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Double collisions for a classical particle System with
nongravitational interactions

Richard McGehee

1* Introduction

In 1907 K. F. Sundman proved that a solution of the Newtonian gravitational
three body problem for which the angular momentum is nonzero can be written in
terms of a power séries convergent for ail time [12]. The major obstacle overcome
by Sundman was presented by collisions between the particles. The condition that
the angular momentum be nonzero allowed him to eliminate the possibility of a

collision between ail three particles. Since he could not eliminate the possibility of
a collision between two of the particles, he was forced to investigate the nature of
solutions with double collisions.

Sundman discovered that a solution which has a double collision as t —» t* can
be written as a convergent power séries in (t*-~1)1/3. This solution cannot be

extended holomorphically to t*. However, using analytic continuation in the

complex plane around the branch point f*, Sundman found a real analytic
extension for f>f*. Introducing a new variable, which locally has the form
(f* -1)113 at each collision, he was able to extend the solution through each double
collision and to write it as a convergent power séries in the new variable. A
complète description of Sundman's construction can be found in the book of
Siegel and Moser [10].

From the vantage point provided us by the current theory of dynamical
Systems, we can question the significance of Sundman's power séries expansion.
Today an ordinary difïerential équation is viewed as a vector field on a manifold,
and its solutions are viewed as determining a flow on that manifold. One attaches

as much importance to the smoothness of the flow with respect to initial data as to
its smoothness with respect to time. Sundman's extension of an orbit through a

double collision would be considered of questionable significance if it were
unrelated to nearby orbits. Since Sundman's extension accounts only for the

dependence on time and not for the dependence on initial data, we do not know a

priori whether his extension is related to nearby orbits.
Levi-Civita has given us a différent method for extending orbits through
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double collisions [6]. He eliminated the singularities in the vector field by
transforming the équations to ones without singularities. The extension through
double collisions then is given by the transformed équations and is automatically a

smooth function of initial data.

It happens that Sundman's extension and Levi-Civita's extension coincide.
One is tempted to believe that somehow the power séries technique carries with it
the dependence on initial data. Since holomorphic functions are completely
determined by their behavior on small sets, and since the solutions of the three

body problem are holomorphic, one can easily imagine that an analytic extension
in time will automatically give analytic dependence on initial data. It does so for
the gravitational potential, but we shall see below that it fails to do so for other

potendais.
To contrast thèse two methods of extension we study a particle System with

nongravitational interactions. Instead of assuming that the pairwise potential
energy is r'1, where r is the distance between the two particles, we assume that
the potential energy is r~a, where a is some positive real number. We then study
Sundman's technique versus Levi-Civita's. We shall see that solutions can be
extended as a power séries in time whenever a is in a certain dense subset of the
rationals. However, only a few of thèse values of a produce double collisions
which can be extended according to Levi-Civita. For the other values, Sundman's

technique gives extensions which are not continuous with respect to initial data.
Thus we see that it is only a peculiar property of the gravitational interaction

which gives us the same orbit extensions for the two différent techniques. If one
were to carry out Sundman's entire program for a three body problem with a

nongravitational potential, one might obtain a power séries solution, convergent
for ail time, but for which small changes in initial data could produce drastic

changes in the orbits.

2. Equations of motion

We study a System of two particles. Since the two particles will always move in

some fixed plane, we take R2 for the position space. We fix the center of mass at
the origin, so the System reduces to that of a single particle of unit mass in a central
force field. We take the potential energy function to be

U(x) -\x\-«, <*>0,

where x e R2 is the position of the single particle. The motion is described by the
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differential équation

x =-grad U(x) -a |xra~2x, (2.1)

where the double dot represents the second time derivative.
A double collision occurs if the two particles coincide and corresponds to x 0

in the reduced problem. The origin is a "singularity" of équation (2.1), i.e. it is a

point where the équation is undefined. Indeed, the potential energy approaches
—oo as x —» 0.

A "singularity" of a solution of (2.1) is a time t* beyond which the solution
cannot be extended as a smooth function of real t. A précise définition of this
notion is given in Section 3 below. We shall show that, for équation (2.1),
singularities of the solution correspond to singularities of the differential équation,
i.e. x-»0 as t —> t*. The only singularities are therefore double collisions.

In Section 4 we develop some properties of the solutions of équation (2.1). We
shall see that a 2 is a dividing line between two very différent types of behavior.
For example, équation (2.1) has many circular periodic orbits. For a<2, thèse

orbits are ail stable; for a>2, they are ail unstable. As another example, the
angular momentum must be zéro for a collision orbit if a <2. However, if a>2,
there are collision orbits with arbitrary angular momentum.

It is interesting to note that the case a 2 has another property not discussed
hère. A System of n particles moving along a line with pairwise interaction given
by an inverse square potential is completely integrable [9].

In Section 5 we discuss Sundman's technique of extending singular solutions.
We call his technique "branch regularization." Roughly speaking, a singularity t*
of a solution can be considered as a branch point, where time t is regarded as

complex. We then ask whether we can find a real analytic branch which extends
the solution. We are able to find such a branch whenever a has the form
2((q/p)-1), where q and p are relatively prime integers with q odd. If p is even,
as it is for the gravitational potential, then the extension can be described as a

"reflection," i.e. the velocity vector reverses direction at collision, and the
particles effectively bounce off each other. If p is odd, then the extension can be
described as a "transmission," i.e. the direction of the velocity vector is preserved
at collision, and the particles effectively pass through each other.

In Section 6 we turn to Levi-Civita's idea of focusing attention on the

singularities of the differential équation rather than on the singularities of the
solution. It is difficult to describe his technique in gênerai terms, since it involves
an apparently ad hoc change of variable. However, Easton has given a gênerai
définition of regularization in the spirit of Levi-Civita [4], Easton's idea is to use

an isolating block to examine whether orbits passing close to collision détermine
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an extension for an orbit ending in collision. Easton calls his technique "regulari-
zation by surgery." However, this author feels that the use of surgery plays a

secondary rôle to the use of isolating blocks and therefore prefers to call the
technique "block regularization."

In Sections 6 and 7 we apply Easton's définition to équation (2.1). We find
that the équation is block regularizable if and only if a 2(1 - n"1), where n is a

positive integer. We then discuss the similarities and différences between branch
regularization and block regularization.

