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Self homotopy equivalences of virtually nilpotent spaces®

E. Dror, W. G. DwyeErR and D. M. KaN

§ 1. Introduction

The aim of this paper is to prove Theorem 1.1 below, a generalization to
virtually nilpotent spaces of a result of Wilkerson [13] and Sullivan [12]. We recall
that a CW complex Y is virtually nilpotent if

(i) Y is connected,

(ii) =Y is virtually nilpotent (i.e. has a nilpotent subgroup of finite index) and

(iii) for every integer n>1, 7Y has a subgroup of finite index which acts
nilpotently on , Y. The class of virtually nilpotent spaces is much larger than the
class of nilpotent spaces. For instance such non-nilpotent spaces as the Klein
bottle and the real projective spaces are virtually nilpotent, and so is, of course,
any connected space with a finite fundamental group.

1.1. THEOREM. Let Y be a virtually nilpotent finite CW complex. Then the
classifying space of the topological monoid of the self homotopy equivalences of Y is
of finite type (i.e. has the homotopy type of a CW complex with a finite number of
cells in each dimension). In fact it has the somewhat stronger property that each of
its homotopy groups is of finite type (i.e. has a classifying space of finite type).

1.2. Remark. For abelian groups, being of finite type is the same as being
finitely generated, but for non-abelian groups, being of finite type is stronger than
being finitely generated or even being finitely presented.

1.3. Remark. As it is easy to verify that, in Theorem 1.1, the higher homotopy
groups in question are finitely generated, the main content of Theorem 1.1
is that the group of homotopy classes of self homotopy equivalences of Y is of finite
type.

1.4. ORGANIZATION OF THE PAPER. The paper consists essentially of
three parts:

(1) After a brief discussion (in §2) of the notion of finite type for groups and
simplicial sets, we reduce Theorem 1.1 (in §3) to a similar (and in fact equivalent)

* This research was in part supported by the National Science Foundation.
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600 E. DROR, W. C. DWYER AND D. M. KAN

statement (3.6) about the homotopy automorphism complex (i.e. complex of self
loop homotopy equivalences) of a simplicial group and then (in §4) to a similar
statement (4.1) about the homotopy automorphism complex of a simplicial virtually
nilpotent group. The arguments are standard, except in 3.5, where we make the
transition from pointed simplicial sets to simplicial groups and have to show that
the usual notion of a function complex of maps between two simplicial groups is
indeed the “correct” one.

(i) In the next two sections we make the crucial transition from homotopy
automorphisms to automorphisms, i.e. we reduce Theorem 4.1 to a similar
statement (6.1) about the automorphism complex of a simplicial virtually nilpotent
group. A key step in the argument is a curious lemma (5.1) which states that,
under suitable circumstances, the homotopy groups of the automorphism complex of
a simplicial module differ by only a finite amount from the homotopy groups of the
homotopy automorphism complex.

(iii) The last two sections are devoted to a proof of Theorem 6.1. It turns out
that it suffices to show that the automorphism complexes involved are dimension
wise of finite type and this we then do by combining variations on arguments of
Baumslags proof that the automorphism group of a finitely generated virtually
nilpotent group is finitely presented [1, Ch. 4] with the result of Borel and Serre
that arithmetic subgroups of algebraic groups are of finite type [2, § 11]. Of course
it would be nice if one could do this without resorting to such non-homotopical
notions as algebraic groups and their arithmetic subgroups.

§ 2. Finite type

We start with a brief review of the notions of finite type for simplicial sets and
for groups, and note in particular (2.9) that a connected simplicial set with finitely
generated higher homotopy groups is of finite type if and only if its fundamental

group is of finite type.

2.1. SIMPLICAL SETS OF FINITE TYPE. A simplicial set X is said to be of
finite type if, for every integer n =0, there exists a map f, : F, — X such that

(i) F, is finite (i.e. has only a finite number of non-degenerate simplices) and

(i) f, induces, for every vertex veF, and every integer 0<i=<n, an
isomorphism ;(F,; v)= m(X; f,v).

This definition readily implies ([8], [11, Ch. III and Ch. VI)]):

2.2. PROPOSITION. A simplicial set X is of finite type if and only if its
realization |X| has the homotopy type of a CW complex with a finite number of cells
in each dimension.
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2.3. PROPOSITION. A reduced (i.e. only one vertex) simplicial set X is of
finite type if and only if its simplicial loop group GX has the loop homotopy type of a
free simplicial group which is finitely generated in each dimension.

