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The fundamental group and the spectrum of the Laplacian

ROBERT BROOKS*

It has been known for many years that there is a close relationship between
the fundamental group of a closed manifold M and the Riemannian geometry of
its universal cover M. Roughly speaking, a closed manifold picks out a family of
metrics on its universal cover, namely, those metrics which are invariant under
deck transformations. These metrics are all quasi-isometrically equivalent, be-
cause the original manifold is compact. Then ‘“‘asymptotic properties” of the
fundamental group are reflected in asymptotic geometric properties of the univer-
sal cover in this quasi-isometry class of metrics.

A well-known example of this is the theorem of Milnor-Svar¢ [14] which
states that the fundamental group m,(M) has exponential growth in the sense of
groups if and only if the volume V(r) of a ball of radius r in M grows
exponentially in r.

The object of this paper is to add another example of this type. If N is any
(possibly non-compact) Riemannian manifold, and A denotes the Laplace-
Beltrami operator, with sign chosen so that it is a positive operator, we set

Af - f
Ao(N) = inf oo |
J, 7

where f runs over all smooth functions on N with compact support. A, has the
following interpretation: it is well-known that the action of A on smooth functions
with compact support extends to an unbounded positive, self-adjoint operator on
L?(N). Then Ao(N) is the greatest lower bound of the spectrum of A (see [6]).

From the expression given for A¢(N), it seems that one derivative of the metric
appears, since that is true of A. However, writing [y Af - f = fx |lgrad f||* shows that
A, does not involve any derivatives in the metric, and one sees that the property
Ao(N) =0 is unchanged when the metric on N is changed to a quasi-isometrically
equivalent one.

* Partially supported by NSF Grant #MCS 7802679.

581



582 ROBERT BROOKS

With this understood, our main result is that the condition A,(M) =0 depends
only on the fundamental group ,(M).

THEOREM 1. Ao(M)=0 if and only if (M) is an amenable group.

See [10] and §1 below for results concerning amenable groups.
An immediate consequence of this is the following:

THEOREM 2. Let N be a simply connected Riemannian manifold, and I" a
group of isometries of N such that N/I" is a compact manifold. Then I is amenable if
and only if any other group of isometries satisfying the same condition is amenable.

Recalling that a group containing a free group on two generators as a
subgroup is not an amenable group, one might regard Theorem 2 as a generaliza-
tion of a theorem of Tits [15], valid when N is a linear group.

The question of the existence of complete manifolds N such that Ay(N)>0 has
been studied by McKean ([13], see also [19]) who proved that if N is a complete,
simply-connected manifold of negative sectional curvature bounded away from 0,
then Ao(N)>0. He also produced a lower bound for Ay(N) in terms of the bound
on the sectional curvature, something that our topological methods cannot
provide. It follows from McKean’s theorem and Theorem 1 that the fundamental
group of a compact manifold of negative sectional curvature is not amenable - this
result is known from several points of view (see [3], [8], [9]).

The novelty of Theorem 1 is, however, that there are no curvature assump-
tions at all-in particular we find manifolds N which have the property that
Ao(N) >0, which are not K(, 1)’s or obtained from K(m, 1)’s in any geometric
way. To see this, we observe that any finitely-presented group arises as the
fundamental group of a compact manifold of dimension 4. In particular, this
is true of the free group on two generators. The resulting manifold cannot
be a K(Z=*Z,1), since it has non-trivial H*, and the figure-eight, which is a
K(Z*Z, 1), does not. Choosing any metric on this manifold N gives a metric
on the universal cover N with A,(N)>0.

Theorem 1 also compares with the theorem of Milnor [14] by observing that a
group with subexponential growth is necessarily amenable. This is well-known,
and we provide a proof in §1. A consequence of Theorem 1 is then that if M has
subexponential growth, then Ao(M)=0. One may ask if this theorem is valid
without the assumption that M arises as the universal cover of a compact
manifold. In fact, this result is valid for complete manifolds (see [2].) It is
reasonable to expect that other theorems from group theory can be translated into
Riemannian geometry with the aid of Theorem 1. We do not pursue these
questions here.
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The outline of this paper is as follows: In §1 we review the notion of an
amenable group. In §2 we prove one direction of Theorem 1: under the
assumption that ,(M) is amenable, we exhibit functions f; with

[ ar

[r

Section 4 then gives a proof of the other direction of Theorem 1, after a brief
discussion of integral currents in §3. In §5 we present some remarks on the heat
kernel, connecting Theorem 1 with Kesten’s Theorem [12].

