poincaré su XxsPicd(p), e c si

fattorizza attraverso Vinclusione Wd(p) <=^Picd (p).
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Dimostrazione. Per la proprietà universale di Picd (p), si puô scrivere, per un
unico/:S'-*Picd(p),

Basta ora dimostrare che G^>u, -^lt> ^u hanno la proprietà universale descritta da
(2.5) quando / si fattorizza tramite l'inclusione di U in Picd (p). Sia

p':XxsS'->Sf

la proiezione. Il fascio p'*££ si identifica con il nucleo di

Esiste un unico morfismo

h:S'-»Gr(r+l,m) G

taie che

h*(F) %<=+ /*K° h*(OJS)

Poichè % cKer f*(a), il morfismo

(/, h):S'->l/xG

è la composizione dell'inclusione

e di un morfismo

di varietà su 1/ taie che

Che t) sia unico segue dall'unicità di / e h. Q.E.D.
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Quando S è un punto, e X è, perciô, una curva di génère g, scriveremo

Wi(X), Grd(X) in luogo di Wd(p), Grd(p). Corne Picd (X) parametrizza le série

lineari complète di grado d su X, Wd(X) e Grd(X) parametrizzano, rispet-
tivamente, le série lineari complète su X di grado d e dimensione almeno r, e le
série lineari di grado d e dimensione r su X (cioè le gd su X).

Sia C una curva di génère g. Ricordiamo (cf. (1.1)) che vi è un morfismo

u:Q-»Picd(C)

(2.6) PROPOSIZIONE (cf. [14]). Crd= u'^W^C)).

Dimostrazione. Indichiamo con p1? p2 le proiezioni di CxCd sui due fattori e

poniamo «2> (lc xw)*(i?d). La sottovarietà u^CW^O) di Cd ha corne fascio di
ideali il (g-d + r)-esimo idéale di Fitting di R1p2JJ£). Su CxCd vi è un divisore
D taie che

D-(Cx{A}) â, AeCd

Inoltre D è piatto su Cd. Poichè 5£®€{-D) è banale su ogni fibra di p2, esiste, su

Cd, un fibrato in rette â taie che

Percio u-1(W^(C)) ha, corne fascio di ideali, il (g — d + r)-esimo idéale di Fitting di
RlP2*(G(D))' Dalla successione esatta di fasci su CxQ

0-+0-+ 0(D)-*0D(D) -*0

si deduce una successione esatta di fasci su Cd

^ + 0

che puô essere usata per calcolare gli ideali di Fitting di R1p2jO(D)i poichè
PzfloiD) e R1p2JÛ sono localmente liberi di ranghi d e g rispettivamente.
D'altra parte, per (1.2), a si identifica aU'omomorfismo

"* : @q -* m*(Op^(o) Q.E.D.

§3* D significato geometrico délia congettura di Pétri

In questo paragrafo esporremo alcune conseguenze délia congettura di Pétri
riguardanti la struttura délie varietà W^.
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Sia C una curva di génère g ^3. Siano red due interi non negativi. Sia L un
fibrato in rette su C di grado d, e sia

un sottospazio di dimensione r + 1 (una grd). Indicheremo con I il punto corrispon-
dente a una taie gd in Grd(C). Diremo che I soddisfa la condizione di Pétri se il
prodotto "cup"

(3.1) ilo:W®H°(QK®L-1)^>Ho(C,K)

è iniettivo.
La congettura di Pétri è perciô équivalente a

(3.2) CONGETTURA. Sia C una curva di génère g ^3, a moduli générait
Allora, per ogni r e ogni d, ogni punto I di Gd(C) soddisfa la condizione di Pétri.

Il risultato fondamentale che traduce la congettura di Pétri in un enunciato
geometrico è il seguente

(3.3) TEOREMA. Sia C una curva di génère g >3. Sia I un punto di Gd(C).
Allora I soddisfa la condizione di Pétri se e solo se Grd(C) è liscia e di dimensione

p g-(r+l)(g-d + r)

nel punto I.

Dimostrazione. Innanzitutto osserviamo che ogni componente irriducibile di
Grd(C) ha dimensione pari almeno a p; poichè questa affermazione è di carattere
locale, possiamo lavorare su Gdu dove U è un aperto affine di Pica (C). Segue da
(2.3) e dal fatto che V è una sottovarietà liscia di MxGr(r+l, m) di codimen-
sione n(r+1), che ogni componente irriducible di GrdU ha dimensione pari almeno
a p.

Siano ora L il fibrato in rette su C e W il sottospazio di H°(C, L) corrispon-
denti al punto IeGd(C). Vogliamo calcolare lo spazio tangente di Zariski

Ti(Gi(O)

a Grd(C) nel punto I Per la propriété universale di Grd(C), T^G^C)) è in
corrispondenza biunivoca con l'insieme délie classi di equivalenza di famiglie di gd
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su C parametrizzate da SpecC[e] che estendono WcH°(C,L). Per l'esattezza

délia successione (1.3), l'immagine di T^G^O) in TL(Picd {C)) Hl(C,€) è

(3.4) H {<peH1(Q€):<p- W 0}

Vi è perciô una successione esatta

(3.5) 0 -> H' -> TxCGiCO) -* H -+ 0

dove H' è Finsieme délie classi di equivalenza di famiglie di grd contenute in \L\ e

cioè lo spazio tangente alla grassmanniana Gr (r-f 1, H°(C, L)) nel punto W.

