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Ueber extremale quasikonlorme Abbfldungen

Richard Fehlmann

1. Einleitung

Wir betrachten quasikonforme Abbildungen / des Einheitskreises D
{z||z|<l} auf sich. Dièse induzieren durch stetige Fortsetzung einen orien-
tierungserhaltenden Homôomorphismus jut der Kreislinie dD auf sich. Betrachten
wir die Klasse Qf (gelegentlich bezeichnen wir sie auch mit Q^) aller quasi-
konformen Abbildungen mit denselben Randwerten wie /, so gibt es eine (oder
mehrere) extremale quasikonforme Abbildung /0 in Qf, d.h. eine mit kleinst-
môglicher maximaler Dilatation. Dies folgt aus der Normalitât der Menge aller
K-quasikonformen Abbildungen in Qf fur festes K. Im Folgenden bezeichne Kf
die maximale Dilatation von / und Ko inffeOf Kf diejenige einer Extremalen f0.

Wir wissen: feQf0 ist genau dann fur seine Randwerte extremal, wenn fur
dessen komplexe Dilatation k gilt

sup I | \K(z)4>{z)dxdy
D

k|U- (D

Dabei ist v die Menge aller holomorphen quadratischen DiflFerentiale <$> in D mit

U\\=\\\<t>(z)\dxdy

Die Notwendigkeit dieser Bedingung wurde von Hamilton [3] gezeigt und die
Hinlânglichkeit von Reich und Strebel [10]. Sie hat zur Konsequenz: ist k0
komplexe Dilatation einer extremalen Abbildung /0, so gibt es eine Folge in D
holomorpher quadratischer DiflFerentiale <£n mit ||<£n||= 1, sodass

K0<t>n dx dy -> ||k0||oc : k0, n

Eine solche Folge heisst Hamiltonfolge. Da v normal ist, kônnen wir o.B.d.A.
annehmen, eine solche Hamiltonfolge konvergiere lokal gleichmàssig in D gegen
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eine holomorphe Funktion <£0- Ist ||<£oll= 1> so folgt

Ko^odxdy =fc0.

Ist 0<fco<l und berûcksichtigen wir, dass wir <f>0 durch <t>0eie ersetzen kônnen,
so folgt

,_
4>o

und damit ist f0 eine Teichmùllersche Abbildung sowie <£0 ihr zugehôriges
holomorphes quadratisches Differential. Dièses hat endliche Norm, also ist /0

sogar eindeutig extremal, d.h. fur /eOfo, f£f09 gilt Kf>Kfo Ko (vgl. [12]).
Ist 0^||<£ol|<l, so kônnen wir annehmen, dass <f>n-*0 fur n-»°° îokal

gleichmâssig in D [14]. Wir sprechen von einer degenerierenden Hamiltonfolge.
Es ist also von Interesse, diesen Fall zu untersuchen. Wir werden in Abschnitt 4

zeigen, dass es dann einen wesentlichen Randpunkt gibt, d.h. einen Punkt £ e dD,
sodass die maximale Dilatation Ko der Extremalen eine untere Schranke fur die
maximale Dilatation jeder Erweiterung der Randabbildung in nur eine

Umgebung von £ ist. Hieraus ergibt sich die folgende Alternative fur extremale
quasikonforme Abbildungen. Es handelt sich um eine Teichmùllersche Abbildung
mit holomorphem quadratischem Differential endlicher Norm (sie ist also

eindeutig extremal) oder eine mit mindestens einem wesentlichen Randpunkt. Dièse

Aussage ist eine Verschârfung des Rahmenabbildungskriteriums [14].
An dieser Stelle wollen wir das Problem auch allgemeiner stellen. Sei F eine

abgeschlossene Menge auf dD und /gQ^. Es gibt dann auch extremale
Abbildungen /r in der grôsseren Klasse Q£ aller quasikonformen Abbildungen des

Einheitskreises auf sich, die auf F mit jx ùbereinstimmen. Dann gilt, sofern F
mindestens 4 Punkte hat: fr ist in Q£ genau dann extremal, wenn fur deren

komplexe Dilatation Kr

| (2)

D

ist, wobei vr die Menge der <f>ev ist, die noch reell làngs 3D\F sind, d.h. wo
<f>(z)dz2eU fur zedD\r [9].

Sei Kr inffeQr Kf. Fur eine Extremale fr gilt dann: Sie ist Teichmùllersch mit
holomorphem quadratischem Differential 4>r in vr oder es gibt einen bezùglich F
wesentlichen Randpunkt £, d.h. einen Punkt £€F, sodass Kr eine untere
Schranke fur die maximale Dilatation jeder quasikonformen Abbildung ist,



560 RICHARD FEHLMANN

welche eine Umgebung U von £ (bezùglich D) abbildet und auf l/HF mit
ubereinstimmt.

2. Die DOatation der Randabbfldung und die Hauptungleîchung

Ist A eine offene Menge in C und BcC, so verstehen wir unter einer K-
quasikonformen (K-q.k.) Abbildung f:A^B eine Injektion, die K-quasikon-
form in jeder Zusammenhangskomponente von A mit Bildgebieten in JB ist. Eine
solche Abbildung heisst quasikonform (q.k.), wenn sie K-quasikonform fur ein
gewisses K ist.

Ist jll die Randabbildung einer q.k. Abbildung des Einheitskreises D auf sich,
so verstehen wir unter der Dilatation H von jx die Zahl

H : inf {Kf \ f : U(dD) -> D, q.k., /|aD rf
und unter der (lokalen) Dilatation Hc von jll in ^ (ÇedD) die Zahl

D, q.k., \ l

Dabei werden die Infima ûber aile bezùglich D oflfenen Umgebungen U(dD) von
dD bezw. U(C) von C und ûber aile derartigen Funktionen / genommen.

Wir bemerken sogleich, dass die Abbildung £»-»H£ auf dD nach oben

halbstetig ist. Ist nàmlich a>Ho so gibt es eine a-quasikonforme Erweiterung
von il in eine Umgebung U von £ in D. Also ist Hc> ^ a fur C € U H dD. Deshalb
wird das Supremum von {Hc \ C e dD} in einem Punkt £0 € dD angenommen, und
es ist H& Max4eaD Hc.