This paper came about from several sources. Most immediately it arose from
reading the inspiring paper of McKean [13], while searching for a geometric
version of Kesten’s Theorem [12]. Kesten’s theorem was first brought to my
attention by the Ph.D. thesis of F. Eisenberg [9], and I benefitted also by many
conversations with Joel Cohen. The philosophy suggesting the possibility of
Theorem 1 comes directly from [14].

The author would like to acknowledge conversations with William Allard, Jeff
Cheeger, Blaine Lawson, and Scott Wolpert, all of whom were very helpful in the
development of this work.

— (0 as [—oo,

§1. Felner’s theorem

Let G be a countably generated discrete group. G is said to be amenable if
there is a finitely additive left-invariant mean w on G, i.e., a bounded linear
functional

p-L7(G)—R

having the properties:

(i) infyei (f(8)) = p(f) =supgcc (f(8))
(ii) for all ge G, u(g - f)=u(f), where g - f(x)=f(g™"x).
It is clear from the definition that any finite group is amenable: let

1

u(f)=|-5‘gezc f(g).

However, in general, w’s constructed for infinite groups tend to be rather
transcendental, their existence relying on some variant of the Axiom of Choice.
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For applications, it is desirable to have alternative characterizations of this notion.
We give one such characterization below, and one in §4.

The first of these is a combinatorial characterization due to Fglner [17]. To
state it, for any finite subset E of G, we let #(E) denote the cardinality of E, and
g-E={gh:heE} for geG.

THEOREM (Fglner). G is amenable if and only if, for every k in the interval
0<k <1, and arbitrary, finitely many elements a,, . . ., a, of G, there exists a finite
subset E of G such that

#(ENa, - EyY=k#(E), for i=1,...,n.

As a simple application of this theorem, we prove:

PROPOSITION 1. If G has subexponential growth, then G is amenable.

Proof. Let 0<k <1 be given, and a,,..., a, a finite subset of G. Let E, be
the set of all words of length <r in the elements a,, ..., a, and their inverses.

CLAIM. There exists an r such that for all i, #(E, Na, - E,)=k - #(E,).

Proof. Indeed, we see that E,_, < E, Na; - E, for all i. If the claim is false, then
#(E,_;)<k#(E,), for all r; this implies that #(E,)=(const)(1/k)r, and then G
has exponential growth.

The proposition follows by setting E = E, for this r.

Remarks. This proposition is well-known. A proof along different lines may
be found in [11], and a proof similar to the above for G =Z is given in [10].

From this theorem one can easily establish a large class of amenable groups. It
follows that all abelian groups are amenable; one sees directly from the definition
that subgroups and quotients of amenable groups are amenable, and the extension
of an amenable group by an amenable group is amenable.

The best example of a non-amenable group is the free group on two
generators — the fact that this is non-amenable follows from the Banach-Tarski-
Hausdorff paradox. In particular any group containing a free subgroup on two
generators is non-amenable, and this is how non-amenable groups arise geometri-
cally.

We now give a geometric interpretation of Fglner’s theorem. To state it, let M
be a compact manifold, and M its universal cover. We denote by F a fundamental
domain in M for the action of m,(M) which arises in the following way: we pick a
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smooth triangulation of M, and for each n-simplex in this triangulation, n =
dim (M), we pick one simplex in M covering this simplex. F is the union of all of
these simplices —in particular, F is a union of finitely many smooth n-simplices,
but F is not necessarily connected.

PROPOSITION 2. Let M be a compact manifold, and M its universal cover.
Then (M) is amenable if and only if, for every fundamental domain F as above,
and for every €, there is a finite subset E of w,(M) such that if

H= g F

geE

then H satisfies the isoperimetric inequality

area (0H) <
vol(H) °©

Proof. First we assume that (M) is amenable, and pick F and & as above.

Let a,, ..., a, be the finite set of elements of ;(M) such that a,(F)N\F# .
Note that a4, ..., a, generate m,(M). Let A =area (dF), V =vol (F). Given k, we
choose E a finite set as in Fglner’s theorem, and consider H as above. Then

vol(H)=V - #(E),
and

area (OH)=<A - #{geE:qa,- g¢ E for some i}
=A-n-(1-k)#(E),

where the last follows from the choice of E. Then

area(aH)< . B
—————-—VOI(H) <A -n(l1-k)

and choosing k=1~ ¢/(A - n) gives the desired inequality

Now assume that m,(M) satisfies the conditions of the proposition, and let
a;,...,a, and k be given as in Fglner’s theorem.

