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Ueber extremale quasikonforme Abbildungen

RICHARD FEHLMANN

1. Einleitung

Wir betrachten quasikonforme Abbildungen f des Einheitskreises D =
{z||z| <1} auf sich. Diese induzieren durch stetige Fortsetzung einen orien-
tierungserhaltenden Homoomorphismus p der Kreislinie 0D auf sich. Betrachten
wir die Klasse Q; (gelegentlich bezeichnen wir sie auch mit Q,) aller quasi-
konformen Abbildungen mit denselben Randwerten wie f, so gibt es eine (oder
mehrere) extremale quasikonforme Abbildung f, in Q; d.h. eine mit kleinst-
moglicher maximaler Dilatation. Dies folgt aus der Normalitit der Menge aller
K-quasikonformen Abbildungen in Q; fir festes K. Im Folgenden bezeichne K;
die maximale Dilatation von f und K, = infreq, Ky diejenige einer Extremalen f,,.

Wir wissen: fe Q; ist genau dann fur seine Randwerte extremal, wenn fur
dessen komplexe Dilatation « gilt

= [l (1)

[ [0 dxay

D

su
@ eg

Dabei ist v die Menge aller holomorphen quadratischen Differentiale ¢ in D mit
L,-Norm

I#1= [ [ 1ol asdy=1.

D

Die Notwendigkeit dieser Bedingung wurde von Hamilton [3] gezeigt und die
Hinldnglichkeit von Reich und Strebel [10]. Sie hat zur Konsequenz: ist k,
komplexe Dilatation einer extremalen Abbildung f,, so gibt es eine Folge in D
holomorpher quadratischer Differentiale ¢, mit ||¢,||=1, sodass

Sl =iko, .

”fcocbn ;ix dy

D

Eine solche Folge heisst Hamiltonfolge. Da v normal ist, kdnnen wir 0.B.d.A.
annehmen, eine solche Hamiltonfolge konvergiere lokal gleichmassig in D gegen
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eine holomorphe Funktion ¢,. Ist ||dol|=1, so folgt

= ko.

jj"od’o dx dy

D

Ist 0<ky<1 und beriicksichtigen wir, dass wir ¢, durch ¢,e*® ersetzen kOnnen,
so folgt
Ko = ko 'io' f.h

|0l

und damit ist f, eine Teichmiillersche Abbildung sowie ¢, ihr zugehdriges
holomorphes quadratisches Differential. Dieses hat endliche Norm, also ist f,
sogar eindeutig extremal, d.h. fir fe Q;, f# fo, gilt K;>K; = K, (vgl. [12]).

Ist 0=|ldoll<1, so kOnnen wir annehmen, dass ¢, — 0 fur n — o lokal
gleichmassig in D [14]. Wir sprechen von einer degenerierenden Hamiltonfolge.
Es ist also von Interesse, diesen Fall zu untersuchen. Wir werden in Abschnitt 4
zeigen, dass es dann einen wesentlichen Randpunkt gibt, d.h. einen Punkt { € dD,
sodass die maximale Dilatation K, der Extremalen eine untere Schranke fiir die
maximale Dilatation jeder Erweiterung der Randabbildung in nur eine
Umgebung von ¢ ist. Hieraus ergibt sich die folgende Alternative fiir extremale
quasikonforme Abbildungen. Es handelt sich um eine Teichmiillersche Abbildung .
mit holomorphem quadratischem Differential endlicher Norm (sie ist also ein-
deutig extremal) oder eine mit mindestens einem wesentlichen Randpunkt. Diese
Aussage ist eine Verschirfung des Rahmenabbildungskriteriums [14].

An dieser Stelle wollen wir das Problem auch allgemeiner stellen. Sei I' eine
abgeschlossene Menge auf 0D und fe Q,. Es gibt dann auch extremale Abbil-
dungen fi- in der grosseren Klasse Q[ aller quasikonformen Abbildungen des
Einheitskreises auf sich, die auf I' mit p tubereinstimmen. Dann gilt, sofern I’
mindestens 4 Punkte hat: fi- ist in QL genau dann extremal, wenn fiir deren
komplexe Dilatation -

sup

bevr

= [lerl- 2)

jjx,«b dx dy

D

ist, wobei v die Menge der ¢ € v ist, die noch reell langs aD\ I sind, d.h. wo
d(z) dz%eR fir zeaD\T [9].

Sei Kr =inf;.or K;. Fiir eine Extremale fr- gilt dann: Sie ist Teichmiillersch mit
holomorphem quadratischem Differential ¢ in v oder es gibt einen beziiglich I
wesentlichen Randpunkt ¢, d.h. einen Punkt (eI, sodass K eine untere
Schranke fiir die maximale Dilatation jeder quasikonformen Abbildung ist,
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welche eine Umgebung U von ¢ (beziiglich D) abbildet und auf UNT mit p
uibereinstimmt.

2. Die Dilatation der Randabbildung und die Hauptungleichung

Ist A eine offene Menge in C und B <C, so verstehen wir unter einer K-
quasikonformen (K-q.k.) Abbildung f: A — B eine Injektion, die K-quasikon-
form in jeder Zusammenhangskomponente von A mit Bildgebieten in B ist. Eine
solche Abbildung heisst quasikonform (q.k.), wenn sie K-quasikonform fiir ein
gewisses K ist.

Ist u die Randabbildung einer q.k. Abbildung des Einheitskreises D auf sich,
so verstehen wir unter der Dilatation H von u die Zahl

H:=inf{K,|f:U@D)—> D, q.k., flp = u}
und unter der (lokalen) Dilatation H, von p in { ({€dD) die Zahl

H,:=inf{K;|f: U({) > D, q.k., flunsp = *|u@nep}-

Dabei werden die Infima iiber alle beziiglich D offenen Umgebungen U(3D) von
oD bezw. U({) von { und uber alle derartigen Funktionen f genommen.

Wir bemerken sogleich, dass die Abbildung {+ H, auf dD nach oben
halbstetig ist. Ist namlich a > H,, so gibt es eine a-quasikonforme Erweiterung
von g in eine Umgebung U von ¢ in D. Also ist H, = a fiir {'e U NaD. Deshalb
wird das Supremum von {H, | { € 8D} in einem Punkt {,€dD angenommen, und
es ist H, =Max,,p H,.

