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Cyclic group actions on odd-dimensional sphères

C. Kearton* and S. M. J. Wilson

Abstract. We show that for any simple (2q - l)-knot k, q > 1, and any positive integer h, the knot #"fc
is the fixed-point set of a Zn-action on S2q+1. Further, we show that for many values of n there are
examples of (2q - l)-knots, q^2, which are the fixed-point sets of inequivalent Zn-actions.

0. Introduction

An n-knot is a locally-flat PL pair (Sn+2, Sn), where Sn dénotes the n-sphère.
A (2q - l)-knot is simple if the complément of S2q-1 has the homotopy type of a
circle up to but not including dimension q. For q > 1 such knots hâve been
classified in [L] in terms of the S-équivalence classes of their Seifert matrices, and
in [K, Tl, T2] in terms of their Blanchfield pairings. Using thèse classification
results, for any simple (2q-l)-knot fc, with q>l, and for any positive integer n,
we construct a simple (2q-l)-knot ^ such that the n-fold cyclic cover of S2q+1

branched over fcn is again S2q+1, and such that kn lifts to #£fc, the sum of n copies
of fc. An immédiate corollary is that for any such k and n, there is a Zn-action on
S2q+1 with fîxed point set #\k.

The construction in this paper is purely algebraic, and may be contrasted with
the géométrie construction in [G], where for any m-knot k (m ^2) Gordon
constructs an m-knot which is the fixed-point set of a Zn-action and whose
fundamental group is isomorphic to that of #?fc.

As an application of our construction we are able for many values of n to fînd
examples of (2q-l)-knots which are the fixed-point sets of inequivalent Zn-
actions. The technique is to pick simple (2q-l)-knots fc and / such that

#ïk=#ïl and such that K+ L
1. The main construction

Let fc be a simple (2q-l)-knot, q>l, and n>l an integer. Let A be a

non-singular Seifert matrix of k, and set e (-l)q. Following Trotter [Tl], we set

\ T=-eA'A\
* This paper was written whilst the first author was in receipt of a Research Grant from the Science

Research Council of Great Britain.

615



616 C KEARTON AND S M J WILSON

PROPOSITION 1.1. The pair (S, T) has the following properties.

(i) S is intégral, unimodular, e-symmetric.
(ii) (I-T)'1 exists and is intégral.
(iii) T'ST=S.
(iv) A=(I-T)-1S-\

Moreover, any pair of rational matrices (S, T) satisfying (i)-(iii) yields a.Seifert
matrix A by the formula (iv).

Proof. It is well known (see [L], [Tl]) that A 4-eA' is unimodular, and so S is

intégral and unimodular. Clearly S is e-symmetric.
Now I-T I+eA'A-1 (A + eA')A~l S-lA-\ from which (ii) and (iv)

follow at once. Property (iii) is easily checked.
Now suppose that we are given a pair of rational matrices (S, T) satisfying

(i)-(iii); then we can define the matrix A (I — T)~1S~l, which by (i) and (ii) is a

non-singular matrix over the integers. We hâve

by (i), (iii)

+ S^SH-

which is unimodular. It follows that A is a Seifert matrix.

Now we define matrices U, V by

0;-—0 T

I \ 0

10 I 0 J

there being nxn blocks in each case.

THEOREM 1.2. The pair (V, U) détermines a simple (2q-l)-knot kn. The

n-fold branched cyclic cover of kn is the knot #\k fc + • • • + fc (n times).

Proof. We hâve to check that the pair (V, U) satisfies conditions (i)-(iii) of



Cyclic group actions

Proposition 1.1. Clearly V satisfies (i), and it is easy to check that

\i — i )^ i \i — i —i \i — i

r1 "«"(i-t)"1.

617

But T(I-T)-1=-eArA-1(I-^eA'A~1)-1=-eAf(A-¥eAT\ which is an in-
teger matrix. Hence (ii) is satisfied. To check (iii) is a simple matrix multiplication.

Hence (V, 17) détermine a unique simple (2q - l)-knot fc^ A routine computa-
tion shows that

/T 0\
Un X

\0 77'

and hence the pair (V, Un) satisfies (i)-(iii), and in fact represents the knot #\k.
Let Kn dénote the complément of kn, and Kn the infinité cyclic cover of Kn. If

m is a generator of the group of covering translations, then Kn is obtained from Kn

by quotienting out by the action of u. Similarly the n-fold cyclic cover of Kn is

obtained from Kn by quotienting out by the action of un.