We choose a fundamental domain F so that a,- FONF#&, i=1,...,n,
which is particularly easy in view of the fact that we do not demand that F is
connected. We may extend the set {a,, ..., a,} so that it includes all elements of
G such that g- FNF# .



586 ROBERT BROOKS

Now, given &, we choose H and E as in the conclusion of the proposition. We
want to estimate the set {ge E: g - FNaH# J}.

On the one hand, there is a constant I, depending only on F, such that if
g - FNoH# O, then area (g - FNoH)=1. Thus

#{g:g - FNoH+# @}sir—-ea—l(@.
On the other hand, this set contains the set E—a; - E for each i.
Finally, if V denotes the volume of F, then

_vol (H)
#(E) = v
Then
#(Eﬂa,--E)_lﬁ#{g:g-FﬂaG#@}>1_area(aH)._Y
#(E) #(E) T vol(H) I
21-—&-—?.

Choosing ¢ small gives us a number =k, and so m;(M) satisfies the criterion of
Fglner’s Theorem.

§2. Some test functions

In this section, we prove that if 7r,(M) is amenable, then Ao(M) =0. The idea
of the proof is to find test functions f whose support lies in a union H of
fundamental domains chosen according to Fglner’s Theorem, such that Af is
concentrated near oH.

We now fix for the discussion a fundamental domain F, two numbers 0<g; <
g, <1, which we will assume fixed but sufficiently small (depending on the shape
of F), and ¢:[0,1]—[0, 1] a smooth function such that ¢(x)=0 for x<e,,
P(x)=1 for x>¢,.

Now let € >0, and E a finite subset of 7r;(M) be given as in the conclusion of
Proposition 2. Then let xi be the characteristic function of H=J,.s g * F, and
let

fe(x) = ¢(dist (x, H)) - xu.

fe is smooth with support contained in H.
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We now estimate

[ feafe

| r |

On the other hand, there is a C;, depending only on ¢ and F, such that
L:fE - Afg =C, -area (0H)

since Afg has support only in an g,-neighborhood of dH, and here its values are
determined in each fundamental domain g - F by ¢ and the finitely many ways the
fundamental domains adjoining g - F either occur or do not occur in H.

On the other hand

f f2=C, - vol (H)

since in each fundamental domain g * F occurring in H, fz=1 except within an
£,-neighborhood of g - 9F. Combining these two gives

L;, fe- AfE<Q _area (6H)
jfz ~C, vol(H)’

and this last can be made arbitrarily small by Proposition 2. Thus,

| rar
Ao(M) = inf X——=0.

lr

§3. A variational problem

In this section, let M denote a bounded, open subset of an n-dimensional
Riemannian manifold M’, such that M has smooth boundary B. We consider the
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problem of minimizing the isoperimetric constant

_ . .area(dS)
h(l‘/l)“nslf vol (S)

where S runs over open submanifolds of M with smooth boundary. Our main
result is:

THEOREM 3. In the above situation, there is a non-zero integral current T
realizing this minimum, such that the generalized mean curvature of 0T is bounded
in terms of h(M) and the mean curvature of B.

It is remarked in [4] that h(M)>0.

Let S; be a sequence of such S such that (area (0S;)/vol (S;)) decreases to h(M).
According to [1], there exists positive constants a and b such that if vol (S;)<a,
then

vol (S;)=b area (3S,)"" P,

so that
area (asi))"""“” Yn-1) = L
( vol (S) (vol (ST "=

It follows that there is a constant ¢ such that vol (S;) > c.

Since we also have that vol (S;) <vol (M) <o, it follows that there exists d
such that N(S;) = vol (S;)+vol (3S;) < d, and we may apply [16, 4.2.17] to conclude
the existence of an integral current T such that

lim inf vol (T —S;) = 0.

In particular, vol (T)=c, and

. 9S.
area (3T) <lim inf area (3S;) lim inf area (3S;)

vol (T) ~ im= vol(T)  i»= vol(3S,) = h(M).

