Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 56 (1981)

Artikel: Affin manifolds with nilpotent holonomy.
Autor: Fried, D. / Goldman, W. / Hirsch, M.W.
DOl: https://doi.org/10.5169/seals-43256

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 31.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-43256
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helvetici 56 (1981) 487-523 0010-2571/81/004487-37$01.50+0.20/0
© 1981 Birkhéduser Verlag, Basel

Affine manifolds with nilpotent holonomy

DavipD Friep, WiLLIAM GOLDMAN, MoRRIS W. HirscH

Introduction

An affine manifold is a differentiable manifold together with an atlas of
coordinate charts whose coordinate changes extend to affine automorphisms of
Euclidean space. These charts are called affine coordinates. A map between affine
manifolds is called affine it its expression in affine coordinates is the restriction of
an affine map between vector spaces. Thus we form the category of affine
manifolds and affine maps. -

Let M be a connected affine manifold of dimension n =1, locally isomorphic
to the vector space E. Its universal covering M inherits a unique affine structure
for which the covering projection M — M is an affine immersion. The group = of
deck transformations acts on M by affine automorphisms.

It is well known that there is an affine immersion D : M — E, called the
developing map. This follows, for example, from Chevalley’s Monodromy
Theorem; a proof is outlined in Section 2. Such an immersion is unique up to
composition with an affine automorphism of E. Thus for every ge 7 there is a
unique affine automorphism a(g) of E such that Dog=a(g)oD. The resulting
homomorphism a : # — Aff (E) from = into the group of affine automorphisms
of E is called the affine holonomy representation. It is unique up to inner
automorphisms of Aff (E). The composition A : # — GL (E) is called the linear
holonomy representation. The affine structure on M is completely determined by
the pair (D, a).

M is called complete when D is a homeomorphism. This is equivalent to
geodesic completeness of the connection on M (in which parallel transport is
locally defined by affine charts as ordinary parallel transport in E). It is notorious
that compactness does not imply completeness.

The main results of this paper are about affine manifolds whose affine
holonomy groups a(w) are nilpotent. An important class of such manifolds are
the affine nilmanifolds 7\ G. Here  is a discrete subgroup of a simply connected
nilpoint Lie group G. It is assumed that G has a left-invariant affine structure; the
space of right cosets of 7 then inherits an affine structure.
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488 D. FRIED, W. GOLDMAN AND M. W. HIRSCH

A tensor field on an affine manifold M is called polynomial if its components
in affine cordinates are polynomial functions. In particular there is an exterior
algebra of polynomial exterior differential forms on M, closed under exterior
differentiation.

Our main results are summarized as follows.

THEOREM A. Let M be a compact affine manifold whose affine holonomy
group is nilpotent. Then the following conditions are equivalent:

(@) M is complete

(b) the developing map is surjective

(c) the linear holonomy is unipotent

(d) the linear holonomy preserves volume

(e) the affine holonomy is irreducible

(f) the affine holonomy is indecomposable

(g) M is a complete affine nilmanifold

(h) M has a polynomial volume form

(i) M is orientable and the de Rham cohomology of M is the cohomology of the

complex of polynomial exterior forms.

In Section 1 we collect several algebraic facts about affine representations and
cohomology which will be used throughout the rest of the paper. In particular we
introduce the notations of irreducibility and indecomposability of an affine
representation. Section 2 is geometric and discusses affine structures and their
holonomy and development. The parallelism on an affine manifold is used to
describe several classes of tensors which have special descriptions in affine
coordinates. Left-invariant structures on Lie groups, which provide many exam-
ples of affine manifolds, are introduced.

In Section 3 we define another large class of affine manifolds: the radiant
manifolds. These are characterized by the property that the affine holonomy has a
stationary point. By choosing the origin to be such a point we identify the affine
holonomy with the linear holonomy. More generally, for any affine manifold M
we define a cohomology class c¢,, which vanishes when precisely M is radiant. This
radiance obstruction is one of our principal tools.

~ Section 4 uses the cohomology theory developed in Section 1 to obtain several
results about nonradiant affine manifolds having nilpotent affine holonomy group.

In Section 5 we prove a technical result about nilpotent linear groups.

In Section 6, we prove the equivalence of (a)-(f) in Theorem A, using
techniques of Section 4 and the technical lemma from Section 5. (See 6.11).
Deformation of affine structures is discussed, and some solvable examples are
given.
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In Section 7 we prove that every compact complete affine manifold with
nilpotent fundamental group is an affine nilmanifold, establishing (g) of Theorem
A. Finally, in Section 8 we discuss polynomial tensors on affine manifolds with
nilpotent holonomy, completing the proof of Theorem A.

We have greatly profited from conversations with John Smillie. Many of the
results here were first proved in his thesis under the assumption of abelian affine
holonomy. We are indebted to him for many valuable ideas.

1. Affine representations and cohomology of groups

Throughout this paper E denotes the real n-dimensional vector space R",
n=1. The group of linear automorphisms of E is GL (E). An affine map E — E
is the composition of a linear map and a translation. The group of affine
automorphisms of E is denoted by Aff (E).

Let ge Aff (E). There are unique elements L € GL (E) and b € E such that
g(x)=Lx+b. We call L the linear part of g and b the translational part of g.
Notice that L =dg(x), the derivative of g at x, for all xe E; and b = g(0).

An affine representation of a group G is a homomorphism a : G — Aff (E).
For each g€ G the affine automorphism «(g) decomposes into a linear part A(g)
and a translational part u(g). In this way E becomes a G-module via A and
u:G — E is a crossed homomorphism, or cocycle, for A: for all xe E, g, he G,

a(g)(x)=A(g)x+u(g) (D
u(gh)=u(g)+A(g)u(h) (2)

Conversely, given any (linear) representation A : G — GL(E), and u: G - E
satisfying (2), formula (1) defines an affine representation of G having linear part
A

It is readily verified that y € E is a stationary point for a —that is, a(g)(y) =y
for all ge G —if and only if

u(g)=y—A(gy (3)

for all ge G. In this case u is called a principal crossed homomorphism, or a
coboundary, and we write u = 8y. It is easily proved that u =3y if and only if « is
conjugate to the linear action A by the translation T, : E — E, T,(x)=x—y (that
is, A(g) =T, ca(g)T," for all g).

We assume familiarity with the language of G-modules and their cohomology
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groups: whenever a linear representation A : G — GL (E) is given, E is called a
G-module, and vector spaces H'(G : E,) are defined for i=0,1,.... Often the
subscript A will be omitted. The only G-modules we consider are defined by real
finite-dimensional representations.