Die Dilatation H und insbesondere die lokalen Dilatationen H, bilden
natiirlich untere Schranken fiir die zur Extremalen gehorige maximale Dilatation
K,. Ein wichtiges Werkzeug, un diese Grossen zu vergleichen, ist die Hauptun-
gleichung ([10], p. 380). Sie besagt das folgende:

Sind f und f, zwei quasikonforme Selbstabbildungen des Einheitskreises D in
der Klasse Q, mit komplexen Dilatationen « und «,, so gilt fur alle ¢ ev

2

1o |i§3|
1= chb(Z)l T

k(z) ¢(2) [1~—E(Z)$(Z)/|¢(Z)I]
pn(w) ()| L1-k(2)d(2)/|d(2)|
1—|pi(w)?

2

‘1 + pq(w)

dx dy. (D
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Dabei ist w=f(z) und p und w, sind die komplexen Dilatationen von f ' und
fi.

Daraus ergibt sich die Hinldnglichkeit der Bedingung (1.1) [10] und auch das
Rahmenabbildungskriterium [14]: Ist H <K, so gibt es keine degenerierende
Hamiltonfolge. Die Extremale f, ist also eindeutig extremal, denn sie ist
Teichmiillersch mit quadratischem Differential endlicher Norm.

3. Eine Abschatzung der Dilatation der Randabbildung und ein daraus
resultierender Fortsetzungssatz

Sei w eine Abbildung der Kreislinie 0D auf sich, die sich quasikonform in den
ganzen Einheitskreis fortsetzen ldasst. Wir sagen dann kurz, u sei eine quasi-
symmetrische (q.s.) Abbildung von aD auf sich. Wenden wir namlich auf Bild und
Urbild die Abbildung —i - log z an und bezeichnen die induzierte Abbildung der
reellen Achse auf sich wieder mit u, so ist w eine quasisymmetrische Abbildung
gemass der Definition in [2], denn sie ldsst sich ja quasikonform in die obere
Halbebene erweitern. Ferner gilt w(x +2m) = w(x)+ 2 fiir alle xeR.

Es gibt also ein p=1 mit

Q(w, x, t):=

u(x+t)—u(x)e[1 ]
p(x)—px—1t) Lp’

fur alle xeR und t>0. (u heisst dann p-quasisymmetrisch.)
Fur E <R definieren wir

. 1
p(E):=inf {pzl | O, x, t)e[;,p];x——t, x,x+teE},

und verstehen unter der lokalen Quasisymmetrie von w in x die Zahl
p, :=inf {p(I)| x e I, I ein offenes Intervall}.

Wie die lokale Dilatation ist auch x> p, nach oben halbstetig. Weil p, <o in
x€R, gibt es ein xo, 0=xo=2m, mit p, =MaXo=, =2 P. Wegen u(x+2w)=
w(x)+2m ist also Max, g p, <.

Fir jeden Homoomorphismus pn der Kreislinie auf sich nennen wir die so
erhaltene Abbildung w kurz die induzierte reelle Abbildung.
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LEMMA 3.1. u sei ein orientierungserhaltender Homoéomorphismus der Kreis-
linie aD auf sich. Fiir die induzierte reelle Abbildung gelte

p, < fiir jedes reelle x.

Dann ldsst sich u quasikonform in den Einheitskreis erweitern, und fir die
Dilatation H von u gilt:

2
H= (max px) .

xeR
Fiir die lokale Dilatation H, von w in { €dD gilt:
H,=p2.

Beweis. Wir haben schon gesehen, dass Max, g p, endlich ist. Sei nun A >
Max, g p.. Dann liegt jedes x € R in einem offenen Intervall J, in welchem u A-
quasisymmetrisch ist, d.h. wo p(J)= A ist. Die Funktion

L:=sup{I>0|pn ist A-gs. in (x—1, x+1)}
ist stetig, denn man sieht sofort, dass
lx _leI é lx+Ax § lx +lel

gilt, und sie ist positiv oder konstant unendlich. Wegen L ., =1, gibt es ein
lo>0, sodass u A-quasisymmetrisch ist in [x—1,, x +[,] fir jedes xeR. Wir
konstruieren nun die Beurling-Ahlfors-Fortsetzung [2] in der oberen Halbebene.
Im horizontalen Streifen {x +iy | 0=y =1} wird diese A?-quasikonform, und da
sie auch die horizontale Periode 27 hat, erhalten wir eine A2-q.k. Erweiterung
von p in einen Kreisring r<|z|=1. Da A >Max, g p, beliebig war, gilt also
H = (Max, g p,)*.

Nach einem Erweiterungssatz von Lehto und Virtanen ([7], p. 100) gibt es
nun eine q.k. Abbildung des Einheitskreises, die in einem kleineren Kreisring
f=|z|=1, ¥>r, mit der konstruierten Erweiterung zusammenfillt.

Die Abschiatzung fir die lokale Dilatation erhalten wir ebenso, indem wir
A >p, wihlen.

Seien x, <x,<x;<x, reelle Zahlen oder », dann bezeichne M(x,, x,, X3, X4)
den Modul des Vierecks, bestehend aus der oberen Halbebene und den Ecken
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X1, X2, X3, X4. Wir definieren
P(r):=M(—1,0, r, ).

Die a- und b-Seiten seien so gewihlt, dass ? monoton wachst. 2 ist stetig in
[0, ], wenn wir 2(0)=0 und P ()= setzen. Es gilt

P(r)=1+6(r)logr fur r=1,

Wobei ® monoton von 0,2284 - - - bis 1/ wachst (vgl. [2]).

Fur eine reellwertige Funktion p in einem Intervall der reellen Achse, welche
sich quasikonform in eine Umgebung dieses Intervalls fortsetzen lasst, sind lokale
Dilatation H, und lokale Quasisymmetrie p, in x definiert, und wir kdnnen p,
durch H, abschéatzen.

LEMMA 3.2. Sei I ein offenes Intervall und w:I— R stetig monoton wach-
send. Fiir ein xy€ I existiere eine quasikonforme Fortsetzung von w, die in einer
Umgebung von x, (beziigl. der oberen Halbebene) mit . uibereinstimmt. Also
H, <. Dann gilt

P, =P (H,).

Beweis. Sei A>H, . Es gibt also eine A-quasikonforme Abbildung f eines
Halbkreises {z =x +iy ||z—xo|=r, y=0} in die obere Halbebene mit f(x)= u(x)
fur reelle x.