Now let & be a compactly supported vector-field in M’, and let h, be the flow
generated by & We consider

d area (h,(3T)) |
dt vol (h(T)) ’
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it will be convenient to first handle the case where & [B is tangent to B. In this
case, we have that h (T) is again an integral current supported in M, so that by the
minimizing property of T,

d area (h,(3T)) _
dt vol (h,(T))

0 (*)

Denote by v the ||9T||-measurable unit vector field satisfying

d
L vol (h($) |.-o= [ £+ v Jo

v is the unit “outward normal” to oT. If » denotes the generalized mean -
curvature of 9T, then it is standard that we also have

d
-, area (h,(8T)) = J"‘f ~mvd [|0T]|

so that (*) becomes

_dara(hGT) 1 [, ) y
~dt vol (h(T)) vol (h(T)) | & mvdl|oT|~h(M) Jf d |oT|
1 .

and we see that = h(M) on supp (3T)— B.
Now let x esupp (dT) N B, and let U be a neighborhood about x. Let p be the
signed distance function from B

p(y)=dist(y,B) if teU-M
p(y)=—dist(y,B) if yeUNM.

Then grad (p) is a unit vector field pointing outward from B. If f is a smooth
function with compact support in U, let w(f) = (d/dt)(area (g, (0T)) where g, is the
flow generated by f - grad (p). We wish to estimate w(f) in terms of |f| and |H]|,
where H is the mean curvature vector of B, since this will give us the desired
bound for the mean curvature of T at x.
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To state our main result, we will need the following related quantities:

wi(f) = L_B f grad (o) - vd 0T
walf) = L fdloTy
us(f) = L fH - vd oT)

wdf)=tm j fl1-ly-grad (1 d o

hio
Our main observation is:

LEMMA. u(f) =h(M) - pu,(f) + pa(f) + pa(f).

In particular, this shows that the limit defining w, exist.

Proof. Let ¢, be the Lipshitz function given by

en(x)=1 if x=0
=1+i—x if —h=x=<0
=0 if x<-h.

Then

p(f)= w1 —¢)f)+ n(dsf) where ¢, =¢,°p.

Then w((1—¢,)f)=h(M)fu(1—dy)-fgradp - vd ||dT|| since (1—¢)f is sup-
ported away from B. As h — 0, this becomes h(M) - u,(f). Now p((¢f))=
faeus V(g - f grad p) - v d ||0T)| where 71 denotes orthogonal projection onto the
tangent bundle of 3T, see [18]. On the other hand,

V(Y - f grad p) = (¢} p)f dp - grad p + (@, © p) df
' - grad (p)+ (¢, © p)fV grad (p).

The first term then gives

1
L (<Pa°p)fdp°gradp=zj\ f-[1—-|v-grad p|*1d |loT]
UB —h<x<0
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The second term tends to 0 as h — 0, since because grad (p)= v ||0S|-almost
everywhere on B, the contribution of the boundary is 0, while as h — 0 the
contribution of M — B vanishes.

The third term is then easily seen to be [z fH - grad pd ||0T]| as h — 0, and the
lemma is established.

Of these terms, only w, is not estimated in terms of our desired quantities. To
handle this, we observe that

d
at vol (g,(T)) = () + mo(f).

If f=0 everywhere, then —f - grad (p) points everywhere interior to M, so that by
the minimizing property of T,

d (area (g (aT))) 1

dt \ vol (g(T)) ~ vol (T) ([u(=f) = h(M)[ iy (=) + (=)D =0

and we get

pa(—)+ pa(=f) = h(M)p(—f)

and hence

0= py(f) = h(M)po(f) — pa(f)

when f=0. Now we have, for general f,

()l = R(M) i (F) + us(f) + pa(F)
= ‘h(M)lJvl(f)‘ + |“'3(f)‘ + pa(f )+ ()
< |h(M)p, (HI+ R (M) (DI + 2 | a( D

= h(M) L flo-vldloT+2 L 1+ 1| d T

from which we see that the mean curvature of T is bounded in absolute value by
1+2|H|, and the theorem is established.

We remark that it seems likely that this bound can be improved. Perhaps a
more careful argument would give the mean curvature of T at supp (3T) N B to
be bounded by the mean curvature of B.
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§4. Proof of Theorem 1

In this section we complete the proof of Theorem 1 by showing that if
Ao(M) =0, then 7,(M) is amenable. The idea of the proof is to use the assumption
that Ao(M) =0 to find a sequence of functions f, with compact support in M such
that

From this we conclude from an argument of Cheeger ([4], and see below) the
existence of hypersurfaces S; dividing M into a bounded and an unbounded
component, such that the isoperimetric ratio

area (S;)
vol (int (S;))

(where int (S;) denotes the bounded component of M) goes to 0 as i — .

Then we would like to replace int (S;) with the fundamental domains which
intersect int (S;) in hopes of applying Proposition 2, and concluding that (M) is
amenable.