Algebraically this can be described as follows, using Trotter's description of
Hq(Kn) in [Tl]. Let B be a basis of Qm corresponding to (V, Ù) where T is an

rxr matrix; then Hq(Kn) is the Z[u, «"^-module generated by B, the action of u

being given by U. The fact that (l-u):Hq(Kn)->Hq(Kn) is an isomorphism
means that when we quotient out by the action of u we get a homology circle. But
the form of Un means that (1 — un):Hq(Kn)->Hq(Kn) is also an isomorphism,
and hence the n-fold cyclic cover of Kn is a homology circle. Therefore the n-fold
branched cyclic cover of k^ i^ a homotopy sphère, and hence a sphère. D

COROLLARY 1.3. If k is a simple (2q - l)-knot, q > 1, then #?k is the fixed
point set of a Xn-action on S2q+1.

PROPOSITION 1.4. Let B be the Seifert matrix of ^ corresponding to (V, U).
Then

(A -eA' -eAr

B
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Proof:

t[-T)-i

(l-T)->

T(I-Tr1—-t(i-t)-1

¦-.^Vfi-T)-1

r1

0

0

s-1

m-

A TA -TA

A -eAf -eAr

--a n

Next we prove a resuit which relates an Alexander matrix of k to one for k^.
Recall that an Alexander matrix M(t) of k is a matrix over Z[f, t"1] which
présents Hq(K) as a Z[f, f^j-module; that is, there is an exact séquence of
Z[r, r^-modules

c M(t) nF >G Hq(K)

where F and G are free Zff, t ^-modules
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PROPOSITION 1.5. Let M(t) be a square Alexander matrix for the knot k; then

M(tn) is an Alexander matrix for &„.

Proof. We can describe the Z[u, u~1]-module structure of Hq(Kn) in the
following way. Let Lu Ln be n copies of the Z[t, t^l-module HQ{K). Then
for 1 ^ i < n, u : Lt —> Ll+1 is a Z[r, r'^-isomorphism, and u:Ln^>L1 is defined so
that un :!.!—»L2—? • • —» I^ —» La coincides with f rLj—»LX. Thus a présentation

matrix for Hq(Kn) as a Z[u, w~^-module is

M(un) 0;

0 --0 M(un)

ul -I 0 0

0 ul -I 0 0

\ 0

0

unl 0 0 ul

Two elementary row opérations give

M(wn) Oc;;

0

u^Miu") 0

ul -I 0

0 ul -I 0

-unl
0-

0-

*-^ M(un)

-ul 0

--0 ul
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We eliminate the final row and column to give

M(un) 0-;;-
M(un)

-0

0

ul

0

4nlI

:0 M(un)

0 0

-I 0; 0

ul -I ^ ^

o-

Now subtract un l times the first row from the nth to obtain a row of zéros,
which may be eliminated. Continuing in this way we eventually arrive at the
matrix M(un).

THEOREM 1.6. The knot kn dépends only on k and n, and not upon the choice

of Seifert matrix A.

Proof. Let A be an r x r matrix, and let A Z[f, f~\ (1 -1)"1], a subring of the
field Q(f), the field of rational functions in one variable over the rationals.

According to Trotter's viewpoint [Tl], k gives rise to an e-symmetric bilinear
form [,] on Qr represented by the matrix S, and a A-module M contained in Qr
where the action of t is represented by T. A choice of Seifert matrix corresponds
to an admissible lattice contained in M (see [Tl] for définitions). Although our
construction is given in terms of the matrices S and T, it is clear that it could be

phrased in terms of M and [,], and hence that it does not dépend upon the choice
of A.

Alternatively, one can use the formula of Proposition 1.4 to show that if A is

S-équivalent to Al5 then B is S-équivalent to Bx.

2. Knots having distinct Zn-actions, n odd

In this section we shall show that for many odd integers n, there exist simple
(4q + l)-knots (q^l), k and /, such that #\k #\\ but K+k-

Let Àm(0 dénote the mth cyclotomic polynomial, where m is not a prime
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power. Let £ be a primitive mth root of unity, K Q(£) and F Q(£ + C"1), the
fixed field of K under complex conjugation. Let hK dénote the class number of K,
hF that of F, and h- hKlhF. According to the work of Bayer [Ba: Example 6.2],
the number of distinct simple (4q + l)-knots (q ^ 1) with Alexander polynomial
Àm(r) is h_2d if m 2p" and h_2d~1 otherwise, where 2d [K :Q]. The factor h_

represents the number of isomorphism classes of Z[t, f^-modules supporting a

Blanchfield pairing [Ba: Corollary 1.3], and the factor 2d(2d~1) represents the
number of non-isometric pairings which a given module supports. Note that
Bayer's work is couched in terms of pairings on Z[£]-modules which are hermitian
with respect to complex conjugation (f—>f-1 becomes £—»£~1 £), and we shall

adopt this viewpoint.
Let U be the group of units of (the ring of integers of) K, Uo the group of

units of F, and N:K^>F the norm. If I is a principal idéal, then let (u) dénote the
hermitian form h on I given by h(a, b) uab. As in [Ba: Prop. 2.1], the set of
isometry classes of unimodular hermitian forms on a given idéal (not necessarily
principal) is in one-one correspondence with U0/N(U).