Die Dilatation H und insbesondere die lokalen Dilatationen Hc bilden
natùrlich untere Schranken fur die zur Extremalen gehôrige maximale Dilatation
Ko. Ein wichtiges Werkzeug, un dièse Grôssen zu vergleichen, ist die Hauptun-
gleichung ([10], p. 380). Sie besagt das folgende:

Sind / und ft zwei quasikonforme Selbstabbildungen des Einheitskreises D in
der Klasse Q^ mit komplexen Dilatationen k und ku so gilt fur aile <f> e v

1 "=

D

l + l*i(w)-

*(<

¦t

k(z) <

fx(w)|<

c)\<t>(z)\

2

W(z)\2

fr(z)|Ll-K(z)<fr(z)/i<Ê(z)|J|
dx dy. (1)
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Dabei ist w=f(z) und /u, und fjLx sind die komplexen Dilatationen von / * und

h1
Daraus ergibt sich die Hmlanglichkeit der Bedingung (11) [10] und auch das

Rahmenabbildungskntenum [14] Ist H<K0, so gibt es keme degenenerende
Hamiltonfolge Die Extremale f0 ist also eindeutig extremal, denn sie ist
Teichmullersch mit quadratischem Drfferential endhcher Norm

3. Eine Abschatzung der Dflatation der RandabbUdung und ein daraus
resultierender Fortsetzungssatz

Sei jLL eine Abbildung der Kreishnie dD auf sich, die sich quasikonform m den

ganzen Einheitskreis fortsetzen lasst Wir sagen dann kurz, jll sei eine quasi-
symmetnsche (q s Abbildung von dD auf sich Wenden wir namhch auf Bild und
Urbild die Abbildung -i log z an und bezeichnen die mduzierte Abbildung der
reellen Achse auf sich wieder mit jul, so ist /ut eine quasisymmetnsche Abbildung
gemass der Définition m [2], denn sie lasst sich ja quasikonform in die obère
Halbebene erweitern Ferner gilt jul(x + 2tt) /ll(x) + 2tt fur aile xeR

Es gibt also em p ^ 1 mit

>*><)
x \ g -

fur aile xeR und f>0 (jul heisst dann p-quasisymmetrisch
Fur £cR definieren wir

p(E) =inf |p^l|Q(O[
und verstehen unter der lokalen Quasisymmetne von jx in x die Zahl

px inf {p(I) | x g I, I em offenes Intervall}

Wie die lokale Dilatation ist auch x •-> px nach oben halbstetig Weil px < °° m
xeR, gibt es ein x0, 0^xo^27r, mit pXo MaLXo^xê2^Px Wegen /x(x + 2tt)
jul(x) + 2tt ist also MaxXGRpx <œ

Fur jeden Homoomorphismus jut der Kreishnie auf sich nennen wir die so

erhaltene Abbildung jll kurz die mduzierte réelle Abbildung
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LEMMA 3.1. /ul sei ein orientierungserhaltender Homôomorphismus der Kreis-
linie dD auf sich. Fur die induzierte réelle Abbildung gelte

Px <0° /"r j^des réelle x.

Dann làsst sich jul quasikonform in den Einheitskreis erweitern, und fur die

Dilatation H von jx gilt:

H^(maxpx)

Fur die lokale Dilatation Hç von jul in £ e dD gilt:

Beweis. Wir haben schon gesehen, dass MaxX6R px endlich ist. Sei nun A >
MaxxeR px. Dann liegt jedes xeR in einem offenen Intervall J, in welchem jul A-
quasisymmetrisch ist, d.h. wo p(J)^A ist. Die Funktion

ist A-q.s. in (*-

ist stetig, denn man sieht sofort, dass

gilt, und sie ist positiv oder konstant unendlich. Wegen lx^2-n h> gi^t es ein
lo>0, sodass /ut A-quasisymmetrisch ist in [x — l0, x-hl0] fiir jedes xeR. Wir
konstruieren nun die Beurling-Ahlfors-Fortsetzung [2] in der oberen Halbebene.
Im horizontalen Streifen {x + iy |0^y^fo} Wir(i dièse A2-quasïkonform, und da
sie auch die horizontale Période 2ir hat, erhalten wir eine A2-q.k. Erweiterung
von fx in einen Kreisring r<|z|^l. Da A>MaxxeRpx beliebig war, gilt also

Nach einem Erweiterungssatz von Lehto und Virtanen ([7], p. 100) gibt es

nun eine q.k. Abbildung des Einheitskreises, die in einem kleineren Kreisring
r^|z|^l, r>r, mit der konstruierten Erweiterung zusammenfâllt.

Die Abschàtzung fur die lokale Dilatation erhalten wir ebenso, indem wir
A>px wâhlen.

Seien x1<x2<x3<x4 réelle Zahlen oder <», dann bezeichne M(xly x2, x3, x4)

den Modul des Vierecks, bestehend aus der oberen Halbebene und den Ecken
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*i, x2, x3, x4. Wir definieren

3>(r): M(-l,0,r,oo).

Die a- und b-Seiten seien so gewàhlt, dass & monoton wâchst. 0* ist stetig in
[0, oo], wenn wir ^(0) 0 und SP(oo) a> setzen. Es gilt

0>(r) l + ©(r)logr fur ri=l,

Wobei 0 monoton von 0,2284 • • • bis 1/tt wâchst (vgl. [2]).
Fur eine reellwertige Funktion \i in einem Intervall der reellen Achse, welche

sich quasikonform in eine Umgebung dièses Intervalls fortsetzen lâsst, sind lokale
Dilatation Hx und lokale Quasisymmetrie px in x definiert, und wir kônnen px

durch Hx abschàtzen.

LEMMA 3.2. Sei I ein offertes Intervall und |ul:I-^R stetig monoton wach-
send. Fur ein xoel existiere eine quasikonforme Fortsetzung von il, die in einer

Umgebung von x0 (bezu'gl. der oberen Halbebene) mit jx ùbereinstimmt. Also
HXo<oo. Dann gilt

Beweis. Sei A>HXg. Es gibt also eine A-quasikonforme Abbildung / eines

Halbkreises {z x 4- iy | \z — xo\ ^ r, y ^ 0} in die obère Halbebene mit f(x) fi(x)
fur réelle x.