Wir betrachten Folgen x,, t, mit x, — x,, t, | 0 fiir n — ». Auf das Urbild
wenden wir die Abbildung z+~—(z-x,)/t, an und auf das Bild ww—
(W= D/((x,) — (x, —t,)). Weil x,—t, x, x,+t, dabei in -1, 0, 1
iibergehen und w(x, —t,), p(x,) in —1, 0, so gilt fiir die neue induzierte Abbil-
dung f,:f.(-D)=-1, £.(00=0, f.(1)=0(w, x,, t,), und f, ist in einem Gebiet
A-q.k., das mit n — o gegen die obere Halbebene geht. {f,} ist normal ([7], p.
76), also konvergiert eine Teilfolge gegen eine A-q.k. Abbildung g der oberen
Halbebene auf sich mit g(—1)=—1, g(0) =0 und g(®) =x. Also ist

P(e(1) =M(-1,0,g(1), =) |5, A]

Somit ist " 1(1/A)=g(1)=2?*(A), und weil g(1) der Limes einer Teilfolge von
Q(w, x,, t,) ist, kann es keine Folgen x,—>x, t, 10 geben mit
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Q(w, x,, t,)¢[1/B, B] fur jedes n, wenn B>® '(A) ist. Also ist
P, =P (H,),

denn A > H, war beliebig.

Weil bei der konformen Abbildung —ilog z natiirlich H, = H, gilt fir x =
—ilog ¢, und weil auf Grund der Monotonie von #? eben P~ '(Max,.,p H;) =
Max.,p P~ '(H,) ist, erhalten wir aus Lemma 3.1. und 3.2. den Fortsetzungssatz:

SATZ 3.1. Ist p ein orientierungserhaltender Homoomorphismus der Kreislinie
oD auf sich und gilt in jedem Punkt { € 0D fiir die lokale Dilatation von w in {

H, <,

dann ldsst sich u quasikonform in den Einheitskreis erweitern (w ist also quasisym-
metrisch) und fiir die Dilatation H von u gilt

b= (7 vz 1))

¢eaD

d.h. H ist durch eine Konstante nach oben beschrankt, die nur von Max,.,n H;
abhdngt.

Bemerkung 3.1. Zusammen mit dem schon erwéhnten Erweiterungssatz ([7],
p. 100) konnen wir schliessen: Unter den Voraussetzungen des Satzes 3.1. gibt es
fur jede Zahl H > (2 '(Max,.,p H;))* eine quasikonforme Fortsetzung von w in

den ganzen Einheitskreis, die in einer Umgebung der Kreislinie noch H-
quasikonform ist.

4. Bestimmung der maximalen Dilatation einer extremalen quasikonformen Ab-
bildung im Falle degenerierender Hamiltonfolgen

Die Funktionenklasse v ist enthalten in der grosseren Klasse L,(D) der
komplexwertigen messbaren Funktionen ¢ in D mit

lol= [ [ 16] dxdy <=

D

Wir betrachten zunichst degenerierende Folgen (&,,) in L,(D), also ¢,, € L,(D)
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und ¢,, — 0 lokal gleichmaéssig in D fir m — . Ist I£9dD ein abgeschlossenes
oder offenes Intervall mit Endpunkten z,, z,, so sei das Argument arg z in einer
Umgebung von I stetig festgelegt, die z; seien so numeriert, dass arg z, Sarg z =
arg z, ist fiir z€ I, und S; bezeichne den Sektor

S;:={zeD|arg z, <arg z = arg z,}.

|I| steht fuir die Bogenlinge von I. Wir definieren

oI := ,,liﬁw ”' |# | dx dy.

S

Fur festes { € 0D definieren wir

0(0):=inf{6(I) | £ I, I ein offenes Intervall auf 9D}.

Fir Intervalle I, J mit J< I gilt natirlich 0(J)=6(I). Verlangen wir ferner
lonll=1, so gilt 8(I)=1. Ist I, das abgeschlossene oder offene Intervall auf aD
mit Endpunkten e *'", Ze''’", so Uiberlegt man sich leicht, dass gilt

6(0) = lim 6(1,).

£ — 0({) ist somit auf oD definiert und hangt von der degenerierenden Folge (o,,)
ab. Geht man zu einer Teilfolge (4,, ) iiber, so wird die entsprechende Funktion 6
hochstens kleiner. Wir beweisen nun das

LEMMA 4.1. Sei (¢,) eine Folge in L,(D) mit |¢o.l=1, die lokal
gleichmdssig gegen Null konvergiert. Weiter seien >0, € >0. Dann gibt es eine
Unterteilung {z,,..., zy} von 3aD von einer Feinheit |, sodass fiir eine geeignet
gewdhlte Teilfolge (¢,, ) gilt:

Mz

0(z,)<e.
i=1

Dabei verstehen wir unter einer Feinheit I, dass fiir die Intervalle I,i=1, ..., N mit
Endpunkten z;, z;,,1 (zn+1:=21) |LI|=1 fiir i=N gilt.

Beweis. Wir nehmen an, es existiere ein {; €dD mit 0({,)=¢/8m - l. I, sei das
Intervall auf 9D mit Endpunkten ;e ", {,e’". Wegen 6(I,) | 6(¢,) gibt es zu
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jedem n ein m, mit

”|¢,,,“|dxdyzf—-l—l,

8 n
St

also ist (¢,, ) eine Teilfolge mit

lim Ijl¢m|dxd %-é—— I (1)

Sy

Bei Wahl einer Teilfolge verkleinern sich die () hochstens, wihrend der obige
Limes inferior hochstens grosser wird, also Ungleichung (1) erhalten bleibt. Gibt
es fiir die neue Folge noch ein ¢, mit 6({,)=¢/8n - |, wahlen wir analog eine
weitere Teilfolge. Nach endlich vielen Schritten sind wir fertig, da ||¢,.[|=1. Wir
haben also durch Uebergang zu einer Teilfolge, die wir wieder (¢,,) nennen
wollen, erreicht, dass 8({)=¢/8w - | fir L€ oD \{{,, ..., &} (vel. [8]). Wir wihlen
nun eine Unterteilung z,, ..., zy von dD, sodass fiir die Intervalle I;, i=1,..., N
mit Endpunkten z;, z;,; (zn+1:=2,) gilt |[[|<l Wir kénnen [ < voraussetzen
und fiir die Anzahl N der Intervalle 27/l = N =47/l erreichen durch I/2 =|L| <L
Ebenfalls erreichen wir, dass {z;|i=N}N{{, ..., &}=0 ist. Also gilt 6(z,)=
e/8m I, i= N, und damit

A

-

IA

L € €
PR __.< .
i;t’)z N81-r > £

Wir bemerken, dass wir zu jedem z; ein offenes Intervall J; mit z, €J; auf D
wiahlen kOnnen, sodass gilt

4

Zo(J)<e

Wegen Yiv, 6(z,) = €/2 brauchen wir bloss 0(J,)=<0(z,)+¢/2N zu verlangen.

