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Transverse foliations of Seifert bundles and self homeomorphism of
the circle

Davip EisenBup, ULRICH HIrRscH and WALTER NEUMANN*

1. Introduction

In this paper we give criteria for a Seifert circle bundle over a compact surface
to admit foliations whose leaves are all transverse to the fibers, and we discuss
which foliations may be deformed to foliations of this type.

Our criteria for transverse foliations, presented in Section 3, are simple
numerical inequalities involving the Seifert pairs of the fibration and the euler
number of the base (Theorems 3.1 to 3.4). They generalize criteria of Milnor [Mi]
and Wood [W], who treat the case of locally trivial circle bundles with orientable
total space (see also Sullivan [Su] for a higher dimensional generalization of
Milnor and Wood). They are complete except for the case that the base is S?, in
which case we only have partial results (Theorems 3.3, 5.3). Our criteria are valid
both for the case of C° foliations and, as we show in Section 4, for analytic
foliations, hence also for any intermediate degree of smoothness.

We reduce the geometric question of the existence of foliations to algebra in a
way similar to that of Milnor and Wood. We let @ be the group of self-
homeomorphisms f : R — R which are lifts of self-homeomorphisms of the circle.
@ contains the group @ ={f:R— R|f monotonically increasing and f(r+1)=
f(r)+1 for all reR} as a subgroup of index 2 (the “flip”” t(r) = —r is a coset repre-
sentative for the non-trivial coset of 9" in 9). For each real number y we write
sh (y)e @ for the “shift” by +, that is sh (y): r—> r++y for reR.

It turns out that the problem of transversely foliating a Seifert fibered
manifold M is equivalent to the problem of finding a homomorphism 7,(M) — %
which takes the class of a nonsingular fiber of M to the element sh(1)e 2"
(Theorem 3.5). This in turn is equivalent to a problem of representating a certain
product of conjugates of shifts as a product of a certain number of commutators in
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University of Bonn, under whose roof most of the work of this paper was done. The first and last
authors are also grateful for the partial support of the NSF.
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Transverse foliations of Seifert bundles 639

@* or 9, or as a product of a certain number of squares of elements of @—9*.

For this reason we begin, in Section 2, by characterizing the elements of &*
that can be written as products of g commutators, or of g squares of elements of
D—-D", etc., and by partially characterizing the elements that can be written as a
product of conjugates of a given collection of shifts. Perhaps the most surprising
result is that these classes of elements can be simply characterized in terms of the
invariants

mf=min (f(r)—r),  mf=max (f(r)-r),

reR reR

of an element fe %" (this min and max exist, since f(r)—r is a continuous perodic
function on R). In Section 4 we prove the same characterizations with 9" and &
replaced by their subgroups PSL (2,R) and PGL(2, R) respectively, obtained by
lifting the subgroups PSL (2,R) and PGL (2, R)Vof Homeo (S'). A different
characterization for products of commutators in PSL (2, R) was given by Wood.

In Section 5 we describe a natural analytic family of examples due to Maria
Carmen del Gazolas [dG]. We are grateful to the referee for bringing them to our
attention. They are more general than the examples we originally had here and
yield better results for base S>.

The last section (Section 6) of our paper contains results on deforming
foliations of Seifert fibered manifolds to make them transverse. Here we only
consider transversely oriented C? foliations on Seifert manifolds whose base is not
S? or P2. Roughly speaking the theorem is that this can be done if the foliation
has no compact leaves. The techniques are the same as for the case of locally
trivial bundles, done by Thurston [T] and Levitt [L], so, at the referee’s suggestion
we omit proofs.

We fix the notations @, 2", m, m and, for y € R, sh () for use throughout this
paper. In addition, we use Knuth’s “floor and ceiling” notations |y] and [y] for
v €R to denote respectively, the greatest integer <+ and least integer =1y.

2. Self-homeomorphisms of the circle

We will actually need information on the “lifted”’ homeomorphisms in 9 and
2*. To make the connection explicit, note that the center of @ is

Z(@)={sh(n)|neZ}=Z,

and that 9%/Z(9") is the group of orientation preserving self-homeomorphisms of
the circle S*'=R/Z.
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We write a® = b~ 'ab for the conjugate of a by b. A commutator is an element
of the form a™'b™'ab.

Before we describe our main results characterizing certain products of special
elements of 9", we describe some elementary properties of 2" and of the
functions m and m.

LEMMA 2.1. Let f, f,, g be elements of @". Then

(1) If x,yeR, then x—yeZ implies fx—fy=x—y. If, on the contrary; n<
x—y<n+1 for some neZ, then n<fx—fy<n+1.

2) 0O=mf-mf<1.

(3) mf '=—rmf, and dually, mf ' =—mf.

@) Yimfi=m(lo, f)=mf, + X050 mf, <@ mf)+n—1, and dually,

n

> 'ﬁﬁzm(i:ﬁl ﬁ)z mfn+jzl mf; > (é:l mf,-)—n+1.

i=1 =1

(5) |mftl =|mfl and [mf®]=[mf] (so, in particular, if mfeZ, then
mf® = mf) and the same for m.

Proof. (1) Apply f to the equality y+n=x or to the inequality y+n<x<
y+n+1, for neZ.

(2) Choose x,yeR with fx—x=mf and fy—y=mf and observe that if
mf—mf=1 then x and y contravene (1).

(3) is clear, as is the first inequality in (4). For the second inequality choose
x R with f,x —x =mf, and observe that (] f)x —x =mf, +Y"{ mf. The third
inequality now follows by (2), and the dual inequalities follow by (3).

(5) By (1) we have |x—y]=1g 'x—g 'y] for x, yeR. Choosing y =gz and
x = fgz gives |fgz—gz]=|f*z —zJ, and minimizing over z eR gives lmf]l=|mf=].
Replacingl |by[ 1and/or min by max in this argument proves the rest of (5).