Of primary interest are H° and H'. By definition H%(G : E,) is the space of
stationary points of A, while H'(G;E,) is the quotient space of crossed
homomorphism for A modulo principal crossed homomorphisms. The element of
H'(G; E,) represented by u is the cohomology class of u, denoted by [u]. One
may interpret H'(G; E,) as the set of translational conjugacy classes of affine
representations of G having linear part A.

The radiance obstruction of a is the cohomology class c, =[u]le H'(G; E)
where u is the translational part of a. The following simple observation will be
very useful: ¢, =0 if and only if a is conjugate by a translation to its linear part;
and also c, =0 if and only if a has a stationary point.

Also of interest are the homology groups H;(G; E,), of which we need only
H,. For a general definition the reader is referred to Atiyah-Wall [3]. The
homology group Hy(G; E,) is by definition E/K where K is the linear subspace
spanned by

{x—A(g)x : xe E and ge G}.

Let E* =Hom (E, R) denote the dual space of E. The contragredient represen-
tation of A is

A G — GL(E%)
A(g):w > wod(g™), we E*,

It is readily proved that H°(G; E*) and Hy(G; E) are dual vector spaces under
the paring

HG, E*)xXHy(G,E)— R
(w, x+K) — w(x)

The following result, proved in Hirsch [20] (see also Dwyer [46]), will be used
repeatedly:

1.1. LEMMA. Let G be a nilpotent group and E a G-module. Then
H°G; E)=0 implies H(G; E)=0 for all i =0.
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From this we deduce:

1.2. THEOREM. Let G be a nilpotent group, E a G-module. Then the
following are equivalent:

(a) HA(G;E)=0, (b) HXG;E*) =0,
(c) H(G;E)=0, (d) Ho(G; E*)=0

Proof. Suppose H°(G; E)=0. Let Hy(G; E)=E/K as before. The exact se-
quence 0 - K — E — E/K — 0 determines an exact sequence

0 - H%G;K) - H%G; E) > H%G: E/K) - HYG; K).

Since H%(G; E)=0, by exactness, H(G; K)=0. By Lemma 1.1, H'(G; K) =0,
and now by exactness H°(G; E/K)=0. But G acts trivially on E/K, so
H°(G; E/K)=0 implies E/K =0. Thus Hy(G; E)=0.

This proves (a)=> (c). The other implications follow from this and the dualities

H%(G; E*) = H|(G; E)*,
Hy(G; E*)=H%(G; E)*. QED.

1.3. COROLLARY. Let G be a nilpotent group and E a G-module. If
H'(G; E)#0, then G leaves fixed a nonzero vector in E and a nonzero linear
functional in E*.

A G-module E is unipotent if for every g€ G the operator g—1I is a nilpotent
linear endomorphism of E (i.e. (g—I)" =0 where n =dim E). We call an affine
representation unipotent if its linear part defines a unipotent module.

It is well known that E is unipotent if and only if E has a vector space basis in
terms of which G is represented by upper triangular matrices all of whose
diagonal entries are 1’s (see e.g. Humphreys [23]). Even if E is not unipotent
there is a unique maximal submodule E; < E upon which G acts unipotently,
called the Fitting submodule.

1.4. LEMMA. H%G: E/Ey)=0.

Proof. If x + E;; € H(G; E/Ey), then the submodule spanned by x and Ey; is
unipotent. Hence x € E;; by maximality. QED.
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An affine representation a : G — Aff (E) is reducible if a(G) leaves invariant
a proper affine subspace F,< E. Let F < E be the linear subspace of which F is a
coset. Then «a(G) permutes the cosets of F, so there is induced an affine
representation G — Aff (E/F), having a stationary point at the coset F,. If a is
not reducible it is called irreducible.

An affine representation with a stationary point is called radiant. This is a
special case of reducible (and also of decomposable, defined below). Every linear
representation is a radiant affine representation, and every radiant representation
is conjugate to a linear one by a translation.

A reducible affine representation @ may have the stronger property of being
decomposable (compare Zassenhaus [45]). This means that there is a splitting
E =E,®F, E, #E, invariant under the linear part of «, with some coset of E,
invariant under a. We call E;@F a decomposition of a. The radiant case E, =0,
F=E is allowed. If « does not have a decomposition, a is indecomposable.
Evidently irreducibility implies indecomposability.

1.5. THEOREM. Let a : G — Aff (E) be an indecomposable affine represen-
tation of a nilpotent group G. Then a is unipotent.

The proof of this theorem will be broken up into the following two results, 1.6
and 1.7:

1.6. LEMMA. Let E; < E be the Fitting submodule of the linear part of an
affine representation « of G. If G is nilpotent then some coset of Ey, is invariant
under a(G).

Proof. Let v : G — E be the translational part of a. It is easy to verify that the
composition v': G-% E — E/E is a crossed homomorphism for the induced
linear action A’ of G on E/E;. Thus v’ is the translational part of an affine
representation a' : G — Aff (E/E,;) whose linear part is A’. The natural projec-
tion E — E/Ey is equivariant respecting (a, a').

By Lemma 1.4, H(G; E/E;)=0, so by Lemma 1.1, H(G; E/E;)=0 be-
cause G is nilpotent. In particular the radiance obstruction c¢,.€ H'(G; E/Ey)
vanishes. Therefore a'(G) fixes some x + E, € E/E;; this means that a(G) leaves
invariant the coset x + E,. QED.

Lemma 1.6 shows that the conclusion of Theorem 1.5 holds under the
stronger assumption that a is irreducible.

The proof of 1.5 is completed by the following splitting theorem, 1.7. The
analogue for Lie algebras is well known.
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1.7. THEOREM. If G is a nilpotent group and E a G-module with Fitting
submodule Ey, there exists a unique submodule F such that E=E,®F.

Proof. Put E/E; =V. Let B : G — GL (V) be the induced representation. By
1.4, H(G; V)=0.

Let P: E — V be the canonical projection, which is equivariant. Let S: V —
E be a linear map such that PoS =, the identity map of V.

A submodule F< E is complementary to E; if and only if F=T(V) where
T :V — E is an equivariant linear map with PoT = I,,. Thus we must prove there
is a unique such T.

Any linear T: V — E with PoT =, can be uniquely expressed as T=R+ S
where R: V — Ey, and T is equivariant if and only if

R+S=g-(R+S)B(g)"
or

R=goR-B(g) ' +goS°B(g) "' -S. (4)

We must prove there is a unique R satisfying (4).
Define a linear action y of G on Hom (V, E)) by

vy:G — GL (Hom (V, Ey)),  v(g)(R)=g°R-B(g)™"

and a cocycle u for y by
u:G— Hom (V,Ey,), u(g)=g°SeB(g)"'-S.

To see that u(g) maps V into Ey, notice that Pou(g)=0 because P is equivariant
and PoS =I,.