The next two propositions are very useful ones.

2.4. PROPOSITION. Let U be a bisimplicial set such that, for every integer
k =0, the simplicial set U, y is of finite type. Then the diagonal diag U is also of

finite type.

2.5. PROPOSITION. Let p: E — B be a fibration onto and assume that all its
fibres are of finite type. Then E is of finite type if and only if B is so.

Proofs. The proof of 2.4 is easy once the diagonal of the bisimplicial set U has
been identified with the “realization” of U [3, Ch. XII, 3.4]. The “if” part of 2.5
is straightforward. To prove the “only if” part of 2.5, let U and V be the
bisimplicial sets such that, for every integer k =0,

Vix=B and Uggx=EXg---XgE (k+1 factors)

and let U — V be the obvious map. Then it is not hard to verify that, for every
integer n =0, the induced map Uy, — Vi, =B, is a weak homotopy equival-
ence and so is therefore [3, p. 335] the induced map diag U — diag V = B. The
desired result now follows from 2.4, the “if”’ part of 2.5 and the fact that Uy 4= E
and that, for every integer k=0, the face maps d;: U, 4+ = U, x are fibrations
with the fibres of p as fibres.

Next we consider

2.6. GROUPS OF FINITE TYPE. A group G is said to be of finite type if the
simplicial set K(G, 1) is of finite type.

2.7. EXAMPLES. Using 2.5 one readily verifies that the following groups are
of finite type:

(i) all finitely generated free groups,

(if) all finite groups

(iii) all finitely generated abelian groups,

(iv) all finitely generated nilpotent groups,

(v) all finitely generated virtually nilpotent (see §1) groups, and

(vi) all homotopy groups of a simplicial set which is virtually nilpotent (see §1)
and of finite type.
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Less obvious are

2.8. EXAMPLES. (i) Every arithmetic subgroup of an algebraic group is of
finite type. This is a result of Borel-Serre [2, § 11].

(i) The group of automorphisms of a finitely generated virtually nilpotent group
is of finite type. To prove this one combines Baumslag’s proof of [1, th. 4.7] with
2.5 and 2.8 (i).

We end with several propositions which will be needed later.

2.9. PROPOSITION. Let X be a connected simplicial set and assume that 1, X
is of finite type for n> 1. Then m, X is of finite type if and only if X is of finite type.

2.10. PROPOSITION. Let C be a simplicial group such that C, is of finite type
for all n=0. Then its classifying complex WC [11, Ch. IV] is of finite type.

2.11. PROPOSITION. Let G —{G;} be a pro-isomorphism of groups
[2, Ch. III] in which each G, is of finite type. Then G is also of finite type.

Proofs. Propositions 2.9 and 2.10 follow readily from Propositions 2.5 and 2.4
respectively, while Proposition 2.11 is an immediate consequence of the fact that
any retract of a simplicial set of finite type is also of finite type.

§ 3. Reduction to simplicial groups

In this section we reduce Theorem 1.1 to similar and equivalent results for
simplicial sets (3.2), reduced (i.e. only one vertex) simplicial sets (3.4) and
simplicial groups (3.6). Most of the arguments are routine. However, in the last
reduction one runs into the problem that the loop group functor G is not a
simplicial functor with respect to the usual simplicial structures on the categories
of reduced simplicial sets and simplicial groups. To get around this difficulty we
introduce on the category of reduced simplicial sets a new simplicial structure
which is better behaved with respect to the functor G and which gives rise to
function complexes homotopically equivalent to the usual ones. Of course one
could instead have appealed to the rather general Proposition 5.4 of [S].

3.1. REDUCTION TO SIMPLICIAL SETS. For a CW complex Y let haut Y
denote its simplicial monoid of self homotopy equivalences, i.e. the simplicial
monoid which has as its n-simplices the homotopy equivalences |A[n]|XY — Y,



Self homotopy equivalences of virtually nilpotent spaces 603

and for a fibrant (i.e. satisfying the extension condition [11, § 1]) simplicial set X,
let haut X denote its simplicial monoid of homotopy automorphisms, i.e. the
simplicial monoid which has as its n-simplices the weak homotopy equivalences
A[n]x X — X. Using

(i) the adjointness of the realization functor | | and the singular functor Sin,

(i1) the fact that, for every CW complex Y and fibrant simplicial set X, the
adjunction maps |Sin Y|— Y and X — Sin|X| are homotopy equivalences, and