Quindi

H' Hom W, H°(Q L)/W)

dove si è posto F dim(H°(C, L))-l. Ora H è definito corne il nucleo dell'ag-
giunta di (3.1):

H\Q €) -» Hom W, H\C, L))

quindi

dim Tr(G^(C)) (r + l)(r - r) H- dim (coker fx0).

Perciô dire che I soddisfa la condizione di Pétri è équivalente a dire che

dim Tf(Gi(O) (r + l)(r - r) + g - (r + l)(r - d + g)

Poichè in precedenza si è osservato che ogni componente irriducibile di
Grd(C) ha dimensione pari almeno a p, ciô conclude la dimostrazione. Q.E.D.

Consideriamo un morfismo di varietà algebriche ridotte

(3.6) f:X-+Y

Supponiamo che X e Y siano connesse. Ricordiamo che / si dice una risoluzione
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razionale se X è liscia, Y è normale e di Cohen-Macaulay, / è propria e
birazionale e le immagini dirette superiori Kq/*(0X), q>0, sono nulle. Se X e Y
non sono connesse e Xu Xn sono le componenti connesse di X, diremo che
(3.6) è una risoluzione razionale se, per ogni i,

è una risoluzione razionale e Y è unione disgiunta degli f{Xt).

(3.7) TEOREMA. Se C è una curva di génère g ^3 che soddisfa la condizione
di Pétri per ogni grd, ove d è un intero minore o eguale a g —1, allora Grd(C) è non
singolare e di dimensione

p g-(r+l)(g-d + r).

Inoltre Wd(C) c(Grd(Q) e

è una risoluzione razionale.

La dimostrazione si basa su due lemmi che enunciamo senza dimostrazione.

(3.8) LEMMA (cf. [12], Lemma 2). Siano X, Z, Z' varietà lisce e connesse e

g:X-»Z, m:Z'-*Z

morfismi. Supponiamo che g sia proprio e che il morfismo indotto /:X—» Y= g(X)
sia una risoluzione razionale. Siano

diagrammi cartesiani. Se X' è liscia e dimX'-dimZ' dimX-dimZ, allora
Vimmagine di g' è j(Y') e

è una risoluzione razionale.
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Prima di enunciare l'altro lemma, richiamiamo alcune notazioni del §2.

Indichiamo con M la varietà délie matrici n x m a coefficienti complessi, con V la
sottovarietà (liscia) di MxGr(r + l,m) costituita dalle coppie (B,W) tali che

B • W 0, e con V la sottovarietà di M il cui idéale è generato dai minori di
ordine m — r.

(3.9) LEMMA (cf. [13], [26]). Se n>m, V è Vimmagine di V tramite la

proiezione di M x Gr (r +1, m) su M e

V-* V

è urca risoluzione razionale.

La dimostrazione di (3.7) è ora immediata. La prima parte segue dal Teorema
(3.3) e dal teorema di esistenza per i divisori speciali [11], [14], [25]. Per quanto
riguarda la seconda parte, la questione è di natura locale su Picd (C), perciô basta

mostrare che ogni punto di Picd (C) possiede un intorno U taie che c(Grdu)

Wj(C) DU e che Grdu sia una risoluzione razionale di W^(C) H U. Si puô anche

supporre che W^(C)ni/ sia connesso: allora anche Gdu lo è, poichè c ha fibre
connesse. Il risultato segue ora da (2.3) e dai Lemmi (3.8) e (3.9) dopo aver
notato che, per il Teorema (3.3) Grdu è liscia e

dim U-dimGdJJ=(r + l)(r + g-d)

mentre

dim M- dim V=nm-(r+ l)(m -r-l)-fn(m-r-l)
(r + l)(n - m + r +1) (r + l)(r + g - d)

poichè, nel nostro caso, m-n d-g + l. Ciô conclude la dimostrazione di (3.7).

(3.10) TEOREMA. Sia C una curva di génère g ^3. Sia d un intero minore o

uguale a g-1. Sia I un punto di Grd(C), e siano L il fibrato in rette su C e W il
sottospazio (r + l)-dimensionale di H°(C, L) corrispondenti a L Supponiamo che I
soddisfi la condizione di Pétri. Allora il cono tangente a Wd(C) nel punto L è la
sottovarietà ridotta T di TL(Picd (C^^H^QO) di supporto

Supp T {<pe H\C, 0) : <p • W {0} c H^Q L), per qualche
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Inoltre se N è il fibrato normale alla fibra di

c:G'd(C)-+Wd(C)

sopra L, il morfismo N—>Tè una risoluzione razionale.