Now (4) says that R is a stationary point of that affine action { of G on
Hom (V, E;) defined by vy and u. Thus we must prove that { has a unique
stationary point. This will follow from 1.1 and 1.2 if we prove that
H®%G;Hom (V, Ey)) =0.

To this end suppose R : V — Ey; is fixed under all y(g), i.e., suppose

gcR=R-B(g), all geG. (5)
Let d =dim E,. Since g | E is unipotent, for all g;,..., g € G we have

(I—gg)o---o(I-g)|Ey=0.
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From this and (5), R vanishes on the linear span in V of all vectors of the form
[I-B(g)] - -[I-B(g)lx, =xeV. (6)

Hence it suffices to prove every vector in V is a linear combination of vectors of
the form (6). This will be evident if we show that V is spanned by vectors of the
form [I—-B(g)]lx, i.e., that Hy(G, V) =0. But this follows from H°(G, V)=0 and
1.2. QED.

An alternative proof of 1.7 can be based on the analogous result about Lie
algebras, by passing to the Lie algebra of the identity component of the algebraic
closure of G in GL (E).

2. Development, holonomy and parallelism

Let M denote an n-dimensional manifold, n = 1. We shall always assume M is
connected and without boundary.

An affine atlas @ on M is a covering of M by coordinate charts such that each
coordinate change between overlapping charts in @ extends to an affine auto-
morphism of E=R". A maximal affine atlas is an affine structure, on M, and M
together with an affine structure is an affine manifold. Each chart in the affine
structure defines affine coordinates.

Let M be an affine manifold. Let ¥ denote the sheaf of germs of affine
coordinate systems on M. The germ at xe U of the affine chart f: V — E is
denoted by [f]..

The group Aff (E) acts stalkwise on & by composition of germs: ge Aff (E)
sends [f], to [gef].. It is easy to see that Aff (E) acts simply transitively on stalks.
In fact & is a principal Aff (E)-bundle over M when Aff (E) is given the discrete
topology.

The following result, whose proof is left to the reader, gives another descrip-
tion of &.

2.1. THEOREM. & is a disconnected covering space of M. If [f,].,[f2}. €%
are affine coordinate germs at x € M, there is a deck transformation taking f, to f,,
induced by composition with a unique affine automorphism of E. Thus the group of
deck transformations acts transitively on each fibre of ¥, and the components of ¥
are isomorphic as covering spaces of M. These covering spaces are regular.
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We fix one component of ¥ and call it the holonomy covering space M of M.
There is a canonical immersion D : M — E which assigns f(x) to the germ [f],.
This immersion is affine in the sense that in affine coordinates, it appears as an
affine map.

Let I denote the group of deck transformations of M — M. An element ge I’
sends [f], to [@(g)°f],, where a(g) is the affine automorphism of E determined by
g. The resulting map & : I’ — Aff (E) is a faithful affine representation of I" on E.
It is easy to see that D is equivariant respecting a, i.e., for each geI the
following diagram commutes:

M-L5E

d e

M-S E

Now let p: M — M be a universal covering, and fix a lift of p to a covering
p: M — M. Denote by D : M — E the composition Dep; we call D the develop-
ing map of the affine manifold M. We give M the affine structure inherited from
M; then D : M — E is an affine immersion.

Let 7 denote the group of deck transformations of M — M. Choice of a base
point in M identifies 7 with the fundamental group of M. Since M — M is a
regular covering, there is a natural surjective homomorphism = — I" with respect
to which M — M is equivariant.

Denote by a : m — Aff (E) the composite homomorphism = — I' % Aff (E).
We call a the affine holonomy of M. The image a () < Aff (E) is isomorphic to I';
it is called the affine holonomy group of M. It is clear that D: M — E is
equivariant respecting a.

The definitions of D and a depend on various choices of covering spaces. But
once the universal covering M — M is fixed, changing M or the lift M — M
changes D only by composition with an element of Aff (E); and it changes a by
conjugation with that element.

Let A : m — GL (E) be the homomorphism assigning to each g e = the linear
part of a(g). We call A the linear holonomy; it is well defined up to conjugation
by an element of GL (E).

We shall assume when discussing an affine manifold M that a developing map
D : M — E has been selected. The affine and linear holonomy representations
are then determined.

This somewhat abstract description of holonomy can be brought down to earth
by working through the definitions. In terms of loops on M based at x,€ M, the
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homomorphism
a ‘771(M, xo) — Aff (E)

can be described as follows. Let s:[0,1] - M be a loop at x,, representing
[s]e m (M, x5). Subdivide [0,1] by O0=¢t,< --+ <t, =1, so that for each i=
1,..., m there is an affine chart (f;, U;) with s:[t,_;, ,]— U. (The choice of
(fo» Up) determines a component of &.) Let V, be the component of (U, N U,.,)
that contains fi(s(t)), j=1,..., m—1. There is a unique A; € Aff (E) such that

faefi'=AonV, j=1,...,m.
Then

Ape-rrocAjif m=2

a([s] ={ . ,
the identity map I of E if m = 1.

We emphasize that there is some freedom of choice in the developing map D.
In practice we shall alter D only by composing it with a translation of E.

The affine manifold M is complete if D maps M homeomorphically onto E. In
this case we can take M =E. The affine holonomy is then an inclusion = <
Aff (E) of a discrete subgroup which acts freely and properly discontinuously on
E. Thus M is identified with the orbit space E/m.

M can be compact without being complete, e.g. the 1-dimensional affine
manifold R, /{2"}. Examples have been constructed of compact affine manifolds
whose developing maps fail to be covering-space projections into their images
(see also Section 3).

The following result illustrates the interplay between the topology of an affine
manifold, its developing map, and its affine holonomy representation:

2.2. THEOREM. Let M be a compact complete affine manifold. Then the
affine holonomy representation is irreducible.

Proof. Let ‘M = E/m. Suppose Fc E is an affine subspace invariant under .
Then F is the universal covering of F/m. Both F/m and E/w are Eilenberg-
MacLane spaces of type K(m; 1). The inclusion F/7 — E/m induces an isomorph-
ism of fundamental groups and is therefore a homotopy equivalence. Since F/m
and E/w are compact manifolds it follows that dim F/# = dim E/m. Hence F = E.

QED.
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On an affine manifold M there is a natural linear connection V having zero
curvature and torsion: in affine coordinates it appears as the standard connection
on E. Covariant differentiation in M corresponds to ordinary differentiation in E.

It is proved in Auslander and Markus [9] that an affine manifold M is
complete if and only if the connection V is geodesically complete.

The operation of parallel transport of a tensor along a path in M depends only
on the homotopy class of the path (fixing end points). This corresponds to
ordinary parallel transport in E in successive affine charts.