Now suppose that fi_ has a factor n > 1, where n is odd and (m, n) 1. Let a
be an idéal of Q(£) admitting a non-singular hermitian form h, with a being of
order n in ker N:CK—»CF. Then ln(a, h) has déterminant (u) for some ue

U0IN(U); see [Ba: Définition 1.9] for the définition of déterminant. Since the
order of U0/N(U) is 2d or 2d~\ and n is odd, there exists v g Uo/N(U) such that
vn u. Then ln<t>) has déterminant (vn) (u).

Set K (a9 h)±(a, -h), L (v)±(-v). Then ±nK, ±nL are indefinite and

hâve the same rank, signatures and déterminant. Hence by [Ba: Corollary 4.10]
they are isometric. But K is not isometric to L, for the déterminant of K is

(a2, a), and a2 is non-zero in ker N:CK^>CF since n is odd.
In fact, if fc, / are the simple (4q + l)-knots corresponding to K, L respectively,

we can show that kn ^ k. For let M(t) be an Alexander matrix of k, so that by
Proposition 1.5 M(tn) is an Alexander matrix of k^. The work of Fox and Smythe
[F-S] enables us to obtain a row idéal class from the matrix M(£), and the work of
Hillman [H: Chap. III, Theorem 12] identifies this with the idéal a2 in the
déterminant of K. But the Alexander polynomial of ^ is Àm(tn), which has Àm(î)

as one of its factors since (m, n) 1. Let r be a primitive mth root of unity such

that rn £ Setting t r in the Alexander matrix M(fn), we obtain M(rn) M(£),
and hence obtain a Fox-Smythe invariant a2 again. In the case of in, thèse idéal
invariants are ail trivial, hence fcn f k.

Taking the n-fold branched cyclic covers of fcn, ^ we obtain respectively the
knots #?fc, #?/. Since ±nK is isometric to ±nL, we hâve #\k #\\,

Many examples may be obtained from the tables in [Sch].
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For the case of (4q - l)-knots, q s* 1, and m ^ 2pr, pr, where p is a prime, then
as in [Ba: §5], C~C~1 is a unit and so we can multiply ail the pairings above by

f — C1 to obtain skew-hermitian pairings. The argument then goes through as

before. We are grateful to Dr. Bayer for pointing out this extension to the case of

- l)-knots.

3. Number theory

This section deals with some results from algebraic number theory, which will
be used in the next section to deal with the case n 2.

Let K be an algebraic number field, R int (K) its ring of integers, Z(p) the

p-adic integers, Rp R <g)Z(p), Kp K®Z(p), U(R) Up K and J(K)
U(R) 'UpKp, where U dénotes the direct sum. Kx is considered as a subgroup of
J(K) under the "diagonal" map. If C(K) dénotes the idéal class group of K, then
we hâve C(K)^J(K)/U(R) • Kx an isomorphism which is natural with respect to
ring extensions.

Now suppose that L is an algebraic number field, F a group of automorphisms
of L, S int (L), K Lr the subfield of L fixed under F, and R int (K) Sr.

LEMMA 3.1. ker[C(JR)~>C(S)] ker[H1(r,Sx)-^H1(r, U(S))l where the

first map is induced by ring extension, the second by the "diagonal" map Sx—»

U(S).

Proof. Consider the exact séquence

0-» U(S) • Lx-^ J(L)-+ C(S)-*0,

Since J(L)r J(K), we obtain a commutative diagram

> C(R) -+ 0

i ii i

Applying the Snake Lemma [Bass: p. 26] we find that

> C(S)r]

=coker [l/(JR) • KX-*(U(S) • Lx)rl-
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Now consider the exact séquence

0-»Sx-» l/(S)0Lx-> U(S) • Lx-*0

where the first map is s>-*(s, s"1). From cohomology theory we obtain the exact

séquence

Since by Hilbert 90, H\r, Lx) 0, we hâve

coker [l/(R)0Kx-*(l/(S) • Lx)r] coker [1/(1?) • Kx-»(l/(S) • Lx)r]
s ker [H\r, Sx) -> HHr, I/(S))],

and the resuit follows. D

Now let

£ 0(7-123,7-31) S int(L)

r Gal(L/K),

The action of the non-trivial éléments of F, F will be denoted respectively by
~, ~. Our immédiate purpose is to show that C(jR)-*C(S) is injective.

LEMMA 3.2. The fundamental unit of R' is v 247 + 4>/3813.

Proof. Certainly 2472-16.3813 1, so v is a unit of R1. If t? is not the
fundamental unit, then there exist positive integers a, b, c, d such that

4u, where N 3813. Thus

ac + bdN+(ad + bc)VÎV= 4(247 + 4VÏV).

But ac + bdN 5? N> 4.247, so this is impossible.