Wir betrachten Folgen x^, ^ mit xn -> x0, ^40 fur n —> ». Auf das Urbild
wenden wir die Abbildung z »-*(z-xn)/fn an und auf das Bild w^
(w-tx(xn))l(^(xn)-ljL(xn-tn)l Weil x,-^, x,,, x^. + t,, dabei in -1, 0, 1

ûbergehen und /ttCx^-O, pi^n) in ~1» 0> so gilt fur die neue induzierte Abbildung

/n:/n(-l) -l, /n(0) 0, /n(l) O(jut,xn,tn), und fn ist in einem Gebiet
A-q.k., das mit n-»oo gegen die obère Halbebene geht. {fn} ist normal ([7], p.
76), also konvergiert eine Teilfolge gegen eine A-q.k. Abbildung g der oberen
Halbebene auf sich mit g(-l) — 1, g(0) 0 und g(oo) oo. Also ist

Somit ist ^>~1(l/A)^g(l)^^>~1(A), und weil g(l) der Limes einer Teilfolge von
Q(jut, x,,, tn) ist, kann es keine Folgen xn -* x0, ^ i 0 geben mit
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QGx,Xn, tn)£[l/B,B] fur jedes n, wenn B>9"\A) ist. Also ist

denn A > H^ war beliebig.
Weil bei der konformen Abbildung -ilogz natùrlich HC=HX gilt fur x

-ilog£, und weil auf Grand der Monotonie von 9 eben ^~l(MaxCeaDH£)

D &~~X{HC) ist, erhalten wir aus Lemma 3.1. und 3.2. den Fortsetzungssatz:

SATZ 3.1. Ist m- ein orientierungserhaltender Homôomorphismus der Kreislinie
dD auf sich und gilt in jedem Punkt £ e dD fur die lokale Dilatation von jul in £

dann lâsst sich il quasikonform in den Einheitskreis erweitern (jul ist also quasisym-
metrisch) und fur die Dilatation H von fi gilt

d.h. H ist durch eine Konstante nach oben beschrânkt, die nur von ^cabhàngt

Bemerkung 3.1. Zusammen mit dem schon erwâhnten Erweiterungssatz ([7],
p. 100) kônnen wir schliessen: Unter den Voraussetzungen des Satzes 3.1. gibt es

fur jede Zahl H>(0>~1(MaxCedDHc))2 eine quasikonforme Fortsetzung von jx in
den ganzen Einheitskreis, die in einer Umgebung der Kreislinie noch H-
quasikonform ist.

4. Bestimmung der maximalen Dilatation einer extremalen quasikonformen Ab-
bfldung im FaOe degenerierender Hamiltonfolgen

Die Funktionenklasse v ist enthalten in der grôsseren Klasse LX(D) der

komplexwertigen messbaren Funktionen <f> in D mit

Wir betrachten zunâchst degenerierende Folgen (<t>m) in Lt(D), also <f>m e Lt(D)
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und <f>m —» 0 lokal gleichmàssig in D fùr m -> oo. Ist I c dD ein abgeschlossenes
oder offenes Intervall mit Endpunkten zu z2, so sei das Argument arg z in einer
Umgebung von I stetig festgelegt, die z, seien so numeriert, dass arg z^arg z ^
arg z2 ist fur z€/, und Sr bezeichne den Sektor

S, : {z g D | arg zx ^ arg z ^ arg z2}.

|I| steht fur die Bogenlànge von I. Wir definieren

0(1):= lim

Fur festes £ g dD definieren wir

0(0: inî{6(1) | f el, I ein offenes Intervall auf

Fur Intervalle J, J mit J^I gilt natùrlich 0(J)^0(I). Verlangen wir ferner
||<£m||^l, so gilt 0(1)^=1. Ist In das abgeschlossene oder offene Intervall auf dD
mit Endpunkten £e~ll/n, £ell/n, so ùberlegt man sich leicht, dass gilt

ist somit auf dD definiert und hàngt von der degenerierenden Folge
ab. Geht man zu einer Teilfolge ((f)^) ùber, so wird die entsprechende Funktion 0

hôchstens kleiner. Wir beweisen nun das

LEMMA 4.1. Sei (<f>m) eine Folge in Lt(D) mit ||4>m|l l> die lokal
gleichmàssig gegen Null konvergiert. Weiter seien J>0, e>0. Dann gibt es eine

Unterteilung {z1?..., zN} von dD von einer Feinheit l, sodass fur eine geeignet

gewâhlte Teilfolge (4>m|t) gîlr:

Dabei verstehen wir unter einer Feinheit l, dass fur die Intervalle !„ i 1,..., N mit
Endpunkten z,, zl+1 (zN+1 := zt) |I,|^I fur i^N gilt.

Beweis. Wir nehmen an, es existiere ein ^GdD mit 0(Ci)^s/Stt • I. In sei das

Intervall auf dD mit Endpunkten ixe~lln, £xelln. Wegen 0(In) i 0(Ci) gibt es zu
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jedem n ein m» mit

also ist («taj eine Teilfolge mit

M iil^dxdy^L (1)
n—*»

Bei Wahl einer Teilfolge verkleinern sich die 6(0 hôchstens, wâhrend der obige
Limes inferior hôchstens grôsser wird, also Ungleichung (1) erhalten bleibt. Gibt
es fur die neue Folge noch ein £2 m*t 0(£2) £/87r * h wâhlen wir analog eine
weitere Teilfolge. Nach endlich vielen Schritten sind wir fertig, da ||<£m||^l. Wir
haben also durch Uebergang zu einer Teilfolge, die wir wieder ($m) nennen
wollen, erreicht, dass 6(O^e/87r • Z fur ÇedD\{Cu 4} (vgl. [8]). Wir wàhlen

nun eine Unterteilung zx,..., zN von dD, sodass fur die Intervalle Ix, i 1,..., N
mit Endpunkten zl9 zl+1 (zN+1:=z1) gilt |I,|<I. Wir kônnen 1<tt voraussetzen
und fur die Anzahl N der Intervalle IttII^N^AttU erreichen durch I/2^|I,|<I.
Ebenfalls erreichen wir, dass {zx \ i^N}n{£u &} 0 ist. Also gilt 0(zt)^
£/8tt • /, i^N, und damit

Wir bemerken, dass wir zu jedem z, ein ofïenes Intervall /, mit zx € Jt auf dD
wâhlen kônnen, sodass gilt

Wegen Xf^i 0(zt)£e/2 brauchen wir bloss eiJJ^SizJ + e/lN zu verlangen.

