Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 56 (1981)

Artikel: Su una congettura di Petri.

Autor: Arbarello, Enrico / Cornalba, Maurizio
DOl: https://doi.org/10.5169/seals-43228

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 31.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-43228
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helvetici 56 (1981) 1-38 0010-2571/81/001001-38%$01.50+0.20/0
© 1981 Birkhiuser Verlag, Basel

Su una congettura di Petri

ENRICO ARBARELLO E MAURIZIO CORNALBA*

Introduzione

Nel suo lavoro “Uber Spezialkurven,” [19] p. 184, K. Petri, in modo quasi
parentetico, afferma quanto, in linguaggio moderno, pud essere espresso come
segue

(0.1) Dato un qualsiasi divisore D su di una curva C a moduli generali il prodotto

(%9 2

cup
wo: HY(C, 0(D))@H(C, 2(—D)) — H%(C, 2¢)
e iniettivo.

Chiameremo (0.1) la congettura di Petri. Questa congettura giuoca un ruolo
centrale nella teoria dei divisori speciali su di una curva e precisa la bella
congettura di A. Brill e M. Noether che & stata recentemente dimostrata da P.
Griffiths e J. Harris, [6], [1]. Ricordiamo il contenuto di questa congettura. Sia C
una curva di genere g. Indichiamo con Wj I'insieme delle classi di equivalenza
lineare dei divisori di grado d su C che si muovono in un sistema lineare di
dimensione almeno r. Vi & su W/, una struttura naturale di varieta algebrica (anche
non ridotta). La congettura di Brill e Noether afferma che

(0.2) Se C é una curva a moduli generali allora:
a) W, é ridotta.

b) Ogni componente irriducibile di W, ha dimensione

p=g—(r+1)(g—d+r)

* Lavoro eseguito nell’ambito dei Gruppi per la Matematica del C.N.R. e finanziato in parte dalla
N.S.F. (Grant MCS-78-07348).
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Nella prima parte di questo lavoro daremo un primo significato geometrico
della congettura di Petri, mostrando che essa pu0 essere pensata come un teorema
di singolarita di Riemann per WJ su di una curva a moduli generali. Piu
precisamente mostreremo che

(0.3)

a) La congettura di Petri implica (0.2).

b) Se vale la congettura di Petri e C ¢ a moduli generali, il luogo singolare di
W7, é esattamente W5,

Le tecniche da noi usate nello studiare la struttura di W sono simili a quelle
usate da Kleiman e Laksov [14].

Seguendo il metodo usato da Kempf [12] nel dimostrare la sua generaliz-
zazione del teorema di singolarita di Riemann mostreremo inoltre come la
congettura di Petri permetta, su di una curva a moduli generali, di calcolare i coni
tangenti a W} e i loro gradi.

Il lavoro prosegue poi col dare una ulteriore interpretazione geometrica della
congettura di Petri, e cio¢:

(0.4) Se C é una curva a moduli generali e
¢:C—oP

é un qualsiasi morfismo, ogni deformazione infinitesima di ¢ e non ostruita. Piu
precisamente, denotando con N, il fascio normale a ¢, si ha

HYC,N,)=0

Usando questa versione della congettura di Petri, dimostreremo la congettura
stessa nel caso r=2, cio¢ per le curve piane (il caso r=1 & stato studiato
classicamente e risolto da numerosi autori moderni).

La dimostrazione della congettura per r =2 sara basata su un curioso risultato
di natura generale riguardante le deformazioni di curve con cuspidi. Piui esat-
tamente, dato un morfismo

¢:C—P

individueremo un sottofascio ¥, di N, avente supporto nei punti di diramazione
di ¢ (le “cuspidi” di ¢(C)) con le seguenti proprieta:
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a) Gli elementi di H°(C, X,) corrispondono alle deformazioni infinitesime di ¢
che non mutano ¢(C).

b) Se ¢ non é composto con una involuzione, ogni deformazione effettiva di ¢,
definita, al primo ordine, da un elemento non nullo di H°(C, ¥,,), ha Ueffetto di far
diminuire la complessita delle cuspidi di ¢(C).

I temi e le idee sviluppate in questo lavoro hanno avuto origine da una lunga e
amichevole collaborazione con P. Griffiths e J. Harris (vedi [1]). Cogliamo qui
I'occasione per ringraziarli vivamente entrambi. Vogliamo anche ringraziare
Edoardo Sernesi per le numerose e interessanti conversazioni che abbiamo avuto
con lui su questi problemi.

§1. Notazioni e preliminari

[’ambiente in cui opereremo ¢ quello delle varieta algebriche su C. Una tale
varieta algebrica potra anche essere non ridotta o riducibile. Poiché cid0 non dara
mai adito ad ambiguita, ci riterremo liberi, ove necessario, di trattare tali varieta
come varieta analitiche complesse avvertendone, beninteso, il lettore.

Il termine curva sara sempre usato nel senso di ‘“varieta algebrica completa,
irriducibile, non singolare e di dimensione uno.” Per convenzione useremo il
termine ‘“‘fibrato in rette” in luogo di “fascio algebrico invertibile.” Data una
varieta algebrica liscia indicheremo con i simboli Ky, Ox (0 piu semplicemente
K, @) il fibrato canonico su X e il fascio tangente su X.

Sia ora C una curva di genere g. Indicheremo con C; il prodotto simmetrico
d-esimo di C e con u = u, il morfismo

(1.1) u,:C, — Pic* (C)

che a ogni divisore D associa il fibrato in rette ©(D). Indicheremo altresi con il
simbolo C7, la sottovarieta di C; di “‘equazioni’:

rango uxy=d-—r

Pil esattamente, I'ideale di C; & generato, localmente, dai minori (d—r+1)X
(d—r+1) della matrice jacobiana di u. E’un fatto classico [2] che C%, come
insieme di punti, non & altro che il luogo dei D e C, tali che

dim H°(C, 0(D))=r+1.

Esporremo ora, per convenienza del lettore, alcuni rudimenti della teoria della
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deformazioni di fibrati in rette su curve (cf. [15], [1] per una trattazione piu
ampia).

In primo luogo, se C ¢ una curva di genere g € L € un fibrato in rette di grado
d su C, vi & un isomorfismo naturale tra H'(C, O.) e lo spazio tangente a Pic? (C)
in L. Analogamente, se D ¢ un punto di C,, si ha una identificazione naturale tra
lo spazio tangente a C; nel punto D e H°(C, 0 (D)).

(1.2) Con queste identificazioni, I’omomorfismo
Us.p: Tp(C,y) = T, ) (Pict (C))

si identifica all’omomorfismo cobordo
H°(C, 6,(D))— H'(C, 0.)

della successione esatta di coomologia di
0—>0.—->0-(D)—>0,(D)—0

Indichiamo con il simbolo C[e] I'anello dei numeri duali. Per la proprieta
universale di Pic? (C) [7], un elemento ¢ di H'(C, 0) corrisponde a un fibrato in
rette £ su CxSpecC[e] la cui restrizione a C & L. Nel seguito un tale fibrato in
rette sara chiamato una deformazione infinitesima di L e ¢ la sua classe di
Kodaira—Spencer.

Si ha una successione esatta

(1.3) H°(CxSpecC[e]l,¥)— H’(C,L)-L> H'(C,L)

ove f ¢ il prodotto ‘““‘cup’ con ¢.

Analogamente, per deformazione infinitesima di L — C intenderemo il dato di
una deformazione di C, X — SpecC[¢], e di un fibrato in rette &£ su X la cui
restrizione a C & isomorfa a L.

Sia ora 3; I'0O--modulo localmente libero di rango 2 le cui sezioni sono gli
operatori differenziali, di ordine al piu eguale a uno, agenti su sezioni di L.