Dimostrazione. Poniamo f - dim H°(Q L) — 1 e i dim Hl(Q L). Corne segue
dalla esattezza délia successione (3.5), c* applica lo spazio normale a c~x(L) in I
isomorficamente sul sottospazio H di H^QC) definito da (3.4). Perciô l'im-
magine di N in Hl(Q 6) è precisamente T. Indichiamo con V la sottovarietà liscia
di

Hom (H°(Q L), H\Q L)) x Gr (r +1, H°(Q L))

costituita dalle coppie ($, W) tali che ^(W) 0. Per il Lemma (3.9) V è una
risoluzione razionale délia sua immagine V in Hom (H°(C, L), Hl(C, L)). Inoltre
il supporto di V è l'insieme degli omomorfismi di H°(Q L) in H1^, L) di rango
non superiore a f-r. Vièun diagramma cartesiano

N > Y

i i
H\Q Û) —% Hom (H°(Q L), H\Q L))

Definiamo T corne l'immagine inversa di V tramite /x*• Poichè

dim N- dim H\Q €) p - g (r 4- l)(d - g - r)

dim r-dim Hom (H°(C,L), H1(C,L))

e N è liscia, il Lemma (3.8) dice the T=T e che N è una risoluzione razionale di
T. In particolare T è normale e birazionale a N. Per concludere si usa il seguente
lemma, che enunciamo senza dimostrazione

(3.11) LEMMA (cf. [12], Proposition 1). Siaf:X-> Y un morfismo proprio tra
varietà liscie. Sia y un punto di Y taie che f~l(y) sia liscia. Indichiamo con M il
fibrato normale a f~l(y) e con & la sua immagine in Ty(Y). Se Ne birazionale a ÏÏ
e& è normale, allora ÏÏ e il cono tangente a f(X) in y.
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(3.12) Osservazione. Sempre nelle ipotesi del Teorema (3.10), supponiamo
che C non sia iperellittica e identifichiamo C con la sua immagine canonica in
p«-1 pJff1(C,0>). Se D è un divisore su C indichiamo con D il sottospazio
lineare generato da D. Allora il Teorema (3.10) ci dice che il proiettivizzato T del

cono tangente a W^(C) in L è

'=U{ H D:WGPGr(r,|L|))
iDeW J

dove si è indicata con PGr(r, \L\) la grassmaniana degli r-piani nello spazio
proiettivo |L|. Parimenti indichiamo con N il proiettivizzato del fibrato normale a

c~\L) Gr (r +1, H°(Q L)) G, e, corne al solito, poniamo F dim H°(Q L) - 1,

i =dimH1(C, L). Vogliamo calcolare la classe di coomologia di N in PxG.
Indichiamo con p e q le proiezioni di PxG sui due fattori. Immergiamo PxG in
PxF tramite l'immersione di Plûcker di G in F P(Ar+1H°(C,L)). Indichiamo
con h la classe di coomologia di un iperpiano in P e con W la classe di coomologia
di un iperpiano in P'. Se PxP' —? F' è l'immersione di Segre, N" è tagliata da una
sottovarietà lineare di P". Poichè la codimensione di N in PxG è i(r+1), la classe

di Ne

Perciô la classe di T in P è

dove

d(r,r) ^ -- P!

è il grado délia Grassmanniana G nella immersione di Plùcker [9]. Concludendo

(3.13) PROPOSIZIONE. Nelle ipotesi del Teorema (3.10) il proiettivizzato t
del cono tangente a Wd(C) in L è una sottovarietà di P8""1 VH\C, 6) di grado

dove si è posto f dim H°(C, L) — 1.



Su una congettura di Pétri 17

§4. ga su di una curva mobile

Sia C una curva di génère g ^3. Ricordiamo [20] che esistono varietà liscie e

irriducibili X, S e un morfismo liscio e proiettivo

tali che

1) Ogni fibra di p è una curva di génère g e una di queste è isomorfa a C.

2) Per ogni punto t e S l'omomorfismo di Kodaira-Spencer

Tt(S)-»H\p-\t\Op-Ht))

è un isomorfismo (ciô si esprime dicendo che la famiglia p:X-*S è compléta e

effettivamente parametrizzata, e implica che il morfismo naturale da S allô spazio
dei moduli délie curve di génère g è finito e ha immagine densa).

3) p possiede una sezione.
Fissiamo ora, una volta per tutte, una famiglia con le proprietà 1), 2), 3). Per

ogni seS porremo

Riferendoci aile notazioni introdotte nel §2 porremo, in modo suggestivo

Picd=Picd(p)

cosicchè si hanno morfismi

c:<êrd-»Picd, <ir:Picd->S

Sia I un punto di Picd, corrispondente a una fibra Q p~1(t) e a un fibrato in
rette L —> Ct. Le argomentazioni svolte nel §1 consentono di identificare lo spazio
tangente a Picd in I con HHQXl). Se poi /EFd e w è il punto di »i
corrispondente a un sottospazio (r + l)-dimensionale W^H^iC^L), considera-
zioni analoghe a quelle contenute nella dimostrazione del Teorema (3.3) mostrano
che vi è una successione esatta

0 -> Hom (W, H°(Q, L)/W) -* Tw(<Srd)
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e inoltre che

cJJwWd) W e H\Q, SL) : a ¦ W 0}

Ricordiamo la fondamentale applicazione

Ho: W(8»H°(q, K.OL-1)-* H°(Q, K,)

Seguendo le idée sviluppate in [1], consideriamo l'applicazione lineare

ti : W<8»H°(Q, JCOL1)-* H°(Q, K,®2Î)

definita per dualità a partire da (1.4), e definiamo una applicazione lineare

(^Ker^o-* H°(Q,K?)

a mezzo del diagramma commutativo

0

W®H°(Q, ICOL"1)-^ H°(Q, K,)

U
j

î
0

L'osservazione centrale che mette in relazione l'omomorfismo ilx con
l'applicazione

costruita all'inizio di questo paragrafo, sfrutta, in modo essenziale, la propriété di
completezza 2) soddisfatta, per ipotesi, dalla famiglia X —» S e si lascia enunciare
dal seguente

(4.2) LEMMA (cf. [1]). Supponiamo che il morfismo 7r°c:cSd~>S sia suriet-
tivo. Sia t un punto générale di S. Per ogni L e ogni W si ha che
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Dimostrazione. Essendo t générale si puô assumere che per ogni we

T (cQr\ 7rC*>T(c\)~H1(C f)

sia suriettivo. Da (4.1), per dualità, si ottiene un diagramma commutativo

H\CV Xl) -^ Hom W, HHQ L))

D'altra parte, l'ipotesi fatta su t significa che

Ker n* {aeHHQXL):a • W 0} c*Tw(<S'd)

I-

è suriettiva. Q.E.D.