A tensor (field) T on M is parallel if its covariant derivative vanishes. This
means that in every connected affine chart the components of T are constant.
Equivalently, the induced tensor field on M is the pullback by the developing map
of a constant tensor field T, on E. Thus T, is an element of the tensor algebra
T(E) which is fixed under the induced action of the linear holononomy group on
T(E). In every affine chart T appears as T,.

We shall be particularly concerned with parallel vector fields, parallel 1-forms,
and parallel volume elements. A parallel vector field on M corresponds to a
vector in E which is stationary under the linear holonomy. The set of such vectors
is H(m; E). A parallel 1-form corresponds to a linear map E — R stationary
under the contragredient action, i.e. an element of H%(mr; E*). A parallel volume
form is a nonzero exterior n-form on E stationary under the induced action of the
linear holonomy group on A"E¥. Since this action is precisely the determinant of
the linear holonomy, M has a parallel volume form if and only if the linear
holonomy A has determinant identically one, i.e. when A is a representation in the
special linear group SL (E).

The condition that an affine manifold M have a parallel volume form is an
extremely useful one. We refer to it by saying that M has parallel volume.

A basic conjecture, going back to Markus [28], is that a compact orientable
affine manifold has parallel volume if and only if it is complete. This is trivially
true for flat Riemannian manifolds. Furness and Fedida [15] prove it for flat
pseudo-Riemannian tori in dimensions =<3. In his thesis [38] Smillie proves the
conjecture in the case of abelian affine holonomy; for nilpotent affine holonomy it
follows from 6.6 and 6.8 below.

More general than parallel tensors are polynomial tensor fields. By these we
mean tensor fields on affine manifolds whose coefficients in affine coordinates are
polynomials. A tensor field T is polynomial of degree <p if and only if the
iterated covariant derivative V, o - - oV, (T) vanishes for all v,,...,v,€M,, all
x € M. (Here V is the covariant differentiation associated to the affine structure.)

Many examples of affine manifolds come from left-invariant affine structures
on Lie groups. If G is a Lie group, an affine structure on G is left-invariant if for
each g e G the operation L, : G — G of left multiplication by g is an automorph-
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ism of the affine structure. In other words, in affine coordinates L, is expressed by
an affine map.

The development map of such a structure blends together with left multiplica-
tion in a remarkable way. Suppose G is simply connected; let D : G — E be the
developing map. For each g€ G there is a unique affine automorphism «a(g) of E
such that the following diagram commutes:

g—g—>E

Lgl 1“ (g)

G—>E

Clearly a : G — Aff (E) is an affine representation. In particular a(G) preserves
the connected open set D(G)< E, and acts transitively on it. Conversely if
dim G=dim E and a : G — Aff(E) is an affine representation having an open
orbit U=D(G)x, for some x,€ E, then there is a unique left-invariant affine
structure on G whose developing map is given by

D:G—> UCE, D(g) = a(g)x,.

Notice that when xo=0¢€ E, D is just the translational part of the affine represen-
tation.

The left-invariant affine structure on G is complete precisely when a is a
simply transitive affine action of G on E. In this case a is evidently irreducible.

Let D : G — E be the developing map of a left-invariant affine structure.
Then D : G — D(G) is a covering space, so the structure is complete if and only
if the action of G on E is transitive. It is known that in this case G must be
solvable (Auslander [6], Milnor [31]). It is conjectured that every solvable Lie
group has such a structure.

For examples of left-invariant affine structures see Auslander [6], [7];
Scheuneman [35], [36]; and Section 6.

Suppose now that I is a discrete subgroup of G, where G has a left-invariant
affine structure. Then the homogeneous space I'/G of right cosets inherits an
affine structure. When G is a simply-connected nilpotent Lie group, I'\G is called
an affine nilmanifold.

An affine representation a : G — Aff (E) is conveniently presented by the
linear representation

a': G — GL(ExR),
a':(g):(x,t) = (A(g)x +tu(g), t)

where A is the linear part and u the translational part of a.
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As an example take G =R? (the group) and E =R? (the vector space). An
affine representation ¢ : G — Aff (E) is defined by

swnee=[} ]

X
for (s, t)e G, z=[ ]eE.
y
The associated linear representation on R assigns to (s, t)€ G the matrix

2
A
1S'i“+t— 'S'+"t
D1 s = exp s
- -1

It is easy to verify that ¢(G) acts simply transitively on E; thus ¢ defines a
left-invariant affine structure on G. The developing map D : G — E defined by
evaluation at 0 is the translational part of ¢:

[(82/3) + t] .

D(s, t)=

The left-invariant vector fields on G are spanned by 4/0t and 9/ds; in the affine
coordinates on G defined by D these correspond respectively to 4/0x and
y(8/dx +9/dy). The integral curves of d/dx are horizontal lines; those of y(8/dx +
0/dy) are the parabolas y*—2x = constant.

The functions y and y*>—2x on E transform under G by addition of constants.
Therefore the 1-forms dy and y dy —dx are the expression in affine coordinates of
left-invariant 1-forms on G.

The vector field 9/0x and the form dy (on E) are translation invariant; hence
they correspond respectively to a parallel vector field and a parallel 1-form on G.

Since the linear part of a preserves the area 2-form dx Ady on E, this form
defines a parallel 2-form on G.

For every uniform discrete subgroup I'c G we get a complete affine 2-
manifold I'\G diffeomorphic to the 2-torus T? By Nagano and Yagi [32] and
Kuiper [26] these are the only complete structures on T2 other than the flat
Riemannian structure Z2\R?2.

The choice of I', however, is crucial. For example it is easy to see that I'\G
has a closed geodesic (= 1-dimensional affine submanifold) if and only if I
contains a pure translation ¢(0, ty), to# 0.
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There are many incomplete affine nilmanifold structures on TZ. For example,
for each a=0, b>0 there is a radiant affine representation

Y. : G — GL (R?*) c Aff (RY),

(s, 1) —exp [s as+ bt]
0 S
_ g [1 as + bt]
0 1 )

Each of these actions is simply transitive on the upper half-plane.
For each >0, »>0 radiant actions are defined by

6., : G — GL (R?*c Aff (R?),

S0
ot [t 1]

These are all simply transitive in the first quadrant.

Some other examples are given below after the proof of Theorem 6.4, and in
6.7.

By assuming that an affine structure is compatible with a complex structure on
a manifold one defines the notion of an affine complex manifold. (An affine
structure is compatible with a complex structure if and only if the associated flat
affine connection is holomorphic with respect to the complex structure; alterna-
tively a complex structure is compatible with an affine structure if and only if the
associated almost complex structure is a parallel tensor of type (1, 1). It is easy to
see that these two notions are equivalent.) All the results in this paper apply to
such manifolds.