Finally in Section 8 we exhibit a transformation analogous to that given by
Levi-Civita. Our transformation works for those values of a for which équation
(2.1) is block regularizable. It reduces to Levi-Civita's transformation when a 1.

3. Singularities of solutions

In this section we prove that the only singularities of solutions of équation
(2.1) are collisions. We begin with the gênerai définition of a singularity of a

solution of the differential équation

i F(i). (3.1)

Hère F is a real analytic vector field on some open set U<^Rn, and the dot
dénotes differentiation with respect to time t. If x(0) g U, then the standard
existence and uniqueness theorems give us a unique solution x(t) defined for
t~<t<t+, where -oo^r~<0<r+^+oo and (t~,t+) is the maximal interval over
which the solution can be extended.

DEFINITION. If r+<oo, then the solution x(t) is said to end in a singularity at
t+. If t~ > -oo, then x(r) is said to begin in a singularity at f~. In either case, f* f+

or t~ is said to be a singularity of the solution %(t).

We can write équation (2.1) as a first order System by introducing the

momentum vector y x. The équation then becomes

x y,
(3.2)

y -a\x\-«-\

which is a Hamiltonian System with Hamiltonian function

è|y|2-I*r. (3.3)
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The function H represents the total energy of the particle and is a conserved

quantity; i.e. H is constant along solutions of équations (3.2).
We now state the main resuit of this section. The proof is given after the proof

of Lemma 3.2.

THEOREM 3.1. Suppose that (x(f), y(f)) is a solution of (3.2) with a singular-
ity at t*. Then x(t)-*0 as t-* f*.

LEMMA 3.2. Suppose that (x(f), y(0) is a solution of (3.2) with H(x, y) h,

and suppose that |x(fo)|>2e >0. Then there exist constants 8 and M, depending on
h and e, but independent of (x(t0), y(t0)), such that

\y(t)\<M and |x(t)|>e, whenever |t-to|<S.

Proof. We take

)1/2 and 8 g/M

It suffices to show that

|x(r)|>e whenever |t-ro|<S, (3.4)

since H(x(t), y(t)) h implies that

and hence that

|y(f)|<M whenever |x(r)|>e. (3.5)

Suppose that (3.4) is false. Then there exists a tx such that |*i —fo|<8
|x(f1)|^e. By continuity one then can find a t2 such that

(3.6)

and

|x(r)|>e whenever \t-to\<\t2-to\.
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Since y x, (3.5) now implies that

|x(f)|<M for |f-to|<|t2-'o|.

Hence |x(r2)|>|x(r0)|-M|r2-t0|, i.e. e>2e-M|f2-f0|, or \t2-t0\>e/M 8. But
this contradicts (3.6), establishing (3.4) and proving the lemma.

Proof of Theorem 3.1. Let H(x, y) h. Assume that x(t) does not approach 0
as t —» r*. Then there exist an e >0 and a séquence {*„}, with tn —» **, such that

|jc(OI>2e for ail n. (3.7)

Let 8 and M be given by Lemma 3.2. Choose n so that |r*-fn|<ô. Then

|y(f)|<M and |x(f)|>e whenever |r-tn|<ô.

Equations (3.2) then imply that

|x(t)|<M and lyW^ae"""1 whenever |r-rn|<Ô.

Hence (x(t), y(f)) actually approaches some limiting point (x*, y*) as f —> t*. By
(3.7), x*52=2e. Therefore the solution can be extended beyond r*, which
contradicts the hypothesis that r* is a singularity. Hence x(t)->0 as f —» t* and the
theorem is proved.

4. A géométrie description of the flow

We now présent a description of the orbit structure of System (3.2), with
spécial emphasis on the orbits near collision. The transformations used hère are
essentially the same as those used by this author and others to study collisions in
Newtonian gravitational Systems. (See [8] for spécifie références.) Similar transformations

hâve been used also by Devaney in his study of the anisotropic Kepler
problem [3].

It is convenient to introduce the constants

0=f and y^.
We identify the real plane K2 with the complex plane C1 and consider x as a

complex number or as a vector in the Euclidean plane, depending on context. As
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usual, a bar dénotes the complex conjugate. We shall use the angular momentum
intégral

We introduce the new real coordinates r>0, 0, w, and v by letting

(4.1)
)ie

x ryeie,

y r~

System (3.2) then becomes

(4.2)

If we take the energy intégral H(x, y) given by (3.3) to hâve the constant value h
and the angular momentum intégral û (x, y) to hâve the constant value c, then we
can write

(4.3)

We now define the constant energy manifold

M(h) {(r, 6, w, v) e R4 : r ^ 0 and (4.3) holds}. (4.5)

System (4.2) détermines a vector fîeld on M(h) which is undefined when r 0. We
let

N {(r, 0, w, v) e M(ft) : r 0}, (4.6)

which is the manifold of states corresponding to collision for équation (2.1). From
the définition of M(h), we see that

4:r O and w2 + u2 2}
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and hence that N is independent of h. Since 0 is considered modulo 2tt, N is a two
dimensional torus.

As mentioned above, the vector field given by (4.2) is not defined on N. A
collision corresponds to an orbit which approaches N in finite time. However, we
can scale the vector field in such a way that the new vector field can be extended
to N. We accomplish this scaling by introducing a new time parameter t given by

dt rdT. (4.7)

Equations (4.2) then become

(4.8)

where the prime dénotes differentiation with respect to t. For this new vector
field, N is an invariant set. As we shall see in Lemma 4.1 below, collision orbits
now approach N asymptotically as t-> ±<».

The solutions of the entire System (4.8) are determined by the last two of those

équations in the foliowing sensé. The équations for w' and v' do not involve r and
6 and therefore may be solved independently. Then r and 6 can be determined
from the first two of équations (4.8). If h^O, then r could also be determined
from équation (4.3).

We therefore consider the last two of équations (4.8) as a separate System:

2).

Thèse équations admit the intégral

|t>2 + w2-2r*. (4.10)

This intégral is derived from the angular momentum and energy intégrais as

follows.

is a function of intégrais for System (3.2) and is therefore itself an intégral.
Written in terms of r, 0, w, and u, this expression becomes équation (4.10).
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Figure 4.1.