A ogni deformazione infinitesima di L — C ¢ associato un elemento di
H'(C, 3;) che & chiamato la sua classe di Kodaira—Spencer. Si mostra facilmente
che ci0 induce una corrispondenza biunivoca tra l'insieme delle classi di
equivalenza di deformazioni infinitesime di L — C e H'(C, 3,).

Sia ora o un elemento di H'(C, 3;) e £ — X — Spec C[¢] la corrispondente
deformazione infinitesima di L — C. In analogia con quanto si ¢ osservato per le
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deformazioni infinitesime di un fibrato in rette su di una curva fissa, vi sono un
prodotto ‘“‘cup”

(1.4) HY(C,3,)®H(C,L)y—- H'(C, L)
€ una successione esatta
H°(X,¥)— H°(C,L)-5 H(C, L)

dove F ¢ il prodotto ‘“‘cup” con o.
Si ha infine una successione esatta

15 0-50-—3 - 6-—0

e 'immagine di o in H'(C, @) ¢ la classe di Kodaira-Spencer della deformazione
X — Spec C[e].

Sia ora X-5 S un morfismo liscio e proiettivo di varieta algebriche le cui fibre
sono curve di genere g. Supporremo che p possegga una sezione. Esistono allora
[7] una varieta Pic? (p), un morfismo liscio e proiettivo Pic*(p) > S e un fibrato in
rette £, su X XgPic? (p), detto fibrato di Poincaré, con la seguente proprieta.

(1.6) Per ogni morfismo S'-% S e ogni fibrato in rette £ su X XsS', tale che la
restrizione di £ a ogni fibra di q:X xsS'— S' abbia grado d, esiste un unico
morfismo S’ -% Pic? (p) tale che meo = e

(1x X @)*(&y) = §£®q*9,

per qualche fibrato in rette 2 su S'.
Naturalmente, se s € un punto di S

7w 1(s) =Pic? (p~'(s)).

In particolare, se S & un punto, Pic?(p) = Pic*(X).

§2. Le varieta W', e G,

In tutto questo paragrafo indicheremo con X% S un morfismo liscio e
proiettivo di varieth algebriche le cui fibre sono curve di genere g. Supporremo
anche che p abbia una sezione.
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Siano &£, un fibrato di Poincaré su X X¢Pic? (p) e

Pic?(p) = S,
X X ¢ Pic? (p) 3 Pic? (p)
le proiezioni naturali. I teoremi fondamentali sul cambiamento di base in

coomologia [8], [18], implicano che, per ogni punto x di Pic? (p) esistono un
intorno affine U di x e un omomorfismo di Oy -moduli liberi

(2.1) K°sK'

con la seguente proprieta. Per ogni morfismo di varieta affini V— U vi sono
isomorfismi funtoriali

H'(@'(U) %y V, £471,,Be6,0v) = H(I'(V, K @q, Ov))

In particolare se m e n sono i ranghi di K° e K', segue dal teorema di
Riemann-Roch che

m—n=d—-g+1

Se si scelgono isomorfismi di I'(U, K°) e I'(U, K') con ['(U, 07) e I'(U, 0%), ad «
¢ associata una matrice n X m A, con coefficienti in I'(U, O). Definiamo ora Wy
come la sottovarieta di U il cui ideale & il (g —d +r)-esimo ideale di Fitting della
presentazione

(U, Oy)™ — [(U, Oy)" — H'(q"'(U), Ly-1,,) >0

cioé l'ideale generato dai minori di ordine n—g+d—-r+1=m-r di A La
formazione degli ideali di Fitting & compatibile con il cambiamento di base; ¢
inoltre noto [4] che due diverse presentazioni di uno stesso modulo di tipo finito
su un anello noetheriano hanno gli stessi ideali di Fitting. Esiste percid una
sottovarieta W7(p) di Pic? (p) tale che

Wp)NU; = W&,U‘
dove {U,} & un opportuno ricoprimento affine di Pic? (p).

Sia ora G=Gr (r+1, m) la Grassmanniana degli '(r +1)-piani in C™ e sia M la
varieta delle matrici complesse n X m. Su M vi &€ un omomorfismo naturale di fasci

(2.2) Oy-5> 0y
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la cui matrice & il morfismo identita di M. LLa matrice A associata a (2.1) puo
essere pensata come un morfismo di U in M. L’omomorfismo (2.1) ¢ indotto da
(2.2) tramite A. Inoltre (2.2) induce un omomorfismo

O;& xG i’ OPI:A xG
Indichiamo con F il sottofascio tautologico (localmente libero di rango r+1) di
0¢& e poniamo F =0, X F.
Sia V il luogo dei punti x di M X G per cui F® k(x) & contenuto nel nucleo di

&y k(x)™ — k(x)"

V & una sottovarieta liscia di M X G. Indichiamo con V' la sua immagine in M. E’
noto [26] che I’ideale di V' & generato dai minori di ordine m —r. D’altro canto
2(p)NU & 'immagine inversa di V' tramite il morfismo A.
Poniamo

Gau=UXyV
G u ¢ una sottovarieta di U X G. Riassumendo si ha che

(2.3) I diagrammi

Giuv—U ap)NU—U
Lok I
V—sM Vi——M

sono diagrammi cartesiani.

Sia ora
1:Giu—= MXG
il morfismo naturale e
8:q ' (U)Xy Ghu—>Ghu

la proiezione. Indichiamo con il simbolo M, il fascio immagine inversa di %,
tramite il morfismo

4 U)Xy Gy =X xs Gy — X X5 Pic? (p)
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Allora %, = j*(F) & un sottofascio localmente libero di

gsMy = Ker (K0®ou Os;, — K 1®0U OG,',_U)

r
d.uU

Quanto sopra pud essere riassunto dicendo che sul morfismo q ' (U)— U vi &
una famiglia naturale di gj; parametrizzata da G} % U, secondo la seguente:

(2.4) DEFINIZIONE. Una famiglia di g su X 2 S parametrizzata da f é
una terna (f, %, ) ove:

a) f:S'— S é un morfismo

b) & e un fibrato in rette su X XgS' la cui restrizione a ogni fibra di
X XgS' 258" ha grado d

c) € é un sottofascio localmente libero di rango r+ 1 di p4(Z) tale che, per ogni
se€ S’, 'omomorfismo

H®k(s)— H(p' '(s), LOk(s))
sia iniettivo.
Abbiamo il seguente

(2.5) TEOREMA. Sia X & S un morfismo liscio e proiettivo di varieta alge-
briche le cui fibre sono curve di genere g. Supponiamo che p abbia una sezione. Sia
Pic? (p) = S la proiezione naturale. Allora esistono una varieta Gy(p), un morfismo
proiettivo

2(p) = Pic? (p)

e una famiglia (woc, M, F) di g}; su X B> S con la seguente proprieta universale. Se
(f:S'—> S, % #) e una famiglia di g} su X-B S, esiste un unico morfismo

n:S8' — Gi(p)
di varieta su S tale che I'immagine inversa di (woc, M, F), tramite m, sia isomorfa a
(., LR XR2)
per qualche fibrato in rette 2 su S'. Inoltre, nel caso in cui f=moy, S'=Gjy,
L=My, =%y, il morfismo m & un isomorfismo di Gy su ¢ '(U). Infine