(iii) the fact that, for every simplicial set X, the obvious maps |A[n]Xx X|—
|A[n]| x|X| are homeomorphisms, one readily verifies that the induced maps
m, haut X — 7, haut | X| are isomorphisms for all n=0. As haut Y is clearly
isomorphic to the singular complex of the topological monoid of self homotopy
equivalences of Y, if follows that Theorem 1.1 is equivalent to

3.2. THEOREM. Let X be a virtually nilpotent fibrant simplicial set which has

the (weak) homotopy type of a finite simplicial set. Then r, haut X is of finite type
for all n=0.

3.3. REDUCTION TO REDUCED SIMPLICIAL SETS. For a reduced (i.e.
only one vertex) fibrant simplicial set K, denote by hauty K the submonoid of
haut K which “keeps the vertex fixed” and note that there is an obvious fibration

haut K — K with hauty K as fibre. Using 2.5 and 2.7 (vi) one then readily sees
that Theorem 3.2 is equivalent to

3.4. THEOREM. Let K be a virtually nilpotent fibrant simplicial set which is

reduced and has the (weak) homotopy type of a finite simplicial set. Then
m,, hauty K is of finite type for all n=0.

3.5. REDUCTION TO SIMPLICIAL GROUPS. We start with constructing
a new simplicial structure on the category of reduced simplicial sets along the lines
of [7, §12], i.e. for a simplicial set X and a reduced simplicial set K, we denote by
X - K the reduced simplicial set which is the quotient of X X K by the equivalence
relation: (x;, k,)~ (x,, k,) if and only if k,=k,=sik for some non-degenerate
ke K and di'x,=di'x,, and note that this definition readily implies the
existence of a natural isomorphism (X'xXX) - K=X'-(X - K).

Next, for a fibrant reduced simplicial set K, denote by haut, K < hauty K the
subcomplex consisting of the maps A[n]x K — K which factor through A[n]- K.
Then hauty K is clearly a submonoid of hauty K. Moreover the usual retraction
A[1]x A[n]— A[n] of A[n] onto its first (or last) vertex induces a retraction of

A[n]: K onto K and hence [5, § 6] the induced maps m, haut, K — m, hauty K are
isomorphisms for all n=0.
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Finally, for a simplicial group C, denote by haut C its simplicial monoid of
homotopy automorphisms, i.e. the simplicial monoid which has as its n-simplices
the homomorphisms A[n]® C — C which are weak (loop homotopy) equivalences
[11, Ch. VI] (i.e. induce isomorphisms on m, for all n=0). Using [11, Ch. VI],

(i) the adjointness of the loop group functor G and the classifying complex
functor W,

(ii) the fact that, for every fibrant reduced simplicial set K and every free
simplicial group C, the adjunction maps K — WGK and GWC — C are respec-
tively a homotopy equivalence and a loop homotopy equivalence, and

(iii) the fact that, for every reduced simplicial set K, the homomorphisms
A[n]® GK — G(A[n] - K), given by [7, p. 118] (x, k) — 7(sox, k), are actually
isomorphisms, one verifies that the induced maps m, hauty K — m, haut GK are
isomorphisms for all n=0. It now follows that Theorem 3.4 is equivalent to

3.6. THEOREM. Let C be a free simplicial group which is finitely generated
(i.e. has a finite number of non-degenerate generators) and has a virtually
nilpotent classifying complex WC [11, Ch. IV]. Then m, haut C is of finite type for
all n=0.

§ 4. Reduction to simplicial virtually nilpotent groups

Now we reduce Theorem 3.6 to a similar result for simplicial virtually
nilpotent groups (4.1). To state this result denote, for a homomorphism of
simplicial groups C — , by haut,, C < haut C the simplicial monoid of homotopy
automorphisms of C over mr, i.e. the simplicial monoid which has as its n-simplices
the commutative diagrams

An]®C—C

\./

w

in which the top map is in haut C and the other maps are the obvious ones.
Furthermore, for a (simplicial) group B, let I';B be the i-th term of its lower
central series (i.e. I'B=B and I''B=[I'._;B, B] for i>1. Then one has

4.1. THEOREM. Let 1—- B — C— 7w — 1 be an exact sequence of simplicial
groups such that
(1) r is discrete and finite, ,
(i1) C is free and finitely generated (see 3.6), and
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(iii) the classifying complex WB [11, Ch. IV] is nilpotent.
Then the groups w, haut, C/I;B (n=0, i=1) are of finite type.