§5. D fascio normale

Incominciamo col richiamare alcuni risultati elementari délia teoria di
Horikawa [10].

Dato un morfismo non banale

<p:C-»M

dove C è una curva e M una varietà liscia, il fascio normale N^N^ al morfismo <p

è, per definizione, il conucleo deiromomorfismo iniettivo di fasci

Si ha quindi una successione esatta

(5.1) O-*&c-+<p*0M-^N<p-»O

La teoria di Horikawa mette in corrispondenza biunivoca lo spazio vettoriale
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H°(C, N) con l'insieme délie classi di equivalenza di deformazioni infinitesime di

Una deformazione infinitesima di <p, lo ricordiamo, è il dato di una defor-
mazione infinitesima di C,

e di un morfismo

taie che <p |C==<P- La nozione di equivalenza tra deformazioni infinitesime di <p è

quella ovvia.
Supponiamo ora che il génère di C sia almeno 3, che M Pr, r>l, e che il

morfismo <p sia associato a un sottospazio (r + l)-dimensionale W^H°(Q L), per
un fibrato in rette L su C di grado d, di modo che la grd definita da W non ha

punti base. In questo caso la successione del fibrato normale (5.1) e la successione

(1.5) sono legate dalla ben nota successione di Eulero, e, insieme, queste
successioni formano il seguente diagramma commutativo:

0 0

(5.2) 0 >

o »

Oc

ÎT
0

1
fi
I
0

>N >Q

il

L'unico morfismo che va definito è A. Per fare ciô notiamo che intrinsecamente,
P=PW* e Le(r+1) L®C W*. Sia ora x0,..., x, una base di E e fo,..., £ la
base duale di W*. Una sezione locale di XL è un operatore difïerenziale V di
ordine < 1 opérante sulle sezioni di L. Porremo

II lettore non avrà alcuna difficoltà nel dimostrare la commutatività del dia-
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gramma (5.2). Da (5.2) si ottiene un diagramma commutativo di coomologia

0\H\C, 0c) H°(C, N)

Hom (W, H\C, L))

0 < H\C, N) < H\C, 0) *

dove si è fatta l'identificazione

Hom (W, H\Q L)) H\Q L(g>c W*) H\Q

Una prima immediata conseguenza del diagramma (5.3) è

(5.4) PROPOSIZIONE. Il nucleo di /x0 si identifica allô spazio duale di
H1^, ©). I nuclei di & e ii\ si identificano allô spazio duale di Hl(Q N).

Vogliamo sottolineare che l'interpretazione dei nuclei di /ul0, jul, ^ data da
(5.4) è valida solo solo per grd senza punti base. A questo punto è anche utile
osservare che la congettura di Pétri cosi corne formulata in (3.2) si riduce in modo
naturale alla corrispondente asserzione per le série prive di punti base.

Tenuto conto del Lemma (4.2), ecco dunque una nuova e assai suggestiva
formulazione délia congettura di Pétri.

(5.5) CONGETTURA. Sia C una curva a moduli generali di génère g > 3. Sia

un morfismo non dégénère, Allora
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Corne applicazione immediata délie considerazioni fin qui svolte dimostri-
amo la congettura di Pétri per le g^. E'questo un risultato da alcuni considerato

noto classicamente e (ri)dimostrato da numerosi autori moderni [3], [16], [22],
[24], [27].

Lax [16] lo enuncia esplicitamente nella forma équivalente data dal Teorema
(3.3), per r= 1. Abbiamo dunque il seguente

(5.6) SCOLIO. Sia C una curva a moduli generali di génère g >3. Allora C
soddisfa la condizione di Pétri per le gj; in altri termini, per ogni g«J su C si ha

Dimostrazione. Basta considerare il caso di una g^ senza punti fissi, che dà

luogo a un morfismo

Poichè N<p è concentrato sul divisore di ramificazione di <p si ha Hl(Q N<p) 0.

Q.E.D.

Un'altra versione di (5.6) anch'essa classicamente nota [24] è:

(5.7) COROLLARIO. Sia C una curva a moduli generali di génère g>3eD
un divisore su C taie che dim|D|>l. Allora

H°(QK(-2D)) 0

Dimostrazione. Siano su s2 sezioni linearmente indipendenti di H°(C, 0(D)) e

sia t una sezione di H°(Q K(-2D)). Allora

appartiene al nucleo di /x0 ed è nulla se e solo se t lo è. Q.E.D.

Concludiamo queste considerazioni con la seguente applicazione.

(5.8) PROPOSIZIONE. Sia C una curva a moduli generali di génère g >3. Sia

<p:C->Pr
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un morfismo non dégénère definito da una grd spéciale. Allora <p stabilisée una
birazionalità tra C e la sua immagine r=<p(C).