KOROLLAR 4.1. Unter den Voraussetzungen von Lemma 4.1. (die Teilfolge,
fiir welche YL, 0(z,)<e gilt, bezeichnen wir wieder mit (¢,,)), seien die offenen
Intervalle J; 0.B.d.A. disjunkt gewdhlt gemdss obiger Bemerkung. Ist -y, ein Jordan-
bogen, der in D einen Punkt von J; mit einem von I, verbindet (Jy.,:=J;) und
dabei eine Umgebung G, vom abgeschlossenen Intervall zwischen J; und J,.., von D
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abtrennt, und ist D, := D\UY., G,, so gilt

lim
m-—»oc

p‘——’

J|¢m| dxdy=e.

Dies ergibt sich unmittelbar, da wegen ¢,, — 0 lokal gleichmassig in D fiir m — «

[[ 1enlaxay—0, m—a

DU S,

gilt, und damit ist

N

i [[lonlacay=3 im [[ionldxay= ¥ oc<e,

i=1™ i=1
D, S,

h

Wir betrachten nun wieder eine quasisymmetrische Abbildung w der Kreislinie
oD auf sich. Wir nehmen an, es existiere eine degenerierende Hamiltonfolge
(dm)s dm € v Ly(D). Es gilt also ¢,, — 0 lokal gleichmiassig in D und

[[ueoardy >l m—e
D
Dabei ist k, die komplexe Dilatation einer extremalen Erweiterung f, von p.
Dann gilt [10]
‘1 e | 1
b dxdy —» —, m — o,
i Jion s~

Wir beweisen nun den

SATZ 4.1. Sei . ein orientierungserhaltender Homoomorphismus der Kreislinie
oD auf sich, der sich quasikonform in den Einheitskreis fortsetzen ldsst. Zu der
komplexen Dilatation k, einer extremalen Fortsetzung f, existiere eine de-
generierende Hamiltonfolge (&,,) in v. Also

[[xotmdxay >l m—ce

D
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Dann gilt fiir die maximale Dilatation K, dieser Erweiterung

KQ = Max HC'

LedD
Es gibt also einen wesentlichen Randpunkt {,€ dD mit H, = K.

Beweis. Sei H'>Max;.,p H;. Fiir {€9D definieren wir

I ein offenes Intervall auf 4D mit Mittelpunkt ¢, und |, lasse
I :=sup 4 |1

sich H'-q.k. in eine Umgebung von I fortsetzen

Wie frither sehen wir, {+>1[, ist stetig auf dD; es gibt also ein [(>0 mit
lo=Min,,p ;. Ein beliebiges Intervall auf dD der Lénge [, lasst also eine H'-q.k.
Erweiterung von p in eine Umgebung zu.

Zu (¢,,), Il =1, und € >0 wihlen wir nun nach Lemma 4.1. eine Teilfolge (¢,, )
und eine Unterteilung {z,, ..., zy} von D mit |L|=1], i=1,..., N. Dabei be-
zeichnen I, wie vorher die offenen Intervalle mit Endpunkten z, z;,;, und,
entsprechend unserer Bemerkung am Schluss von Lemma 4.1, seien die offenen
Intervalle J; (z; € J;) gewihlt mit Yiv, 0(J;) <e. Weil die Lange von I, hochstens |
ist, gibt es eine H'-q.k. Erweiterung h, von u in eine einfach zusammenhangende
Umgebung U, von I,. Darin wahlen wir einen analytischen Bogen v,;, der einen
Punkt in J; N I; mit einem Punkt in J, NI, verbindet und dabei eine Umgebung
G, vom abgeschlossenen Intervall zwischen J; und J, von D abtrennt. Wir
konnen zum Beispiel die Umgebung U, konform auf einen Halbkreis abbilden,
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sodass I, ins Innere des Durchmessers zu liegen kommt und dort einen or-
thogonalen Halbkreis wihlen, der durch die entsprechenden Punkte des Durch-
messers lauft. Das durch y, von D abgetrennte Gebiet nennen wir G,. Durch h;
wird es auf ein Gebiet im Bildkreis H'-q.k. abgebildet. Dieses Gebiet wiederum
wird durch die inverse Abbildung f,' der extremalen q.k. Erweiterung f, von
auf ein Gebiet G abgebildet. f;'oh, ist auf dem Randintervall dD NdG, die
identische Abbildung. G; wird also durch dD N3dG,; und den quasikonformen
Bogen f,'°h,(y;) berandet, welcher dieselben Endpunkte hat wie v,.

Nun betrachten wir eine H’-q.k. Erweiterung h, von |, in eine Umgebung
U, von I,. Das Bild von I, unter w liegt ausserhalb der abgeschlossenen Menge
h,(G,). Wir diirfen also annehmen, h,(U,)Nh,(G,)=@ und U,NG,=@. Dann
wiahlen wir einen analytischen Bogen v,, der in U, einen Punkt von J, NI, mit
einem Punkt in J; NI, verbindet und das Gebiet G, von D abtrennt. Es ist also
G,NG,=0 und h,(G,) Nhy(G,)=0. Wieder setzen wir G5 = f;'oh,(G,). Diese
Konstruktion setzen wir fort, sodass schliesslich sowohl die G; als auch die k,(G),)
paarweise disjunkt sind. Wir erhalten (in Abhiangigkeit von £>0) Gebiete
G4, ...,Gy in D und setzen

1

N _ N _
D8:=D\ G, D;:zD\U G..
=1 i=1

Dies sind zwei einfach zusammenhiangende Gebiete. Wir wollen nun die durch w
und die h; auf oD, induzierte Abbildung quasikonform in D, fortsetzen. Die
erweiterte Abbildung ist dann quasikonform in D (Hebbarkeit analytischer Bogen
([7], p. 47)) und hat die Randwerte von w. Sei

D-=D \ ig h(G,).

Die durch w und die h; von dD, auf dD_ induzierte Abbildung nennen wir w.. .
hat die Eigenschaft, dass sie in eine Umgebung jeden Punktes {€dD, H'-q.k.
erweitert werden kann. Entweder ist namlich {eoD\UY., vy, wegen H'>
Max,.,p H; ist die Erweiterung also moglich, oder dannist { € v, fur ein gewisses i, .
also sowieso die Einschrinkung einer H'-q.k. Abbildung.