M= (1x X c)*&,, dove £, é un fibrato in rette di Poincaré su X XgPict(p), e ¢ si
fattorizza attraverso Uinclusione Wi(p) <> Pic? (p).
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Dimostrazione. Per la proprieta universale di Pic? (p), si puo scrivere, per un
unico f:S’— Pic? (p),

f=mof
(Ixx*L,=2R2

Basta ora dimostrare che Gj ,, My, ¥, hanno la proprieta universale descritta da
(2.5) quando f si fattorizza tramite I’inclusione di U in Pic? (p). Sia

p:XxXs8' —> S

la proiezione. Il fascio p4&¥ si identifica con il nucleo di
f*(a):f*K0—> f*Kl

Esiste un unico morfismo

h:S—>Gr(r+1,m)=G

tale che
h*(F) =% < f*K°=h*(03)
Poiche ¥ < Ker f*(a), il morfismo
(fh):S'—>UXG
€ la composizione dell’inclusione
Giu > UXG
e di un morfismo
1:8 -Gy
di varieta su U tale che

(Ix Xm)*UMy) = L@ 2

Che 7 sia unico segue dall’unicita di f e h. Q.E.D.
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Quando S € un punto, e X &, perciO, una curva di genere g, scriveremo
"(X), G%(X) in luogo di Wi(p), G4(p). Come Pic? (X) parametrizza le serie
lineari complete di grado d su X, Wj(X) e Gj(X) parametrizzano, rispet-
tivamente, le serie lineari complete su X di grado d e dimensione almeno r, € le
serie lineari di grado d e dimensione r su X (cioe¢ le g5 su X).
Sia C una curva di genere g. Ricordiamo (cf. (1.1)) che vi &€ un morfismo

u:C,; — Pic? (C)
(2.6) PROPOSIZIONE (cf. [14]). C,;=u"Y(Wy(C)).

Dimostrazione. Indichiamo con p,, p, le proiezioni di C X C; sui due fattori e
poniamo £ = (1 X u)*(%,). La sottovarieta u~"(W3(C)) di C, ha come fascio di
ideali il (g —d +r)-esimo ideale di Fitting di R'p, (£). Su Cx C, vi & un divisore
D tale che

D - (Cx{A})=A4, AeCy

Inoltre D & piatto su C,. Poiche £Z®O(—D) & banale su ogni fibra di p,, esiste, su
C,, un fibrato in rette 2 tale che

O(D)=<4Qp32

Percid u™'(W3(C)) ha, come fascio di ideali, il (g — d + r)-esimo ideale di Fitting di
R’'p, (0(D)). Dalla successione esatta di fasci su CX Cy

0—->0-—-0D)—>0,(D)—0
si deduce una successione esatta di fasci su C,

Pz,.,OD(D) = Rlpz*O - Rlpz*O(D) -0

che pud essere usata per calcolare gli ideali di Fitting di R'p, 0(D), poiche
p>,0o(D) e R'p, 0 sono localmente liberi di ranghi d e g rispettivamente.
Dr’altra parte, per (1.2), a si identifica all’lomomorfismo

Ug: @cd =¥ u*(@Pic"(C)) Q.E.D.
§3. 1l significato geometrico della congettura di Petri

In questo paragrafo esporremo alcune conseguenze della congettura di Petri
riguardanti la struttura delle varieta W,.
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Sia C una curva di genere g =3. Siano r e d due interi non negativi. Sia L un
fibrato in rette su C di grado d, e sia

Wc H°C, L)

un sottospazio di dimensione r+ 1 (una g}). Indicheremo con I il punto corrispon-
dente a una tale g} in Gj(C). Diremo che I soddisfa la condizione di Petri se il
prodotto “‘cup”

(3.1) po: WOH(C,KQL™")— H%C, K)

€ iniettivo.
La congettura di Petri € percid equivalente a

(3.2) CONGETTURA. Sia C una curva di genere g=3, a moduli generali.
Allora, per ogni r e ogni d, ogni punto I di G(C) soddisfa la condizione di Petri.

Il risultato fondamentale che traduce la congettura di Petri in un enunciato
geometrico ¢ il seguente

(3.3) TEOREMA. Sia C una curva di genere g=3. Sia I un punto di G3(C).
Allora I soddisfa la condizione di Petri se e solo se G5(C) é liscia e di dimensione

p=g—(r+1)(g—d+r)

nel punto I.

Dimostrazione. Innanzitutto osserviamo che ogni componente irriducibile di
4(C) ha dimensione pari almeno a p; poiché questa affermazione & di carattere
locale, possiamo lavorare su G ; dove U & un aperto affine di Pic? (C). Segue da
(2.3) e dal fatto che V & una sottovarieta liscia di M X Gr (r+1, m) di codimen-
sione n(r+ 1), che ogni componente irriducible di G} ; ha dimensione pari almeno
ap.
Siano ora L il fibrato in rette su C e W il sottospazio di H°(C, L) corrispon-
denti al punto Ie G4(C). Vogliamo calcolare lo spazio tangente di Zariski

T;(G«(O))

a G4(C) nel punto I. Per la proprieta universale di G5(C), T(G%C)) & in
corrispondenza biunivoca con I'insieme delle classi di equivalenza di famiglie di g5
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su C parametrizzate da Spec C[e] che estendono Wc H®(C, L). Per I'esattezza
della successione (1.3), 'immagine di T{G}(C)) in T, (Pic* (C))=H"(C, 0) &

(3.4 H={peHYC, 0):¢ - W=0}

Vi & percid una successione esatta

(3.5 0>H — T,(G(C)—H—0

dove H' & ’insieme delle classi di equivalenza di famiglie di g contenute in |L| e
ciot lo spazio tangente alla grassmanniana Gr(r+1, H(C, L)) nel punto W.

Quindi

H’ =Hom (W, H%(C, L)/W)

dim T;(G3(C))=dim H+(r+ 1)(F—r)

dove si & posto F=dim (H(C, L))—1. Ora H & definito come il nucleo dell’ag-
giunta di (3.1):

H'(C,0)— Hom (W, H'(C, L))
quindi
dim T(G%(C)) = (r+1)(F — r) + dim (coker w,).
Percio dire che I soddisfa la condizione di Petri € equivalente a dire che

dim T, (GL(O)=(+1D)(F-r+g—-(+1)(r—d+g)
=g—(r+1)(g—d+r)=p

Poiché¢ in precedenza si € osservato che ogni componente irriducibile di
G5(C) ha dimensione pari almeno a p, cid conclude la dimostrazione. Q.E.D.

Consideriamo un morfismo di varieta algebriche ridotte

36) f:X->Y

Supponiamo che X e Y siano connesse. Ricordiamo che f si dice una risoluzione
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razionale se X ¢ liscia, Y ¢ normale e di Cohen-Macaulay, f & propria e
birazionale e le immagini dirette superiori R,(0x), >0, sono nulle. Se X e Y
non sono connesse € X, ..., X, sono le componenti connesse di X, diremo che
(3.6) ¢ una risoluzione razionale se, per ogni i,

flx: X — f(X0)

€ una risoluzione razionale e Y € unione disgiunta degli f(X;).

(3.7) TEOREMA. Se C é una curva di genere g =3 che soddisfa la condizione
di Petri per ogni g, ove d é un intero minore o eguale a g—1, allora G3(C) ¢é non
singolare e di dimensione

p=g—(r+1)(g—d+r).
Inoltre Wi (C) =c(GL(O)) e
Ga(C) = Wy(O)
¢ una risoluzione razionale.

La dimostrazione si basa su due lemmi che enunciamo senza dimostrazione.

(3.8) LEMMA (cf. [12], Lemma 2). Siano X, Z, Z' varieta lisce e connesse e
g: X—>2Z, m:Z'—->Z7Z

morfismi. Supponiamo che g sia proprio e che il morfismo indotto f: X — Y = g(X)
sia una risoluzione razionale. Siano

X2tz vz

Lok

X—=52Z Y—2Z

diagrammi cartesiani. Se X' ¢ liscia e dim X'—dim Z'=dim X—dim Z, allora
’immagine di g’ & j(Y') e

f’:X’_‘)Y'

€ una risoluzione razionale.
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Prima di enunciare l’altro lemma, richiamiamo alcune notazioni del §2.
Indichiamo con M la varieta delle matrici n X m a coeflicienti complessi, con V la
sottovarieta (liscia) di M XGr (r+1, m) costituita dalle coppie (B, W) tali che
B -W=0, e con V' la sottovarieta di M il cui ideale ¢ generato dai minori di
ordine m —r.