It is interesting to note that Fillmore and Scheuneman [11], Suwa [41], and
Sakane [34] have proved, independently, that every complex surface having a
complete affine complex structure has a finite cyclic covering which is a complex
affine nilmanifold. For references and more information on these structures in the
complex case the reader is referred to Gunning [19] and Inoue-Kobayashi—Ochiai
[24].

Smillie [38], Auslander [6] and Milnor [31] relate affine structures to matrix
algebras. See Matsushima [29] for a connection between affine structures on
homogeneous complex manifolds and algebras.
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3. Radiant manifolds and parallel tensors

In this section we study affine manifolds whose affine holonomy has a
stationary point; we call such manifolds radiant.

There are many examples of radiant manifolds: certain affine nilmanifolds; the
Hopf manifolds; the cartesian product of any compact surface and the circle. On
the other hand the affine structures of radiant manifolds have rather special
properties. There are no complete radiant manifolds (except for vector spaces),
and they tend to have few parallel tensors. In a sense they are at the opposite
extreme from complete affine manifolds.

We begin by defining the radiance obstruction for any affine manifold. This
will play a key role in the analysis of nonradiant affine manifolds in Section 4.

M always denotes a connected n-dimensional affine manifold, n=1, with
local affine coordinates in the vector space E=R". We fix a universal cover
p : M — M, with group of deck transformations 7. Let D : M — E be a develop-
ing map for M and a : m — Aff (E) the corresponding affine holonomy represen-
tation (defined in Section 2). The linear part of a is the linear holonomy
A . — GL(E), and the translational part « is the cocycle u : m — E for A.

The radiance obstruction of M is the cohomology class

CMm= ca € Hl(w) E)\)a

where ¢, =[u] is the radiance obstruction of the affine representation o (defined
in Section 1). This cohomology class depends only on the affine holonomy of M
(assuming the universal covering space M — M has been fixed), and not on the
choice of the developing map. To see this let ¢ : Aff (E) — Aff (E) be the identity
affine representation. Let

o : HY(Aff (E); E) - H'(m; E)

be the homomorphism induced by a. Let c,e H'(Aff (E) : E) be the radiance
obstruction of ¢; then a™c, = c\s. Let ¢y be the radiance obstruction correspond-
ing to a different developing map D' : M — E. There exists g € Aff (E) such that
D’'=geD, and one verifies that cy;=g.c, where g, is the automorphism of
H'(Aff (E); E) induced by conjugation by g. But it is well known that g is the
identity, hence ¢,y = cp,.

In a forthcoming paper [14] we shall discuss the radiance obstruction in more
detail.

It follows from the results of Section 1 that c,, =0 precisely when a(7r) has a
stationary point in E. In this case we call M a radiant manifold. We can compose
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the developing map with a translation of E so that the stationary point is the
origin, i.e., a takes values in GL (E). In this case a = A.

Since a nontrivial group of deck transformations cannot have a stationary
point” we see that a complete affine manifold is not radiant unless it is affinely
isomorphic to a vector space.

When M is radiant we shall tacitly assume that the origin in E is stationary
under a(w). In this case a(w) fixes the radiant vector field R = 3x;8/0x; on E.
There is a unique vector field X on M which is D-related to R. Clearly X is fixed
under ; therefore X is p-related to a vector field X on M, called the radiant
vector field of M.

It is easy to find examples of such manifolds. The simplest examples are Hopf
manifolds: these are the orbit spaces (E —{0})/7m where m < GL (E) is the cyclic
subgroup generated by an expansion A € GL (E), i.e., the eigenvalues of A all
have absolute value greater than 1. For another example, the Cartesian product of
a compact orientable surface 3 of genus =2 and the circle S' can be given a
radiant affine structure as follows. Use one of the well known faithful representa-
tions of 7(2) as a discrete subgroup of SO (1, 2) to obtain a properly discontinu-
ous free action of 7,(3) on one sheet of a two-sheeted hyperboloid H<R?-0.
Let Z < GL (R?) be generated by kI where 0 < k< 1. Then 7,(2)X Z acts freely as
deck transformations on a component of the interior of the light cone; the orbit
space is 3 X S*.

There are many radiant affine structures on the product of a closed surface of
genus =1 and a circle, for which the developing map is not a covering-space
projection of M onto its image. This phenomenon was discovered by Thurston
(see [40]) and independently by Smillie [38]. The developing image of such a
3-torus is the complement of the three coordinate axes in R?; for the product of a
surface of genus =2 and a circle, the developing map can be onto the complement
of the origin. On the other hand, we know of no example of a compact affine
manifold whose developing map is surjective but which is not complete (compare
Theorem 6.9).

3.1. THEOREM. A compact radiant manifold does not have a parallel volume
form.

Proof. Suppose M is radiant with a parallel volume form. A trivial computa-
tion in affine coordinates shows that the flow of the radiant vector field increases
volume. Hence M cannot be compact. QED.

In fact no element of the group (except the identity) can have a fixed point. It follows easily that
every element of the linear holonomy of a complete affine manifold has 1 as an eigenvalue. This might
be called “Hirach’s principle”, following Sullivan [39].
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3.2. THEOREM. A compact radiant manifold M does not have a nonzero
parallel 1-form.

Proof. Let w : E — R be a linear map invariant under the linear holonomy.
Then w is also invariant under the affine holonomy. Therefore the composite map

covers a map f: M — R. Let xe M cover a local minimum point of f. Then
D(x)€ E is a local minimum point of w, sO w, being linear, must be identically
Zero. QED.

There are numerous compact radiant manifolds having parallel line fields, for
example a Hopf manifold (E—{0})/w, where m < GL (E) is a cyclic subgroup
generated by an expansion having a real eigenvalue.

With later applications in mind we prove the following result about decompos-
able affine manifolds. Note that in the case of radiant manifolds (E; =0) it shows
that any point fixed by the affine holonomy action lies outside the developing
image (this was first stated by Nagano—Yagi [32] but their proof is incorrect). Thus
the radiant vector field on a compact radiant manifold is nonsingular.

3.3. THEOREM. Suppose M is a compact affine manifold with decomposable
holonomy, say E = E;@®F with E, a-invariant and F A -invariant, F# 0. Then each
component of M, =p(D'E,) is incomplete.

Proof. Clearly M, is an affine submanifold of M. Assume a component N of
M, is complete.

Consider the a-invariant vector field S(x, y)=(0,y) on E=E,@®F. Then S is
D-related to a w-invariant vector field Q on M which induces a vector field Q on
M. By the compactness of M, the vector fields Q and Q are integrable for all time
and determine flows ¢, and ¢, on M and M respectively. If the linear flow
determined by S is denoted ¢, we have ¢, oD =Dog,.

Suppose Nc M is a component of p~'E;. Then D | N is a homeomorphism
onto E, by completeness.