Nennen wir die lokale Dilatation von u, in { nun Hj, so gilt demnach

H;=H' V({edD..

Aus Satz 3.1. folgt: . lasst sich quasikonform in D, erweitern, und die Dilatation
H® von u, ist also kleiner oder gleich (?'(H'))?. Fiir das folgende sei H eine
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feste Zahl mit H> (2 *(H'))*>. Wir kdnnen p, also H -q.k. in eine Umgebung von
aD, (beziiglich D,) erweitern. Gemiss unserer Bemerkung 3.1. gibt es sogar eine
q.k. Abbildung f, von D, in D_, welche in einer kompakten Umgebung U von
aD, bezuglich D, H-q.k. ist. Wir setzen f, durch die k; in die G, fort und nennen
die erweiterte Abbildung wieder f.. Wir haben also eine q.k. Erweiterung f, von
w. Thre maximale Dilatation in den G; ist kleiner oder gleich H', in U hochstens
H, und in ganz D nennen wir sie K.. D, \ U ist in einer kompakten Menge in D
enthalten, also gilt fir U’ = fgof.(U)

”‘ |pm| dxdy =0 fir m— o, (2)

DU’

Nach der Hauptungleichung gilt, wenn k. die komplexe Dilatation von f.! ist,
w = fo(2) sowie

14|k (W)

KW = e wi

ist, fiir jedes m

1= [ [1on@n 2 '{‘f’lj;’o‘(f'"” K. (w) dx dy.

Wir schitzen K, (fy(z)) in G/ und U’ ab. Weil die Dilatation von f. in f.'(w)
dieselbe ist, wie die von f.! in w und G/ und U’ durch f.'of, auf G; und U
abgebildet werden, ist K, (fo(z)) in G! kleiner oder gleich H' und in U’ kleiner
oder gleich H. Aus der Hauptungleichung folgt also sicher

1—‘<=J-Jl¢ml ll”KO(bml‘(bmHz HI dx dy
D

1 ”iKo‘z

+ Jj || KoH dx dy + JJ |b,| KoK, dx dy

D, D\U’

weil

|1“K0¢m/\¢mH2<(1+|KoD2 _ 1+1Ko|$

= = =K,.
1“‘"‘0‘2 1_|K0|2 1“|Ko| °
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Lassen wir m — « gehen, so gilt, weil (¢,,) eine Hamiltonfolge ist,

_ 2
[ [ L tbullbalP gy L
D

1- |Ko‘2 K,

nach Korollar 4.1., angewandt auf G} und D’, und mit (2) ist

H .
1§"§_+HK08

0

Weil £ >0 beliebig war, ist Ko=H', und da H'>Max,,p H; beliebig war, also
Ko=Max;.,p H,.

Damit ist die Behauptung bewiesen.

5. Das analoge Resultat im Fall der Randwertvorgabe auf einer abgeschlossenen
Teilmenge von 0D

Wir geben nun eine Uebersicht, wie man den Satz 4.1. auf den Fall verall-
gemeinert, wo u eine quasisymmetrische Abbildung der Kreislinie auf sich ist und
die Randwerte durch u nur auf einer abgeschlossenen Teilmenge I' von 4D
festgelegt sind. Wir definieren deshalb die Dilatation Hy- von w beziiglich I' durch

Hr:=inf{K; |f:U()— D, q.k., flr=p|r}
und die (lokale) Dilatation H} von w beziiglich I' in {eI" durch

H?: inf {Kf ] f: Uu()— D, q.k., flU(c)nr= “w |U(c)nr},

wobei die Infima iiber alle beziiglich D offenen Umgebungen U(I') von I' bezw.
U({) von £ und uber alle derartigen Funktionen f genommen werden.

Die Hauptungleichung (2.1) gilt dann fiir Funktionen f und f, in der Klasse
QF fiir alle ¢ € vy Eine Hamiltonfolge fiir die Klasse QY, ist also eine Folge (¢,
mit ¢,, € vr und

ij,d)m dx dy

D

— ||kl flir m — o,

Dabei ist k- die komplexe Dilatation einer extremalen Abbildung fr in Q. Da
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diese ¢,, durch Spiegelung iiber aD \I" analytisch fortsetzbar sind, gilt fiir eine
degenerierende Folge ¢,, — 0 lokal gleichmissig in D\ I fiir m — o (vgl. [9]).
Der Fortsetzungssatz 3.1 gilt dann in der folgenden Form:

SATZ 5.1. Sei . ein orientierungserhaltender Homoomorphismus der Kreislinie
oD auf sich und I' eine abgeschlossene Teilmenge von oD. In jedem Punkt (eI
gelte fiir die lokale Dilatation von w beziiglich I' in {

Hj <.

Dann ldsst sich p | quasikonform in den Einheitskreis erweitern, und die Dilatation
Hr der dadurch induzierten Randabbildung beziiglich I ist durch eine Konstante
nach oben beschrinkt, die nur von Max,.- H; abhdngt.

Beweis. Sei H,>Max, . H;. Wir wollen p| zunédchst auf endlich viele Inter-
valle, die I' enthalten, erweitern und dabei die Dilatation durch H, beschriankt
halten. I' ist kompakt, also gibt es endlich viele offene Intervalle, die I’
iiberdecken und die Eigenschaft haben, dass sich w|- in jedem dieser Intervalle
H,-q.k. in eine Umgebung fortsetzen lassen. Durch Trennung uberlappender
Intervalle® erhalten wir endlich viele disjunkte offene Intervalle I, k=1, ..., n,
die I' iiberdecken, sowie eine Erweiterung w; von w|r auf UZ_, I, deren lokale
Dilatation H, in jedem Punkt dieser Vereinigung hochstens H, ist. Weil I' eine
abgeschlossene Teilmenge von |Ji_; I ist, finden wir abgeschlossene Intervalle
Jec L, mit T'eUi_,J.. Fir jedes k=1,...,n erweitern wir u,l; durch
Spiegelung iiber die beiden Enden hinaus. In einem Randpunkt ¢ von J, wird
dabei die lokale Quasisymmetrie nicht grosser als 1+ p, +pZ, wobei p, die lokale
Quasisymmetrie von .|, in ¢ ist ([4], Korollar 2). Nach Lemma 3.2. bleibt somit
die lokale Quasisymmetrie in { kleiner oder gleich 1+ %2 ~'(H,)+?'(H,)*>. Wegen
H,=?"'(H;)* (Lemma 3.1. und 3.2.) und H; = H, ist (1+P '(H)+ 2P '(H)??
eine obere Schranke der lokalen Dilatationen der durch Spiegelung in gewisse
offene Intervalle J;, J, < J; < I, erweiterten Abbildung w,. Entsprechend Lemma
1 in [4] andern wir diese Erweiterung in J}\J; stetig differenzierbar ab. Dabei
wird die lokale Quasisymmetrie in den Endpunkten von J, nicht vergrossert, und
die Ableitung in J;\J, ist iiberall positiv. Wir erweitern diese Abbildung stetig
differenzierbar, streng monoton, ohne die Ableitung Null werden zu lassen
zwischen den Intervallen J. In diesen Punkten ist die lokale Dilatation also eins.