We shall also need a special subset of 9*. We say fe 9™ has a stable fixed point
at reR if for any s € R sufficiently close to r, the iterates f"(s) converge to r as n
goes to infinity. Equivalently, f(r—g)>r—¢ and f(r+e)<r+e for all € suffi-
ciently small. We say f € 9" has an unstable fixed point at reR if r is a stable fixed
point of f~'. For k>0 we write

f € SUF (k)

(SUF stands for: Stable or Unstable Fixpoints) if f has exactly 2k fixed points on
some (or equivalently every) half open unit interval [r, r+1), and exactly k of
them are stable and the other k are unstable. It is clear that the fixed points of f
then alternate type (stable or unstable) along the real line. The significance of this
definition is given by the following well known lemma.
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LEMMA 2.2. Any two elements of SUF (k) are conjugate in 9.

Proof. We prove this for k =1, the only case we ever use. The general proof
will then be clear. Thus let f, ge SUF (1). Let x be an unstable fixed point of f and
let y be the unique fixed point of f in the interval (x, x +1), so y is necessarily
stable. Let x" and y' be chosen similarly for g. We shall construct an he @* with
hx=x', hy=y' and hgh '=f.

It is enough to construct h on each of the intervals [x, y] and [y, x + 1] so that
the equation hgh™'=f holds where it is defined. We do this for [x, y]; the
construction for [y, x + 1] is similar. Choose z and z' with x<z<y and x'<z'<
y’' and let hy : [z, f(z)] — [2’, g(z')] be any monotonic homeomorphism. For n €Z
define h, = g"hof " : f*[z, f(2)] — g"[2', g(z")]. Since the intervals f"[z, f(z)] par-
tition the interval (x, y) and the intervals g"[z’, g(z')] partition (x', y’), these maps
h, fit together to give the desired map h : [x, y] — [x', y'].

We now come to the main results of this section. The first result needed for
our geometric application is:

THEOREM 2.3. Let f be an element of 9".

(1) f can be written as a product of g =1 commutators of elements of " if and
only if mf<2g—1 and mf>1-2g.

(2) f can be written as a product of g =2 squares of elements of 2—%" if and
only if mf<g—1 and mf>1-g.

Remark. (2) remains valid if “squares of elements of 2—9%"” is replaced
either by “‘elements of SUF (1)” or “elements of 2" having fixed points”.

The situation for commutators in %, which we need to handle the non-
orientable case of our geometric problem, is much simpler:

THEOREM 2.4. Every element of 9" is a commutator of an element of 9—%*
with an element of 9.

We shall also need a partial characterization of certain products of conjugates
in 9:

THEOREM 2.5. Let fy,...,f,€9" and reR be given with
Y Imfil<r<Y [mf.].
Then there exist elements e; € D" such that d =[] (f¢) satisfies

md =r=md.
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To deal with Seifert fibrations over the sphere we need to know when d can be
the identity in the above theorem, when the f; are shifts. We only have a partial
answer to this question.

THEOREM 2.6. Let v,, ..., v be real numbers.

(1) There exist e; € @* such that [[sh (v,)* € SUF (1) if and only if ¥ lv;]=—1
and ¥ [v,1=1.

2) FYv=0or Ylvl=-2 and Y[v,1=2, then there exist e, D* such that
[Tsh (v)==1.

(3) Conversely, if e, exist as in (2), the either ¥ v, =0, or Y |ly;.l=—1 and
Y [v.1=1 with at least one of these inequalities strict.

The rest of this section gives the proofs of Theorems 2.3 to 2.6. We start with
the proof of 2.3, which is an induction, starting at the case g =1 in part (1) and
g =2 in part (2). Since we shall often need this special case, we state it as a
lemma, for easy reference.

LEMMA 2.7. The following conditions on an element fe 9" are equivalent:
(1) mf<1 and mf>—1.

(2) f is the product of two elements of SUF (1).

(3) f is a commutator in 9.

(4) f is the product of two squares of elements of D—9".

Proof. We begin with the most delicate point, the constructive statement
(D=>(2).

Let £, yeR with 0<e <y <1, to be chosen later, and let c € 2™ be a function
whose graph looks like
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That is, c(0) =0, c(y) =¢, and c € SUF (1), with an unstable fixed point at 0 and a
stable one in the interval (0, €).

Given that f satisfies (1) and is not the identity, we may suppose, by inverting f
if necessary, that mf > 0. Conjugating f by a shift if necessary, we can then further

suppose that 0 <f(0)<1. Chosen & close enough to zero and +y close enough to 1
that

0<e<flO)<f(e)<y<1<f(y).

We may write f =(fc)c™'; we will see that this is nearly the required factorization.
First, since fc(0)>0, fc(y) <+, and fc(1)> 1, the function fc must have at least
one fixed point on each of (0, vy) and (v, 1). On (0, v), the fixed points must of

course occur on fc(0, y) = f(0, €), while on (v, 1) they must occur on (fc) (v, 1)<
(v, 1.

f(x)*

£(0)

!
|
!
|

| I
|
thp————————— L
Lo
Loy
fe(y)=tle)p —————~~ L :
|
N
(c(0)=10) T
7 i o
k-’ ! | Heo
Py ! | [
/o | ] I T
) L d L L_.l\ 1
e H0) fle) )\ _fc'(1)

tc(y)
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If f is nicely behaved, say f and f~' Lipschitz, then by making c sufficiently flat
on f(0, €) and sufficiently steep on (v, 1), we can assure that fc has exactly one
(stable respectively unstable) fixed point on each of these intervals, so the
factorization f = (fc)c™' is the desired one.

In general, we proceed as follows. Let g be the unique element of 9 which
agrees with fc on [0, 1]—f(0, ) —(fc)"'(v, 1), and which is linear on f[0, ] and on
(fc) '[v, 1]. Clearly g is in SUF(1) (with a stable fixed point on f(0, €) and an
unstable one on (fc) '(y, 1)). We shall replace the factorization f=(fc)c™! by a
factorization f=g(c’)™’, so it suffices to show that ¢’=f""'g is in SUF (1).