That indeed this Theorem 4.1 implies Theorem 3.6 is an immediate conse-
quence of 2.11 and the following three propositions.

4.2. PROPOSITION. Let 1 > B—> C—> 71— 1 be as in 4.1. Then the obvious
maps

m,, haut,, C — {m, haut,, C/I';B} n=0

are pro-isomorphisms of groups [3, Ch. III].

Proof. In view of [3, Ch. III] the obvious map C— {C/I;B} is a weak
pro-homotopy equivalence and it is not difficult to show, using induction on the
number of non-degenerate generators of C, that so is the induced map of function
complexes over

hom,, (C, C) — {hom,, (C, C/I;B)}
and the desired result now follows readily from the obvious isomorphisms
hom,, (C, C/I''B)=hom, (C/I'B, C/I',B)

4.3. PROPOSITION. Let C — m be a homomorphism of simplicial groups such
that mwoC is finitely generated and = is discrete and finite. Then m, haut, C =
m, haut C for n=1 and ¢ haut, C is a subgroup of finite index of myhaut C.

Proof. This follows readily from the fact that a finitely generated group (such
as m,C) has only a finite number of subgroups of a given finite index.

4.4. PROPOSITION. Let C be a finitely generated free simplicial group with a
virtually nilpotent classifying complex WC. Then there exists an exact sequence
1—- B— C— 7—1 of simplicial groups such that

(i) = is discrete and finite, and

(i) WB is nilpotent.

Proof. In view of [8] if suffices to show that every virtually nilpotent finite CW
complex Y has a nilpotent finite cover. To prove this let ¢ =, Y be a nilpotent
subgroup of finite index which acts nilpotently on #,,Y for 2=<n=<dim Y. Then ¢
acts on the universal cover Y of Y. As ¢ acts nilpotently on m,Y for 2<n<
dim Y and dim Y =dim Y, it follows that ¢ acts nilpotently on H,Y for all n=0
and therefore on Y for all n=2. The desired result is now immediate.
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§5. Automorphisms of simplicial modules

In preparation for the next step in our reduction (in §6) we prove here a
lemma for simplicial modules (5.1) which seems to be of interest in its own right.

For a simplicial 7-module M, let haut,, M be its simplicial monoid of homotopy
automorphisms (an n-simplex of which is a 7-module homomorphism A[n]®
M — M which is a homotopy equivalence) and let aut, M chaut, M be its
maximal simplicial subgroup of automorphisms. Then one has:

5.1. LEMMA. Let m be a finite group and let M be a finitely generated (3.6)
simplicial w-module which, in each dimension, is torsion free as an abelian group.
Then the obvious maps m, aut, M — m, haut, M (n=0) have finite kernels and
cokernels.

5.2. Remark. Lemma 5.1 remains true if M is not required to be torsion free
in each dimension, but we don’t need this extra generality.

Proof. The proof consists of three parts and will often, explicitly or implicitly,
use the fact that [11, Ch. V] there exists an isomorphism of categories N between the
category of simplicial w-modules and the category of differential graded m-modules
which are trivial in negative dimensions. First we note that 5.1 holds if NM,; =0 for
i#n,n+1 and mM =0 for i# n. Next we consider a finite direct sum of such
simplicial m-modules and finally we treat the general case.

I. Assume that M is as in 5.1 and that in addition NM; =0 for i# n,n+1 and
m:M =0 for i# n. Then the boundary map 9: NM,,,, = NM,, is a monomorphism
and we can therefore consider NM, ., as a submodule of NM,. Furthermore
N(A[K]® M),, is a direct sum of copies of NM, indexed by the n-simplices of A[k]
and if, for every n-simplex pe A[k] and element x € NM,, we denote by x, e
N(A[k]® M), the copy of x that lies in the summand indexed by p, then a
straightforward calculation yields that the image of the boundary map
9:N(A[k]®M), ., > N(A[k]® M), is generated by the elements

x,—x, where xeNM, and p,qedlk],

X, where xeNM,., and peAdlk],

Next one notes that a k-simplex f € hom, (M, M) is completely determined by
a collection of w-modules maps f,: NM, — NM, indexed by the n-simplices of
A[k] and it is not difficult to verify that conversely such a collection {f,}

(i) comes from a k-simplex of hom, (M, M) iff each f, maps NM, ., into itself
and all f, induce the same endomorphism of NM,/NM,, . ,,
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(ii) comes from a k-simplex of haut, M iff, in addition to the conditions of (i),
the f, induce an automorphism of NM,/NM, ., and

(iii) comes from a k-simplex of aut, M iff, is addition to the conditions of (i)
and (ii), each f, is an automorphism of NM,.