Dimostrazione. Poichè C è a moduli generali, per un risultato classico (délia
cui dimostrazione il lettore troverà una moderna versione in [1]) si ha che, ofè
birazionale a C, oppure il génère di F è zéro. Questa éventualité non puô
presentarsi. Se cosi fosse, detto n 2 il grado délia curva F, il divisore A,

immagine inversa su C di un punto di F, avrebbe la propriété che

dimH°(QÛ(â))>2

H°(QK(-nâ))J=0

in contraddizione con il Corollario (5.7). Q.E.D.

La conclusione délia Proposizione (5.8) è chiaramente falsa se non si assume
che <p sia definita da una grd spéciale. Corne curiosité il lettore notera che un'altra
conseguenza di (5.6) è che la conclusione délia Proposizione (5.8) continua a
valere ove si assuma che la g^ che definisce <p sia compléta (non necessariamente
spéciale), a meno che non sia r 2, d g+ 2 e g pari.

§6. Un fenomeno assai curioso

In questo paragrafo ci porremo nella categoria degli spazi analitici complessi. I
risultati che otterremo saranno applicabili alla nostra situazione algebrica per i
noti teoremi di paragone di J. P. Serre [23].

Consideriamo un morfismo analitico non banale

cp:C-»M

dove C è una curva di génère g>leM una variété analitica liscia. Corne nella
situazione algebrica descritta nel §5, vi è un fascio normale a <p, N^, le cui sezioni
sono in corrispondenza biunivoca con le classi di equivalenza di deformazioni
infinitesime di <p.

Sia Z il divisore di ramificazione di <p, cioè il divisore degli zeri del differenziale
di <p. Si ha allora un omomorfismo iniettivo

il cui conucleo è un fascio localmente libero che denoteremo con N' N'. Si ha
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dunque un diagramma commutativo di successioni esatte

0

o

(6.1)

ï
r t î

0 > 6>C(Z) * <P*(&M) > Ni

i I

0

In cui 3if 3^ eâ âv sono (non-canonicamente) isomorfi al fascio strutturale
0z. Una prima immediata osservazione è che

H1(QN) H1(QNr)

Le considerazioni che ora svolgeremo hanno lo scopo di dare una inter-
pretazione geometrica degli elementi di I^iQX^). Per fare ciô è innanzitutto
necessario rendere esplicita l'interpretazione, in termini di deformazioni in-
finitesime di <p, degli elementi di H°(C, N).

Scegliamo un ricoprimento {Ua} di C costituito da dischi coordinati su cui è

stato scelto un parametro locale za. Si puô assumere che, per ogni a, <p(Ua) <= Va,

dove Va è un aperto coordinato di M, con parametri locali wa (w^,..., w£).
Poniamo

2«=/«p(2:3) in Uar\Ufi

w« ga0(w3) in VanVp

e sia

l'espressione di <p in queste coordinate. Naturalmente

(6.2)
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Sia ora

(6.3) Pî

SpecC[e]

una deformazione infinitesima di <p. Questa deformazione è definita dai seguenti
dati:

a) Funzioni di transizione per ^:

b) Espressioni locali di ç

w« ifc.Ua, e) ifc,(

II cociclo {^(d/dz^)} rappresenta la classe di Kodaira-Spencer di p:^ —>

SpecC[e]. Si ha inoltre una condizione di compatibilità analoga a (6.2). Questa
condizione è équivalente a (6.2) insieme con la condizione

(6.4)

Gli aa definiscono un elemento di H°(C, N) che chiameremo la classe di
Horikawa di (6.3). Naturalmente l'omomorfismo cobordo

applica la classe di Horikawa di (6.3) sulla classe di Kodaira-Spencer di p : % —*

SpecCfe].
Scriviamo Z X?=i v,p,, dove i p, sono punti distinti. Possiamo supporre che

ciascuno dei punti pt sia contenuto in un unico aperto U^ e che zai(pl) 0. Ogni
elemento {aj di H°(Q 3C) è délia forma

dove c, è un polinomio di grado al più ï>, —1. Naturalmente la corrispondente
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classe di Kodaira-Spencer è data da

(6.6)
b̂«3 0 se

Nel caso in cui c,(z) z1^"1 e c, 0 per ogni /^ i, la classe di Kodaira-Spencer
definita da (6.6) non è altro che la variazione di Schiffer [21] associata al punto p,, e

corne taie è un elemento non nullo di HX(Q 0C).
Le formule (6.5) dicono che il morfismo <p associato a una classe {aa}e

H°(Q 3SQ si fattorizza attraverso l'inclusione di F=(p(C) in M:

M

II fenomeno ora descritto permette quindi di identificare gli elementi di
H°(C, 3C) con le deformazioni infinitesime del morfismo <p che lasciano fissa (al

prim'ordine) la curva immagine F. Dunque nel caso in cui <p sia una birazionalità
tra C e F, la presenza di "cuspidi" su F, comporta Vesistenza, dal punto di vista

infinitesimo, di più di un modello liscio délia curva F, se cosi ci possiamo
esprimere.

Veniamo ora a un semplice lemma di natura locale che ci permetterà di usare
costruttivamente questo fenomeno, a prima vista paradossale.