Now c¢'=c(fc)'g, so ¢'=c except on f(0, £) and (fc) '(v, 1). Since c'f(g)=
cf(e)<c(y)=¢e <f(0), we see that ¢'f(0, €) is disjoint from f(0, €), so ¢’ has no
fixed point on f(0, ). Similarly ¢’(fc) '(D)=c(fc) ') =f D)<y <(fc) '(y), so
c'((fc) (v, 1)) is disjoint from (fc) '(vy, 1), and so ¢’ has no fixed points there
either. Thus ¢'e SUF (1), and the proof of (1)=>(2) is concluded.

(2)=>(3). Write f=dc, with ¢,d e SUF (1). By Lemma 2.2, d”' is a conjugate
of ¢ in @, say d=b""'c™'b, so f=b"'c b, as required.

(2)=>>(4). It suffices to show that any ¢ € SUF (1) is a square of an element of
2—9". By Lemma 2.2 it suffices to show this for just one such c. Let ae 92— 9"
have the following graph on [—3,3] that is a(0)=0, a(3)=-3, a(-3)=3, and

[}

S
2

| 1| S

2

a(x)<—x for xe(0,%) and a(x)>—x for xe(—1%,0). Clearly ¢ =a?® has a stable
fixed point at 3, an unstable one at 0, and no others in the interval [0, 1).
@=>Q). If ceD" has a fixed point then —1<mc =0 and 0=<riac <1. Thus if
both ¢ and d have fixed points, then m(cd)=mc+md <0+1=1 and similarly
m(cd)>—1.
(3)=>(1). Say f=c'd'cd. Using Lemma 2.1 we see

mf=m(c 'd 'ed)=m(c )+ m(d *cd)=—rc+ [m(d 'cd]
=—-mc+[mc] <1.

Similarly mf > —1.
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The inductive step in the proof of Theorem 2.3 will use the following
consequence of Lemma 2.7.

PROPOSITION 2.8. Let fe®" and 0<e <1 be given. Then
(1) f=kh for some h, ke D" with

0<mh<1,
mk <mf—2+¢e <mk.

(2) f=kh for some h, k€ D" with h € SUF (1) and mk <mf—1+¢ <mk.

Proof. By Lemma 2.7, sh(—mf+1—¢)f=k'h’, where each of k' and h' is in
SUF (1). The decomposition f=(sh(mf—1+¢)k')h’ satisfies (2), while f=
(sh (mf—2+¢)k")(sh (1)h') satisfies (1).

Proof of Theorem 2.3. The “only if”’ statements follow at once from Lemma
2.7 and Lemma 2.1(4). We prove the “if”’ statements by induction on g, the cases
g=1of (1) and g=2 of (2) being Lemma 2.7. Inverting f if necessary, we may
assume mf > 0.

(1) If mf<2g—1, then we use Proposition 2.8(1) to write f=kh with 0<
mh <1 and mk <mf—2+¢<mk. By Lemma 2.7, h can be written as a com-
mutator, and if ¢ is small enough, then k will be a product of g—1 commutators
by induction hypothesis.

(2) If mf<g-—1, then we apply Proposition 2.8(2). The element h will, as
noted in the proof of Lemma 2.7, be the square of an element of & — 9™, while k
will be a product of g—1 such squares by induction hypothesis.

Proof of Theorem 2.4. We first note two simple equations. If t€ 9 is given by
t(x)=—x, and if a €eD—9D" is arbitrary, then

t1-sh(y)-t=sh(—vy) forall yeR,
al-sh(n)-a=sh(—n) forall nelZ.

Given fe @, we wish to write it as f=a 'b " 'ab withae -9 and be @*. If
f is a shift we use the equation t™' - (sh(y))™*:t-sh(y)=sh(2y), so we may
assume f is not a shift. We can then find neZ such that mf—2n<1 and
mf —2n> —1 (namely let 2n be the one of Imf] and lmf]+ 1 which is even). Put
f' =sh(-2n)f.

Then f’ satisfies condition (1) of Lemma 2.7, so f'=cd with ¢, d e SUF (1).
Now tc 't ! is still in SUF (1), so by Lemma 2.2, tc”'t ' = e 'de for some e J*.
Putting a=et, we get c=a 'd'a, so f'=a 'd 'ad. Finally f=sh(2n)f =
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a ' sh(-n)-a-shn)-a'dtad =a'(sh(n)d) ta(sh(n)d) is in the desired
form.

Proof of Theorem 2.5. First note that given fe ?* and 0<e <1, we can find a
conjugate f’ of f with mf' <|mfl+ . Indeed, if mf =Imf] this is trivial; otherwise
choose x eR with fx =x+Imfl+t and 0<t<1, and choose a € @* with a(x)=x
and a(x+&)=x+t, and then a 'fa(x)=x+|lmfl+¢€, so m(a'fa)<|mfl+e.

We can thus replace each f; in Theorem 2.5 by a conjugate f/ with mf! <
Lmf, ]+ & for some small £. We next observe that by conjugating each f! by a
suitable shift we can move the points at which they attain their m’s so as to
achieve also: m(]f) =Y mf..

Thus if reR is as in the theorem, we can find b, € 9* such that m([[ f>)<r.
Dually, one finds ¢; € 2" such that r <m(I] f{).

Now let ¢; : [0, 1] — 9" be a continuous path with ¢;(0) = b; and ¢,(1)=¢; for
each i (2" is a convex subset of R®, hence pathwise connected). If d, =[] f&® for
0=<t=1 then, since m and m are continuous, the intermediate value theorem
implies m(d,)<r=m(d,) for some t, proving the theorem.

Proof of Theorem 2.6. The proof uses the following lemma.

LEMMA 29. (1) If —1<v,<0<+y,<1, then there exists ec D" such that
sh (y1)(sh (2))* € SUF (1).

(2) If —1<vy<1 and f e SUF (1), then there exists e € D" such that f(sh (y))° e
SUF (1).

This lemma is easy to prove directly, but since it follows immediately from a
stronger result, Lemma 4.2, to be proved later, we postpone its proof for now.

Returning to the proof of Theorem 2.6(1), note that the “only if”’ is immediate
from Lemma 2.1, so we must prove the “if”’. Assume therefore ¥ |v;,]<—1 and
Y [v,1=1. Our first step is to “normalize” the v,’s.