KOROLLAR 4.1. Unter den Voraussetzungen von Lemma 4.1. (die Teilfolge,
fur welche Y^i 0(zt)<e gilt, bezeichnen wir wieder mit (<t>m)), seien die offenen
Intervalle Jx o.B.d.A. disjunkt gewâhlt gemàss obiger Bemerkung. Ist yx ein Jordan-
bogen, der in D einen Punkt von Jx mit einem von Jl+1 verbindet (JN+1: Ji) und
dabei eine Umgebung Gt vom abgeschlossenen Intervall zwischen Jx und Jl+1 von D
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abtrennt, und ist De : D\Ufti Gl9 so gilt

m_>oo J J

Dies ergibt sich unmittelbar, da wegen <£m —» 0 lokal gleichmàssig in D fur m —> o°

JJ |4>m|dxdy-^0, m ^oo

gilt, und damit ist

De

Wir betrachten nun wieder eine quasisymmetrische Abbildung /x der Kreislinie
dD auf sich. Wir nehmen an, es existiere eine degenerierende Hamiltonfolge
(<£m), 4>mev<^ LX(D). Es gilt also <£m —> 0 lokal gleichmàssig in D und

j J 4>mK0 dx dy -> ||ko|U m —>oo.

Dabei ist k0 die komplexe Dilatation einer extremalen Erweiterung /0 von jul.

Dann gilt [10]

1-koï

Wir beweisen nun den

SATZ 4.1. Sei fx ein orientierungserhaltender Homôomorphismus der Kreislinie
dD auf sich, der sich quasikonform in den Einheitskreis fortsetzen làsst. Zu der

komplexen Dilatation k0 einer extremalen Fortsetzung f0 existiere eine de-

generierende Hamiltonfolge (<f>m) in v. Also

J J K04>m dx dy -> ||ko|U m -> oo.
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Dann gilt fur die maximale Dilatation Ko dieser Erweiterung

Es gibt also einen wesentlichen Randpunkt £0 e dD mit H^ Ko.

Beweis. Sei H'>MaxCedDHc. Fur £edD definieren wir

i ._ J |r\
I I e*n off^n^s Intervall auf dD mit Mittelpunkt £, und /m|f lasse)

c' 11 sich H'-q.k. in eine Umgebung von I fortsetzen J

Wie frûher sehen wir, Ç*-+lc ist stetig auf dD; es gibt also ein lo>0 mit
/0 Min^eaE) lc. Ein beliebiges Intervall auf dD der Lange Zo làsst also eine H'-q.k.
Erweiterung von jul in eine Umgebung zu.

Zu (<£m), f l0 und e >0 wâhlen wir nun nach Lemma 4.1. eine Teilfolge ($mk)
und eine Unterteilung {z1?..., zN} von 5D mit |I,|^ I, î 1,..., N. Dabei be-
zeichnen J, wie vorher die offenen Intervalle mit Endpunkten z(, zl+1, und,
entsprechend unserer Bemerkung am Schluss von Lemma 4.1, seien die offenen
Intervalle J, (z, e JJ gewâhlt mit Xf^i 6(JI)<e. Weil die Lange von Ix hôchstens l

ist, gibt es eine H'-q.k. Erweiterung hx von jul in eine einfach zusammenhângende
Umgebung U1 von Ix. Darin wâhlen wir einen analytischen Bogen yu der einen
Punkt in Jx D Ix mit einem Punkt in J2 H Ix verbindet und dabei eine Umgebung
Gx vom abgeschlossenen Intervall zwischen Jx und J2 von D abtrennt. Wir
kônnen zum Beispiel die Umgebung U1 konform auf einen Halbkreis abbilden,
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sodass I1 ins Innere des Durchmessers zu liegen kommt und dort einen or-
thogonalen Halbkreis wàhlen, der durch die entsprechenden Punkte des

Durchmessers làuft. Das durch yt von D abgetrennte Gebiet nennen wir Gt. Durch hx

wird es auf ein Gebiet im Bildkreis H'-q.k. abgebildet. Dièses Gebiet wiederum
wird durch die inverse Abbildung /ô1 der extremalen q.k. Erweiterung f0 von /m

auf ein Gebiet G\ abgebildet. /ôlo^i ist auf dem Randintervall dDHdGi die
identische Abbildung. G[ wird also durch dDDdGi und den quasikonformen
Bogen /ôlotoi(7i) berandet, welcher dieselben Endpunkte hat wie yx.

Nun betrachten wir eine H'-q.k. Erweiterung h2 von /m|l2 in eine Umgebung
U2 von I2. Das Bild von I2 unter jll liegt ausserhalb der abgeschlossenen Menge
h^Gx). Wir dûrfen also annehmen, h2(U2)nhl(G1) 0 und U2HGl 0. Dann
wàhlen wir einen analytischen Bogen y2, der in U2 einen Punkt von J2 HI2 mit
einem Punkt in J3 HI2 verbindet und das Gebiet G2 von D abtrennt. Es ist also

G1nG2 0 und h1(G1)nh2(G2)=:0. Wieder setzen wir G2 fôloh2(G2). Diese
Konstruktion setzen wir fort, sodass schliesslich sowohl die G, als auch die fii(G,)
paarweise disjunkt sind. Wir erhalten (in Abhângigkeit von e>0) Gebiete

Gx,..., GN in D und setzen

Dc: d\[J G1,

Dies sind zwei einfach zusammenhângende Gebiete. Wir wollen nun die durch jui

und die ht auf 6De induzierte Abbildung quasikonform in De fortsetzen. Die
erweiterte Abbildung ist dann quasikonform in D (Hebbarkeit analytischer Bogen
([7], p. 47)) und hat die Randwerte von fx. Sei

Die durch fx und die ht von dDe auf dDe induzierte Abbildung nennen wir fxe. fxe

hat die Eigenschaft, dass sie in eine Umgebung jeden Punktes £e3De H'-q.k.
erweitert werden kann. Entweder ist nâmlich £edD\Ufti7l9 wegen H'>
Max£6ôJD Hc ist die Erweiterung also môglich, oder dann ist ^7, fur ein gewisses i, fxe

also sowieso die Einschrànkung einer H'-q.k. Abbildung.
Nennen wir die lokale Dilatation von fxe in £ nun Hec, so gilt demnach