From this, together with the usual combinatorial formulas for the homotopy
groups of a complex satisfying the extension condition [10, p. 5], it is not hard to
deduce that the homotopy groups of aut,, M and haut,, M vanish in dimension >0
and that the map m, aut, M — my haut,, M can be identified with the inclusion, into
the group of automorphisms of NM,/NM,, ., that lift to endomorphisms of NM,, of
those automorphisms of NM,/NM, ., that lift to automorphisms of NM,. To see
that this inclusion is of finite index, one notes that NM,, determines an element in
the finite group Ext, (NM,/NM, . ,, NM, ;) and that the automorphisms of
NM,/NM, ., , that stabilize this element are contained in the image of the inclusion
in question.

II. Assume that M=M°®P- - -@M" where each M* (0=<n<r) is as in I; in
particular NM}? =0 if i# n,n+1 and m;M" =0 if i# n. Then one readily verifies,
using the functor N, that hom, (M, M")=0 for i>j. Hence the k-simplices of
aut, M (resp. haut, M) are in 1-1 correspondence with (n X n)-matrices {s;;} (resp.

{t.;}) with

S.j bj€hom, (M, M"), for i<j.
Sij: 'J':O for l>]

s;; € (aut, M), t,; € (haut, M*),

and the desired result is now immediate.

III. Finally assume that M is merely as in 5.1. For every integer k =—1, let
E, M c M be the maximal simplicial submodule which is trivial in dimensions <k.
As M is finitely generated there is an integer r such that EM =0 and the
finiteness of 7w now readily implies the existence of an isomorphism of simplicial
mr-modules

MQ®Q=(E_M/[ElM®Q)D- - -D(E,_.,M/EMQ Q)
Using the functor N it is not hard to show that there is a sequence of positive
integers t = (lo, . . . , t,) with t,_, dividing t (1 =<k =<r) such that, for the simplicial

submodule t 'Mc M® Q given by

xet'M iff txeEM+E._,(M®Q) forall 0<k=r
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there is an isomorphism of simplicial modules
t 'M=E_,t '"M/Eyt 'M&®- - -BE,_;t 'M/E.t"'M

i.e. t7'M satisfies the conditions of II. Moreover the naturality of the construc-
tion t~! implies the existence of a commutative diagram

aut, M—— aut_t'M

1inc1. lincl.

haut, M — haut_t'M

in which, because M was assumed to be dimension wise torsion free as an abelian
group, the horizontal maps are 1-1 and it remains to show that the maps they
induce on the homotopy groups have finite kernels and cokernels in all dimen-
sions =0.

To do this for the top map we note that a k-simplex feaut, M (resp.
aut, t 'M) is completely determined by a collection of automorphisms
fo : Maimp = Maimp (resp. t ' My, — t'Myim,) indexed by the simplices p € A[k]
of dimension =r+ k. From this and the fact that, in each dimension, M has index
in t7'M, it is not difficult to deduce that the image of aut,, M in aut_ t ' M also has
finite index in each dimension and the desired result follows.

The bottom map is the restriction to certain components of a homomorphism
of simplicial abelian groups hom,, (M, M) — hom,, (t"'M, t ' M) which is 1-1 and
has a finite cokernel in each dimension. Hence the induced map =, haut, M —
m, haut_ t'M has a finite kernel for n=0 and a finite cokernel for n>0. That
this map also has a finite cokernel for n =0 follows from the fact that (see above)
the composition 1, aut, M — 7, haut, M — ¢ haut,. t 'M does.

§6. Reduction to automorphisms
The next reduction step is to show that Theorem 4.1 is equivalent to a similar
result for the maximal simplicial sub-groups of automorphisms aut, C/I'Bc

haut, C/T’B, i.e.

6.1. THEOREM. 1> B—>C—mw—>1 be as in 4.1. Then the groups
m, aut, C/I'B (n=0,i=1) are of finite type.
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This equivalence follows immediately from

6.2. LEMMA. Let 1 > B—>C—m7—1 be as in 4.1 (i) and (ii). Then the
obvious maps m, aut, C/I':B — m, haut, C/I';B (n=0, i = 1) have finite kernels and
cokernels.