The orbit structure of System (4.9) is completely determined by the intégral A.
There are three distinct cases dependingon whether |3 < 1, |3 - 1, or j3 > 1. Thèse

cases are shown in Figures 4.1, 4.2, and 4.3 respectively. In each case, the circle
{w2 + t;2 2} is invariant and corresponds to the collision manifold N. The
constant energy manifold M(h) projects to {n>2 + i;2^2} when /i<0, to
{w2 + v2 ^ 2} when h > 0, and to {w2 + v2 2} when h 0.

In the remainder of this section we describe the relevant aspects of the
solutions of System (4.8). Most of the statements can be derived from an
examination of the intégral A. Those that will be used in later sections are labeled
as Lemmas and proved.

When )3 < 1, the flow is similar to that of the Kepler problem, which is given
by /3 è- K we take h ^ 0, which corresponds to hyperbolic or parabolic orbits in
the Kepler problem, and if we take w^O, which means that the angular
momentum is nonzero, then ail solutions are unbounded in both directions. The

Figure 4.2.
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Figure 4.3.

orbits with zéro angular momentum either begin or end in collision. If we take
h <0, which corresponds to elliptic or circular orbits in the Kepler problem, then
ail solutions are bounded. There are two circular orbits, corresponding to the
critical points (w, t>) (±Va, 0) in Figure 4.1. Thèse circular orbits are stable.

Taking the angular momentum to be zéro distinguishes a one parameter family of
orbits beginning and ending in collision. Ail other solutions move along invariant
tori. One feature that distinguishes the Kepler problem is that each torus is

foliated by periodic orbits. One does not expect this foliation for arbitrary a <2.
Instead one expects most of the tori to be filled with quasi-periodic orbits.

For p 1, the variable w becomes the angular momentum intégral, as can be

seen from équation (4.4). In this case, the invariant circle {w2 + u2 2} becomes a

circle of critical points for System (4.9). When h<0, every solution begins and
ends in collision. When h>0 and |w|^V2, every orbit either begins or ends in
collision and becomes unbounded in the other direction. When h>0 and |w|>
V2, every orbit is unbounded in both time directions. When h 0, the variable v
also becomes an intégral, as can be seen from équation (4.3). If u^O, then the
first of équations (4.8) immediately implies that r roe(fi+1)vr and hence that every
solution begins or ends in collision and becomes unbounded in the other direction.

Setting v 0 distinguishes a one parameter family of circular periodic orbits
r r0, where r0 is constant.

When (8 > 1, the flow is drastically différent from the Kepler problem. The
circular periodic orbits, corresponding to the critical points (w, v) (±Va, 0) in
Figure 4.3, now occur for positive energy and are unstable. Among the orbits
asysmptotic to one of the circular orbits, some are collision orbits while the others

are unbounded. When h>0 there are unbounded collision orbits as well as orbits
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beginning and ending in collision and orbits unbounded in both directions. When
h^O ail solutions begin and end in collision except those with h 0 and c 0.

Thèse begin or end in collision and are unbounded in the other direction.
In the following lemmas, we shall consider r as a function of t or of r,

depending on whether we are considering a solution of System (4.2) or of System

(4.8). The orbits of both Systems are the same; only the rate at which solutions

move along the orbits is différent. Using équation (4.7), we can write r as a

function of t along a particular orbit:

(4U)

Hère s is a dummy variable for f, so the r(s) under the intégral is a solution of
(4.2). Note that r0 r(t0) and that r(rQ) r(f0), where the first r now dénotes a

solution of (4.8). Note also that any solution of (4.2) must hâve r(t) > 0 for ail t.

We now show that orbits with singularities in the original time variable t

become orbits for which r approaches 0 asymptotically in the new time variable t.

LEMMA 4.1. Suppose that (r, 0, w, v)(t) satisfies (4.2) and that r-»0 as

t-M*±. Then r(t)-**<*>.

Proof. We prove that f-*f*— implies that r(t)—>+<*>. The other case is

similar. Equation (4.11) implies that t(0 is defined for ail ro<t<f* and is

increasing. Hence t(0 —> r* as t —» t* -, where t* may be infinité. Then t(t) -* 0

as t -* t*. Since équations (4.8) are defined and smooth on M(h), and since N is a

compact invariant set, it is impossible for a solution to approach N in finite time.
Therefore t* », and the lemma is proved.

For the following two lemmas, we use the notation

S* {(r, 0, w, v) g N : v ±V2}. (4.12)

By the définition of N,

r 0, w 0, v

and hence S+ and S" are both circles. We dénote by <o(p) the oméga limit set of
the point p (r, 6, w, v) under the flow on M(h) defined by équations (4.8).

Similarly, a(p) dénotes the alpha limit set.

LEMMA 4.2. Assume 0^1. Let p(r) (r, 0, w, v)(t) be a solution of (4.8),
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and write po p(0). Then
(a) r -» 0 as t ~> +00 if and only if a>(p0) c S~, and
(b) r-» 0 as r -» -oo i/ and on/y i/ a(p0)<=S+.

Proof. As above, we prove only (a), since (b) is similar. Since N is exactly the
set on M(h) where r 0, r —> 0 as t -» +» if and only if o>(p0) <= N. Since S" <= N, it
therefore suffices to show that û>(po)cN implies that a>(po)c:S". Using the energy
relation (4.3) with r 0, we can rewrite the équation for vr in System (4.8)
restricted to N as

Therefore v defines a Liapunov function on N. Since a Liapunov function must be

constant on an oméga limit set [1], we must hâve t;' Oon fc>(p0). But u' 0onN
exactly on S+ and S". We can rule out S+ since v is positive in a neighborhood of
S+ and the first of équations (4.8) implies that r is increasing whenever r is

positive. Therefore a>(po)c=S" and the proof is complète.