A moment’s thought, however, will convince one that this approach does not
quite work. Given a hypersurface S;, one may attach to it a long, thin spike which
will increase both the surface area and the enclosed volume by an arbitrarily small
amount, but which will wander through a large number of fundamental domains.

To overcome this difficulty, we apply the theorem of §3 to replace the
hypersurfaces S; by integral currents T;, whose isoperimetric ratio is not greater
than that of S,, but whose mean curvature is bounded independent of i. It will be
seen below that this is sufficient to imply that the isoperimetric ratio of the union
of fundamental domains meeting supp (T;) tends to 0 as i — o, and so Proposition
2 applies to conclude that 7;(M) is amenable.

We begin first with a review of Cheeger’s inequality [4] from our present
viewpoint.

Let N be a compact manifold with non-empty boundary, and let f be a
function satisfying Dirichlet boundary conditions (for us it will suffice to assume
that f=0 in a neighborhood of dN). For almost all ¢ >0, the level surface S, is a
smooth hypersurface in N, by Sard’s Theorem; S, divides N into two components
corresponding to f(x)>t and f(x)<t Let int(S,) denote the first of these
components.
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Then Cheeger’s inequality says that, for some t, we have the inequality

[7-a1
Jr

In particular, taking the infimum of both sides, and allowing the hypersurface S to
range over all possible hypersurfaces, gives the lower bound Ay(N)=1h? for the
spectrum of A on N with Dirichlet boundary conditions, in terms of the
isoperimetric constant

>1 ( area (S,) ‘)2
4 \vol (int S,)/

_ area (S)
S Vol (int (8)

In the situation at hand, we are given that AO(M)zO; it follows from the
definitions that there are functions f; with compact support with the property that

[

| ar

We now pick a fundamental domain F for the action of (M), and let H; be a
finite union of translates of F so that supp (f;) < H,. It follows from Cheeger’s
inequality that there exist hypersurfaces S; contained in H; such that

=g —>0 as i—oo,

area (S;) .
————— > as i—>x,
vol (int (S;))

In order to apply the results of §3, we need a uniform way of ‘“‘smoothing the
boundary” of H,;, so that the mean curvature of the boundary is uniformly
bounded. This is easily done — cover a neighborhood of the boundary of F by open
sets U,, and for each U, choose smooth functions g which are =1 for x € F, and
which are =0 whenever dist (x, F) = ¢,, where ¢, is an arbitrarily small constant. If
U, contains a corner of F, so that U; meets more than two translates of F, we
choose one such g; for all the possible ways each of these translates may either be
included or not included in H,.
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We now cover H; by translates of the U,’s, choose g’s as above, and glue
them together by a partition of unity to get a smooth function g. For some &¢,,
then, g '(1—¢,) will be a smooth hypersurface of M, and we set H, =
H Ug ' ((1—¢,,1)), aH, = g '(1—¢,). The result of §3 now applies to give:

LEMMA. There are integral currents T, in M such that:
aT,;
(i) ———a:}iﬁzn;)%O as i—»o0

(i) The mean curvature of 8T; is bounded in absolute value independent of i.

We are now ready to apply Proposition 2 to conclude the amenability of m,(M).
To that end, let £ >0 and fundamental domain F be given.
For each T,, let K; be the union of translates of F meeting T;

K= U ¢g'F

g FNT #
PROPOSITION 3. There is a constant k, depending only on F, such that

area (9K;) _  area (3T))
vol(K)) ' wol(T)) °

Given Prop. 3, Proposition 2 implies the theorem, since we may choose i
sufficiently large so that

__area (Ty)
K" Vol (int (T}))

Proof of Proposition 3. It is clear that vol (K;)=vol (T;), since T, <K, so it
suffices to show that

area (0K;) <« - area (0T,).
To see this, we cover M with finitely many geodesic balls B; of radius 8, wher~e 38
is less than the injectivity radius of M. We lift these balls to a covering B Yof M.

For each ball BX such that BENT,# &, let x, be a point in this intersection.
Then the balls B,5(x,) cover T..

CLAIM. There is a constant K such that

area (B,s(x,)NT,)=K.
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Proof. 1t follows from the Monotonicity Theorem ([18], Remark 3.15, or [1]),
that there is a constant M such that

area (B, (x))e™

n—1

r

is monotone increasing in r, where area (B,(x)) is the volume of a geodesic ball of
radius r about x in T, and M can be estimated from the mean curvature of T, and
the second fundamental form of some isometric embedding of M into RY.
Furthermore, as r — 0 the limit of this expression is =a(n —1), the volume of a
unit ball in R""!, whenever xe T..