The submanifold E; < E is a repellor for the flow ¢,. It follows that Nis a
repellor for the flow ¢, Let B={xeM:¢x > N as t - —x} denote the
repelling basin of N.

Now D:N—>E, is a homeomorphism and D:M — E is a local
homeomorphism. It follows that D maps a neighborhood By<B of N
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homeomorphically onto a neighborhood W < C of E;. Therefore D maps ¢,(B,)
homeomorphically onto (W) for all ¢t =0. Since | J,~, ¢, (w) = E it follows that D
maps >0 & (B,) homeomorphically onto E. This implies that D: M — E is a
homeomorphism. Therefore M is complete, in contradiction to Theorem 2.2.
QED.

4. Affine manifolds with nilpotent holonomy

In this section we begin to exploit the assumption of nilpotent affine holonomy
group. The same notation and conventions as in Section 3 are used.

4.1. THEOREM. Let M be a compact affine manifold with nilpotent affine
holonomy group. Then the following conditions are equivalent:
(a) M is not radiant;

(b) M has both a nonzero parallel vector field and a nonzero parallel 1-form.
(c) H'(7; E)#0.

Proof. (a)=>>(b): Nonradiant means c,#0, so H'(m; E)#0. By 1.3,
H°(m; E)# 0 and H%ar; E*) # 0, which is (b).

(b)=>(a): follows from 3.2.

(c)© (b): follows from 1.3. QED.

Notice that the implication (a)=>(b) in 4.1 is valid even without compactness.

4.2. THEOREM. Let M be a compact nonradiant affine manifold having
nilpotent affine holonomy group. Then M fibres over the circle S*.

Proof. A nonzero parallel 1-form on M is a nowhere-vanishing closed 1-form.
It is well known that the existence of such form implies that M fibres over S'
(Tischler [42]). QED.

We conjecture that 4.2 holds even if M is radiant.

As a corollary of Theorem 4.1 and the nonsingularity of radiant vector fields,
we see that a compact affine manifold with nilpotent affine holonomy group has
Euler characteristic zero. This also follows from Hirsch-Thurston [22]; to use this
result, it suffices that the linear holonomy group be solvable. Kostant and Sullivan
[25] have shown that every complete compact affine manifold has zero Euler
characteristic. It has long been conjectured that every affine manifold (except R")
which is complete or compact has zero Euler characteristic. (In the noncompact
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case the Euler characteristic is defined as the alternating sum of the Betti
numbers, which are conjectured to be finite.)
We now concentrate attention more directly on the holonomy representation.
An immediate consequence of Theorem 1.5 is:

4.3. THEOREM. Let M be an affine manifold whose affine holonomy rep-
resentation is nilpotent and indecomposable. Then the linear holonomy representa-
tion is unipotent.

Little is known about the structure of noncompact complete affine manifolds,
even those with nilpotent holonomy (but see Milnor [31]). The following result
shows the importance of unipotent in this case.

4.4. THEOREM. Let M be a noncompact complete affine manifold with
nilpotent affine holonomy group. Then M is a flat affine vector bundle over a
complete affine manifold with unipotent linear holonomy.

Proof. Let E;; < E be the Fitting component of the linear holonomy. We may
assume E, invariant under a(w). By 4.1 M has a nonzero parallel vector field, so
Ey#0.

By the splitting Theorem 1.7 there is a decomposition E = E @DF of a. The
vector bundle is

q : M =Ela(m) = Ey/a(m),

with total space M, base space Eg/a(), and fibre F. It is easy to see that there
are local trivializations

fi:q"(W,) > W, xF

over an open cover {W,} of Ey/a(m), which are affine isomorphisms, and whose
transition functions g; : W; — GL (F) are constants. Thus the bundle is flat.
QED.

S. Nilpotent G-modules without expansions

The purpose of this section is to prove the following technical result. It will be
used in Section 6 to prove the existence of expansions in the linear holonomy of
certain compact affine manifolds.

Recall that E=R", n=1.
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5.1. LEMMA. Let G be a nilpotent group and E a G-module. Suppose that G
does not contain an expansion of E. Then for every integer r =0 there exists a C’
map ¥ : E — R with the following properties:

(@) >0 almost everywhere;

(b) ¥ is G-invariant;

(c) there exists a >0 such that

Y(e'x) =e"*¥(x)
for all teR, x€E.

Proof. If the lemma is true for a normal subgroup G,< G of finite index, it is
true for G. For let ¥,: E — R be a C" G,-invariant map satisfying (a) and (c).
Let the left cosets of G, be g,G,, . .., 2Go. Then the map

¥V.E—>R, V(x)= z”: Yo(gix)

i=1

satisfies the lemma.

Let F=C@®E™ be the complexification of the dual space E* of E. The
contragredient representation of G on E* extends to a (complex) representation
p:G — GL(F). Let HcGL(F) be the identity component of the algebraic
closure of p(G). Then H is a connected nilpotent Lie group. Set G,=p '(H).
Then Gy< G is a normal subgroup of finite index.

From the primary decomposition of the representation of the Lie algebra of H
in F induced by p we get a p-invariant splitting F =@ F,. Each F, has a basis %,
representing the operators p(h) | F,, he H as complex matrices

o (h) = A (W) + Ny (h)
where N, (h) is an upper-triangular nilpotent matrix. In particular the set of

eigenvalues of p(h) is {A (h)}.
Let f, € F, be the first basis vector in &B,, k=1,..., m. Then

o (h)fy. = M (R)fy (1

for all he H.
Define group homomorphisms

¢ : Go— R, ¢ (g) =log | A (g)l; k=1,...,m.
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Set

¢=((P19---’¢m):GO'_)Rm-

Suppose G, contains no expansion of E. Then ¢(G,) is disjoint from the
positive orthant PcR"™,

P={yeR™:y.,>0, k=1,..., m}.

Since ¢(G,) is a subgroup of R™ it follows that the linear span L cR™ of ¢(G,) is
also disjoint from P. This implies that the orthogonal complement of L contains a

nonzero vector v € P. This vector v =(v,, ..., v,) thus has the following proper-
ties:

each v, =0 (2)
Y ve=a>0 3)
k=1
Y v (g)=0 forall geG,. (4)
k=1

Evidently the vector cv, ¢ >0, has the same properties. Therefore we can also
choose v to satisfy:

For each k, either v, =0 or v, > 2r, where r comes from Lemma 5.1. (5)

For each k we have chosen a vector f, e Hom¢ (C® E, C) satisfying (1). We
embed E in C®E in the natural way and define

¥v:E—R,
W(x) = ﬁ Ol

By (5) ¥ is differentiable of class C". By (2) and (3) V¥ satisfies (a), (c) of 5.1.
To show that ¥ is G,-invariant let g e G,, x € E. Then

V(g x) = kﬁ e =TT )l

- (I o) (T 1nco) = (e £ wnto)) v = w0

by (4). This completes the proof of S5.1. QED.