LEMMA 4.3. Assume |8f 1. Let (r, 0, w, v)(t) be a solution of (4.2) such that
r -> 0 as t -> r* ±. Then, as t-+t*±,

w(0-»0, v(t)-+±J2, and

/or some constant 6*. Furthermore, i/0<l, then w(f) O and 6(t)

Proof. As before, we prove only the case t —> t* -. By Lemma 4.1 it suffices to
prove the same limits for System (4.8) as t —> +o°. By Lemma 4.2 it suffices to
prove thèse limits for ail points in M(h) on the stable manifold of S~. On S~,

$' 0, so S~ consists entirely of rest points. A computation shows that the

eigenvalues at each of thèse rest points are 0, — V2(j3 -1), and -2\/2j3. The zéro
eigenvalue corresponds to the tangential direction along S~, while the two others

correspond to the normal directions. For fi^l, S~ has hyperbolic normal structure,

and hence the stable manifold of S~ is the union of the stable manifolds of
each of the points on S~ [5]. Thus the solution (r, 6, w, v)(t) approaches some

point on S", i.e. 0 -* 6*, w -» 0, and v -* -V2.

When j3 < 1, one normal eigenvalue is positive and the other is négative. In
this case the stable manifold is two dimensional and, in fact, consists only of
points with w 0. (See Figure 4.1) Since Br w 0, 6 must be constant. Therefore

w 0 and 0 0*, and the proof is complète.
Equation (4.4) tells us that the angular momentum is zéro if w is zéro and r is
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positive. Therefore the final statement of Lemma 4.3 implies that, for |3<1, the

angular momentum must be zéro on a collision orbit. Furthermore, ail the motion
takes place along a fixed line. Thèse properties are not true for |3 ^ 1, as is seen in
Figures 4.2 and 4.3.

5. Brandi regularization of solutions

In this section we define the classical notion of regularization of solutions. We
then détermine for which a équation (2.1) is regularizable in this sensé. We begin
with a gênerai définition concerning the solutions of the équation

i F(x). (5.1)

DEFINITION. Let fait) and fa(t) be solutions of (5.1). Suppose that fa ends

in a singularity at time f* and that fa begins in a singularity at the same time.
Suppose that there is a multivalued analytic function having a branch at t* and

extending both <f>t and fa, Then <f>1 is said to be a branch extension of fa at **,
and fa is said to be a branch extension of <f>x at f*,

DEFINITION. A solution <j> of équation (5.1) which either begins or ends in
a singularity at t* is said to be branch regularizable at t* if it has a unique branch
extension at t*. Equation (5.1) is said to be branch regularizable if every solution
is branch regularizable at every singularity.

It is important to note that time t is considered to be complex in the above
définitions. The solutions fa and fa are real analytic, i.e. they are real for real
values of t However, they are extensions of one another through complex values
of t.

It is also important not to be confused by our use of complex numbers to
represent points in the Euclidean plane. A solution x(t) of équation (2.1) is not a

a real analytic function of t. Instead, xx(t) and x2(t) are real analytic functions of
t, where x xx + ix2.

We are interested in branch extensions for solutions of équation (2.1) or,
equivalently, of System (3.2). Since y=i, y(t) will automatically hâve a branch
extension whenever x(t) has one. It is therefore sufficient to consider only x(t).

We dénote the rational numbers by Q. Whenever we write p/q e Q, we mean
that p and q are relatively prime integers. A spécial subset of Q is important
hère:

Qo {plq eQ'-q is odd and 0 < p < q}.
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The following theorem tells us for which values of a équation (2.1) is branch
regularizable. Recall that a 2|3 and that y (1 + /3)~\ Since a >0, we must
hâve 0<7<l.

THEOREM 5.1. Equation (2.1) is branch regularizable if and only if ye Qo.

We break this theorem into two parts, one for each direction of the implication.

Theorem 5.1 is an immédiate conséquence of the following two theorems.
Note that Theorem 5.2 is actually stronger than the implication stated in Theorem
5.1.

THEOREM 5.2. If y 4 Qo> then no singular solution of équation (2.1) is branch
regularizable.

THEOREM 5.3. If ysQ0, then every singular solution of équation (2.1) is

branch regularizable.

To prove thèse theorems we must know the exact analytical dependence on
time of the solutions near a singularity. This information is provided by the

following three lemmas, which will be proved after they are first used to establish
Theorems 5.2 and 5.3.

LEMMA 5.4. Suppose j3 < 1. Let x(t) be a solution of équation (2.1) such that

x(t)-»0 as f-*0+. Then

where k is a complex constant with |#c| 1 and where <P is a real analytic function
defined on a neighborhood of 0, with <P(0) (V2(/3 + 1))T.

LEMMA 5.5. Suppose p > 1. Let x(t) be a solution of équation (2.1) such that

x(t)-^0 as t-»0+. Then

x(t) K[tyV1(t2*', t^-vV + it^it2^, f2(3~lhU

where k is a complex constant with \k\ 1 and where W1 and W2 are real analytic
functions defined on a neighborhood of (0, 0), with ^(0, 0) (V2(|3 +1))\

LEMMA 5.6. Suppose 0 1. Let x(t) be a solution of équation (2.1) such that

x(t) -» 0 as t —? 0+. Let c be the constant value of the angular momentum û and h
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be the constant value of the energy H along the solution. Then c2^2, and h >0 if
c2 2. Also,

x(t) kyJltll2tïc/2a(a -f ht)l/2(a + ht)-lc/2a if c2<2, and

~lc/2ht if c2 2,

where a (2 —c2)172 and k is a complex constant with \k\ 1.

Proof of Theorem 5.2. First note that, since the équations of motion are

autonomous, we need consider only solutions x(t) with a singularity at t* 0.

Theorem 3.1 implies that x(t)-*0 as f-»0. Now note that, if x <f>(t) is a

solution of équation (2.1), then x $(-f) is also a solution. Therefore it suffices to
show that no solution satisfying x(t) —» 0 as t —» 0+ has a real analytic branch for

If 7 is irrational, or if y p/q, with q even, then fY has no real branch for t <0.
The formulas of Lemmas 5.4 and 5.5 then immediately imply that x(t) has no real
branch for f<0, if 0^1. If |3 1, which corresponds to y plq=2, then the
formulas of Lemma 5.6 immediately imply that x(t) has no real branch for f <0.
In any case, no singular solution is branch regularizable when y£ Qo.