Diamo innanzitutto la seguente definizione. Sia A il disco unitario nello spazio
di una coordinata complessa z e sia

i/r:4->Cn, n>\

una applicazione iniettiva taie che i/r(0) i/r'(O) 0. Con una opportuna scelta di
coordinate in Cn si puô assumere che

dove i|f, si annulla di ordine kx > 1 per z 0 e

(6.7)

E'immediato verficare che gli interi kl9 k2 cosi definiti sono invarianti di
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L'intero kt è Vindice di ramificazione di $ in 0 e fc2 verra chiamato il tipo del

punto di ramificazione in questione.

(6.8) LEMMA. Sia

iM(z,t)eC2:|z|<l, |t|<l} 42-»Cn, n>\

un morfismo analitico. Supponiamo che, comunque fissato t, ifjt{z) ijj(z, t) sia

iniettiva, abbia un unico punto di ramificazione, e che Vindice e il tipo di questo
punto siano indipendenti da t. Supponiamo anche che esista una funzione meromorfa
f(z) taie che

(6.9) ^(Z)0) /(zA
ut oZ

Allora f(z) è olomorfa.

Dimostrazione. E'semplice verificare che la validità (o meno) dell'ipotesi (6.9)
e délia tesi non è inficiata ove si effettuino, in Cn, un arbitrario cambiamento di
coordinate e, in A2, un cambiamento di coordinate del tipo z' zr(z, t), t' t. Sia

Va A2 il luogo dei punti di ramificazione degli ij/t. Poichè, per ipotesi, V si

proietta bijettivamente su {t eC : \t\ < 1}, V è una sottovarietà liscia di A2 e si puô
supporre che la sua equazione sia z 0. L'indice di ramificazione di ifo non
dipende da t e lo indichiamo con h; quindi, a meno di un cambiamento di
coordinate in Cn e délia moltiplicazione di z per una funzione mai nulla si puô
supporre che

sia délia forma

(6.10)

dove:

a) k>h
b) h non divide k
c) PAC t) è un polinomio in Ç

d) le funzioni 7, non sono tutte identicamente nulle
e) il simbolo [k] dénota una somma di termini di ordine superiore a fc in z.
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L'ipotesi che il tipo del punto di ramificazione di ijjt non dipenda da t significa che

una tra le funzioni 7,, diciamo y2, non si annulla per f 0. La (6.9) e la (6.10)

implicano intanto che

^(0) hf(z)z
ot

Perciô f(z) czx~h, dove c è una costante. Usando ancora (6.9) e (6.10) si ottiene
che

OL,

Poichè 72(0) ^ 0 deve essere c 0. Dunque, in questo particolare sistema di
coordinate, / è la funzione olomorfa identicamente nulla. Q.E.D.

(6.11) COROLLARIO. Sia <€-£>A={teC:\t\<l} una famiglia analitica di

curve di génère g, e

un morfismo analitico di ^€ in una varietà analitica liscia M. Poniamo Ct p~1(0?

<Pt <P le,- Supponiamo che

a) <pt stabilisca una birazionalità tra Ct e <p(Ct).

b) II numéro, Vindice e il tipo dei punti di ramificazione di <pt non dipendano
da t.

Allora la classe di Horikava di (<€, p, <p), per t 0, non appartiene a H°(C0,3if«po), a

meno che non sia nulla.

Dimostrazione. Sia V il luogo dei punti di ramificazione degli <pt. L'ipotesi b)

implica che V è un rivestimento non diramato di A. Si puô quindi scegliere un
ricoprimento {Ua} di ^ e una fuzione za in Ua di modo che Vfl[/a={za 0}e
che (za, t) siano coordinate locali in Ua. Possiamo anche supporre che <p(Ua) sia

contenuto in un aperto coordinato Va di M. Siano vva (w«,..., w£) coordinate
locali in Va. In queste coordinate 9 è data da

w« ifct(za, t).
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La classe di Horikawa di (<£, p,ç) per t 0 è la sezione s di N^ rappresentata da

Ricordando (6.5), dire che questa classe appartiene a H°(C0, XVo) significa che vi
sono funzioni meromorfe fa tali che

dt dza

Per (6.8) le fa sono olomorfe e quindi s è la sezione nulla di N^. Q.E.D.

In definitiva il significato del Lemma (6.8) e del Corollario (6.11) è il seguente.
Supponiamo di avère una sezione non nulla di H°(Q JC) e di poter prolungare la
deformazione infinitesima di C-^>M, ad essa corrispondente, in una deformazione
effettiva. Allora "lungo questa deformazione la complessità délia ramificazione di <p

diminuisce"

§7. La congettura di Pétri per le g2d

II nostro scopo principale, in questo paragrafo, è quello di dimostrare la

congettura di Pétri per le g% Otterremo anche risultati analoghi, ma più deboli,
Per le g\.

Il teorema principale è il seguente.

(7.1) TEOREMA. Sia C una curva a moduli generali di génère g > 3. Allora
a) C soddisfa la condizione di Pétri per le g^: in altri termini, per ogni intero d,

per ogni fibrato in rette L di grado d su C e ogni sottospazio tri-dimensionale

WcH°(C,L), îl prodotto "cup"

li0: W(8)H°(C, Kc^L^^H0^
è iniettivo.