(3.9) LEMMA (cf. [13], [26]). Se n=m, V' & ’'immagine di V tramite la
proiezione di MXGr(r+1,m) su M e

V-V
é una risoluzione razionale.

La dimostrazione di (3.7) ¢ ora immediata. La prima parte segue dal Teorema
(3.3) e dal teorema di esistenza per i divisori speciali [11], [14], [25]. Per quanto
riguarda la seconda parte, la questione & di natura locale su Pic? (C), percid basta
mostrare che ogni punto di Pic? (C) possiede un intorno U tale che c¢(G} )=
WH(C)NU e che G} sia una risoluzione razionale di W,(C)N U. Si pud anche
supporre che W5(C)N U sia connesso: allora anche Gj ; lo &, poiche ¢ ha fibre
connesse. Il risultato segue ora da (2.3) e dai Lemmi (3.8) e (3.9) dopo aver
notato che, per il Teorema (3.3) G € liscia e

dim U—-dim G} y=(+1)(r+g—d)
mentre

dmM-dmV=mm—-(r+1)(im—-r—-1)+n(m-r-1)
=(r+D)(n-m+r+)=(r+1)(r+g—d)

poiche, nel nostro caso, m —n =d — g+ 1. Ci0 conclude la dimostrazione di (3.7).

(3.10) TEOREMA. Sia C una curva di genere g =3. Sia d un intero minore o
uguale a g—1. Sia I un punto di G4(C), e siano L il fibrato in rette su C e W il
sottospazio (r+1)-dimensionale di H°(C, L) corrispondenti a I. Supponiamo che I
soddisfi la condizione di Petri. Allora il cono tangente a W3(C) nel punto L ¢ la
sottovarieta ridotta T di T, (Pic* (C)) = H'(C, 0) di supporto

Supp T={e e H(C,0):¢ - W={0}<= HYC, L), per qualche
WeGr(r+1, H(C, L))}
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Inoltre se N e il fibrato normale alla fibra di
c:G4(C) = W,(O)
sopra L, il morfismo N — T é una risoluzione razionale.

Dimostrazione. Poniamo 7 =dim H°(C, L)—1 e i =dim H'(C, L). Come segue
dalla esattezza della successione (3.5), cy applica lo spazio normale a' ¢ (L) in I
isomorficamente sul sottospazio H di H'(C, 0) definito da (3.4). Percid I'im-
magine di N in H'(C, 0) & precisamente T. Indichiamo con ¥ la sottovarieta liscia
di

Hom (H%C, L), H(C,L)) xGr (r+1, H*(C, L))

costituita dalle coppie (¢, W) tali che Yy(W)=0. Per il Lemma (3.9) ¥ € una
risoluzione razionale della sua immagine ¥’ in Hom (H°(C, L), H'(C, L)). Inoltre
il supporto di ¥’ & I'insieme degli omomorfismi di H%(C, L) in H'(C, L) di rango
non superiore a 7—r. Vi € un diagramma cartesiano

N — ¥
HY(C, 0)—% Hom (HY(C, L), H'(C, L))

Definiamo T’ come I'immagine inversa di ¥ tramite wg. Poiche
dim N—-dim HY(C,0)=p—g=(+1)(d—g—r)

dim ¥ —dim Hom (H°(C, L), H(C, L)) =@+ 1D)(F-r)+i(f—r)—(r+ 1)i
=(r+1D)F-r-i)=@+1)({d—g-71)

e N ¢ liscia, il Lemma (3.8) dice the T=T' e che N & una risoluzione razionale di
T. In particolare T & normale e birazionale a N. Per concludere si usa il seguente
lemma, che enunciamo senza dimostrazione

(3.11) LEMMA (cf. [12], Proposition 1). Sia f: X — Y un morfismo proprio tra
varieta liscie. Sia y un punto di Y tale che f*(y) sia liscia. Indichiamo con N il
fibrato normale a f~'(y) e con T la sua immagine in T,(Y). Se A ¢ birazionale a J
e T & normale, allora J ¢ il cono tangente a f(X) in y.
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(3.12) Osservazione. Sempre nelle ipotesi del Teorema (3.10), supponiamo
che C non sia iperellittica e identifichiamo C con la sua immagine canonica in
P '=PH'(C,0). Se D & un divisore su C indichiamo con D il sottospazio
lineare generato da D. Allora il Teorema (3.10) ci dice che il proiettivizzato T del
cono tangente a W,(C) in L &

T= U{ N D:WePGr(r, \LI)}CP"“=P,

DeW

dove si & indicata con P Gr (r,|L|) la grassmaniana degli r-piani nello spazio
proiettivo |L|. Parimenti indichiamo con N il proiettivizzato del fibrato normale a
¢ (L)=Gr(r+1, H°C, L)) =G, e, come al solito, poniamo 7 =dim H°(C,L)-1,
i =dim H'(C, L). Vogliamo calcolare la classe di coomologia di N in PXG.
Indichiamo con p e q le proiezioni di P X G sui due fattori. Immergiamo Px G in
P x P tramite 'immersione di Pliicker di G in P’ =P(A""'H°(C, L)). Indichiamo
con h la classe di coomologia di un iperpiano in P e con h’ la classe di coomologia
di un iperpiano in P’. Se PxP — P” & I'immersione di Segre, N & tagliata da una

sottovarieta lineare di P”. Poiche la codimensione di N in PX G ¢ i(r+ 1), la classe
di N &

v= (p*h +q*hn)i(r+1)

Percid laclasse di Tin P ¢

_ = i(r+1) ) (r+1)(g—d+r)
pav =d(r, ) ((F-— r)(r+1)
dove
d(r. F) = 12V r!r+D(F-1)!

F-r)F—-r+1)!---F
¢ il grado della Grassmanniana G nella immersione di Pliicker [9]. Concludendo

(3.13) PROPOSIZIONE. Nelle ipotesi del Teorema (3.10) il proiettivizzato T
del cono tangente a W7(C) in L é una sottovarieta di P*~'=PH'(C, 0) di grado

[r+D)(g—d+P)1121 - 1!
[r+D)(g—d+D)NF-1)! - F!

dove si é posto F=dim H°(C, L)—1.
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§4. g/, su di una curva mobile

Sia C una curva di genere g =3. Ricordiamo [20] che esistono varieta liscie e
irriducibili X, S e un morfismo liscio e proiettivo

p:X—S

tali che

1) Ogni fibra di p ¢ una curva di genere g e una di queste & isomorfa a C.
2) Per ogni punto t€ S 'omomorfismo di Kodaira—Spencer

T.(S)— H'(p™' (1), O,-)

¢ un isomorfismo (cio si esprime dicendo che la famiglia p: X — S € completa e
effettivamente parametrizzata, e implica che il morfismo naturale da S allo spazio
dei moduli delle curve di genere g € finito € ha immagine densa).

3) p possiede una sezione.