508 D. FRIED, W. GOLDMAN AND M. W. HIRSCH

In general ¥ in 5.1 cannot be chosen to be C™. For example, let

AJz ’ ] } i
= . > = .
{[ 0 a1’ A>0¢ on

Any such ¢ must be of the form C(xyY?)? where C, p>0, and will not be C™.

6. Compact affine manifolds with nilpotent holonomy

In this section we exploit compactness to prove three main results:
6.1, 6.8, 6.9. The proofs rely on the integration of vector fields. The first two were
proved by Smillie [38] for the abelian case.

The first, Theorem 6.1, is used to find expansions of E/E in the linear
holonomy. This turns out to be a powerful geometric tool. The second, Theorem
6.8, shows that unipotent holonomy implies completeness. This is also true for
noncompact affine nilmanifolds.

As is Section 3, D : M — E is the developing map, = is the group of deck
transformations of the universal cover M — M, etc. Let A < GL (E) denote the
linear holonomy group and I' < Aff (E) the affine holonomy group.

6.1. THEOREM. Let M be a compact affine manifold. Let E,< E be a proper
linear subspace invariant under the affine holonomy. If the image A, < GL (E/E,)
of A is nilpotent then some element of A, expands E/E,.

Proof. Let q: E — E/E, denote the canonical projection. Let R be the
radiant vector field on E/E,. Let {(¢;, U,)} be an affine atlas on M. There is a C™
vector field X on M which in every affine chart (¢;, U;) is represented by a vector
field on ¢,(U;) which is g-related to R. For there is clearly such a vector field X;
on U;;set X =) ; X; where {w} is a C” partition of unity subordinate to the open
cover {U,}.

Suppose A; does not contain any expansion of E/E,. Then by 5.1 there is a
A;-invariant C' map ¥ : E/E, — R, ¥ >0 almost everywhere and

d¥,R(z)=a¥(z) (D

for some a >0 and all z € E/E, (this is the differential equivalent of 5.1(c)).
The composite map

f:M3ESEE SR
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is sr-invariant. Thus f covers a C' map f:M—R. In affine coordinates f
appears as ¥oq. It follows that

df,X(y) = af(y)
for all ye M. This implies that if £ : R — M is an integral curve of X then
f(&(1)) = e*“f(&(c)).

Now there exists xoe M with f(x,)>0, and the integral curve &, through x, is
defined for all ¢+ because M is compact. Then lim,_,., f(&(t)) =c. But f, being
continuous, is bounded. This contradiction proves 6.1. QED.

We derive several consequences from 6.1.

6.2. THEOREM. Let M be a compact radiant manifold with nilpotent linear
holonomy group A. Then A contains an expansion.

Proof. Take E;=0 in 6.1.

6.3. COROLLARY. M has no nonzero parallel covariant or contravariant
tensors.

Proof. Let o be a parallel covariant (resp. contravariant) tensor on M; let @
be the corresponding (constant) tensor on E invariant under A. By 6.2, A
contains an expansion g. Let the eigenvalues of g be Aq,..., A, (counted with
multiplicity), |A;|>1. Now & is an element of the tensor algebra @'E* (resp.
@®'E). The map on this algebra induced by g has eigenvalues A; - - - A, (resp.
A7t - A1), which makes it an expansion (resp. a contraction). Consequently the
g-invariant tensor @ must be zero. QED.

Conversely, suppose M is a nonradiant compact affine manifold with nilpotent
affine holonomy. Then by 4.1 M has nonzero parallel vector fields and 1-forms.
Another characterization of radiance is the following:

6.4. THEOREM. Let M be a compact affine manifold with nilpotent affine
holonomy group. Then the following conditions are equivalent:

(a) M is radiant.

(b) The linear holonomy group contains an expansion.

(c) The linear holonomy group contains g such that I— g is invertible.
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Proof. (a)=>>(b) by 6.2 and clearly (b)=>(c). Suppose (c). By Hirsch [21] it
follows that HYI'"; E)=0. Therefore the radiance obstruction of M vanishes,
implying (a). QED.

We digress to consider deformations of affine structures.

Conditions (c) and (b) of Theorem 6.4 evidently persists under sufficiently
small deformations of the linear holonomy representations. It follows that if M is
a compact radiant affine manifold with nilpotent holonomy group, then all suffi-
ciently small deformations of the affine structure are also radiant. In other words,
for this class of manifolds radiance is an open condition. (See Goldman [16] for
the definition of deformation of affine structures.)

Consider also the radiant affine structure on M?x S discussed in Section 3,
where M? is a compact surface of genus =2. Let ge m,(M X S?) be the image of a
generator of S'. Then g is central and I —A(g) is invertible. This suffices to prove
that any sufficiently small deformation of the affine holonomy has a stationary
point (Hirsch [21]). Thus the radiance of these affine structures is also persistent
under small deformations.

In this direction D. Fried has proved [13] that there are no complete affine
structures on these 3-manifolds. It is conjectured that all affine structures on these
manifolds are radiant.

Corollary 6.3, and the persistence of radiance discussed above, cannot be
extended to the case of solvable holonomy. To construct a counterexample we
start from the subgroup G < GL (3, R) consisting of all the matrices of the form

et o u e(k+1)t R u
el - et ul= . ek—Dt 4
. . 1 . . ekt

vyhere t,u,veR, and k>0 is a real constant to be determined later. Clearly G
preserves the upper half-space

W={(x,v,z)eR?:z>0}

and acts simply transitively. Thus G inherits a left-invariant radiant (and hence
incomplete) affine structure from W.

It is easily seen that G is the semidirect product of the two-dimensional vector
subgroup N defined by t =0 with the subgroup H=R defined by u =v =0. The
representation R — Aut (R?) which defines the semidirect product is given by

e’ -
cp:t—»[. e“]; teR
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It is well-known that G = N X H possesses discrete cocompact subgroups I". To

b
]eSLQ(Z) with a+d>2. Then A is

d
et 0

see this take any integral matrix A = [a
c
conjugate (in SL, (R)) to some diagonal matrix [ 0 e""] , A#0, and therefore

one may form the semidirect product R*XZ defined by this representation, with a
generator of Z corresponding to A. Since A was originally defined as an integral
matrix, it preserves a lattice Z2<R?. (It must be emphasized, however, that this
lattice is not generated by a basis which diagonalizes A). Then we may form the
semidirect product I' =Z%XZ which is a discrete subgroup of G =R?XR = N X H,
with I'\G compact. Using the left-invariant structure on G, we thus obtain affine
structures on the compact 3-manifold M> = I'\G; indeed, as k varies continuously
a whole one-parameter family of affine structures is defined in this way.