Proof of Theorem 5.3. By the considérations at the beginning of the proof of
Theorem 5.2, it suffices to show that every solution x(t) satisfying x(f)—»0 as

f—»0+ has a unique branch extension for t<0. We first show that every such

solution has a unique real analytic continuation to f <0. We then show that this
continuation is a solution.

Since y plq, we hâve that &y (q — p)lq and {& — \)y-{q — 2p)lq. Using
Lemmas 5.4 and 5.5, we can then write

x <f>(t) kI^X^u2) + iuq~2pX2(u2)l t > 0,

where

iP{z»\ when 13 <
lUJ bP1(z«-p, zq-2p), when 0>

and

fO, when
2iZj W(«~p q-2p) when
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Since q is odd, tllq has a unique real analytic continuation to f<0, namely
-(—f)1/q. Therefore <f>(t) has a unique real analytic continuation to f<0, which
can be written

where

We hâve only left to show that x <f>b(t) is also a solution of équation (2.1).
For t < 0 we can write

(-<f)(-t), if p is odd,
*rbvU I~T7 7\ •*•l<f>(-f), if p is even.

One can check easily that x -<t>(— t) and x <t>(-t) are both solutions of
équation (2.1) for t<0, since x <f)(t) is a solution for f>0. Therefore every
singular solution has a unique branch extension, and the proof is complète.

Before proceeding to the proofs of the lemmas, we digress briefly to discuss

the regularization provided by the proof of Theorem 5.3. If |8<1, then X2 is

identically zéro, and hence we can write

(f>(-t)9 if p is odd,
(—0> if P is even.

Since the motion of a singular orbit takes place along a fixed Une when P < 1, we
can interpret this extension as a transmission if p is odd and a reflection if p is

even. Note that the Newtonian gravitational potential corresponds to a 1, 0 =|,
and 7 plq § e Qo. Hence collisions are branch regularizable and the regularization

is a reflection.
Four other examples are shown in Figure 5.1. In each case q 5, so the real

analytic continuation is given by a rotation through an angle of 5ir in the complex
f-plane. When |3 J, p is even, so the extension is a reflection. When 0 §, p is

odd, so the extension is a transmission. When 0 §, we hâve (3 5*1, so there are
collision orbits with nonzero angular momentum. Such an orbit and its branch
extension are shown in the figure.

We note in passing that équation (2.1) is explicitly solvable in terms of circular

or elliptic functions for the following values of a: |, §, 1, f, §, 2, 3, 4, and 6 [13].
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t plane

1/4 p/q=4/5

£=2/3 p/q=3/5 0*3/2 p/q=2/5

Figure 5 1

The équation is branch regularizable for ail of thèse values except §, 2, and 6.

Thus there appears to be no relationship between regularizability and explicit
solvability.

The remainder of this section is devoted to the proofs of Lemmas 5.4, 5.5, and
5.6. We start by stating and proving two more lemmas. The first could be proved
using formai power séries expansions and convergence arguments. However, in
keeping with the géométrie spirit of this paper, we prove it using the stable
manifold theorem.

LEMMA 5.7. Let k, al9 and a2 be positive, and letf:C2-* C1 be real analytic
near (0,0), with /(0,0) 0. Assume that the function <t> satisfies <f>(x)>0 for x >0
and <f>(x) —> 0 as x —* 0+, and suppose that y <f>(x) is a solution of

(5.2)

Then there exists a function g : C^

and such that
C1, real analytic near (0,0), with g(0,0) 0,
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Proof. We consider the differential équation (5.2) as a vector field in the plane
by introducing a time variable t which satisfies xdt dx and writing

x x,
(5.3)

y x(fc+/(y«\y«*)),

where the dot dénotes differentiation with respect to t. This System is a real

analytic vector field on

Q^{(x,y)eR2:x>0 and y>0}.

We now introduce the new variables

€i xas €2 xa>, and T, y/x. (5.4)

Writing System (5.3) in thèse variables we obtain

(5.5)

Note that the point (£1? |2, t?)= (0,0, k) p is a rest point for this System. Since

fc>0, System (5.5) is real analytic in a neighborhood of p. Applying the real

analytic version of the stable manifold theorem [11] to p, we find that the local
unstable manifold W of p can be written

W {(&, &, r,) e R3 : r, k + g(à, &) for (&, &) near (0,0)},

where g : C2 -* C1 is real analytic near (0,0) with g(0, 0) 0.

Now observe that System (5.5) has a two dimensional invariant manifold

M {(^,^2,Tî)Gi?3:^>0,|2>0,Tï>0, and fi* S'},

and that équations (5.4) define a real analytic difïeomorphism from Q to M which
carries the vector field (5.3) to the vector field (5.5). Furthermore, since the

function <f> can be extended to x 0 as a C1 function with <f>(0) 0 and <f>'(0) k,

the graph of <t> is mapped to the unique orbit inWflM. Hence <f> can be written

4>(x) y X7] x(fc

which complètes the proof.
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LEMMA 5.8. Let À, al9 and a2 be positive, and letf: C2-* C1 be real analytic
near (0,0). Then the fonction

can be written

where g:C2-^Cx is real analytic near (0,0).

Proof. Substituting £ xf into the above intégral gives us

xx f rx"7((xr)

The resuit follows immediately upon writing

Proof of Lemma 5.4. Transformation (4.1) gives us a solution (r, 09 w, v)(t) of
System (4.2) such that r—»0 as f—>0+. Lemma 4.3 implies that iKO—» +^2 as

t-^0+ and that w(0 0 and 0(t) 0*. Using équation (4.3) we find that

for small positive t. The first of équations (4.2) then implies that

~ (0
dt

for small positive t. Applying Lemma 5.7, we obtain a function R which is real
analytic in a neighborhood of 0 with JR(0) V2(/3 + l) such that

r(t) tR(t2fiy).