Fissiamo ora, una volta per tutte, una famiglia con le proprieta 1), 2), 3). Per
ogni s €S porremo

p_l(s) = Cs’ KCs = Ks’ @Cs = @s
Riferendoci alle notazioni introdotte nel §2 porremo, in modo suggestivo
Pic?® =Pic? (p)
a= Wa(p)
%3=Gu(p)
cosicche si hanno morfismi
c:9,— Pic?, m:Pict— S

Sia I un punto di Pic? corrispondente a una fibra C, =p~!(t) e a un fibrato in
rette L — C,.. Le argomentazioni svolte nel §1 consentono di identificare lo spazio
tangente a Pic* in I con HYC,3;). Se poi IeW" e w & il punto di ¥,
corrispondente a un sottospazio (r+ 1)-dimensionale W < H%(C, L), considera-

zioni analoghe a quelle contenute nella dimostrazione del Teorema (3.3) mostrano
che vi & una successione esatta

0 — Hom (W, H(C, L)/ W) — T, (4}) — T,(Pic%)
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e inoltre che
c(T.(9D) ={oc e H(C, 3;):0 - W=0}
Ricordiamo la fondamentale applicazione
po: WRH(C, K,QL™ ") — H%C, K,)
Seguendo le idee sviluppate in [1], consideriamo I’applicazione lineare
w: WRHC, K,QL ™) - HC, K,®3%)
definita per dualita a partire da (1.4), e definiamo una applicazione lineare

py:Ker po— HY(G, K3)

a mezzo del diagramma commutativo

0

A

WRH(C, K,® L") — H%C, K,)

N

(4.1) WRHYC,KQ®L ')+t HC,K®3¥

Ker py ——— H(C, K?)

|

L’osservazione centrale che mette in relazione ’'omomorfismo w, con I’ap-
plicazione

moc:9,—> S

costruita all’inizio di questo paragrafo, sfrutta, in modo essenziale, la proprieta di
completezza 2) soddisfatta, per ipotesi, dalla famiglia X — S e si lascia enunciare
dal seguente

(4.2) LEMMA (cf. [1]). Supponiamo che il morfismo mwoc:945— S sia suriet-
tivo. Sia t un punto generale di S. Per ogni L e ogni W si ha che

p1=0
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Dimostrazione. Essendo t generale si pud assumere che per ogni we

(mwoc) (1)

‘n'oc)*
T, (97 —2%5 T,(S)=H(C, 6,)

sia suriettivo. Da (4.1), per dualita, si ottiene un diagramma commutativo

H(C, ;) = Hom (W, H'(C, L))

H'(C, 8,) — (Ker po)*
D’altra parte, I'ipotesi fatta su t significa che

Keru*={oceH (C, 3, ):0 - W=0}=c4T,(%})

H'(C, 6,)

€ suriettiva. Q.E.D.

§5. 11 fascio normale

Incominciamo col richiamare alcuni risultati elementari della teoria di
Horikawa [10].
Dato un morfismo non banale

¢:C—>M

dove C ¢ una curva e M una varieta liscia, il fascio normale N = N, al morfismo ¢
e, per definizione, il conucleo dell’omomorfismo iniettivo di fasci

@3%:Oc — 0™ (Oy)
Si ha quindi una successione esatta
5.1) 0»0.— (p*@M—>N¢ -0

La teoria di Horikawa mette in corrispondenza biunivoca lo spazio vettoriale
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H°(C, N) con I'insieme delle classi di equivalenza di deformazioni infinitesime di
.

Una deformazione infinitesima di ¢, lo ricordiamo, ¢ il dato di una defor-
mazione infinitesima di C,

p:%€ — SpecCl¢]
e di un morfismo
¢:€—>M

tale che & |c= ¢. La nozione di equivalenza tra deformazioni infinitesime di ¢ &
quella ovvia.

Supponiamo ora che il genere di C sia almeno 3, che M=P', r=1, e che il
morfismo ¢ sia associato a un sottospazio (r+ 1)-dimensionale W < H°(C, L), per
un fibrato in rette L su C di grado d, di modo che la g definita da W non ha
punti base. In questo caso la successione del fibrato normale (5.1) e la successione
(1.5) sono legate dalla ben nota successione di Eulero, e, insieme, queste
successioni formano il seguente diagramma commutativo:

0 0
| l (0 = ¢*(Op)
Oc = 0Oc
v y
(52) 0—> 3 2>V s N5
v Py v l
00— 6 > @ >N—0
0 0

L’unico morfismo che va definito & A. Per fare ci0 notiamo che intrinsecamente,
Pr=PW*e L2 V= ®-W*. Sia ora x,,...,% una base di E € &,,...,¢& la
base duale di W*, Una sezione locale di 3; & un operatore differenziale V di
ordine =1 operante sulle sezioni di L. Porremo

A(V)=2Vx®¢

Il lettore non avra alcuna difficolta nel dimostrare la commutativita del dia-
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gramma (5.2). Da (5.2) si ottiene un diagramma commutativo di coomologia

0

N

H'(C, 0,) H°(C, N)

e

ug Hl(C, EL)
(5.3) /

T8

Hom (W, H(C, L))

| ;

0«— Hl(Cs N) D — Hl(c’ @) D — Hl(C’ @C)

v \

dove si e fatta 'identificazione

0

Hom (W, H'(C, L)) = H'(C, LQc W*)= H'(C, L®*V)
Una prima immediata conseguenza del diagramma (5.3) &

(5.4) PROPOSIZIONE. Il nucleo di p, si identifica allo spazio duale di
H'Y(C, 0). I nuclei di pu e ., si identificano allo spazio duale di H(C, N).

Vogliamo sottolineare che l'interpretazione dei nuclei di pq, w, m, data da
(5.4) & valida solo solo per g;; senza punti base. A questo punto & anche utile
osservare che la congettura di Petri cosi come formulata in (3.2) si riduce in modo
naturale alla corrispondente asserzione per le serie prive di punti base.

Tenuto conto del Lemma (4.2), ecco dunque una nuova e assai suggestiva
formulazione della congettura di Petri.

(5.5) CONGETTURA. Sia C una curva a moduli generali di genere g =3. Sia
¢e:C>P (r=1)
un morfismo non degenere. Allora

HY(C,N,)=0
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Come applicazione immediata delle considerazioni fin qui svolte dimostri-
amo la congettura di Petri per le g}. E’questo un risultato da alcuni considerato
noto classicamente e (ri)dimostrato da numerosi autori moderni [3], [16], [22],
[24], [27].

Lax [16] lo enuncia esplicitamente nella forma equivalente data dal Teorema
(3.3), per r=1. Abbiamo dunque il seguente

(5.6) SCOLIO. Sia C una curva a moduli generali di genere g=3. Allora C
soddisfa la condizione di Petri per le gl; in altri termini, per ogni gl su C si ha

Ker po={0}

Dimostrazione. Basta considerare il caso di una g} senza punti fissi, che da
luogo a un morfismo

¢:C—P!

Poiché N, & concentrato sul divisore di ramificazione di ¢ si ha H'(C, N,)=0.
Q.E.D.

Un’altra versione di (5.6) anch’essa classicamente nota [24] &:

(5.7) COROLLARIO. Sia C una curva a moduli generali di genere g=3 e D
un divisore su C tale che dim|D|=1. Allora

H%C, K(-2D))=0

Dimostrazione. Siano s,, s, sezioni linearmente indipendenti di H(C, 0(D)) e
sia t una sezione di H°(C, K(-2D)). Allora

Sl®t52—'82®tsl
appartiene al nucleo di p, ed € nulla se e solo se ¢t lo ¢. Q.E.D.

Concludiamo queste considerazioni con la seguente applicazione.

(5.8) PROPOSIZIONE. Sia C una curva a moduli generali di genere g =3. Sia

¢:C—>P (r=2)
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un morfismo non degenere definito da una g, speciale. Allora ¢ stabilisce una
birazionalita tra C e la sua immagine I' = ¢(C).