Observe that inserting or deleting a v, = 0 does not change the problem. Also,
since sh (n) is in the center of @* for ne€Z, if we replace each vy; by y; +n; with
n,€Z and Y n, =0, then we also do not change the problem. We can thus
normalize and reindex <, so that they become:

Yo» Y- --> Y5 Yo€Z, 0<y,<1 for i=1,...,1L

The conditions Ylv.J=—1and ¥ [v;1=1 then become: yo=—n with 1=n=<[-1.
By eliminating vy, by subtracting 1 from n of the vy, we can renormalize once
more to obtain:

Yis -+« Y15 -1<y;<1 for i=1,...,L (*)
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Since exactly n of these vy, are negative, and 1=n=<I[-1, we can assume
—1<y,<0 and 0<y,<1.

We now apply part (1) of Lemma 2.9 to find ee®" with sh(y;)sh(y,)e
SUF (1). Applying part (2) of the lemma iteratively, with y=1ys,..., vy, then
completes the proof.

To prove 2.6(2), note that if ¥ v, =0 we can take all ¢, =1. If Y |y, ]=-2 and
Y [v.1=2, then we can renormalize as above, to get the v, in the form (*) with
—-1<+v,,v3<0 and 0<v,, y,<1. Then {vy,, v,} and {vs, ..., v} each satisfy the
inequalities of part (1) of the theorem, so (2) follows from (1) and Lemma 2.2.

(3) Assume some product [] sh (y;)* equals 1. If all the vy, are integers then we
must have Y v,=0. Otherwise, for each i we have |y, |=m(sh(y)%)=
m(sh (y,)%) <[v,1, with both the first and third inequality strict for some i, so the
inequalities Y, |, /<0 and ¥ [v;,1>0 follow from Lemma 2.1(4).

Now suppose Y lv;]=—1 and Y [y,]1=+1. Then the normalization procedure
used in the proof of part (1) implies that we may assume k=2 and —1<vy; <0<
v, <1. The equation sh (y;)* sh (y,)®>=1 implies sh (vy,) is conjugate to sh (—v,).
The following lemma thus shows <y, +v, =0, completing the proof of (3).

LEMMA 2.10. If a € 9" is conjugate to sh (y) then ma <y =<ma.

Proof. By Lemma 2.1(5), lim,_.,m(a")/n=+v. But by Lemma 2.1(4),
lim m(a")/n =m(a). Thus ma <+, and similarly ma = .

Remark. For any a€?" the number s(a)=Ilimm(a™)/n=1lim m(a")/n is a
well defined (and well known) conjugacy invariant, and satisfies ma < s(a) <m(a).

3. Seifert manifolds with transverse foliations

We consider a Seifert bundle p: M — F over a closed surface F, the fiber
being S'. The total space M may be orientable or not. Such a bundle may be
described as follows: There exists some finite non-empty collection Dy, ..., D, of
disjoint closed discs in F so that p"(F—UintD;) = F—-UintD; is a locally
trivial fibration admitting a section s: F— U int D, — M, while p~'D,; =D?*x S" is
a solid torus. With each D, is associated a coprime ‘‘Seifert” pair (a;, B;) of
integers, with o; =1, so that the class of s(dD;) in m,(p~'D;,)=Z is — B;, and over
D, the map p is given in suitable coordinates by

p D, = D*x S'3(re®, e™)—>re!***¥ e D,

Here v, is an inverse of B; modulo «; and we are identifying D? and D, with the
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unit disc in C. The integer «; is thus the class in 7,(p 'D;)=Z of the “general
fiber” p~'(u), ue D, —{0}.

We shall write the Seifert pairs as rational numbers B,/a;. The collection
{Bilaty, . .., Biloy} of Seifert pairs associated to p: M — F is not unique, but
depends on the choice of the D;’s and of s. By changing these choices, {8;/a;} can
be changed in the following ways:

(a) permute the indices;

(b) add or delete a Seifert pair 0/1;

(c) alter each B,/a; by an integer, but keeping ) B;/a; fixed;

(d) (only if M is non-orientable:) replace any B;/a; by —Bi/a;:

(e) (only if M is non-orientable:) replace any B;/a; by (B; +2a;)/a; = (B/ai;) £ 2.

If M is orientable, the Seifert fibration is completely classified (up to orienta-
tion preserving homeomorphisms) by the Seifert invariant

(g; Bilay, . - ., Bl o),

where g = g(F) is the genus of the base surface F (with the convention that g is
negative for F non-orientable). The fact that the Seifert invariant is well deter-
mined up to (a), (b), and (c) above can also be formulated: M is classified by g, by
the unordered set of 3;/a; modulo 1 (omitting those that are zero modulo 1), and
by e(M — F)=—-Y B/a;. This number e(M — F) is called the euler number of the
fibration, see [N-R].

Staying with the case M orientable, note that the Seifert invariant can always
be put in the form

(85 Bo/1, Bilay, . .., Bilow),
0<B/a;<1 for i=1,...,k,

and this form, called normal form, is unique up to permutation of the indices
i=1,...,k.

If M is non-orientable then one must include in the classifying data the
information as to whether the fibers can be given mutually consistent orientations
or not, and then the resulting ‘“Seifert invariant” (well defined up to
(a), (b), (c), (d), and (e)) classifies. We will not need a notation for this, so we do
not introduce one. The euler number of the fibration is of course not defined in
this case. -

The above discussion is a modified presentation of Seifert’s original classifica-
tion [S], where the invariants are given in normalized form. The unnormalized
version was introduced (in the oriented case) in [N] and [N-R].

We will say that M admits a transverse foliation if M has a codimension 1
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foliation whose leaves are transverse to the fibers of p : M — F. Foliations here
are always C° foliations, however, when we give conditions below for existence of
foliations, these foliations can actually be chosen to be analytic, by the results of
the next section.

We can now state the main geometric results of this paper. Let p: M — F be
a Seifert fibration over the closed surface F with Seifert pairs B,/a, . .., Bi/ay.
Let x be the euler characteristic of F, so x =2—2g if F is orientable (that is,
g=0) and x =2+ g if F is non-orientable (that is g <0).