Aus Satz 3.1. folgt: jll6 lâsst sich quasikonform in De erweitern, und die Dilatation
He von |LLe ist also kleiner oder gleich (^^(H'))2. Fur das folgende sei H eine
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feste Zahl mit H>(9>~1(H'))2. Wir kônnen /x€ also H-q.k. in eine Umgebung von
dDe (bezûglich De) erweitern. Gemàss unserer Bemerkung 3.1. gibt es sogar eine

q.k. Abbildung /e von De in D~, welche in einer kompakten Umgebung U von
dDe bezùglieh De H-q.k. ist. Wir setzen fe durch die h, in die G, fort und nennen
die erweiterte Abbildung wieder fe. Wir haben also eine q.k. Erweiterung fe von
/ut. Ihre maximale Dilatation in den G, ist kleiner oder gleich H', in U hôchstens

H, und in ganz D nennen wir sie Ke. De\U ist in einer kompakten Menge in D
enthalten, also gilt fur Uf f^l<>

jj |4>m|dxdy-»0 fur m-»oo. (2)

D't\U'

Nach der Hauptungleichung gilt, wenn k€ die komplexe Dilatation von f~x ist,

w fo(z) sowie

ist, fur jedes m

Wir schâtzen Ke(f0(z)) in Gf und 17' ab. Weil die Dilatation von /e in f~\w)
dieselbe ist, wie die von f~x in w und Gf und U1 durch fëlofo auf Gx und 1/

abgebildet werden, ist Ke(f0(z)) in Gf kleiner oder gleich H' und in U' kleiner
oder gleich H. Aus der Hauptungleichung folgt also sicher

\<t>m\K0Kedxdy

D'm D'AU'

weil

1-|ko 2 -
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Lassen wir m —» °° gehen, so gilt, weil (<J>m) eine Hamiltonfolge ist,

m! 1_L|2 *~v~j -
1 \K0\ ^0

nach Korollar 4.1., angewandt auf G[ und D'e, und mit (2) ist

Weil e>0 beliebig war, ist K0^Hf, und da H'>Maxc<EdE)Hc beliebig war, also

Damit ist die Behauptung bewiesen.

5. Das analoge Résultat im Fall der Randwertvorgabe auf einer abgeschlossenen

Teilmenge von dD

Wir geben nun eine Uebersicht, wie man den Satz 4.1. auf den Fall verall-
gemeinert, wo jx eine quasisymmetrische Abbildung der Kreislinie auf sich ist und
die Randwerte durch jut nur auf einer abgeschlossenen Teilmenge F von BD

festgelegt sind. Wir definieren deshalb die Dilatation Hr von /m bezûglich F durch

Hr : inf {Kf \ f : U(F) -? D, q.k., /|r ^ \r}

und die (lokale) Dilatation Hç von jul bezûglich F in £ e F durch

Hl : inf {Kf \f:U(Q -*D, q.k., /|l/(c)nr=ft|

wobei die Infima ùber aile bezûglich D oflfenen Umgebungen U(F) von F bezw.

U(C) von C und ûber aile derartigen Funktionen / genommen werden.
Die Hauptungleichung (2.1) gilt dann fur Funktionen / und ft in der Klasse

Q£ fur aile <f> e ur. Eine Hamiltonfolge fur die Klasse Q][ ist also eine Folge (<£m)

mit <f>m e vr und

Kr<f>m dx dy ||Kr||oo fur m -^ oo.

Dabei ist *cr die komplexe Dilatation einer extremalen Abbildung /r in Q£. Da
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dièse <f>m durch Spiegelung ûber dD\F analytisch fortsetzbar sind, gilt fur eine

degenerierende Folge <f>m —»0 lokal gleichmàssig in D\F fur m —»<» (vgl. [9]).
Der Fortsetzungssatz 3.1 gilt dann in der folgenden Form:

SATZ 5.1. Sei fx ein orientierungserhaltender Homôomorphismus der Kreislinie
3D auf sich und F eine abgeschlossene Teilmenge von dD. In jedem Punkt £ e F
gelte fur die lokale Dilatation von jul bezûglich F in Ç

H[<oo.

Dann lâsst sich jz |r quasikonform in den Einheitskreis erweitern, und die Dilatation
Hr der dadurch induzierten Randabbildung bezûglich F ist durch eine Konstante
nach oben beschrànkt, die nur von Max4eF Hç abhângt.

Beweis. Sei H1>Max4erJFf^. Wir wollen jut|r zunàchst auf endlich viele Intervalle,

die F enthalten, erweitern und dabei die Dilatation durch Hx beschrànkt
halten. F ist kompakt, also gibt es endlich viele offene Intervalle, die F
ùberdecken und die Eigenschaft haben, dass sich jul|f in jedem dieser Intervalle
Hx-q.k. in eine Umgebung fortsetzen lassen. Durch Trennung ùberlappender
Intervalle(1) erhalten wir endlich viele disjunkte offene Intervalle Ik, k 1,..., n,
die F ùberdecken, sowie eine Erweiterung ilx von /ui|r auf Uk=i 4> deren lokale
Dilatation Hc in jedem Punkt dieser Vereinigung hôchstens Hx ist. Weil F eine
abgeschlossene Teilmenge von Uk=i4 ist, finden wir abgeschlossene Intervalle
JkczJk mit Fc:Uk=iik- Fur jedes fc 1,..., n erweitern wir jjl^ durch
Spiegelung ùber die beiden Enden hinaus. In einem Randpunkt £ von Jk wird
dabei die lokale Quasisymmetrie nicht grôsser als 1 + pc + pi, wobei pc die lokale
Quasisymmetrie von iit\Ik in £ ist ([4], Korollar 2). Nach Lemma 3.2. bleibt somit
die lokale Quasisymmetrie in £ kleiner oder gleich 1 + 9~\HC) + ^'\HC)2. Wegen

H^^"1^)2 (Lemma 3.1. und 3.2.) und H^Ht ist (l + @-1(H1) + &-1(H1)2)2
eine obère Schranke der lokalen Dilatationen der durch Spiegelung in gewisse
offene Intervalle Jk, Jk <= /k<= Jk, erweiterten Abbildung /xx. Entsprechend Lemma
1 in [4] ândern wir dièse Erweiterung in J'k\Jk stetig differenzierbar ab. Dabei
wird die lokale Quasisymmetrie in den Endpunkten von Jk nicht vergrôssert, und
die Ableitung in Jk\ Jk ist ûberall positiv. Wir erweitern dièse Abbildung stetig
differenzierbar, streng monoton, ohne die Ableitung Null werden zu lassen

zwischen den Intervallen Jk. In diesen Punkten ist die lokale Dilatation also eins.