Dimostrazione. Poiché C € a moduli generali, per un risultato classico (della
cui dimostrazione il lettore trovera una moderna versione in [1]) si ha che, o I' &
birazionale a C, oppure il genere di I' ¢ zero. Questa eventualita non pud
presentarsi. Se cosi fosse, detto n=2 il grado della curva I, il divisore A,
immagine inversa su C di un punto di I', avrebbe la proprieta che

dim H°(C, 0(4)) =2
H°(C, K(—nA))#0

in contraddizione con il Corollario (5.7). Q.E.D.

La conclusione della Proposizione (5.8) ¢ chiaramente falsa se non si assume
che ¢ sia definita da una g}, speciale. Come curiosita il lettore notera che un’altra
conseguenza di (5.6) ¢ che la conclusione della Proposizione (5.8) continua a
valere ove si assuma che la g}, che definisce ¢ sia completa (non necessariamente
speciale), a meno che non sia r=2, d=g+2 e g pari.

§6. Un fenomeno assai curioso

In questo paragrafo ci porremo nella categoria degli spazi analitici complessi. 1
risultati che otterremo saranno applicabili alla nostra situazione algebrica per i
noti teoremi di paragone di J. P. Serre [23].

Consideriamo un morfismo analitico non banale

¢:C—>M

dove C & una curva di genere g=1 e M una varieta analitica liscia. Come nella
situazione algebrica descritta nel §5, vi & un fascio normale a ¢, N,, le cui sezioni

sono in corrispondenza biunivoca con le classi di equivalenza di deformazioni
Infinitesime di ¢.

Sia Z il divisore di ramificazione di ¢, ciog il divisore degli zeri del differenziale
di ¢. Si ha allora un omomorfismo iniettivo

?5: Oc(Z) — ¢*(Oy)

il cui conucleo & un fascio localmente libero che denoteremo con N’ = N-. Si ha
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dunque un diagramma commutativo di successioni esatte

Re—o

0 ®

0— Bc —— @*(O,,) —> N

<

v
Z

v

o

(6.1)

0— Oc(Z) —> ¢*(Op) —> N, —> 0

Incui X¥X=%_, e 2=2, sono (non-canonicamente) isomorfi al fascio strutturale
0. Una prima immediata osservazione € che

H'(C,N)=H'(C,N")

Le considerazioni che ora svolgeremo hanno lo scopo di dare una inter-
pretazione geometrica degli elementi di H%(C, X,). Per fare cid & innanzitutto
necessario rendere esplicita 'interpretazione, in termini di deformazioni in-
finitesime di ¢, degli elementi di H°(C, N).

Scegliamo un ricoprimento {U,} di C costituito da dischi coordinati su cui &
stato scelto un parametro locale z,. Si puo assumere che, per ogni «, ¢(U,) < V,,
dove V, & un aperto coordinato di M, con parametri locali w, =(wl,..., wh).
Poniamo

Zo=fup(zg) in U,NU;
We=8ga(wg) in V, NV,
e sia

W, =, (2,)

I’espressione di ¢ in queste coordinate. Naturalmente

(6-2) o (lpa(za)) =i, (faB (Ze))
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Sia ora
€ —=2>M
(6.3) Pl
Spec Cl €]

una deformazione infinitesima di ¢. Questa deformazione ¢ definita dai seguenti
dati:
a) Funzioni di transizione per €:

Za = faB(ZB’ 8) = faB (ZB) + ebaﬂ(zﬂ)

b) Espressioni locali di ¢
Wo = Uo (2 €) = 1, (2,) + £0,(2,)

Il cociclo {b,g(3/dz,)} rappresenta la classe di Kodaira-Spencer di p:€ —
Spec C[¢]. Si ha inoltre una condizione di compatibilita analoga a (6.2). Questa
condizione ¢ equivalente a (6.2) insieme con la condizione

08p ; oy,
6.4) Y 2B gi—g Ty
( ) ]ZaWIB a aa aza a3

Gli a, definiscono un elemento di H°(C, N) che chiameremo la classe di
Horikawa di (6.3). Naturalmente 1’omomorfismo cobordo

H°(C,N)-> H'(C, 6,)

applica la classe di Horikawa di (6.3) sulla classe di Kodaira-Spencer di p: %4 —
Spec C[¢].

Scriviamo Z =Y}_, v,p;, dove i p; sono punti distinti. Possiamo supporre che
ciascuno dei punti p: sia contenuto in un unico aperto U, e che z, (p;)=0. Ogni
elemento {a,} di H°(C, ¥) & della forma

ay,,
a. =c¢. — = ) — .
(6'5) oy Cl(zoq) azai Za, ’ l 19°° » S
ag=0, se B#a, i=1,...,s,

dove ¢; & un polinomio di grado al piu »,—1. Naturalmente la corrispondente
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classe di Kodaira-Spencer ¢ data da

(6.6) Dxe = GlZ)Z

bys=0 se aFo#FB i=1,...,s

Nel caso in cui ¢;(z) =2z%""! e ¢; =0 per ogni j# i, la classe di Kodaira-Spencer
definita da (6.6) non & altro che la variazione di Schiffer [21] associata al punto p;, e
come tale & un elemento non nullo di H'(C, €,).

Le formule (6.5) dicono che il morfismo ¢ associato a una classe {a,}€
H°C, ) si fattorizza attraverso 'inclusione di I' = ¢(C) in M:

€ 2> M

\/

Il fenomeno ora descritto permette quindi di identificare gli elementi di
H°(C, X) con le deformazioni infinitesime del morfismo ¢ che lasciano fissa (al
prim’ordine) la curva immagine I'. Dunque nel caso in cui ¢ sia una birazionalita
tra C e I, la presenza di “cuspidi”’ su I', comporta 1’esistenza, dal punto di vista
infinitesimo, di piu di un modello liscio della curva I', se cosi ci possiamo
esprimere.

Veniamo ora a un semplice lemma di natura locale che ci permettera di usare
costruttivamente questo fenomeno, a prima vista paradossale.

Diamo innanzitutto la seguente definizione. Sia A il disco unitario nello spazio
di una coordinata complessa z e sia

¢:4->C" n>1

una applicazione iniettiva tale che (0)=¢'(0) =0. Con una opportuna scelta di
coordinate in C" si pud assumere che

l[}(Z) = (lpl, le’ o °)
dove ¢; si annulla di ordine k;>1 per z=0 e

k1<k2<...

6.7 {kl 1k,

E’immediato verficare che gli interi k,, k, cosi definiti sono invarianti di .
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L’intero k, € l’indice di ramificazione di ¢ in 0 e k, verra chiamato il tipo del
punto di ramificazione in questione.

(6.8) LEMMA. Sia
¥:{(z,)eC*:|z| <, |t|<1}=4%2—>C", n>1

un morfismo analitico. Supponiamo che, comunque fissato t, §,(z) =z, t) sia
iniettiva, abbia un unico punto di ramificazione, e che Uindice e il tipo di questo

punto siano indipendenti da t. Supponiamo anche che esista una funzione meromorfa
f(z) tale che

Wiz 0=f2)2 0

(6.9) F e

Allora f(z) e olomorfa.