Damit haben wir u |- zu einer Abbildung w, der Kreislinie auf sich erweitert,
die die Voraussetzungen von Satz 3.1. erfiillt, und der Satz ist bewiesen.

! Gehort ein Punkt des Durchschnitts nicht zu I, so liegt mit ihm ein ganzes Intervall ausserhalb I'.
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Wir bemerken noch, dass wir, weil H;>Max,.r H; beliebig war, fir die
Dilatation H von u,; die Abschiatzung

2\2
H§(1+@_1(Max H£)+(@ (MaxHr)) )
Lell el

erhalten.
Wir verallgemeinern nun den Satz 4.1.

SATZ 5.2. Sei w ein orientierungserhaltender Homoomorphismus der Kreislinie
0D auf sich und I' eine abgeschlossene Menge in dD. Ferner lasse sich w|r
quasikonform ins Innere fortsetzen, d.h. QL sei nicht leer. Wenn es dann eine
degenerierende Hamiltonfolge (¢,,) fiir die Klasse Q. gibt, so gilt fiir die maximale
Dilatation K- einer extremalen Abbildung fr in QF

K =Max Hj.

Lell

Mit Hilfe von Satz 5.1. lasst sich nun der Beweis von Satz 3.1. leicht auf diesen Fall
tibertragen. Zunichst bemerken wir, dass wir fiir die Unterteilungspunkte
{z4,..., zn} in Lemma 4.1. verlangen konnen, dass je ein offenes Intervall J;_ 3 z;
entweder in I' enthalten ist oder ganz ausserhalb I’ liegt. Dies ist méglich, denn
falls kein Intervall J 3 z, € I' in I" enthalten ist, gibt es in beliebiger Nihe von z,
einen Punkt z; und mit ihm ein ganzes Intervall aussen an I'. Dort wahlen wir
einen neuen Punkt, wir nennen diesen nun z,, und behalten die Eigenschaften
|L|<! und 0(z,)=¢€/8m - | bei. Die offenen Intervalle J, 3z, mit

r4

Z 0J)<e
kOnnen wir dann innerhalb I' oder ganz ausserhalb I' wahlen. Wir wahlen
H'>Max, - H; und definieren

“sup{\ l

Es geniigt dann, diejenigen Kreisbogen z,z, ., durch analytische Bogen v, von
D abzutrennen, die Punkte von I' enthalten. Die neu induzierte Randabbildung
. von 8D, auf aD; ist durch die H'-q.k. Erweiterungen auf abgeschlossenen
Intervallen auf dD, vorgegeben, welche die vy, enthalten. Diese Abbildung u,
erfullt die Voraussetzungen von Satz 5.1, wobei der Menge I' nun die Vereinig-
ung dieser endlich vielen abgeschlossenen Intervalle entspricht. Wahlen wir nun

I ein offenes Intervall auf 4D mit Mittelpunkt ¢, und @ |;~r
lasse sich H'-q.k. in eine Umgebung von I fortsetzen
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die Konstante H (unabhingig von ¢!) hinreichend gross, zeigt dieselbe Berech-
nung wie fruher

!

1 ég‘+gKr8
r

und damit

Kr' = Max H{.

{ell

Wir erwahnen noch, dass damit fiir das Extremalproblem mit Randwertvor-
gabe auf einer abgeschlossenen Menge I’ gilt: Es gibt eine eindeutige extremale
Abbildung, und sie ist Teichmiillersch mit quadratischem Differential ¢ € vy, oder
es existiert mindestens ein beziiglich I' wesentlicher Randpunkt {y €I, d.h. ein
Punkt ¢, mit K- = Hf..

6. Anwendungen

a. Konstruktion einer Randabbildung mit iiberall wesentlichen Randpunkten

Wir konstruieren eine quasisymmetrische Randabbildung wu, fiir welche die
lokale Dilatation H, konstant gleich K|, ist. M.a.W., jeder Randpunkt ist wesent-
lich. Dabei soll K,>1 sein, da die Problemstellung sonst trivial ist.

Sei f die extremale q.k. Abbildung in einer Homotopieklasse von Abbil-
dungen zwischen zwei kompakten Riemannschen Flachen. Ihre maximale Dilata-
tion sie K> 1. f ist eine Teichmiillersche Abbildung mit quadratischem Differen-
tial endlicher Norm und komplexer Dilatation

k=k—.

Die Riemannschen Flichen R und R’=f(R) haben die Gestalt R=D|g, R'=
D|g, wo G und G’ diskrete Gruppen von Decktransformationen in D =
{z ||z|< 1} sind. f induziert eine K-q.k. Abbildung f des Einheitskreises auf sich.
¢ induziert das quadratische Differential ¢ auf D, und es ist ||$|| =, weil in
jedem der unendlich vielen kompakten Fundamentalgebiete die Norm von é
gleich ||¢|lz ist. f ist also eine Teichmiillersche Abbildung mit quadratischem
Differential unendlicher Norm. f induziert eine Randabbildung u der Kreislinie
auf sich, und diese hat eine extremale K -q.k. Fortsetzung f,. Wire f, eine
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Teichmiillersche Abbildung mit holomorphem quadratischem Differential end-
licher Norm, so wire K,< K wegen der eindeutigen Extremalitit. Aus demselben
Grunde liesse sich f, nach unten durchdriicken [6], was einen Widerspruch zur
Extremalitit von f zur Folge hitte. Dies sieht man in folgender Weise: f induziert
einen Isomorphismus 8 der Gruppen G und G’ durch

0(g)=fogof?, geG.
Also gilt

f=0(g)ofog7, in D, insbesondere
w=0(g)onog™'  fir geG.

Damit ist aber auch 0(g)of,cg ™' firr jedes ge G eine Erweiterung von u, wegen
der eindeutigen Extremalitit also

fo=0(8)°focg™", geG.

Also lasst sich f, nach unten durchdriicken.