Damit haben wir /ut |r zu einer Abbildung iix der Kreislinie auf sich erweitert,
die die Voraussetzungen von Satz 3.1. erfùllt, und der Satz ist bewiesen.

1 Gehôrt ein Punkt des Durchschnitts nicht zu F, so liegt mit ihm ein ganzes Intervall ausserhalb F.
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Wir bemerken noch, dass wir, weil H1>MdLXCerHç beliebig war, fur die
Dilatation H von ^ die Abschâtzung

erhalten.
Wir verallgemeinern nun den Satz 4.1.

SATZ 5.2. Sei jul ein orientierungserhaltender Homôomorphismus der Kreislinie
dD auf sich und F eine abgeschlossene Menge in dD. Ferner lasse sich n\r
quasikonform ins Innere fortsetzen, d.h. Q£ sei nicht leer. Wenn es dann eine

degenerierende Hamiltonfolge (<f>m) fur die Klasse Q£ gibt, so gilt fur die maximale
Dilatation Kr einer extremalen Abbildung fr in Q£

r £

Mit Hilfe von Satz 5.1. làsst sich nun der Beweis von Satz 3.1. leicht auf diesen Fall
ubertragen. Zunàchst bemerken wir, dass wir fur die Unterteilungspunkte
{zl9..., zN} in Lemma 4.1. verlangen kônnen, dass je ein offenes Intervall Jk b zk

entweder in F enthalten ist oder ganz ausserhalb F liegt. Dies ist môglich, denn
fails kein Intervall Jk 3 zk e F in F enthalten ist, gibt es in beliebiger Nâhe von zk

einen Punkt zk und mit ihm ein ganzes Intervall aussen an F. Dort wàhlen wir
einen neuen Punkt, wir nennen diesen nun zfc, und behalten die Eigenschaften
|/,|<I und d(zk)^e/S7r • i bei. Die offenen Intervalle JkBzk mit

i=i

kônnen wir dann innerhalb F oder ganz ausserhalb F wâhlen. Wir wâhlen

H'>MaxCerH£ und definieren

¦Mi ein offenes Intervall auf dD mit Mittelpunkt £, und jLt|Inrl

VI ^asse s*cn H'-q.k. in eine Umgebung von I fortsetzen J

Es genûgt dann, diejenigen Kreisbôgen zkzk+1 durch analytische Bôgen yk von
D abzutrennen, die Punkte von F enthalten. Die neu induzierte Randabbildung
|xe von dDe auf dD~ ist durch die H'-q.k. Erweiterungen auf abgeschlossenen
Intervallen auf dDe vorgegeben, welche die yk enthalten. Dièse Abbildung yue

erfùllt die Voraussetzungen von Satz 5.1, wobei der Menge F nun die Vereinig-
ung dieser endlich vielen abgeschlossenen Intervalle entspricht. Wâhlen wir nun
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die Konstante H (unabhângig von e!) hinreichend gross, zeigt dieselbe Berech-

nung wie fruher

und damit

Wir erwâhnen noch, dass damit fur das Extremalproblem mit Randwertvor-
gabe auf einer abgeschlossenen Menge F gilt: Es gibt eine eindeutige extremale
Abbildung, und sie ist Teichmûllersch mit quadratischem Differential <f> e i?r, oder
es existiert mindestens ein bezùglich F wesentlicher Randpunkt £0 s F, d.h. ein
Punkt £0 mit Kr HrCo.

6. Anwendungen

a. Konstruktion einer Randabbildung mit ùberall wesentlichen Randpunkten

Wir konstruieren eine quasisymmetrische Randabbildung jut, fur welche die
lokale Dilatation Hc konstant gleich Ko ist. M.a.W., jeder Randpunkt ist wesent-
lich. Dabei soll KO>1 sein, da die Problemstellung sonst trivial ist.

Sei / die extremale q.k. Abbildung in einer Homotopieklasse von Abbil-
dungen zwischen zwei kompakten Riemannschen Flâchen. Ihre maximale Dilatation

sie K> 1. / ist eine Teichmûllersche Abbildung mit quadratischem Differential

endlicher Norm und komplexer Dilatation

Die Riemannschen Flâchen R und R' f(R) haben die Gestalt R=D\Gi Rf
D\G; wo G und G' diskrete Gruppen von Decktransformationen in D
{z | \z\< 1} sind. / induziert eine K-q.k. Abbildung / des Einheitskreises auf sich.
<f> induziert das quadratische Differential $ auf D, und es ist H<^|| °°» weil in
jedem der unendlich vielen kompakten Fundamentalgebiete die Norm von <f>

gleich ||<£>||R ist. / ist also eine Teichmûllersche Abbildung mit quadratischem
Differential unendlicher Norm. / induziert eine Randabbildung jx der Kreislinie
auf sich, und dièse hat eine extremale K0-q.k. Fortsetzung /0. Wâre /0 eine
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Teichmûllersche Abbildung mit holomorphem quadratischem Differential end-
licher Norm, so wàre K0<K wegen der eindeutigen Extremalitât. Aus demselben
Grunde liesse sich f0 nach unten durchdrùcken [6], was einen Widerspruch zur
Extremalitât von / zur Folge hâtte. Dies sieht man in folgender Weise: / induziert
einen Isomorphismus 6 der Gruppen G und G' durch

Also gilt

/=0(g)°/°g~\ in D, insbesondere

uLog-1 fur geG.