Dimostrazione. E’semplice verificare che la validita (o0 meno) dell’ipotesi (6.9)
e della tesi non & inficiata ove si effettuino, in C", un arbitrario cambiamento di
coordinate e, in A%, un cambiamento di coordinate del tipo z'=2z'(z, t), t' =t. Sia
V< A? il luogo dei punti di ramificazione degli ¢,. Poicheé, per ipotesi, V si
proietta bijettivamente su {t€C:|t{<1}, V & una sottovarieta liscia di 42 e si puo
supporre che la sua equazione sia z=0. L’indice di ramificazione di ¢, non
dipende da t e lo indichiamo con h; quindi, a meno di un cambiamento di
coordinate in C" e della moltiplicazione di z per una funzione mai nulla si puo
supporre che

(l’:(ll’ls""d‘n)

sia della forma

U (z, ) =al(t)+2z"

(6.10)
g (z, ) =P,(z", )+ vz +[k]); i=2,...,n
dove:
a) k>h

b) h non divide k

c) P,(¢ t) & un polinomio in ¢

d) le funzioni y; non sono tutte identicamente nulle

e) il simbolo [k] denota una somma di termini di ordine superiore a k in z.
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L’ipotesi che il tipo del punto di ramificazione di ¢, non dipenda da ¢ significa che
una tra le funzioni v, diciamo <y,, non si annulla per t=0. La (6.9) e la (6.10)
implicano intanto che

22(0) = hf(z)2""

Perciod f(z) =cz'™", dove ¢ & una costante. Usando ancora (6.9) e (6.10) si ottiene
che

aP. d oP

2 (24 0)+ 22 (0)2* +[k]=c(h—2(z", 0)+ky2(0)z""‘+[k—h]>.

ot ot Y4

Poiche v,(0)#0 deve essere ¢ =0. Dunque, in questo particolare sistema di
coordinate, f € la funzione olomorfa identicamente nulla. Q.E.D.

(6.11) COROLLARIO. Sia €25 A={teC:|t| <1} una famiglia analitica di
curve di genere g, e

¢:€—> M

un morfismo analitico di € in una varieta analitica liscia M. Poniamo C, =p~'(t),
¢ =@ Iq. Supponiamo che

a) ¢, stabilisca una birazionalita tra C, e ¢(C,).
b) Il numero, indice e il tipo dei punti di ramificazione di ¢, non dipendano
da t.

Allora la classe di Horikava di (%, p, ¢), per t =0, non appartiene a H(Cy, X, ), a
meno che non sia nulla.

Dimostrazione. Sia V il luogo dei punti di ramificazione degli ¢,. L’ipotesi b)
implica che V & un rivestimento non diramato di A. Si pud quindi scegliere un
ricoprimento {U,} di € e una fuzione z, in U, di modo che VNU, ={z, =0} e
che (z,, t) siano coordinate locali in U,. Possiamo anche supporre che ¢(U,) sia
contenuto in un aperto coordinato V, di M. Siano w, =(w, ..., wh) coordinate
locali in V,. In queste coordinate ¢ ¢ data da

w, =, (Z4 t).



Su una congettura di Petri 29

La classe di Horikawa di (6, p, ¢) per t =0 & la sezione s di N,, rappresentata da

o)

Ricordando (6.5), dire che questa classe appartiene a H(C,, ¥,,.) significa che vi
sono funzioni meromorfe f, tali che

ay, oY,
b 0 = @ Q o *
5 Za )=fu(z )aza(z 0)
Per (6.8) le f, sono olomorfe € quindi s ¢ la sezione nulla di N, . Q.E.D.

In definitiva il significato del Lemma (6.8) e del Corolla}io (6.11) ¢ il seguente.
Supponiamo di avere una sezione non nulla di H°(C, ¥X) e di poter prolungare la
deformazione infinitesima di C-% M, ad essa corrispondente, in una deformazione

effettiva. Allora “‘lungo questa deformazione la complessita della ramificazione di ¢
diminuisce.”

§7. La congettura di Petri per le g7

Il nostro scopo principale, in questo paragrafo, ¢ quello di dimostrare la
congettura di Petri per le g3. Otterremo anche risultati analoghi, ma piu deboli,
per le gJ.

Il teorema principale ¢ il seguente.

(7.1) TEOREMA. Sia C una curva a moduli generali di genere g =3. Allora
a) C soddisfa la condizione di Petri per le g5: in altri termini, per ogni intero d,

per ogni fibrato in rette L di grado d su C e ogni sottospazio tri-dimensionale
W< H°(C, L), il prodotto “cup”

to: WQH(C, Kc®L™")— HC, K¢)
é iniettivo.
Equivalentemente

b) Per ogni morfismo non degenere

¢:C—P?
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si ha che
H'(C,N,)=0.

Prima di esporre la dimostrazione di (7.1) introduciamo alcune notazioni che
ci saranno utili nel seguito. Sia

X5S

la famiglia di curve costruita nel §4. Useremo le stesse notaziono adottate in quel
paragrafo. Inoltre denoteremo con il simbolo 97* il luogo dei punti di %
corrispondenti a g} per cui Ker u, ha dimensione pari almeno a k. Naturalmente
97* & una sottovarieta chiusa di 9.

Dimostrazione del Teorema (7.1). Notiamo innanzitutto che a) e b) sono
equivalenti per (4.2) e per (5.4). Indichiamo con il simbolo 7' il morfismo mwec di
r in S. Dobbiamo mostrare che, per ogni d, 7'(%%") & una sottovarieta propria di
S. Supponiamo che cid non sia vero, € sia d il minimo intero per cui 7'(43") =S.
Allora un punto generale di ¥3' corrisponde a una g3 speciale senza punti base.
Vi sono perciod una varieta liscia B, un morfismo aperto

g:B—>S
e un morfismo

¢:X'=XXgB—>P?
tali che, per ogni b€ B,
(7.2) HY(Cypy, N, )#0
dove si ¢ indicata con ¢, la restrizione di ¢ alla fibra C,) di X'— B sopra b.
Vogliamo mostrare che cio & assurdo. Innanzitutto, se b € un punto di B, si ha un
diagramma commutativo

HO(Cg(b)’ N(Pb)
h 8
: T, (B /TV S)= 1\‘ (0]
8x: Ty (B) = Ty)(S) = H (Cyy, O

dove h associa ad ogni elemento di T,(B) la classe di Horikawa corrispondente.
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Se poi b € un punto generale di B, g4 ¢ suriettivo. Inoltre, sempre se b € un punto
generale di B, ¢, induce, per la Proposizione (5.8), una birazionalita tra C,, €
¢, (Cyvy) €d il numero, l'indice e il tipo dei punti di ramificazione ¢i ¢, sono
costanti al variare di t in un opportuno intorno di b. Percio per il Corollario (6.11)

h(T,(B)) NH*(Cy), X,,) =0
e quindi
3g—3=dim H*(C,,), N,).
Poiche, in questo caso, N/, ¢ un fibrato in rette, deve essere
H'(Cyey N,)=0
e quindi
HY(Cy, N, ) =0
in contraddizione con (7.2). Q.E.D.

Una prima immediata conseguenza di (7.1) & che, se C € una curva a moduli
generali di genere g =3, per ogni g5 su C vale la diseguaglianza

(7.3) d=3%g+3

La dimostrazione del Teorema (7.1) mostra anche che, se C € una curva di
genere g =3 a moduli generali e

0:C—>P?
un qualsiasi morfismo che induca una birazionalita tra C e ¢(C), allora
grado (N?)=4g—4.

Draltra parte il grado di N/, pud essere calcolato usando i diagrammi (5.2) e (6.1),
e risulta essere pari a

grado (N/) =2g—2—grado (Z)+3d
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dove Z ¢ il divisore degli zeri di ¢4. Percio
(7.4) grado(Z)=3d—-2g+2

La diseguaglianza (7.4) implica il seguente risultato, meno generale, ma certo piu
suggestivo.

“Sia I'<P? una curva algebrica irriducible ma eventualmente singolare di
genere g =3 e grado d. Se I' ha moduli generali allora I' non ha piu di 3d—2g+?2
cuspidi.”

La limitazione (7.4) non & la migliore possibile. Ci riserviamo di ritornare sulla
questione in un successivo lavoro.