Proof. Note that there is a pull back diagram

aut,, C/I''B — haut, C/I'.B

l l

aut, C/I',B — haut,, C/I',B

in which, since C is free, the map on the right is a fibration. Hence it suffices to

prove the lemma for i =2 only, which we will do by reducing this case to Lemma
5.1

Consider the commutative diagram

Z\(sr; B/IT,B) % aut, C/T,B Baut_B/[,B -5 H2(w: B/T,B)

==

Z'(m; B/T',B) % haut,, C/I',B % haut,_ B/I,B — end,. B/I',B - H*(w; B/I’>,B)

constructed as follows:

() The maps b are induced by the functor which, to every epimorphism
H — ar with abelian kernel, assigns this kernel (as a 7-module).

(ii) For every 1-cocycle z € Z'(m; B,/I',B,) (i.e. function z : # — B,/I',B, such
that z(xy)=xz(y)+z(x) for all x,ye ), the map az:A[n]®C/I',B— C/I',B
assigns to k-simplices p € A[n] and qe€ C/I',B, the k-simplex p'(zq") - q€ C/I',B,
where q' denotes the image of q in 7 and p’ is the simplicial operator such that
p =p'i,, where i, € A[n] is the non-degenerate n-simplex.

(iii) For an n-simplex reend, B/I',B =hom,, (B/I',B, B/',B) we put cr=
k,—rikk,, where k,ec H*(w;B,/I,B,) is the extension class [8, Ch. IV] of
B,/I',B, — C,/T,B,, — w and r': B,/I',B, — B,/I',B,, is the restriction of r to the
non-degenerate n-simplex i, € A[n].

Then it is not difficult to verify that the maps a are 1-1, that Z'(mr; B/I',B)
acts principally on aut,, C/I,B and haut,, C/I,B and that the maps b map the
resulting quotients isomorphically onto the subcomplexes of aut, B/I',B and
haut,, B/I',B which go to 0 under c. Moreover the first of these quotients is a
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simplicial group which acts principally on aut,, B/I',B and this readily implies that
the image of aut, B/I,B in H*(w; B/T',B) is fibrant; as H?(sr; B/I',B) is dimen-
sion wise finite, so is this image and its homotopy groups are thus finite in all
dimensions =0. To obtain a similar result for the image of haut, B/I,B in
H?*(w; B/T',B), one notes that the map c:end, B/I,B — H*(w; B/I,B) is a
translation by k € H*(w; B/I',B) of a homomorphism and that therefore the image
of end, B/I',B under c is fibrant. As haut, B/I',B is a union of components of
end, B/I',B, the same holds for the image of haut, B/I',B under ¢ and the desired
result now readily follows.

§7. Automorphisms of diagrams of w-kernels

In this section we obtain a lemma (7.3) on automorphisms of diagrams of
ar-kernels in the sense of Eilenberg—Maclane, which will be used in § 8 to prove
Theorem 6.1.

We start with a brief discussion of

7.1. w-KERNELS AND CENTRAL MAPS BETWEEN THEM. For a
group G, let {G denote its center, aut G its group of automorphisms, in G = G/{G
its group of inner automorphisms and out G = (aut G)/(in G) its group of outer
automorphisms. Given a group m, a mw-kernel then is [9, Ch. IV] a pair (G, ¢)
where G is a group and ¢ : 7 — out G a homomorphism. Similarly we define a
central map (G, ¢) — (G', ¢') between two m-kernels as a pair (g, p) consisting of
a homomorphism g: G — G’ which sends {G into {G’' and a homomorphism

7 Xoug AUt G B 7 X aut G’

over = which, over the identity of m, agrees with the homomorphism in G =
G/{G — G'/{G'=in G’ induced by g.

72. EXAMPLE. If 1 5  B—>C—>w—1is as in 4.1 (i) and (ii), then each
B,/I'B, (n=0,i>1) is a w-kernel in an obvious manner and all face operators
between them become central maps [10, p. 347]. Moreover the same holds for the
degeneracy operators if each B,/I;B, is nilpotent of class exactly i —1; otherwise
they need not be “center preserving’’. This is automatic if C, and hence B, is free
on more than one generator.