Transformation (4.1) then gives us

X(t) Kty<P(t2*y),

where * eie* and



Double collisions for a classical particle System 543

Proof of Lemma 5.5. Transformation (4.1) gives us a solution (r, 0, w, v)(t) of
System (4.2) such that r-»0 as t->0+. Lemma 4.3 implies that u(f)-»W2,
w(f)-»0, and 6(t)-+ 0* as f-»0+. Using équations (4.4) and (4.3) we compute
that

w(r) cr(3"iw

and that

v(t) (2 + 2hr(t)2*y-c2r(t)2ifi-1)y)1/2

for small positive t. The first of équations (4.2) then implies that

for small positive r. Applying Lemma 5.7, we obtain a function R which is real
analytic in a neighborhood of (0,0) with R(0,0) V2(/3 + l) such that

The second of équations (4.2) combined with équation (4.4) now implies that

dt

Applying Lemma 5.8 we find that

0(0 0* + ^-^©(r2^, r2Cp-lhr),

where 0 is real analytic near (0,0). Transformation (4.1) then gives us that

x rVe*[cos (6 - 0*) + i sin (0 - 0*)]
5

where ^
COS
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and

Since R and 0 are real analytic in a neighborhood of (0, 0), with R(0,0)>0, and
since cos is an even real analytic fonction, ty1 is real analytic in a neighborhood of
(0, 0). Note that ^(0,0) R(0, 0)y. Since sin is an odd real analytic function, V2
is real analytic in a neighborhood of (0,0). Writing (5.6) in terms of t finishes the
proof.

Proof ofLemma 5.6. Since |8 1, we hâve that a 2 and 7 5. Equation (4.4)
then becomes

w c,

while équation (4.3) becomes

i>2 + c2-2 2hr, (5.7)

from which follows the inequality

Since r—»0 as t—>0, we must hâve that c2^2.
We now wish to find the explicit solutions of System (3.2) or, equivalently, of

System (4.2). Rewriting (4.2) with |3 1, we hâve

è c/r,
(5.8)

w 0,

v 2h.

Using équation (5.7), we see that

i?2-*2-c2 a2 as f-»0+.

The possibility that v would approach a négative value is eliminated by the first of
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équations (5.8). Hence we hâve that

v-*a as t—»0+.

We can now solve System (5.8) explicitly to obtain

v(t) a + 2ht,

and

r(t) 2at + 2ht2, (5.9)

Substituting the transformation (4.1) into System (5.8), we obtain the following
difïerential équation for x:

v + ic a + ic + 2ht
x= x=—- — x. (5.10)

r 2t(a + ht)

First consider the case c2<2, so that a>0. The gênerai solution of équation
(5.10) can be written

x(t) Kt1/2tlc/2a(a + ht)1/2{a + hr)"lc/2a,

where K is a complex constant. Equation (5.9) implies that \K\2 2, which gives
the desired formula for the case c2<2.

Now consider the case c2 2, so that a =0. Equation (5.7) becomes

v2 2hr.

If h were zéro, then v would also be zéro and r would be constant, which would
contradict the hypothesis that r—»0. Thus we must hâve h>0. Equation (5.10)

now becomes

ic + 2ht

and the gênerai solution can be written

Kte-lc/2ht.

Equation (5.9) now implies that \K\2 2h, which gives the desired formula for
the case c2 2 and complètes the proof.
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6. An isolating block about collision

Our next goal is to describe the géométrie notion of regularization defined by
Easton. We proceed by first developing the notation of isolating blocks, following
Conley and Easton [2]. We next find an isolating block for our central force

problem. We then complète the business of the présent section by using équations
(4.8) to establish some properties of the block. In Section 7 we give Easton's
définition of regularization [4] and use the results of the présent section to apply
his définition to the central force problem. Finally, in Section 8, we finish our
discussion of regularization by describing a transformation similar to that of
Levi-Civita [6].

We begin with isolating blocks. Let M be a smooth manifold and let t/r:

jR^M be a flow on M. A subset N<=M is called invariant if i^(N, jRx)

DEFINITION. A compact invariant set N<=M is called isolated if there exists

an open set U containing N such that ^(x, R^czU implies xeN. The set U is

called an isolating neighborhood for N.

Now let B be a compact subset of M with non-empty interior and suppose that
b dB is a smooth submanifold of M. Define

<^ for some e>0},

<£ for some e>0}, (6.1)

ts {x € b : iff(x, 0) is tangent to b}.

DEFINITION. B is called an isolating block if t b+flb~.

DEFINITION. Let N be an isolated invariant set, and let B be an isolating
block. Then B is said to isolate N if int (B) is an isolating neighborhood for N.

The following theorem was proved by Conley and Easton [2].

THEOREM 6.1. If fi is an isolated invariant set, then there exists an isolating
block which isolâtes N. If B is an isolating block, then there exists an isolated

invariant set (possibly empty) which is isolated by B.

Since it is convenient in our application to define B in terms of a real-valued
function on M, we introduce some more notation. Let I.M-+R1 be smooth.
Write
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and define

J(x) I*(x,0) and ï(x) J*(x,0),

where J* and ï* as usual dénote derivatives with respect to time t. The following
lemma is proved by Wilson and Yorke [14]. The symbol "D" dénotes derivative.

LEMMA 6.2. Le* I:M->[0,«>), and let Ôo>0. Suppose that
whenever 0<I(x)^Ôo. Suppose also thaf ï(x)>0 whenever 0<l(x)^ô0 and
jf(x) 0. Then N =/"HO) is an isolated invariant set and /-1([0, 8]) is an isolating
block for N for each 8 e (0, 80].

We now define the subsets of b which are asymptotic to N.

By définition, if x£b+-a+, then there exists at>0 such that i/Kx, O^B. Thus we

may define the time spent in the block for a point xeb+-a+ by

Note that i^(x,[0, T(x)])gB and that ^(x, T(i))eb". Now define the map across
the block

^ : b+ -a+ -» b p(,

The following theorem was also proved by Conley and Easton [2].

THEOREM 6.3. If B is an isolating block, then tfr:b+-a+-*b~-a~ is a

diffeomorphism.

DEFINITION. An isolating block B is said to be trivializable if V extends

uniquely to a differmorphism b+ —> b~.

The following lemma shows that trivializability is actually a property of an
isolated invariant set. The proof follows from techniques in Conley's notes [1] and

will be omitted hère.
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LEMMA 6.4. Suppose that N is an isolated invariant set and that Bi and B2
isolate N. Then Bi is trivializable if and only if B2 is trivializable.

DEFINITION. Let B isolate N. Then N is said to be trivializable if B is

trivializable.