It follows that area (B,;(x )N T =e ™M@(28)" 'a(n—1), establishing the
claim.

It follows from the compactness of M that there is a number L so that at most
L disks B,s(x,) meet at any given point of M. It similarly follows that there is a
number » such that any B,s(x,) lies in at most » fundamental domains.

Setting A = area (dF), and letting N denote the number of balls B,5(x, ) which
meet T;, we have

N-K K
) e
area (T)) 3 ™

area (0K;)
A

AL .
and setting const=K—- establishes the theorem.
7

§5. The heat equation

We now give an alternate description of amenable groups, due to Kesten [12].

For G a countable discrete group, a probability distribution P on G is a
function P:G —[0,1] such that } s P(g)=1. We will assume that P is
symmetric - i.e., P(g) = P(g ') —and we will also assume that P(e)>0.

In a natural way, P determines a left-invariant random walk on G, by the
following construction: given an element x € G, the probability, when taking a
step from x, of landing on xg, is precisely P(g).

If {g;} denotes some indexing of the group G, let M denote the infinite matrix

M= (mi,j) where mij = P(gi‘lgi)
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M is clearly a symmetric matrix, all of whose entries are positive, and whose rows
and columns sum to 1. Let also P’ denote the function

P®(g)= Y P(g)-P(g)- - P(g).

1°82 " &8

Then P™ denotes the probability distribution associated to the random walk
corresponding to taking k steps in the random walk determined by P; the
associated matrix M® is obtained from M by k-fold matrix multiplication.

We define the Kesten number «(P) by the formula

k \1/k

x(P)= 111_1330 (mg,g

where g is any element of G, for instance e.

k(P) has a number of interpretations. One sees readily that if A, <« (P)<A,,
then for sufficiently large k we have (A)* <P®(e)<(A,)* —thus k(P) is an
asymptotic estimate on the probability that after k steps of the random walk P,
one has returned to the starting point.

Another interpretation arises by allowing P to act on [*(G) according to the
convolution law

(P*f)(®)= 2 f(gg) - P(g).

Then «(P) is precisely the spectral radius of this operator P.
With this understood, we state the following:

THEOREM (Kesten) [12]. Assuming that the support of P generates the group
G, then k(P)=1 if and only if G is amenable.

In particular, whether or not «(P)=1 does not depend on P. The value of
k(P), however, doesn’t have an intrinsic group-theoretic meaning, and depends
on P. ‘

Now we introduce a probability distribution on (M) in the following
geometric way:

Let H,(x, y) denote the fundamental solution for the heat equation in M — the
existence and uniqueness of H,(x, y) is established in [7], see also [5]. We also fix
for the discussion a fundamental domain F in M.
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For each ¢, let P,(g) be the probability distribution defined by the formula

1
vol (F)

P.(g)= [ H,(x, y) dx dy.
Fxg-F

It is evident that P,(g) is a symmetric probability distribution on (M) whose
support is all of 7;(M). Let k, denote the Kesten number associated to P,.

Intuitively, P, describes the following random walk on M: at time 0, a unit
amount of heat is uniformly distributed throughout F. The heat then distributes
itself about M, according to the heat equation, until at time t. At this point, the
heat is redistributed evenly within each fundamental domain. Then the heat flows
according to the heat equation until time 2¢t, at which time the heat is again
redistributed evenly in each fundamental domain, and the process continues.
Then k, is an asymptotic measure of the heat remaining in F.

We compare this with the random walk on M which is given by the undis-
rupted flow of heat for all time. We define a number «., the analogue of the
Kesten number in this case, by the formula

1/t _
K. = lim (L H,(x, y) dx dy) = e M)
xF

t—>00

where the last equality follows from the spectral representation of H,(x, y). Thus
Theorem 1 and Kesten’s Theorem give

THEOREM 4. For any t, k, =1 if and only if Ao(M)=0.

More precisely, one sees easily that

1 1/t -
(P‘(e))m:(vol(F)L H,(x,y) dde) —e ™ as oo,
xXF

and that k, = P,(e), so that lim,_,.. ()" = e ™’ Hence it is reasonable to ask:
Question. Do we have lim,_,., (k)" = e *®™)?

An affirmative answer would give a new proof of the result of §2. If one could
also show that the right-hand side cannot be 1 without each term in the limit on
the left-hand side being 1, then one would have a new proof of Theorem 1.
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