7.3. LEMMA. Let 1 be a finite group, let D be a finite category (i.e. its nerve is
a finite simplicial set) and let F be a functor from D to the category of w-kernels and



Self homotopy equivalences of virtually nilpotent spaces 611

central maps between them such that, for every object d € D, Fd is finitely generated,
nilpotent and torsion free as a group. Then the group aut, F of self natural
equivalences of F is of finite type.

To prove this we will freely use some elementary algebraic group theory as can
be found, for instance, in [6, §21] and [4, IV, 2.2].

Proof. First we consider the case that D has only one object and its identity
map and show, essentially following Baumslag [1, Ch. 4]: if F is a w-kernel which
is finitely generated, nilpotent and torsion free as a group, then aut,, F is of finite
type.

We start with proving that the group aut F of group automorphisms of F is of
finite type. Let MF denote the (uniquely divisible nilpotent) Malcev completion of
F [1, p. 50] and let LF be the finite dimensional nilpotent Lie algebra over the
field Q of the rationals associated with F [1, p. 48]. The Baker—-Campbell-
Hausdorff formula gives rise to a natural set isomorphism log: MF= LF, the
group F admits a natural embedding F < MF, there exists [1, p. 51] at least one
lattice subgroup of MF containing F (i.e. a group F < F' < MF such that log F' <
LF is a free abelian group which spans LF as a vector space) and the intersection
F of all such lattice subgroups is itself a lattice subgroup, which is natural in F and
contains F as a subgroup of finite index [13]. Moreover, as F and F are nilpotent,
aut F is of finite index in aut F [1, p. 61]. Furthermore aut F is isomorphic to the
subgroup of aut LF consisting of those Lie algebra automorphisms that carry log F
isomorphically onto itself (called the stabilizer in aut LF of the lattice log F). By
construction aut LF is the group of rational points of a linear algebraic group
aut LF over Q (which operates on the vector space LF). By definition the
stabilizer in aut LF of the lattice log F is an arithmetic subgroup of aut LF. As [2,
§ 11] every arithmetic subgroup of an algebraic group is of finite type, so is aut F and
therefore aut F.

Next we note that, using the Baker—-Campbell-Hausdorff formula, it is not
difficult to verify that M(F/{F) is in a natural manner the group of rational points
of a unipotent algebraic group M(F/{F) over Q. Conjugation produces a
monomorphism M(F/{F)— aut LF which is easily seen to lift to an algebraic
group map M(F/{F)— aut LF. The image of this map is contained in the uni-
potent radical of aut LF and is therefore a closed algebraic subgroup of aut LF,
denoted by im LF. It follows that the image of M(F/{F) in aut LF (which we
denote by in LF) is the group of rational points of in LF.

Finally lift the structure homomorphism ¢ : 7 — out F to a function ¢:7 —
aut F and note that, for every element ye€ , the function com ¢y:aut LF —
aut LF given by t—[t, Loy] gives rise to a subset (com ¢y) '(in LF) < aut LF
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which is readily verified to be a subgroup and not to depend on the choice of ¢.
The functions com ¢y clearly lift to algebraic maps com ¢y :aut LF — aut LF and,
using the fact that im LF is a closed algebraic subgroup of aut LF, it is not difficult
to see that each (com ¢y) '(in LF) is a closed algebraic subgroup of aut LF. If

aut, LF= () (com ¢y) '(in LF) and aut,LF= () (com ¢y) (in LF)

yeEr yeT

then it follows that aut, LF is a closed algebraic subgroup of aut LF which has
aut, LF as its group of rational points. Moreover a straightforward calculation
yields that an element of aut F is in aut, F if and only if its image in aut LF is
contained in aut,, LF and from this it readily follows that aut,, F is of finite type.

To prove Lemma 7.3 in general, let F now be a functor as in 7.3. Then LF is a
functor from the category D to the category of Lie algebras and it is easy to check
that its group of self natural equivalences aut LF is the group of rational points of
a linear algebraic group aut LF which operates on the vector space &,.p LFd,
that aut F (the group of self natural group automorphisms) is isomorphic to a
subgroup of finite index of the stabilizer in aut LF of the lattice ®,.p log.ﬁc_l and
that the subgroup aut/, LF < aut LF given by the pull back diagram

aut, LF —— autlLF

l l

H aut, LFd — l_[ aut LFd

deD deD

is the group of rational points of a closed algebraic subgroup aut/, LF < aut LF.