We now return to the central force problem. For the remainder of this section

we take $ to be the flow on M(h) determined by équations (4.8). The manifold
M(h) is given by (4.5), while the invariant set N is given by (4.6). Dots now
dénote difïerentiation with respect to t. Define

LEMMA 6.5. Let 0 < 1. Given any h, there exists a 80>0 such that B(h, 8) is

an isolating block for N whenever 0 < 8 =ss 80.

Proof. We use Lemma 6.2. The tangent space to M(h) at the point x
(r, 0, w, v) is given by

{(r, é, w, v) : -hayray~1ir + ww + w 0}.

Since DI(\)(f, é, w, t3) r, we hâve that DI(%) £ 0 if (w, v) + (0, 0). Equation (4.3)
implies that

where I(x) 8. Therefore, if 80 is small enough, then (w, v) ^ (0,0) whenever

ô^ô0. Hence DI(x)^0 when 0</(x)^ôo. Now, using équations (4.8), we see

that

and ï (/3

If I(x) 8 and if j(x) 0, then r 8 and v 0. Using (4.3), we then hâve

Since 1 - (3 > 0, we may choose 80 small enough so that ï> 0 whenever 0 < 8 ^ ô0.

Finally, note that N I~1(0). Hence, by Lemma 6.2, B(h, 8) is an isolating block
for N and the proof is complète.
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By examining Figures 4.2 and 4.3, one can observe that N is not isolated if
Theorem 6.1 then tells us that it is impossible to construct an isolating

block about N when j3 ^ 1.

We now exhibit for the block B(h, 8) the various subsets defined above. We fix
h and assume that 0<ô^Ôo, where 80 is given by Lemma 6.5. We abbreviate
B B(h, 8) and x (r, 0, w, v).

The projections of some of thèse sets to the (w, i))-plane are shown in Figure 6.1

for the case h > 0.

The following theorem gives us the values of |3 for which N is trivializable.
The proof will be broken into two parts. The first part is proved in Lemma 6.7

below, while the second part is postponed until Section 8. The relevance of this
theorem to the question of whether collisions can be regularized will be discussed

in the next section.

THEOREM 6.6. The set N given by équation (4.6) is a trivializable isolated

invariant set for équations (4.8) if and only if f$ l-n~\ where n is a positive
integer.

LEMMA 6.7. Suppose that N is a trivializable isolated invariant set for
équations (4.8). Then (3 1-n"1, where n is a positive integer.

Figure 6.1.
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Proof. Since N is not an isolated invariant set when £ ^ 1, we must hâve /3 < 1.

Using the définition of B and équation (4.3), we write

b {(r,0,w,v)eR4:r 8 and w2 + v2 2 + 2hôay}.

Using the intégral A (4.10) for System (4.9), we can write the map across the
block as

V:b+-m^b-*:(r, 0, w, v)-*(r, %(e, w), w, -v),

where We is the second component of *P. Hère we are using (0, w) as coordinates

on b+, so r ô and t; -(2 + 2h8a<Y-w2)172. Since équations (4.8) are independ-
ent of 0,

The function F is defined for ail w such that 0< w2^2 + 2hÔa\ By symmetry,

r(-w)=-r(w). (6.2)

By hypothesis, B is trivializable. Therefore ^ extends to a continuous map
b+ -> b~. Thus

e+r(o+) 0+r(o-)+21m,

where n is an integer. By (6.2), F(0-)= -F(0+). Hence we must hâve

7m. (6.3)

The number F(0+) can be computed using géométrie methods. Consider a

point po€a+. Recall the définition (4.12) of S*. By Lemma 4.3, (o(pQ) is a point s~

in S". The orbit through p0 is the stable manifold of s~. Now let peb+ be close to
p0. The orbit through p follows closely the stable manifold of s", passes close to
s", and then follows closely the unstable manifold of s~. We therefore must
détermine the unstable manifold of s~.

The unstable manifold of s~ is a subset of N, so we study the flow on N
determined by équations (4.8). On N, w2 + v2 2, so we introduce the angular
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variable x by

w + iv V2elx.

Equations (4.8), restricted to N, then become

551

Hence, in the (0, *) variables, the unstable manifolds of points on S" are just
straight lines with slope 1-0. (See Figure 6.2.) We are interested in the branch of
the unstable manifold of s~~ for which w^O. Therefore we take -7r/2^x^7r/2.
Write

s" (8, «o,0, -V2).

Then the unstable manifold of the point s" is exactly the stable manifold of the

point

We now can détermine F(0+). The orbit through p first follows the stable

manifold of s", then follows the unstable manifold of s", which coincides with the
stable manifold of s+, and finally follows the unstable manifold of s+. Note that 0

does not change along the stable manifold of s~ or along the unstable manifold of
s+. Therefore, as p-»p0, the change in 0 along the orbit approaches the
différence in 6 between s" and s+. This différence is ttCI-^)"1. Hence f(0+)
Tr(l-p)""*1. Combining this resuit with (6.3), we hâve |3 l-n"1, where n is an

integer. Since 0^/3<l, n is positive and the proof is complète.

3ir/2

s-

Figure 6.2.
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7. Block regularization of the yector field

We now turn to Easton's définition of regularization. We are interested in
whether équations (3.2) can be regularized. We consider the équivalent System
(4.2). The set N given by (4.6) is the set of singularities of équations (4.2), i.e. it is

the set where the vector field fails to be defined. In the previous section we
worked with System (4.8), for which N is an invariant set. On M(h)-N the orbits
for the two Systems are identical; only the parameterization is différent. Later in
this section we shall make use of this relationship between the two Systems, but
first we describe Easton's définition.

Let M be a smooth manifold, let N be a compact subset of M, and let F be a

vector field on M—N. In the previous section N was an invariant set. In this
section, N is the set of singularities of the vector field F. Let <f> be the flow on
M —N given by F. We use the term "flow" loosely hère, since we do not require
that <t>(x, t) be defined for ail t.

Again let B be a compact subset of M with non-empty interior, and suppose
that b dB is a smooth manifold which does not intersect N. As before, b+, b~,
and t are defined by (6.1). The définition of isolating block is also the same. Let
0(x) dénote the orbit through x, i.e.

€(\) {<Mx, 0 : <Mx, 0 is defined}.