Wir haben gesehen, p besitzt als extremale Erweiterung f, keine
Teichmiillersche Abbildung mit holomorphem quadratischem Differential end-
licher Norm, also gibt es einen wesentlichen Randpunkt {,€ oD, d.h.

HC() — Ko.

(Ko>1, denn sonst hatten wir wieder eindeutige Extremalitat und obigen Wider-
spruch.)

Nun zeigen wir, dass die Bahn G(&,):={g({,) | g€ G} dicht liegt auf oD (d.h.
G und G’ sind Gruppen erster Art). Weil R kompakt ist, ist jedes ge G \{id}
hyperbolisch ([1], p. 97). Ware G({,) ={L}, so hitten alle ge G dieselben zwei
Fixpunkte, und das Fundamentalgebiet ware nicht kompakt. Somit gibt es ein
{1 # ¢ mit e G(L,). Weil bei kompaktem Fundamentalgebiet die “limit-set” L
schon ganz 4D ist, gilt nach Lehner ([5], p. 18):

Zu jedem ze€oD\{{,, {;} gibt es ein z'€dD mit ze G(w) fiir jedes we
8D \{z'}. In unserem Fall also ist z € G({,) oder z € G(¢,). Wegen G(&,) = G(¢)
gilt ze G({) fiir jedes z e aD. Also G(Z,)=aD.

Sei nun ze€G({,). Es gibt somit ein ge G mit g({,)=2z. Wegen pn=
0(g)epnog ' ist H, = H,, denn g und 6(g) sind ja konform. Also ist

H,=K, firalle zeG().



576 RICHARD FEHLMANN

z+> H, ist aber halbstetig nach oben und G({,) = 0D, somit gilt
H,=K,>1 fiir jedes zedD.

b. Vergleich der Grossen H,, K, sowie Hr, K, Hy, K}

Wir betrachten zu H, H,, H- noch einige weitere Grossen. Wir definieren fur
leodD,

KC :=inf{Kf I f:D—D, qk., f'l = Mll}a
wobei das Infimum tber alle offenen Intervalle I auf 0D genommen wird, die {
enthalten, sowie iiber alle derartigen Funktionen f. Offensichtlich ist H, = K,. Wir
werden in diesem Abschnitt die Gleichheit beweisen. Zunachst verallgemeinern

wir diese Definition. Sei I' eine abgeschlossene Teilmenge von oD. Hr und K
sind also definiert. Wir setzen

H?:=inf H;~ K%:=inf K-
ri=1nt Hr, r:=1m Br,

wobei das Infimum iiber alle abgeschlossenen Mengen I in 0D genommen wird,

die I' im Innern enthalten. Ist zum Beispiel I'={{}, so gilt H, = H} und K, = K};

oder fiir I'=4D ist H = Hr = H, K¥= K = K,. Wir beweisen, dass gilt
K?=Max {HY, K}

Daraus erhalten wir fiir I' ={{} wegen K;,=1 sofort

KC = HC'

Im Falle I'={{, &5, . . ., §,} ist HE-=Max; <, H, sowie K= K, die maximale
Dilatation der Teichmiillerschen Extremalen fiir dieses n-Eck [13]. Also gilt

I({O(1 AN Max {Kn, HC1’ ch, PN HC“}.

Fir n=3 ist K, =1, also
K?cl,cz,cs} =Max {H,,, H,,, H.}.

Mit Hilfe von Satz 5.1. beweisen wir jetzt den



Ueber extremale quasikonforme Abbildungen 577

SATZ 6.1. Sei . eine quasisymmetrische Abbildung der Kreislinie dD auf sich
und I’ eine abgeschlossene Teilmenge von dD. Dann gilt

K(l)"' = Max {H(I)*, KF}

Beweis. Weil K= H} und K{= K ist, folgt die Behauptung zum Beispiel aus
K¢ =HY. Wir haben also den Fall K> H} zu untersuchen. Falls I'=90D ist,
haben wir K? = K., also diirfen wir annehmen, I' sei nicht die ganze Kreislinie
aD. Ferner sei I nicht-leer, da sonst sowieso K= K = H2=1 gilt. Sei (g,) eine
Folge mit €, | 0. T, seien endliche Vereinigungen disjunkter abgeschlossener
Intervalle so, dass I' im Innern von I, und I, in der g,-Umgebung von I
beziiglich 0D enthalten ist. Es gilt

NI,=T.

neN

Die Folge I, ist monoton fallend. Zunéchst sehen wir, dass H | H} und
Kr | Ki. Aus Hy<K7? schliessen wir H <K fiir n = n,. Die Extremalen f, fiir
die Randwerte p auf I, sind also Teichmiillersche Abbildungen mit quadrati-
schen Differentialen ¢, € vr-, denn kein Punkt von I, kann bezuglich I, wesent-
lich sein. Aus der Normalitit von {¢,} schliessen wir auf eine in D\I lokal
gleichmassig konvergente Teilfolge, die wir wieder ¢, nennen wollen. Also
¢, — ¢r in D\TI fiir n — o, Wir behaupten zunichst, ||¢r||#0. Ist namlich
lérll=0, d.h. konvergieren die ¢, lokal gleichmissig in D\I" gegen Null, so
schliessen wir wieder, dass H{-= K} gilt in folgender Weise:

Sei H'>HY. Es gibt also eine H'-q.k. Fortsetzung h, welche in einer
Umgebung U(I') von I' definiert ist und in I, die Randwerte von p hat fiir
n = ny. Wie frither wiahlen wir wieder analytische Kurven v, in U(I'), welche die
Endpunkte der Intervalle von I, verbinden und Gebiete G, von D abtrennen.
Wir setzen D = D\|J G, und haben in Intervallen auf 4D, welche die v, enthal-
ten, die Randwerte durch h vorzugeben. Nach Satz 5.1. konnen wir diese
Abbildung K-q.k. in D erweitern (fir ein gewisses K). Wir nennen die
erweiterte Addildung f, und weil f und f, auf I', bereinstimmen fiir alle
n = n,, gilt die Hauptungleichung

- 11— kudul|@al]> 1+|K]
1"‘"”“”"‘ 1-|k,? 1-|&|

dx dy, n = ny.