THEOREM 3.1. If M is non-orientable, then it admits a transverse foliation.
This foliation can be chosen with all leaves compact.

THEOREM 3.2. If M is orientable and F is not the sphere (that is x# 2), then
M admits a transverse foliation if and only if

ZlBi/aiJS —x and Z [Bi/ai]ZX

or M — F has normal form Seifert invariant (—1; 0/1). For a normal form invariant
(2; Bo/1, Bilay, - . ., Be/ay) these inequalities may be rewritten x —k <By=—x.

THEOREM 3.3. If F=S2 (that is x=2) and ¥ Bja; =0 or Y |BJa;)=—x =
—2 and Y [Bi/o;1=x =2, then M admits a tranverse foliation.

Conversely, if M — S? admits a transverse foliation then either Y B/a; =0 or
Y 1B/ l=—1 and Y [B/a;1=1 and at least one of these inequalities is strict.

Before proving 3.1 to 3.3, we pause to note the corresponding results for
foliations with only compact leaves in case M is orientable. Recall that in this case
the euler number of the fibration, e(M — F)=-) B;/a;, is defined.

THEOREM 3.4. Suppose that M is orientable. The following statements are
equivalent
(i) e(M — F)=0;
(i) M has a transverse foliation with a compact leaf;
(ili) M has a smooth transverse foliation with all leaves compact.

Proof. The euler number e(M — F) is the obstruction to finding a “‘rational
section”” to the Seifert fibration, that is, a closed compact surface F M
immersed transverse to all fibers. This is implicit in [N-R], but can be seen
explicitly as follows using the naturality properties of e of [N-R, Theorem 1.2]
(which contained a misprint: “homeomorphism’ should have been ‘‘continuous
map’’). By taking a double cover if necessary one can reduce to the case g=0.
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The Seifert fibration is then given by an S'-action, and by factoring a (Z/a) < S*
one can reduce to the case of a genuine S'-bundle. Finally, for a genuine
S'-bundle the existence of a rational section is equivalent, by standard obstruction
theory, to the rational euler class in H*(F : Q) being trivial.

Thus (ii)=> (i). Clearly (iii) = (ii).

Finally (i)= (iii) by Conner and Raymond [C-R]. Various approaches to this
are also discussed in [N-R]. In fact, a complete set of models for the foliations
given by (iii) is as follows. Those with orientable base are given by fiber products
M =ZX,,,S', where (X,Z/a) is an oriented (Z/a)-action on a closed surface and
Z/a acts standardly on S'. The foliation is by fibers of M — S'/(Z/a)=S". Those
with non-orientable base are given by fiber products M = X X, _S', where D,, is
the dihedral group (t,g|t*=g*=1,t""gt=g ') acting standardly on S' and
acting on the closed oriented surface X in such a way that g is orientation
preserving and t is free and orientation reversing on X/(g). The foliation is by
fibers of M — S'/D,, =[0, 1].

Generalizing the ideas of Milnor and Wood, we reduce 3.1-3 to algebraic
theorems as follows.

Suppose M — F has a transverse foliation. We will utilize the notions of the
introduction to this section, and in particular consider disks D,,..., D, in F so
that M — F admits a section s over F — U int D,.

Cut F open along some additional disk, D, and open out F—int D — U int D,
to represent it as a disk with oriented handles a;, b;, d;:

¢y ) dy dy

F-int D-U int D,

in case F is non-orientable.

Using the section s, we may trivialize the fibration over F—int D —]int D,.
Moreover we may assume this trivialization of the fibration agrees with the
foliation over the disk F—int D —Jint D, —{Handles}. Then by following the
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leaves of the foliation around a handle we may associate to each handle an
element of @7, if the fiber orientation is preserved over a path going around that
handle, or of 2—9" if the fiber orientation is reversed over a path around the
handle. The reason why the element corresponding to a handle is in @ rather than
Homeo (S?) is that our section s on the handle tells us how to lift to 9.

Of course the fiber orientation is preserved around each handle d;, and we see
that the element of 9% associated to d; is conjugate to the shift sh (—B;/a;).
Indeed, in the coordinates in p~'D, = D*X S! introduced at the beginning of this
section, let m denote a meridean S'Xx{1}cd(D?*xS"), | denote a longitude
{1} xS, h denote a typical fiber p~'(u) with ue€dD,, and q denote s(d8D,). Then
our explicit description of p implies the following homology relations in
H,(8(D*%xS8Y): h=vm+al, q=—(w;m+B;l), where u, is defined by v,8;, — wa; =
1. This implies the homology relation m = ;h+a;q. But m represents the
homology class of the intersection of a leaf of our foliation with d(D?x S%), so this
homology relation says that as the leaf winds «; times around the handle it also
winds B; times around the fiber in our given trivialization of the bundle structure
on 9(D*xS"). Thus in one circuit of the handle in the g-direction we get a
conjugate of sh (B;/«;), so d; is conjugate to sh (—B;/«;), as claimed.

We write a;, b, c;, and d; again for the element of 9 associated to the
corresponding handle. Since 0D is the boundary of a disk, over which the
fibration and foliation will be trivial, the element of @ induced over dD must be 1.
Thus, in the case F orientable, we have

e b

k
ab;'a;'h; I_'[1 d =1, (%)

-
i

while if F is non-orientable we get

lgl K
[Ic;Ild=1. (+ %)
i=1  i=1

Conversely, given elements a;, b, d; and @ satisfying (*) or ¢, d; satisfying
(% *), with d, conjugate to sh (— B;/a;), the above discussion yields a construction
of a transverse foliation for the corresponding Seifert fibration. Thus the problem
of the existence of transverse foliations becomes the problem of finding approp-
riate factorizations (*) or (* *).

Proof of Theorem 3.1. In this case, either F is orientable, and some q; and/or
b; is in @—9*, or F is non-orientable and some ¢; lies in 9".

In the former case suppose it is a; which is required to lie in 2—2". We use
Theorem 2.4 to find a, € 2—2* and bje @* such that q,(b}) 'a; b is the shift by
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Y B/ay. If by is required to lie in @* take b, = b}; if b, is required to lie in 9—D*
take b, = q;b{. If we choose the remaining a;’s and b;’s so their commutators are
trivial we have satisfied equation (*), with d; =sh (- B,/«a;).