Equivalentemente

b) Per ogni morfismo non dégénère

„,.£-* P2
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si ha che

Prima di esporre la dimostrazione di (7.1) introduciamo alcune notazioni che
ci saranno utili nel seguito. Sia

la famiglia di curve costruita nel §4. Useremo le stesse notaziono adottate in quel
paragrafo. Inoltre denoteremo con il simbolo ^^ il luogo dei punti di *Sd

corrispondenti a gd per cui Ker /ul0 ha dimensione pari almeno a k. Naturalmente
^dk è una sottovarietà chiusa di ^

Dimostrazione del Teorema (7.1). Notiamo innanzitutto che a) e b) sono
equivalenti per (4.2) e per (5.4). Indichiamo con il simbolo tt' il morfismo ir°c di
<Sd in S. Dobbiamo mostrare che, per ogni d, ir'i^d'1) è una sottovarietà propria di
S. Supponiamo che ciô non sia vero, e sia d il minimo intero per cui tt'^^'1) S.

Allora un punto générale di ^a'1 corrisponde a una gd spéciale senza punti base.

Vi sono perciô una varietà liscia B, un morfismo aperto

g:B->S

e un morfismo

tali che, per ogni beB,

(7.2) H\Ct(b)>N

dove si è indicata con <pb la restrizione di <p alla fibra Cg(b) di X' -» B sopra b.

Vogliamo mostrare che ciô è assurdo. Innanzitutto, se b è un punto di B, si ha un
diagramma commutativo

H°(Q(b), N.J

g*: Tb(B)-+ Tsib)(S) H^C^, 6>g(b))

dove h associa ad ogni elemento di Tb(B) la classe di Horikawa corrispondente.
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Se poi b è un punto générale di B, g* è suriettivo. Inoltre, sempre se b è un punto
générale di B, <pb induce, per la Proposizione (5.8), una birazionalità tra Cg(b) e

<Pb(Q(b>) ed il numéro, l'indice e il tipo dei punti di ramificazione <Ji <Pt sono
costanti al variare di t in un opportuno intorno di b. Perciô per il Corollario (6.11)

e quindi

3g-3<dimH°(Cg(b),N;b).

Poichè, in questo caso, N^b è un fibrato in rette, deve essere

H1(Q(b),N;b) 0

e quindi

H1(Cg(b),N,Pb) 0

in contraddizione con (7.2). Q.E.D.

Una prima immediata conseguenza di (7.1) è che, se C è una curva a moduli
generali di génère g > 3, per ogni g^ su C vale la diseguaglianza

(7.3) d>lg + 3

La dimostrazione del Teorema (7.1) mostra anche che, se C è una curva di
génère g>3a moduli generali e

<p:C-*P2

un qualsiasi morfismo che induca una birazionalità tra C e (p(C), allora

grado(N^)>4g»4.

D'altra parte il grado di NJ, puô essere calcolato usando i diagrammi (5.2) e (6.1),
e risulta essere pari a

grado (N;) 2g - 2 - grado (Z) + 3d
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dove Z è il divisore degli zeri di <p^. Perciô

(7.4) grado(Z)<3d-2g + 2

La diseguaglianza (7.4) implica il seguente risultato, meno générale, ma certo più
suggestive

"Sia TciP2 una curva algebrica irriducïble ma eventualmente singolare di
génère g>3 e grado d. Se F ha moduli generali allora F non ha più di 3d — 2g + 2

cuspidi"
La limitazione (7.4) non è la migliore possibile. Ci riserviamo di ritornare sulla

questione in un successivo lavoro.
Terminiamo questo paragrafo applicando le considerazioni precedenti al caso

délie g^. Ne trarremo la seguente conclusione

(7.5) PROPOSIZIONE. Sia C una curva a moduli generali di génère g>3.
Allora

a) Per ogni intero d, per ogni fibraio in rette L di grado dsuC e ogni sottospazio
quadridimensionale W^H°(C,L), il nucleo del prodotto "cup"

fx0 : W<8>H°(C, Kc^L-^^m

ha dimensione al più uno.

Equivalentemente

b) Per ogni morfismo non dégénère

si ha che

Dimostrazione. Basta considerare il caso in cui la g^ corrispondente a <p è

spéciale e sappiamo che, in questa situazione, ç(C) è birazionale a C La
dimostrazione si suddivide in tre passi successivi.

Primo passo. Mostriamo che due qualsiasi elementi del nucleo di |x0 sono,
punto per punto, proporzionali. Ricordiamo che Ker jLt0 è isomorfo a

H°(C,Nf<g>Kc).
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II fascio N'^^N' è localmente libero di rango 2, e dai diagrammi (5.2) e (6.1) si

ottiene

grado (A2(JV'*® Kc)) 2g -2-4d + grado (Z)

dove Z è il divisore degli zeri di cp*. Sia tt la proiezione da un punto esterno a

cp(C). Applicando (7.4) a tt ° <p si puô dare una stima sul grado di Z ottenendo

grado (A2(N'*<g)Kc))<-d

Perciô due qualsiasi sezioni di N'*(8>Kc sono, punto per punto, proporzionali.
Secondo passo. Mostriamo ora che il nucleo di /ul0 ha dimensione al più uguale

a due. Sia su s4 una base di We supponiamo che

4

sia un elemento non nullo del nucleo di fx0. Il primo passo délia dimostrazione
mostra che ogni altro elemento del nucleo di jul0 è délia forma

dove / è una opportuna funzione meromorfa. Ovviamente una taie / è una
sezione di €(A), dove A è il divisore degli zeri comuni a ru r4. Si ha dunque

D'altro canto è immediato veriflcare che la congettura di Pétri per le g\ (Teorema
(7.1)) sarebbe violata se rb r4 non fossero linearmente indipendenti. Dunque

Poniamo 8 grado A e supponiamo che dim H°(C, 0(A))>2. Applicando la
diseguaglianza (7.3) aile série iJKcOir^-A)!, |L|, \A\ si ottengono le disegua-
glianze

2g-2-d-Ô>h
d>h

che sono ovviamente incompatibili. Dunque la dimensione di H°(Q 0(A)) non
puô essere superiore a due.