Die Abbildung f, hat aber komplexe Dilatation

¢ 1+ k.
1-k,’

Kn:kn KF=

|bnl” "
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also

ll_Kncbn/ld)nHz: 1
1—‘Kn‘2 KF ’

n

und damit

+
Krnéjj\dﬂ ! :K:dxdy, n=Zn.
D

Lassen wir n — o gehen, so folgt, weil ¢, — 0 lokal gleichmissig in D\ I und
(1+|&)/(1—|&[)=H’ in U()

K?=lim K =H'.

n—so0

H' > HY war beliebig, also K?= HY{ im Widerspruch zur Voraussetzung.
Wie frither haben wir also 0<||¢r||=1. Mit K§=:(1+k$)/(1—k$) haben wir

d)n d’[’ »e
— k9 f.a.
|d>nl o gl 0

Die Abbildungen f, konvergieren also gegen eine Teichmiillersche Abbildung fr-
mit quadratischem Differential in v und komplexer Dilatation k{¢r/|dr|. Aus-
serdem stimmt f- auf I' mit w iberein, ist also die eindeutig bestimmte
Extremale fiir w beziglich I Damit ist K =K} und die Behauptung damit
bewiesen.

Wir bemerken noch, dass keine analoge Beziehung zwischen Hr, HY und K
gilt und fihren das folgende Beispiel an. Wir strecken ein achsenparalleles
Quadrat mit den Ecken {;, {5, {3, {4 durch Fg (x+iy)=Kox+iy, Ko>1. Wir
wahlen I'={{,, &, {5, &} Also ist H-=1, da I' nur aus isolierten Punkten
besteht, ferner 1 <HY<K,= K =K.

c. Beweis einer Vermutung von Sethares

Als weitere Anwendung wollen wir eine in der Dissertation von Sethares [11]
aufgestellte Vermutung beweisen. Wir betrachten eine Teichmiullersche Abbil-
dung f, welche in einem Gebiet definiert sei, das den abgeschlossenen Einheits-
kreis D enthdlt. f hat also lokal die Darstellung f=¥ 'oF,o®, wo &, ¥

konform sind und Fx(x+iy)=Kx+iy ist, K>1, mit Ausnahme in isolierten
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Punkten. ¢ :=®'* und ¢ := ¥ sind eindeutige Funktionen mit Nullstellen und
Polen in diesen isolierten Punkten bezw. deren Bildpunkten (vgl. [12]). Ist z, eine
Nulistelle oder ein Pol von ¢ der Ordnung n, so ist f(z,) eine Nullstelle bezw. ein
Pol von ¢ derselben Ordnung. Wir fragen nun, ob f fiir den induzierten Rand-
homoomorphismus w von oD auf f(oD) extremal ist. Ist ¢ holomorph in D und
hat auf dD nur Pole der Ordnung n=2. so ist f, wie Sethares gezeigt hat,
eindeutig extremal. Existieren auf dem Rand Pole hoherer Ordnung, so lasst sich
f abidndern, ohne die maximale Dilatation zu vergrossern und ohne die
Randwerte zu verandern. Auch ist ersichtlich, dass die Extremalitat von f aus der
Existenz von Polen zweiter Ordnung von ¢ auf aD folgt. Die Vermutung lautet
dann: Hat ¢ auf daD keine Pole zweiter Ordnung, aber mindestens einen Pol
hoherer Ordnung, so ist f nicht extremal. Wir beweisen nun den

SATZ 6.2. Sei f eine Teichmiillersche Abbildung in einem Gebiet, das den
abgeschlossenen Einheitskreis D enthilt, ¢ das zugehirige meromorphe quad-
ratische Differential sowie K die maximale Dilatation von f. Dann sind fiir die
quasikonforme Erweiterung von f|,p ins Innere die folgenden Fille moglich:

(a) ¢ hat auf oD mindestens einen Pol zweiter Ordnung. Dann ist f extremal,
und die Pole zweiter Ordnung sind wesentliche Randpunkte.

In diesem Fall ist f eindeutig extremal genau dann, wenn ¢ in D holomorph ist
und auf oD hochstens Pole der Ordnung n =2 hat.

(b) ¢ hat auf dD keinen Pol zweiter Ordnung. Dann ist das Maximum der
lokalen Dilatationen Max,.,p H; echt kleiner als K.

f ist d.u.n.d. eindeutig extremal, wenn ¢ in D holomorph ist und auf oD
héchstens Pole erster Ordnung hat. Andernfalls ist f nicht extremal.

Beweis. Man berechnet die lokale Dilatation H, der Randabbildung p in
jedem Punkt {€dD. Ist { ein Pol zweiter Ordnung von ¢, so ist H, = K. Diese
Stellen sind also wesentliche Randpunkte, und mithin ist f extremal. In reguldren
Punkten { € 0D von ¢ (fiir die Definitionen im Zusammenhang mit quadratischen
Differentialen siehe [15]) berechnet man leicht, dass H, =1 gilt. Fiir Nullstellen
oder Pole der Ordnung n# 2 erhilt man H, <K. Im Falle (b) gibt es unter der
Annahme, dass f extremal ist, keinen wesentlichen Randpunkt, und nach Satz 4.1
muss f damit eine Teichmiillersche Abbildung mit in D holomorphem quadrati-
schem Differential ¢ von endlicher Norm sein. ¢ hat also auf dD hochstens Pole
erster Ordnung, und f ist mithin eindeutig extremal. Damit ist (b) bewiesen, und
(a) ergibt sich in folgender Weise:

Hat ¢ auf 0D mindestens einen Pol zweiter Ordnung, so ist f nach dem
soeben Gesagten extremal. Ist ¢ zudem holomorph in D und hat auf oD
hochstens Pole zweiter Ordnung, so ist f nach Sethares eindeutig extremal. Besitzt
¢ auf oD einen Pol der Ordnung n = 3, so konnen wir, wie Sethares gezeigt hat, f
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abindern, indem wir Fy in einem Gebiet der Form {z | 8, <arg z < 8,} durch die
durch die Randwerte induzierte Extremale F# Fy ersetzen (f = W 'oFy o). Hat
¢ in zye D einen Pol, so betrachten wir eine Kreislinie vy von z, in D, die durch
keinen Pol und keine Nullstelle von ¢ geht. Weil das Bild einer analytischen
Kurve unter Fx wieder analytisch ist, ist f(-y) analytisch. Die Dilatation der von f
zwischen y und f(y) induzierten Randabbildung ist also eins. Im Innern von vy
konnen wir f also durch die dazugehorige Extremale f abiandern. Diese ist
konform oder eine Teichmiillersche Abbildung mit holomorphem quadratischem
Differential, also ist f# f. f kann also nie eindeutig extremal sein, wenn ¢ einen
Pol in D besitzt.

Auf die explizite Berechnung der lokalen Dilatationen H, wollen wir an dieser
Stelle verzichten.
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