To see the statement about compact leaves, observe that we do not really need
Theorem 2.4, we can work more explicitly. Namely choose a, in the above
argument to be g, =t with tx =—x, and choose b]=sh (y) with y=0. B/a;)/2.
Since t sh (— )t ! sh (y) =sh (2v), this does what is required, and clearly leads to
a smooth foliation with compact leaves.

In the case that F is non-orientable it is enough to note that any shift has a
square root in @ to see that (* #) is solvable, and to choose this square root as a
rational shift to get a smooth foliation with compact leaves.

Proof of Theorem 3.2. We first consider the case that F is orientable. Then our
discussion shows that a transverse foliation exists if and only if we can represent
some product of conjugates of the shifts sh (8;/«;),

k
d = 1—[ Sh (Bi/ai)e‘,
g

as a product of g commutators. By Theorem 2.3 we can do this if and only if we
can find d as above with

md<2g—1=1-y
md>1-2g=x—1.

But by Lemma 2.1, any d as above satisfies ¥ | B/a; |=md and ¥ [B,/a; 1= md, so
Y1B/a;J<2g—1 and ¥ [B;/a; 1> 1—2g. Since these are inequalities between inte-
gers, the necessity of the condition in Theorem 3.2 is shown. Conversely, suppose
the inequalities of Theorem 3.2 are satisfied. If the B;/a; are all integral then
d=sh (Y B/o;) does what is required. Otherwise Y |B/o;]<Y [B/o;]1 and the
inequalities Y | Bi/a;]=—x and Y [B/a; 1= x imply that we can find ¥ | B/a; I<r<
Y [B/a;1 with x—1<r<1-x. Theorem 2.5 then implies the existence of the
desired element d.

If F is non-orientable of genus g <—2, then the proof is just the same, using
(**) in place of (*). We may thus assume that g=—1,s0 x=1 and F=RP? In
this case condition (* *) becomes that the element d above can be chosen to equal
the square of an element of —9".

If we eliminate the trivial case that the B;/«; are all integral and ) Bi/a; =0,
which is the exceptional case of Theorem 3.2, then the sufficiency of the
conditions Y. | B/e; |=—x =—1 and ¥ [B/a;1= x = 1 is just part (1) of Theorem 2.6
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together with the observation, made in the proof of 2.7, that any element of
SUF (1) is a square of an element of 2—9.

To see the converse, observe first that if c e 92— %" with ¢?# 1, then mc?<0<
mc” (since c’x <x & c?x>cx, since ¢ reverses orientation). Thus if d =c?># 1
the inequalities Y |B/o;]=—1 and Y [B/a;1=1 follow from Lemma 2.1, while if
d =1 then these inequalities follow from Theorem 2.6(3), unless Y B;/a; =0. But
in the latter case the inequalities still hold, unless the B;/a; are all integral, which
is the exceptional case of Theorem 3.2.

Proof of 3.3. Here (*) becomes d =1, with d as in the previous proof, so
Theorem 3.3 becomes parts (2) and (3) of Theorem 2.6.

There is an interesting corollary of the above proofs. Namely if F is orientable,
then the fundamental group m(M) can be presented as follows: it is generated by
elements a;, b, d;, and z subject to the relation (*) above and the additional
relations

drzP =1, dz = zd,,

__ +1 — +1
a;z =za; ", bz = zb; ",

where the exponents are +1 or —1 according as the corresponding element a; or
b; preserves or reverses fiber orientation in M. For F non-orientable the corre-
sponding statement holds using elements ¢;, d;, z, and replacing (*) by (* *). These
are by an easy Van Kampen argument, see Seifert [5]. The element z is
represented by a generic fiber of M; The other elements have their obvious
geometric meanings. Our proof thus showed the following.

THEOREM 3.5. The Seifert manifold M admits a transverse foliation if and
only if there exists a homomorphism ¢ : w(M) — @ with ¢(z)=sh (1), where
z € w,(M) is the class of a generic fiber of M.

Theorems 3.1 to 3.3 thus give numerical conditions for existence of such a ¢.

Given ¢ as in the above theorem, one can reconstruct M with its transverse
foliation as follows. G = m;(M)/(z) can be represented as a group of isometries of
a geometry X, where X is S?, euclidean space R?, or the hyperbolic plane H. Thus
m,(M) acts (non-effectively) on X. Via ¢ it also acts on R, so it acts diagonally on
X xR and we can form the quotient space X X, »nR = M. The Seifert fibration is
given by X X_nR— X/w,(M)=X/G =F, and the foliation is induced from the
foliation of X XR by fibers of X XR — R.
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Remark. The foliation will have all leaves compact if and only if the image of
¢ acts discretely on R. One can check that ¢ can always be so chosen if X =S? or
R?.

To close this section we discuss briefly the case of Seifert manifolds with
boundary. In this case M always admits transverse foliations, but a specified
transverse foliation on dM may not extend to one on M. The condition for such
an extension to exist can be derived just as in the closed case. For simplicity we
just discuss the case of orientable M.

Let the boundary components of M be denoted T,,..., T, We make the
following simplifying assumption: r=1 and the foliation restricted to each T, has
non-compact leaves. This is no loss of generality, since, if the foliation had only
compact leaves on some T;, then we could eliminate this boundary component by
pasting in a solid torus over which the foliation extends.

Choose a section to the Seifert fibration on each boundary component T;.
Then a transverse foliation on T; determines an element h,e 2", by taking
holonomy in Homeo™ (S*') and using the section to lift to @*. This element is well
defined up to conjugacy, so lmh;] and [mh;] are well defined. Moreover, our
choice of sections on dM lets us define the Seifert invariant of M,

(ga r, Bl/ala ) Bk/ak)

(we now include the number of boundary components in our notation), well
defined up to the usual indeterminacy, namely any ;/a; =0/1 can be added or
deleted and each B;/a; can be altered by an integer so long as ) B,/a; remains
constant.