Damit ist aber auch 0(g)°fo°g~1 fur jedes geG eine Erweiterung von /ut, wegen
der eindeutigen Extremalitât also

fo 0(g)of0og~\ geG

Also lâsst sich /0 nach unten durchdrùcken.
Wir haben gesehen, /x besitzt als extremale Erweiterung /0 keine

Teichmûllersche Abbildung mit holomorphem quadratischem Differential end-
licher Norm, also gibt es einen wesentlichen Randpunkt £oedD, d.h.

W& Ko.

(Ko> 1, denn sonst hàtten wir wieder eindeutige Extremalitât und obigen
Widerspruch.)

Nun zeigen wir, dass die Bahn G(Ç0): {g(£0) | ge G} dicht liegt auf dD (d.h.
G und G1 sind Gruppen erster Art). Weil R kompakt ist, ist jedes geG\{id}
hyperbolisch ([1], p. 97). Wâre G(£o) {£o}> so hàtten aile geG dieselben zwei

Fixpunkte, und das Fundamentalgebiet wâre nicht kompakt. Somit gibt es ein

Cii'Co mit £i€G(£0)- Weil bei kompaktem Fundamentalgebiet die "limit-set" L
schon ganz dD ist, gilt nach Lehner ([5], p. 18):

Zu jedem z€dD\{£0, Ci) gibt es ein z'edD mît zeG(w) fur jedes we
}. Inunserem Fall also ist z e G(£o) oder z e G(d). Wegen G(Q G(Çl)

gilt z € G(£o) fur jedes z € dD. Also G(£o) àD.
Sei nun zeG(Ç0). Es gibt somit ein geG mit g(Ç0) z. Wegen^ \x

°M'og~1 ist Hz =HCo, denn g und 0(g) sind ja konform. Also ist

Z KO fur aile zeG(Ç0).
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z ist aber halbstetig nach oben und G(Ç0) dD, somit gilt

HZ=KO>1 fur jedes z €dD.

b. Vergleich der Grôssen Hc, Kc sowie Hr, Kr, H£, Kp

Wir betrachten zu H, Hc, Hr noch einige weitere Grôssen. Wir definieren fur

wobei das Infimum ùber aile offenen Intervalle I auf dD genommen wird, die £

enthalten, sowie ûber aile derartigen Funktionen /. Offensichtlich ist Hc ^ Kc. Wir
werden in diesem Abschnitt die Gleichheit beweisen. Zunâchst verallgemeinern
wir dièse Définition. Sei F eine abgeschlossene Teilmenge von dD. Hr und Kr
sind also defîniert. Wir setzen

H°r : inf Hr, K$ : inf Kr,
{r,} {r}

wobei das Infimum ùber aile abgeschlossenen Mengen F in dD genommen wird,
die F im Innern enthalten. Ist zum Beispiel F {£}, so gilt Hc H° und Kc K° ;

oder fur r dD ist H^ Hr H, Kp Kr Ko. Wir beweisen, dass gilt

Daraus erhalten wir fur F {£} wegen K{c} 1 sofort

Im Falle F {£1? £2? • • • > £n} ist ^r Max^n Hc sowie Xr Kn die maximale
Dilatation der Teichmùllerschen Extremalen fur dièses n-Eck [13]. Also gilt

Fur w ë 3 ist Kn 1, also

^,,c2,« Max {Hii;Ht2,HJ.

Mit Hilfe von Satz 5.1. beweisen wir jetzt den
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SATZ 6.1. Sei 11 eine quasisymmetrische Abbildung der Kreislinie dD auf sich
und F eine abgeschlossene Teilmenge von dD. Dann gilt

Beweis. Weil Kp^H^ und Kr Kr ist, folgt die Behauptung zum Beispiel aus
K°r H%. Wir haben also den Fall K^>H°r zu untersuchen. Falls F dD ist,
haben wir K° Kr, also dùrfen wir annehmen, F sei nicht die ganze Kreislinie
dD. Ferner sei F nicht-leer, da sonst sowieso K^=Kr H^= 1 gilt. Sei (en) eine

Folge mit en 1 0. Fn seien endliche Vereinigungen disjunkter abgeschlossener
Intervalle so, dass F im Innern von Fn und Fn in der en-Umgebung von F
bezùglich dD enthalten ist. Es gilt

neN

Die Folge Fn ist monoton fallend. Zunâchst sehen wir, dass HFn i H° und
KFn [ K^. Aus Hp<Kr schliessen wir HFn <KFn fur n ^ n0. Die Extremalen fn fur
die Randwerte jll auf Fn sind also Teichmùllersche Abbildungen mit quadrati-
schen Difïerentialen <j>n g uFn, denn kein Punkt von Fn kann bezùglich Fn wesent-
lich sein. Aus der Normalitât von {<£>n} schliessen wir auf eine in D\f lokal
gleichmâssig konvergente Teilfolge, die wir wieder $n nennen wollen. Also
4>n~> <t>r in D\F fiir n —» oo. Wir behaupten zunâchst, ||<^r|| j= 0. Ist nàmlich
||<£r|| 0, d.h. konvergieren die <t>n lokal gleichmâssig in D\f gegen Null, so
schliessen wir wieder, dass Hr=Kp gilt in folgender Weise:

Sei Hr>Hp. Es gibt also eine H'-q.k. Fortsetzung h, welche in einer
Umgebung U(F) von F definiert ist und in Fn die Randwerte von jul hat fur
n ^ n0. Wie frûher wâhlen wir wieder analytische Kurven yk in U(F), welche die

Endpunkte der Intervalle von F^ verbinden und Gebiete Gk von D abtrennen.
Wir setzen D D \ (J Gk und haben in Intervallen auf dD, welche die yk enthalten,

die Randwerte durch h vorzugeben. Nach Satz 5.1. kônnen wir dièse

Abbildung K-q.k. in D erweitern (fur ein gewisses K). Wir nennen die
erweiterte Addildung /, und weil / und fn auf Fn ùbereinstimmen fur aile

n ^ n0, gilt die Hauptungleichung

„,„„.