For every object de D, now identify M(Fd/{Fd) with in LFd under the
obvious isomorphism, lift the structure homomorphism ¢, : m — out Fd to a func-
tion ¢, : 7 — aut Fd and let p,:aut/, LF — aut,, LFd denote the projection, and,
for every map f:d — d'e€ D, denote by f4 both the induced map M(Fd/{Fd)—
M(Fd'/{Fd') and the structure map

T XoutFa AUt Fd—m X outFq’ Aut Fd’

Then we denote by aut, LF < aut, LF the intersection of the equalizers of the
diagrams

x (come,y)-p,
fo oM Py M(Fd'|LFd)

(comfx@ay)-par ~

aut/, LF
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where f runs through the maps of D and y runs through the elements of 7. As the
obvious maps M(Fd/{Fd) — in LFd are algebraic maps of unipotent groups over
Q which induce isomorphisms M(Fd/{Fd)=~in LFd on the groups of rational
points, these maps are isomorphisms themselves. Using this it is not difficult to
verify that aut, LF is the group of rational points of a closed algebraic subgroup
aut, LFcaut/,, LF. Once again a straightforward calculation yields that an ele-
ment of aut F is in aut, F of and only if its image in aut LF is contained in
aut, LF, readily implying the desired result.

§ 8. Final reduction

We now complete the proof of Theorem 1.1 by reducing Theorem 6.1 to
Lemma 7.3.

First we note that it is not difficult to verify (by obstruction theory) that the
groups m, haut, C/['B (n=1,i=1) are finitely generated abelian and hence of
finite type. This fact, together with 2.9, 2.10 and 6.2 readily implies that if suffices
to show that the groups (aut, C/I';B), are of finite type for all n=0.

To do this make the harmless assumption that C, is free on more than one
generator. Then (7.2) B/I';B is a simplicial object over the category of w-kernels
and central maps between them and one can define in the obvious manner its
simplicial group of automorphisms aut,. B/I';B. Now construct a sequence of maps.

1— ZY(m; I, B,/I}B,) *> (aut, C/I;B), > (aut, B/I'B),

_céHz(Tra E—an/RBn) =k 1

as follows (cf. §6 and [9, Ch. IV)).

(i) The map b is the homomorphism induced by the functor which (see 7.2)
assigns to every epimorphism H — r, its kernel as a wr-kernel and to every
“center of the kernel preserving” map between such epimorphisms, the induced
central map.

(ii) For every 1-cocycle ze€ Z'(m, I'._,B,/I':B,), the map az:A[n]® C/I'B —
C/T':B assigns to k-simplices p e A[n] and qe€ C/I';B, the k-simplex p'(zq’) - q €
C/T'.B, where q' denotes the image of q in 7 and p’ is the simplicial operator such
that p = p'i,, where i, denotes the non-degenerate n-simplex of A[n]. Clearly a is
a homomorphism.

(iii) Restriction of a simplex r:A[n]® B/I';B — B/I'B € (aut,. B/I[';B),, to the
simplex i, € A[n] yields an automorphism r': B,/I';B, — B,/I';B,. If rik denotes
the extension of B,/I:B, by = induced by r' from the given extension
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k:B,/IB,— C,/I.B, — m then cre H*(w;I,_,B,/I';B,) will be the element
which (see [9, Ch. IV]) sends the equivalence class of rik to that of k. It is not
difficult to verify that the map c so defined is a crossed homomorphism.

A simplified version of the argument that appears in the proof of 6.2 now
yields that the above sequence is exact and that thus our problem is reduced to
showing that the groups (aut, B/I';B), are of finite type for all n=0.

Let cA[n] denote the category of A[n] (i.e. cA[n] has as objects the simplices
of A[n] and has a map p — q for every simplicial operator f such that fp = q) and
let E be the functor from cA[n] to the category of w-kernels and central maps
which, to each k-simplex of A[n], assigns B,/I'.B,. Then the group aut, E of self
natural equivalences of E is clearly isomorphic to (aut,, B/I';B),. Furthermore, let
r be an integer such that all non-degenerate generators of C (and hence of B) are
in dimensions <r, let ¢"""A[n]< CA[n] denote the full subcategory generated by
the simplices in dimensions <n +r and let F be the restriction of E to ¢"*"A[n].
Then one readily verifies that the restriction aut, E — aut, F is an isomorphism
and the desired result thus follows from 7.3.
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