We put x=2—2gif g=0and x=2+g if g<0, so x is the euler characteristic
of F with its boundary components capped by discs.

THEOREM 3.6. If g#0 or —1 then the inequalities Y | Bi/o; 1+ lmh ]=—x
and Y [Bi/a; 1+ Y [mh, 1= x are necessary and sufficient for the given foliation on dM
to extend to a transverse foliation on M. This is true also for g = —1 unless the B;/a;
are all integral and r=1. If g=0 these inequalities, with x replaced by 1, are
necessary, but not sufficient in general.

Note that the inequalities are independent of the choice of sections on dM,
since altering the section on T, say, alters lmh;] and [mh;] by an integer, and
alters Y | B/a; ] and Y [Bi/a; ] by the negative of this integer.

The proof of this theorem is just like the closed case, so we omit it. We do not
have complete results for g =0. However, in the exceptional case with g=—1,
omitted in the above theorem, we can assume, by changing the section on oM if
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necessary, that the Seifert invariant is (—1, 1; 0/1), and a necessary and sufficient
condition for extension is that h, be the square of an element of 2—9%".

4. The projective linear group

In th’\xg section we show that the results of Section 2 also hold in the universal
cover PGL (2, R) of the projective linear group PGL (2,R). In particular this gives
a rather pleasanter characterization of products of g commutators in PSL (2, R)
than that given by Wood [W]. It also shows that the transverse foliations whose
existence is given by the theorems of Section 3 can always be chosen with
“structure group” PGL (2,R), and in particular they can be chosen as analytic
foliations. —

We denote PGL (2, R) by G. since PGL (2,R) acts on RP'=S"', we have an
inclusion PGL (2, R) = Homeo (S?), which induces an inclusion G = %. Denote
G =GNa*=PSL (2,R). G has index 2 in G with the nontrivial coset rep-
resented by the “flip” tx =—x.

Let A = [3 (;)]E PSL (2,R). Then A has two fixed points on RP' =S, so it

2
has a unique lift A € G* with fixed points. Let K = G* be the conjugacy class of
A (this is a slight modification of Wood’s notation).

THEOREM 4.1. Theorems 2.3,2.4,2.5,2.6 and the remark after 2.3 are all
valid with 9, 9% and SUF (1) replaced by G, G* and K.

This can be deduced without too much trouble from a comparison of Wood’s
results with ours, but we give a self-contained version, based on the following
improvement of Wood’s Proposition 5.1.

LEMMA 4.2. Given f,ge G with —1<mf, mf<0, 0<mg, mg<1, there
exist conjugates f', g', of f, g in G* with f'g' = A. In particular, by replacing either f
or g by a conjugate one can achieve fgeK and gfeK (note
gf =g(fg)g e K& fge K).

Proof. Since SL (2, R) is a connected 2-fold cover of PSL (2, R), the group G*
is also the universal cover of SL (2, R). Let F, G € SL (2, R) be the images of f and
g. We first show we can solve the relevant conjugacy problem in SL (2, R).

Elements HeSL (2, R)—{x1} are classified up to conjugacy as follows. If
|tr H|>2 then tr H classifies H up to conjugacy. For each value of tr H with
|tr H|<2 there are exactly two conjugacy classes, distinguished as follows: there



656 DAVID EISENBUD, ULRICH HIRSCH AND WALTER NEUMANN

exists v € R? such that v, Hv forms a basis of R?, and this basis will be an oriented
basis for one conjugacy class and non-oriented for the other. The corresponding
element [H]e PSL (2, R) has either 2 fixed points on RP' = S', one fixed point, or
is conjugate to a rotation, according as |tr H|>2, |tr H| =2, or |tr H|<2.

Note also that, since SL (2, R) is the 2-fold cover of PSL (2, R), the element
1eSL (2,R) lifts to sh(2n)e G" with neZ and —1eSL (2, R) lifts tosh(2n+1) e
G" with neZ.

We claim that our element F above is conjugate to a unique F,€ SL (2, R) of
the form

0 1
F0=(__1 a)’ aeR,

and every such F,; occurs. Of course, a is given by a = tr F. Indeed, our condition

on f is equivalent to saying —1<fr—r <0 for some reR, in other words, there

exists veR? such that v, Fv is an unoriented basis of R2 Thus Fe

SL (2,R)—{+1}, and if |tr F|<2 then just the ‘“negative” conjugacy class is

permitted. Since F, is in this conjugacy class if |a|=2, our claim follows.
Similarly G is conjugate to a unique G, of the form

(b Y
G"’“(z 0/’

2 0 2 0
Since FyGo= (* 1) is conjugate to A =(
2

0 3
necessary we can find F', G’ conjugate to F, G such that F'G' = A.

Now let f',g'e G be the lifts of F', G' which satisfy —1<mf’, mf' <O,
0<mg’, mg<1. They are unique, since lifts of elements of SL (2, R) are deter-
mined up to even integral shifts. Then f', g’ are conjugate to f, g, and f'g' =
sh (2n)A for some neZ, since f'g’ is a lift of A. If F', G’ are each conjugate to
rotations, that is |a| <2 and |b| <2, then —1<mf' =mf' <0 and 0<mg' =mg’' <1,
so —1<m(f'g")=m(f'g") <1.Thus in this case n = 0 and f'g’ = A. Thus by continuity
this holds for any value of a and b, completing the proof.

We now return to the proof of 4.1. We must first prove the analog of Lemma
2.7, with @, 9%, SUF (1) replaced by G, G*, K. For the implication (1)=> (2),
observe that if mf <1 and mf> —1 then, by replacing f by f ' if necessary we can
assume f is as in Lemma 4.2. Then choosing g€ K, so g~' € K, Lemma 4.2 implies
that f is the product of two elements of K. For the proof of (2)=(4) we observe
—?1] € PGL (2,R), so any
- element of K is the square of an element of G—G™. The rest of the proof of the

), by a further conjugation if

that A is the square of a lift to G of the element [g



Transverse foliations of Seifert bundles 657

analogues of 2.7,2.8,2.3,2.4 now are exactly as before. For the proof of the
analogue of 2.5, note that the conjugating element a used in the proof of 2.5 can
be chosen in G*, so that proof also goes through with no change. Finally Lemma
2.9 is a special case of Lemma 4.2, so the proof of the analogue of 2.6 goes
through with no change. This completes the proof of 4.1. Using Theorem 3.5 and
the discussion after it, we get:

COROLLARY 4.3. The necessary and/or sufficient conditions of Section 3 for
the existence of a transverse foliation on a Seifert manifold M are also necessary
and)or sufficient for the existence of an analytic such foliation, and for the existence
of a homomorphism ¢ : m,(M)— G = 15(\}/L(2, R) taking the class h of a non-singu-
lar fiber to sh (1)e G.