34 ENWCQ ARBARELLO E MAURIZIO CORNAUBA

Conclusione. Applichiamo i risultati ottenuti nel secondo passo ai fibrati
in rette L e Kc®L~1(-4). Si ottiene

(10-4d+3g<0
y ' ll0-4d'

dove si è posto d' 2g — 2-d-8. Se H°(C,6(A)) avesse dimensione due si

potrebbe déduire da (5.6) che

Questa diseguaglianza è chiaramente incompatibile con (7.7). Q.E.D.

§8. Un calcolo di moduli

Un problema che sorge spontaneo e che è stato oggetto di attenzione da parte
di numerosi autori è quello di calcolare il numéro dei parametri da cui dipende
una curva di génère g che possiede una grd taie che

o, più in générale, taie che il nucleo di /x0 non sia nullo.
Il problema si esprime in modo naturale usando la terminologia introdotta nei

paragrafi 4 e 7.

Consideriamo dunque la famiglia X-^S introdotta nel §4 e, con essa, le
varietà ^5k introdotte nel §7, e le relative proiezioni

Poichè S è naturalmente un rivestimento di un aperto di Jig, lo spazio dei moduli
délie curve di génère g (e poichè M% è ricoperto da aperti di questo tipo) il calcolo
di parametri cui si è accennato si traduce nel problema di calcolare la dimensione
délie componenti irriducibili di ir'(®dk).

Vogliamo offrire al lettore una discussione informale dei risultati noti in questa
direzione.

Sia I un punto di W^ corrispondente a un fibrato in rette L-^C=CS e a un
sottospazio (r + l)-dimensionale WczH°(QL). Vi è un diagramma commutativo
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di successioni esatte

0

i
H\C, €) H\C, €)

l ¦>{
TrCS'J * H\C, Xi) -^ Hom (W, Hl(C, L)) (Ker n)* > 0

«l I 1

TS{S) H\C,0c) - >(Ker»i,o)*

I I
0 0

Se ne deduce intanto che, se Ker ixx 0 e I s W* allora

In particolare se Y è una componente irriducibile di W* e vale la proprietà

(8.1) 'Ter un punto générale di Y, Ker^1 O"

allora

(8.2) dim7r'(Y)<3g-3-fc.

Non ci è affatto chiaro in quali ipotesi si abbia Teguaglianza in (8.2), anche
supponendo che valga (8.1). Ne è chiaro per quali valori di r, k, d valga (8.1).

La condizione (8.1) è certamente verificata per r= 1 (vedi §5). Se poi

p<0, fc -p

e perciô (Si'k ^d> se n^ deduce che fr'^d) ha codimensione pari almeno a fc [3],
[24]. Più precisamente, B. Segre [22] ha dimostrato che la codimensione di TrX^i)
è esattamente k —p.

Inoltre, ripetendo, con modifiche formali, la dimostrazione del Teorema (3.3),
si puô mostrare che ^ è liscia e di dimensione 3g-3 + p [3] (si veda anche [1]).
In particolare il risultato di B. Segre sopra ricordato implica che, se una curva di
génère g>3 possiede una gj taie che p^O, in générale ne possiede un numéro
finito.
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Sia ora Y una componente irriducibile di cêfk. Supponiamo che Y contenga
un punto corrispondente a una curva C e a una g2* su C (anche con punti base)
taie che il morfismo

C^P2
da essa definito induca una birazionalità tra C e l'immagine di C. Vogliamo
mostrare che, in queste ipotesi, vale (8.2).

E' semplice mostrare che

k<2dimH1(C,L)<2g-4
Si puô perciô supporre che tt'(Y) abbia dimensione pari almeno ag + 1. Sia ora I
un punto générale di Y corrispondente a un sottospazio tridimensionale W di
H°(QL). Vogliamo mostrare che Ker jit1 O. Se si sostituisce la g2d (definita da

W) con la corrispondente g2,' senza punti base, la dimensione di Ker /ulx non
diminuisce. Si puô percio supporre che la g^ non abbia punti base. Sia <p il
morfismo di C in P2 associato a W. Poichè I è un punto générale di Y,
tn*(Tl(câ'%k)) ha dimensione pari almeno ag + 1. Applicando il Corollario (6.11) si

ottiene

e poichè NJ, è un fibrato in rette si ha

(Ker ^)* HHQAU H\Q AT;) 0

In conclusione si puô affermare che la sottovarietà dello spazio dei moduli M%

corrispondente a quelle curve di génère g che posseggono una g^, non composta con
una involuzione, e per cui il nucleo di jul0 abbia dimensione eguale almeno a k, ha

codimensione non inferiore a k. E' facile vedere che l'ipotesi che la g\ non sia

composta con una involuzione è essenziale.
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