Die Abbildung fn hat aber komplexe Dilatation

K -Li K -i±h.
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also

1-kl2 Kr.'

und damit

Lassen wir n—»o° gehen, so folgt, weil <f>n —»0 lokal gleichmàssig in D\F und

iC p lim iCp ri

H' > Hr war beliebig, also Kp H? im Widerspruch zur Voraussetzung.
Wie frùher haben wir also 0<||</>r||^l. Mit Kr :(l + kr)/(l-kr) haben wir

Die Abbildungen /n konvergieren also gegen eine Teichmullersche Abbildung fr
mit quadratischem Differential in i;r und komplexer Dilatation fer^r/l^rl- Aus-
serdem stimmt /r auf F mit il ùberein, ist also die eindeutig bestimmte
Extremale fur jul bezûglich F. Damit ist Kr K° und die Behauptung damit
bewiesen.

Wir bemerken noch, dass keine analoge Beziehung zwischen Hr, Hp und Kr
gilt und fùhren das folgende Beispiel an. Wir strecken ein achsenparalleles
Quadrat mit den Ecken £1? Ci, ^3» U durch F^ix + iy) Kox + iy, KO>1. Wir
wâhlen F {£l9 Ç2> ^ ^}- Also ist Hr l, da F nur aus isolierten Punkten
besteht, ferner 1< H?< Ko Kr K$.

c. Beweis einer Vermutung von Sethares

Als weitere Anwendung wollen wir eine in der Dissertation von Sethares [11]
aufgestellte Vermutung beweisen. Wir betrachten eine Teichmullersche Abbildung

/, welche in einem Gebiet definiert sei, das den abgeschlossenen Einheits-
kreis D enthâlt. / hat also lokal die Darstellung /= y"1»^ °4>, wo 4>, ^
konform sind und FK(x + iy) Kx4-iy ist, K>1, mit Ausnahme in isolierten
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Punkten. <t>:=<Pu und ^:=*"'2 sind eindeutige Funktionen mit Nullstellen und
Polen in diesen isolierten Punkten bezw. deren Bildpunkten (vgl. [12]). Ist z0 eine
Nullstelle oder ein Pol von <\> der Ordnung n, so ist f(z0) eine Nullstelle bezw. ein
Pol von i/r derselben Ordnung. Wir fragen nun, ob / fur den induzierten Rand-
homôomorphismus |m von dD auf f(dD) extremal ist. Ist <f> holomorph in D und
hat auf dD nur Pôle der Ordnung n^2. so ist f, wie Sethares gezeigt hat,
eindeutig extremal. Existieren auf dem Rand Pôle hôherer Ordnung, so làsst sich

/ abàndern, ohne die maximale Dilatation zu vergrôssern und ohne die
Randwerte zu verândern. Auch ist ersichtlich, dass die Extremalitât von / aus der
Existenz von Polen zweiter Ordnung von <$> auf dD folgt. Die Vermutung lautet
dann: Hat <j) auf dD keine Pôle zweiter Ordnung, aber mindestens einen Pol
hôherer Ordnung, so ist / nicht extremal. Wir beweisen nun den

SATZ 6.2. Sei f eine Teichmullersche Abbildung in einem Gebiet, das den

abgeschlossenen Einheitskreis D enthàlt, <f> das zugehôrige meromorphe quad-
ratische Differential sowie K die maximale Dilatation von f. Dann sind fur die

quasikonforme Erweiterung von f\dD ins Innere die folgenden Fâlle môglich:
(a) 4> hat auf dD mindestens einen Pol zweiter Ordnung. Dann ist f extremal,

und die Pôle zweiter Ordnung sind wesentliche Randpunkte.
In diesem Fall ist f eindeutig extremal genou dann, wenn <f> in D holomorph ist

und auf dD hôchstens Pôle der Ordnung n ^ 2 hat.

(b) 4> hat auf dD keinen Pol zweiter Ordnung. Dann ist das Maximum der

lokalen Dilatationen Max^edD Hç echt kleiner als K.

f ist d.u.n.d. eindeutig extremal, wenn <£ in D holomorph ist und auf dD
hôchstens Pôle erster Ordnung hat. Andernfalls ist f nicht extremal.

Beweis. Man berechnet die lokale Dilatation Hc der Randabbildung jul in
jedem Punkt £ e dD. Ist £ ein Pol zweiter Ordnung von <f>, so ist Hc K. Dièse
Stellen sind also wesentliche Randpunkte, und mithin ist / extremal. In regulàren
Punkten £ e dD von <f> (fur die Definitionen im Zusammenhang mit quadratischen
Differentialen siehe [15]) berechnet man leicht, dass Hc 1 gilt. Fur Nullstellen
oder Pôle der Ordnung n ^ 2 erhâlt man Hc < K. Im Falle (b) gibt es unter der
Annahme, dass / extremal ist, keinen wesentlichen Randpunkt, und nach Satz 4.1

muss / damit eine Teichmullersche Abbildung mit in D holomorphem quadrati-
schem Differential <t> von endlicher Norm sein. <f> hat also auf dD hôchstens Pôle

erster Ordnung, und f ist mithin eindeutig extremal. Damit ist (b) bewiesen, und
(a) ergibt sich in folgender Weise:

Hat 4> auf dD mindestens einen Pol zweiter Ordnung, so ist / nach dem
soeben Gesagten extremal. Ist <f> zudem holomorph in D und hat auf dD
hôchstens Pôle zweiter Ordnung, so ist / nach Sethares eindeutig extremal. Besitzt
4> auf dD einen Pol der Ordnung n ^ 3, so kônnen wir, wie Sethares gezeigt hat, /
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abândern, indem wir FK in einem Gebiet der Form {z \61< arg z < 62} durch die
durch die Randwerte induzierte Extremale F^FK ersetzen (/= ^oFrO^). Hat
<f> in zoeD einen Pol, so betrachten wir eine Kreislinie 7 von z0 in D, die durch
keinen Pol und keine Nullstelle von <f> geht. Weil das Bild einer analytischen
Kurve unter FK wieder analytisch ist, ist /(7) analytisch. Die Dilatation der von /
zwischen 7 und /(7) induzierten Randabbildung ist also eins. Im Innern von 7
kônnen wir / also durch die dazugehôrige Extremale / abândern. Dièse ist
konform oder eine Teichmùllersche Abbildung mit holomorphem quadratischem
Diflferential, also ist f^f. f kann also nie eindeutig extremal sein, wenn <f> einen
Pol in D besitzt.

Auf die explizite Berechnung der lokalen Dilatationen Hc wollen wir an dieser
Stelle verzichten.
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