Remark. The homomorphism ¢ : 7,(M) — G of this corollary can practically
never be found injective, with discrete image in G. Indeed this will be so if and
only if the foliation is an Anosov foliation, discussed in the next section, which
considerably restricts the possibilities for M.

Problem. Are the results of Section 2 valid also for groups between G and 9?
This is particularly interesting for C’'@={fe @ | f is C'-smooth}. All one needs is a
suitable substitute for (1)=>(2) in Lemma 2.7, the rest of the proof then runs
itself.

5. Examples

We describe briefly examples of Maria Carmen del Gazolas [dG]. They
generalize the well known Anosov foliation of a quotient M = I'\PSL (2,R) of
PSL (2, R) by a discrete subgroup, induced by the foliation of PSL (2, R) by fibers
of PSL (2,R) — PSL (2,R)/U, where U <PSL (2,R) is the subgroup of upper
triangular matrices.

Let S be a compact surface with a riemannian metric with a finite number k of
conical metric singularities with cone angles 27§, i =1, ..., k. A neighborhood of
such a point is obtained from a solid angle of measure 279; by identifying its
sides. Define the Euler characteristic of S by

X(8)=x(So)~ L (1-8)

where x(S,) is Euler characteristic of the underlying topological surface. The
Gauss-Bonnet formula is 2mx(S)=J§s Kdv, so if we assume S has constant
curvature K, we see that K has the same sign as x(S).
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Now suppose each §; is a rational number +,/a;. Then the unit tangent bundle
M=T"S of S is well defined and is a Seifert bundle with an «;-fold fiber over the
i-th cone point. It is not hard to compute the Seifert invariant explicitly using the
definition at the start of Section 3. Namely choose the section s to be a vector
field which is radially outward at each of the cone points of S and has a unique
singularity of index x(Sg)—k otherwise. A simple calculation shows this leads to
Seifert invariant

(g; (k—x(S)/1, —vilay, ..., — /o)

which has normal form

(g; B()/l, Bl/ab s Bk/ak)
with
B: = b, —; b; =[’Y.‘/ai]>0

k
Bo=—b+k—x(S)), b= b.
1

Notice that B,=—x(S,). Moreover e(M — S)= x(S), so if S has non-positive
curvature we get e(M — S)=0, or equivalently —Y~_, (B:/a;) < Bo.

Now suppose S is as above with constant curvature <0, that is, it is hyperbolic
or euclidean. Then the usual parallelism on M =T'S gives a foliation on M
transverse to the fibers. Precisely, two vectors in euclidean or hyperbolic space are
parallel if their directed geodesics stay a bounded distance apart in positive time.
The unit tangent bundle of a euclidean or hyperbolic surface element is thus
canonically foliated by families of parallel vectors. This foliates M away from its
singular fibers, and this foliation is easily seen to extend across the singular fibers.

We have already observed that a necessary condition for an M with normal
form invariant (g; By/1, Bi/ay, . . ., Bi/ay) to arise as one of these examples is

= L (Bies)=Bo=—x(So)- (5.1)

Since —M has normal form invariant (g;—k—B¢/1, (a;—B)lay,...,
(a — Bi)/ ), the same condition for — M becomes, after trivial simplification,

k

X(So)—k=Bo=— 2 (Bla). (5.2)

i=1
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If one shows that these necessary conditions are also sufficient, one has an
alternate proof of sufficiency in Theorems 3.2 and 3.3. This presumably can be
done in general; in particular, if the desired cone angles 278, of S are all at most
2, it is not hard to show the existence of S. This already gives sufficient examples

to show that the sufficient condition of Theorem 3.3 for the g =0 case can be
weakened as follows:

PROPOSITION 5.3. If M is orientable and Seifert fibered over S?, then a

sufficient condition for M to admit a transverse foliation is that either (5.1) or (5.2)
is valid. Here x(S,) =2.

It seems a reasonable conjecture that this condition is also necessary. The
results of Greenberg [G] prove this for transverse foliations with structure group
PSL (2,R) when k=3. We have some slight improvements of the necessary
condition of Theorem 3.3 in general, but they do not come close to this
conjecture, so we omit them.

The Anosov foliation mentioned at the beginning of this section are the special
case of Maria Carmen del Gazolas’ examples for cone angles of the form 2n/«;.

6. Making foliations tranverse

Very many foliations of Seifert manifolds are isotopic to transverse foliations.
We will state two results in this direction which generalize the results of Thurston
[T] and Levitt [L] on S'-bundles. The proofs rely on the results and techniques of
[L] and [T], and we omit them. The possibility of making such a generalization
was also observed by Johannson in discussions with one of the authors in 1976.

We consider a closed 3-manifold M with Seifert fibration p: M — F and a
foliation ¥ of M which is transversely orientable and C*. We will suppose that no
leaf of & is a torus or a Klein-bottle.

THEOREM 6.1. If x(F)<—1 then % is homotopic to a foliation transverse to
every fiber of p. The same is true for x(F)=—1 provided that

(1) F+# S? or RP?

(2) If F=T? then p has exceptional fibers, and

(3) either (a) The orientation of each fiber of p is preserved along each curve in
F, or (b) The leaves of % are orientable.

In proving Theorem 6.1, it is convenient to isotope ¥ to make one leaf
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transverse and then apply the following somewhat more general result:

THEOREM 6.2. If % is transverse to one fiber of p then & is isotopic to a
foliation transverse to every fiber of p.
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