Terminiamo questo paragrafo applicando le considerazioni precedenti al caso
delle g3. Ne trarremo la seguente conclusione

(7.5) PROPOSIZIONE. Sia C una curva a moduli generali di genere g=3.
Allora

a) Per ogni intero d, per ogni fibrato in rette L di grado d su C e ogni sottospazio
quadridimensionale W < H°(C, L), il nucleo del prodotto “cup”

to: WO H(C, Kc®L™")— H(C, K¢)

ha dimensione al piu uno.

Equivalentemente

b) Per ogni morfismo non degenere
¢:C—P°

si ha che
dim H°(C,N,)=1

Dimostrazione. Basta considerare il caso in cui la g corrispondente a ¢ &
speciale e sappiamo che, in questa situazione, ¢(C) & birazionale a C. La
dimostrazione si suddivide in tre passi successivi.

Primo passo. Mostriamo che due qualsiasi elementi del nucleo di w, sono,
punto per punto, proporzionali. Ricordiamo che Ker y, ¢ isomorfo a

H°(C, NZ*®QK).
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Il fascio N, = N’ & localmente libero di rango 2, e dai diagrammi (5.2) e (6.1) si
ottiene

grado (A2(N"*@K))=2g—2—4d +grado (Z)

dove Z ¢ il divisore degli zeri di ¢4. Sia 7 la proiezione da un punto esterno a
¢(C). Applicando (7.4) a 7 ° ¢ si puo dare una stima sul grado di Z ottenendo

grado (A2(N"*@K.)=-d

Percid due qualsiasi sezioni di N'*® K. sono, punto per punto, proporzionali.
Secondo passo. Mostriamo ora che il nucleo di u, ha dimensione al piu uguale
a due. Sia s,,..., s, una base di W e supponiamo che

4
Y s®r,  reHYC Kc®L™).
i=1

sia un elemento non nullo del nucleo di w,. Il primo passo della dimostrazione
mostra che ogni altro elemento del nucleo di u, € della forma

2. s ®fr
dove f & una opportuna funzione meromorfa. Ovviamente una tale f ¢ una
sezione di 0(4), dove A ¢ il divisore degli zeri comuni a r, . .., r,. Si ha dunque

(7.6) Ker wo=H°(C, 0(A)).

D’altro canto ¢ immediato verificare che la congettura di Petri per le g5 (Teorema
(7.1)) sarebbe violata se r, . . ., r, non fossero linearmente indipendenti. Dunque

dim HY(C, K-®L'(-4))=4

Poniamo & =grado A e supponiamo che dim H°(C, G(4))>2. Applicando la
diseguaglianza (7.3) alle serie |Kc®L'(—4)|, |L|, |A| si ottengono le disegua-
glianze

2g—-2-d—86>%g
d>3g

8>2¢g

che sono ovviamente incompatibili. Dunque la dimensione di H°(C, 0(A)) non
puod essere superiore a due.
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Conclusione. Applichiamo i risultati ottenuti nel secondo passo ai fibrati
in rette L e Kc®L'(—A). Si ottiene

10—4d +3g=0

(7D {10—4d'+3g50

dove si & posto d'=2g—2—-d—8. Se H°(C, 0(4)) avesse dimensione due si
potrebbe dedurre da (5.6) che

8-48+2g=<0

Questa diseguaglianza € chiaramente incompatibile con (7.7). Q.E.D.

§8. Un calcolo di moduli

Un problema che sorge spontaneo e che ¢ stato oggetto di attenzione da parte
di numerosi autori ¢ quello di calcolare il numero dei parametri da cui dipende
una curva di genere g che possiede una g tale che

p=g—(@+1)(g—d+r<0

0, piu in generale, tale che il nucleo di wu, non sia nullo.

Il problema si esprime in modo naturale usando la terminologia introdotta nei
paragrafi 4 e 7.

Consideriamo dunque la famiglia X-% S introdotta nel §4 e, con essa, le
varieta 95" introdotte nel §7, e le relative proiezioni

45> S

Poiche S ¢ naturalmente un rivestimento di un aperto di A, lo spazio dei moduli
delle curve di genere g (e poiche M, ¢ ricoperto da aperti di questo tipo) il calcolo
di parametri cui si € accennato si traduce nel problema di calcolare la dimensione
delle componenti irriducibili di 7'(45).

Vogliamo offrire al lettore una discussione informale dei risultati noti in questa
direzione.

Sia I un punto di ¥}, corrispondente a un fibrato in rette L - C=C e a un
sottospazio (r+1)-dimensionale W < H°(C, L). Vi & un diagramma commutativo
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di successioni esatte

0

l

H'(C, 0) = H'(C, 0)

| .

T\(%3) — HY(C, 3;) “=> Hom (W, H(C, L)) —> (Ker p)* —> 0

| Lo

T.(S) = H'C 0c) ———— (Ker po)* — (Ker u,)* —> 0
0 0

Se ne deduce intanto che, se Ker u,; =0 e I € 9%* allora
dim 74 T;(9) =3g—-3—-k
In particolare se Y ¢ una componente irriducibile di 43" e vale la proprieta

(8.1) ““Per un punto generale di Y, Ker u, =0

allora
(8.2) dim#'(Y)=3g—3—k.

Non ci ¢ affatto chiaro in quali ipotesi si abbia I'eguaglianza in (8.2), anche
supponendo che valga (8.1). Ne & chiaro per quali valori di r, k, d valga (8.1).
La condizione (8.1) & certamente verificata per r=1 (vedi §5). Se poi

p <0, k=-p

e percid 9" = %), se ne deduce che 7'(%}) ha codimensione pari almeno a k [3],
[24]. Pil1 precisamente, B. Segre [22] ha dimostrato che la codimensione di 7'(941)
€ esattamente k = —p.

Inoltre, ripetendo, con modifiche formali, la dimostrazione del Teorema (3.3),
si pud mostrare che ) & liscia e di dimensione 3g —3+p [3] (si veda anche [1]).
In particolare il risultato di B. Segre sopra ricordato implica che, se una curva di

genere g =3 possiede una g} tale che p=<0, in generale ne possiede un numero
finito.



36 ENRICO ARBARELLO E MAURIZIO CORNALBA

Sia ora Y una componente irriducibile di 45*. Supponiamo che Y contenga
un punto corrispondente a una curva C e a una g5 su C (anche con punti base)
tale che il morfismo

C—P?

da essa definito induca una birazionalita tra C e I'immagine di C. Vogliamo
mostrare che, in queste ipotesi, vale (8.2).
E’ semplice mostrare che

k=2 dim H'(C,L)<2g—4

Si pud percio supporre che #'(Y) abbia dimensione pari almeno a g+ 1. Sia ora I
un punto generale di Y corrispondente a un sottospazio tridimensionale W di
H°(C, L). Vogliamo mostrare che Ker w; =0. Se si sostituisce la g3 (definita da
W) con la corrispondente g3 senza punti base, la dimensione di Ker w; non
diminuisce. Si pud percid supporre che la g5 non abbia punti base. Sia ¢ il
morfismo di C in P? associato a W. Poich¢ I & un punto generale di Y,
7% (T;(%3")) ha dimensione pari almeno a g+ 1. Applicando il Corollario (6.11) si
ottiene

dim H*(C,N,)=g+1
e poiche N/, ¢ un fibrato in rette si ha

(Ker “‘1)* = Hl(cqu;) = Hl(C, N"p) =0

In conclusione si puo affermare che la sottovarieta dello spazio dei moduli M,
corrispondente a quelle curve di genere g che posseggono una g3, non composta con
una involuzione, e per cui il nucleo di u, abbia dimensione eguale almeno a k, ha
codimensione non inferiore a k. E’ facile vedere che l’ipotesi che la g3 non sia
composta con una involuzione & essenziale.
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