By the Dirichlet Unit Theorem, rank (Sx) l and Sx <±l)x<w) for some
m (a fundamental unit).
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LEMMA 3.3. S has u V-123 + 2>/-31 as a fundamental unit.

Proof. Note that mm u, so mgSx. If u ±wn for some weS (±1 are the

only units of finite order) then ww e K'x and so ww ± vm for some m g Z. But
then (vm)n ±v whence m n ± 1. Hence the resuit.

LEMMA 3.4. H\r, S*)^H\r, Sxx) is injective, and hence so is H\r, Sx)^
H\r, u(s)).

Proof. For an abelian F-group A we use the représentation

{alâiaeA}
This représentation is natural with respect to extension of A. Now

mm (V-123 + 2\/"::^ï)(V-123-2v/::3l) -123 +124 1,

and m/m m2/mm m2 so

H\r, Sx) Sx/(m2) {(1), (-1), (m), (-m)}.

We must show that none of -1, m, -m is of the form s/s for some s g S3l.

If for some s g Sx1? sis — 1, then s= -s and so s r\l — 31 for some r g JR31.

Hence s is not a unit.
If for some seS3l9 s/s m, then, as S31 K31[m], s a + bM with a,beR31,

and so a + bu (a + bû)u au + b. Hence a b and s a(l + m). As s is a unit,
Nl/q(s) is also a unit. But NL/Q(s) (aâ)2(l + m)(1 + m)(1 + ïï)(l + S) (aâ)2 • 16.31
and this is not a unit in Z31.

A similar argument disposes of the possibility s/s —m and the resuit is

proved.

Remark 3.5. We can now see that the primes of S above 31 are principal. By
our calculation above, Nl/q((1 + m)/2) 31 and so, since (1 + m)/2 is intégral

(Nl/k((1 + m)/2 (1 + V-123)/2g.R), ((1 + u)/2)s is a prime of S above 31. But
L/Q is galois so ail the primes of S above 31 are conjugate and hence principal. In
fact,(31)s ((l + u)/2)i((l-i

PROPOSITION 3.6. (3, V-123)S[i/3i] w wor principal.

Proof. (3,V-123)R is clearly not principal, for the équation a2 + 123b2 =12
has no solutions over Z. Since C(JR)-* C(S) is injective by Lemmas 3.1 and 3.4,

(3, V- 123)s is not principal.
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In passing from C(S) to C(S[1/31]) we kill off the idéal classes représentée by
ideals dividing (31)s; since by Remark 3.5 thèse ideals are ail principal, the map
C(S)-*C(S[1/31]) is injective. The resuit follows.

4. The case n 2

In this section we construct two simple (4q + l)-knots fc and / such that
k 4- k l +1 but fc2 / ^2-

LEMMA 4.1. Let A(t) 3lt2-6lt +31. Then Q(V-123, ^fï) is a splitting
field for â(t2).

Proof. Let r be a root of â(t2); then we can take r2 (61+V-123)/62, so that
A(f) splits in Q(V-123). Now 31t2 (61 + V-123)/2 -[(1 -V-123)/2]2, and so

r (1 -V- 123)/2V-31. Hence reQ(V-123, V-31). But the conjugates of t
are r, -t, f 1/t and -1/t, so A(t2) splits in Q(V-123, V-31). D

Let J dénote the idéal (3, V-123) over the ring Z[t2, t~2] .R[l/31] in the
notation of Section 3. Note that J J and JJ (3), where hère dénotes complex
conjugation. Hence we can defîne a non-singular hermitian form b:JxJ->
JR[1/31] by b(a,(3) aPI3. Let (/©/, B) dénote the orthogonal direct sum
(/,&)!(/, 6), and set

e=((6 + V-123)/31,(51 + V-123)/31)

It is easily checked that B(e, e) B(/,/) 1 and that B(e,/) 0. Hence

Let k be the simple (4q + l)-knot (q ^ 1) represented by (/, b) and I the
corresponding knot represented by (1). Then k + k l + l, but since / is a

non-principal idéal by Proposition 3.6, k^l. Let M(t) be a square Alexander
matrix for k; then by Proposition 1.5, M(t2) is an Alexander matrix for fc2. The
Fox-Smythe row idéal class of k2 is obtained from the matrix M(r2) over the ring
Z[T, t"1] S[l/31], and by [H: Chap. III, Theorem 12] this is the idéal /s[1/3i]. By
Proposition 3.6, this idéal is non-principal. Since the corresponding invariant for
l2 is trivial, we hâve k2 / h-
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Note added in proof: The second author has recently shown that for any integer n
there is an integer m, prime to n and not a prime power, such that, if £ is an mth
root of 1, there is an idéal class in Com of order n with norm 1 in CQ[c+i ^. Thus
the results of section 2 are valid for any odd n.
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