DEFINITION. An isolating block B is said to isolate the singularity set N if
N<=int(B) and if O(x)<£B for ail xeB-N.

The subsets a+ and a~ are the same as before, except that now we must allow
for solutions which are not defined for ail t. Thus

{xeb+:<£(x, t)eB for ail t^O for which <£(x, 0 is defined},

{x€b~:<|>(x,t)€B for ail f^O for which <f>(x, 0 is defined}.

The map <f>:b+-a+—>b~ is defined in exactly the same way as the map ^ in
Section 6. Again Theorem 6.3 holds [4], and again we hâve the same définition of
a trivializable block B.

DEFINITION. The singularity set N is said to be block regularizable if there
exists a trivializable block B which isolâtes N.

Easton gives a gênerai procédure, which he calls "regularization by surgery,"
whereby one can replace the given vector field by a vector field without
singularities [4]. For our purposes we give the following interprétation of the above
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définition. Suppose that one can isolate the singularities of a given System with an

isolating block, and suppose that the map across the block can be extended.
Solutions passing close to the singularities then will détermine uniquely an
extension for a solution ending in a singularity. Thus one can construct an
extended flow with the property of difïerentiability with respect to initial data. If,
on the other hand, the map across the block does not extend, then such an
extended flow does not exist.

As a side remark we note that it may be useful in some applications to relax
the définition of regularization and to require only that the map across the block
extends to a homeomorphism. If the difïerentiability of the flow were of little
interest, then such a relaxation would probably be more appropriate.

We now return again to our central force problem. Note that whether a certain
set is or is not an isolating block is independent of the parameterization of the
flow. The map across the block is also independent of the parameterization.
Therefore, B(h, S) is an isolating block for System (4.2) if and only if it is an

isolating block for System (4.8), and <P W. Hence B(fi, 8) is trivializable for (4.2)
if and only if it is trivializable for (4.8). We then hâve, as an immédiate

conséquence of Theorem 6.6, our main resuit about block regularization of
System (3.2).

THEOREM 7.1. The singularity set N for System (4.3) is block regularizable if
and only if |3 l-n~l, where n is a positive integer.

The extension provided by this theorem was computed in the proof of Lemma
6.7. There we saw that orbits passing close to collision are deflected through an

angle of r(0+) 7r(l-j3)~1 in the x-plane. If this angle is a multiple of tt, then
the particle émerges in the same direction regardless of whether it passes the

singularity on the right or on the left. Hence, if |3 1 - n~\ then the extension of
a singular orbit is a rotation through mr. This extension is a reflection for even n
and a transmission for odd n. The proof of Lemma 6.7 also shows that the map
across the block extends to a homeomorphism when j8 1 - n"1. To complète the

proof of Theorem 6.6, we hâve only to prove that this homeomorphism is in fact a

diffeomorphism. This proof is given in the next section.
In Figure 7.1 we illustrate four examples of the regularization provided by

Theorem 7.1. In case (3 J, F(0+) 4tt/3, so no unique extension is determined.
In case |3 |, F(0+) 2tt, so the unique extension is a reflection. In case j3 §,

F(0+) 37T, so the unique extension is a transmission. In case |3=|, (3^1, so

there are no nearby orbits from which to détermine an extension.

It is interesting to compare Figure 7.1 with Figure 5.1. In the cases |8 J and

13=|, branch regularization détermines an extension while block regularization
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0-1/4.HO*)-4*/3

0-2/3. r 0=3/2

Figure 7.1.

does not. In the cases |3 \ and 0 §, both regularizations provide the same
extensions.

One easily sees that System (3.2) is branch regularizable whenever it is block
regularizable and that the two techniques give the same extension. If it is block
regularizable, then /3 l-n~1, so p/q (l + /3)~1 n/(2n-l). Therefore q
2n — 1 is odd, and the System is branch regularizable. The extension is a reflection
when p n is even and a transmission when p n is odd.

In gênerai, block regularization does not imply branch regularization. In a

previous paper [7] this author gave an example of a block regularizable System
which is not branch regularizable. It seems reasonable to suppose that there are

Systems which are both branch and block regularizable, but for which the two
extensions are différent. However, this author does not know such an example.

8. Levi-Civita regularization

We now return to the original Hamiltonian System (3.2) and introduce a

change of variables analogous to the Levi-Civita transformation of the Kepler
problem [6]. Consider the Hamiltonian function H(x, y) given by équation (3.3)
and assume that

a 20 2(1-n
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where n is a positive integer. As usual, we fix the total energy H(x, y) h. Define
new complex variables z and w by

y wz1"".
(8.1)

Note that thèse équations define a canonical transformation with multiplier n, i.e.

Re (dx dy) n Re (dz dw).

Note also that the transformation is an n-to-1 mapping. Now consider the new
Hamiltonian function

w)= |z|2(n-1)(H(zn, wz^-h)

We consider (8.1) as an isoenergetic transformation from the manifold {H h} to
the manifold {K 0}. The vector field (3.2) on M(h) transforms to

da
(8.2)

on the manifold {K(z, w) 0}. The new time variable or is given by

dt n\z\2(n-1)d<r.

Equations (8.2) extend to z 0 and hence the singularity at collision has been

"regularized" in the sensé of Levi-Civita. Since |w|2 2 when z 0, solutions of
(8.2) pass right through z 0. To recover the behavior of System (3.2) we apply
transformation (8.1). The case when n 3 (a =|) is shown in Figure 8.1.

We now state and prove our final lemma. This lemma, together with Lemma
6.7, establishes Theorem 6.6 and hence Theorem 7.1.

LEMMA 8.1. Let |8 l-n~\ where n is a positive integer. Then the invariant
set N for équations (4.8) is tiivializable.

Proof. We use transformation (8.1). The block B(h,5) written in the (z, w)
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X Z3

Figure 8 1

coordinates becomes

B' {(z, w)eC2: K(z, w) 0, \z\n ^ 8}.

Vector field (8.2) has no invariant set mside B'. Hence the asymptotic sets a+ and
a~ for B' are empty. By Theorem 6.3, the map across the block is a diffeomorph-
ism from the entire incoming set to the entire outgoing set. Transformmg back to
the coordinates of System (4.8), we see that ^ extends to a diffeomorphism.
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