Let us now examine the case k = 1. Then G is the group of matrices

e2t

Auovst)=) - 1 v}; t, u,veR.
. et

It is apparent that the vector field d/dy parallel to the second basis vector is fixed
by G, and hence defines a parallel vector field on G, and also on I'\G. Thus we
obtain a compact affine manifold with both a radiant vector field and a parallel
vector field. These two vector fields generate an affine action on the group Aff (R)
on the affine 3-manifold.

The existence of a parallel vector field on a radiant affine manifold is easily
seen to be equivalent to the condition that the holonomy have more than one
stationary point. (The stationary points of an affine action form an affine subspace,
parallel to the space of parallel vector fields.)

We now describe a deformation of this affine structure. For each s e R, define
an affine representation A, : G — Afl (E) as follows. Let A(u, v, t) be the affine
map of E =R? with linear part A(u, v, t) and translational part (0, st, 0). For each
s, A, defines an action of G which is simply transitive on the upper half space. By
passing to a quotient I'\G we obtain new affine structures on M>=T'\G. These
new affine manifolds are no longer radiant for s#0, as is easily verified. Thus
radiance is not an open condition on holonomy of affine structures. A glance at
the circle shows that neither is radiance a closed condition.

The case k ==+3 of (2) is also interesting. Taking k =3 we represent G by
matrices

e3V2 . %
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then G preserves the parallel 2-form w =dy A dz as well as the radiant vector
field R. (Compare 6.3.) In addition to the affine vector field R the polynomial
vector field z%(8/0x) and rational vector field z7'(9/dy) are left-invariant. The
affine 1-form ww =2zdy—ydz is also left-invariant. Thus a compact radiant
manifold may admit a 1-form which is affine (polynomial of degree 1) but not
parallel (polynomial of degree 0). Compare 3.2.

In a forthcoming paper [14] we will show that on a compact radiant manifold
all polynomial closed 1-forms and volume forms are zero.

It is interesting to note that G also carries the complete left-invariant affine
structure corresponding to the simply transitive affine action a : G — Aff (E)
defined as follows. Represent G as RXR? as above. Let (1, §) e RXR? act on
R XR? by

&:@m > (are[ " ]n+e).

See also Example 6.7 below. Auslander [6] gives a different complete left-
invariant affine structure on G.

We return to the general theory.

Let E;; < E be the Fitting component (= maximal unipotent submodule) of the
linear holonomy. Recall that when the affine holonomy group is nilpotent we may
assume (by 1.6) that E, is invariant under the affine holonomy; and there is a
unique splitting E = E, @D F invariant under the linear holonomy.

With this notation we have the following generalization of 6.2.

6.5. THEOREM. Let M be a compact affine manifold with nilpotent affine

holonomy group. If F# 0 then some element of the linear holonomy group expands
F.

Proof. Apply 6.1 with E;= E,;; then E/E,~F as a w-module. QED.

For the special case of abelian holonomy, 6.5 and 6.2 were first proved by
John Smillie.

An important consequence of 6.5 is:

6.6. THEOREM. Let M be a compact affine manifold with nilpotent affine
holonomy group. Assume M has a parallel volume form. Then the linear holonomy
IS unipotent.

Proof. Let g be any element of the linear holonomy group A. Then 1=
Det g=Det(g| Ey) - Det(g|F). But g|E;, is a unipotent operator, so
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Det (g | Ey) =1. Therefore Deg(g|F)=1 and so g|F cannot be an expansion.
Therefore F =0 by 6.5. This means E = E,,. QED.

6.7. EXAMPLE. Theorem 6.6 fails for solvable holonomy. For example let
T" =R"/Z" be the usual Euclidean affine torus, Z" < R" being the integer lattice.
Let f:T" — T" be the affine automorphism represented by a matrix A€
SL (n,Z). Let Z act on T" xR, the generator sending (x, t) to (f(x), t+1). Then
M =(T" xR)/Z has a complete affine structure covered by the product affine
structure on T" XR. If A is not unipotent then the linear holonomy of M contains
the nonunipotent operator A XI on R" XR. The affine holonomy group I' is
solvable (even polycyclic) since it embeds in the exact sequence

1-Z" -1 -7 — 1.

We now turn to the problem of characterizing complete affine manifolds. The
following theorem, one of the few general methods of proving completeness,
shows the geometrical importance of unipotence.

6.8. THEOREM. Let M be an affine manifold. Suppose either
(a) M is compact and has unipotent holonomy,
or
(b) M is an affine nilmanifold I'\G and the corresponding linear representation
G — GL (E) is unipotent.
Then M is complete.

Proof. First assume M is compact. From unipotence it follows that there is a
flag of linear subspaces 0= F,c F, < - -+ < F, = E, dim F, =i, invariant under the
linear holonomy, such that the induced action on each F,/F,_, is trivial. Therefore
there are linear maps [; : F; — R which are invariant under the linear holonomy,
and which have kernel F,_,. (See e.g. Humphreys [23].)

The invariant flag on E determines a family of fields &; of parallel i-planes on
M, i=0,...,n Each field %, is integrable, as is clear in affine coordinates. The
invariant linear map [, determines a parallel 1-form ; defined on &%; and
vanishing on %,_,. Using partitions of unity, one readily constructs vector fields X;
on M tangent to %; with [;(X;)=1. The X; are covered by integrable vector fields
X, on M, since M is compact.

We now show that M develops onto E. Suppose one fixes a base point m, in M
which develops to the origin in E. Let v € E. We construct a path in M beginning
at m, whose development ends at v as follows. Starting at m,, flow along X, for
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time [, (v), ending at the point m, e M with D(m,) = v, € E where v—v,eKer l, =
F,_;. Then flow along X,_, for time I,_,(v —v,) ending at m,e M with D(m,) =
v, € E where v—v,eKer |,_, = F,_,. Continuing this way, we reach v = v, after n
steps.

We verify that the developing map is injective. Assume v, :[a, b] —> M is a
path which develops onto a closed loop & :[a, b] - E with &6(a)=68(b)=0. We
may deform <y, with end points fixed so that the new path vy, develops in F,_;:
we use ¥, : [a, b] = M, where v,(s) is the image at time — tl,(5(s)) of y,(s) under
the flow of X,, 0<t=<1, a=<s=b. By further such deformations, we eventually
obtain a path from <yy(a) to y,(b) which develops to a point. Hence yq(a) = y(b),
so the developing map is injective and M is complete.

When M is an affine nilmanifold, not assumed compact, the proof is similar.
We may as well assume M = G. Fix a flag at the identity e € G invariant under the
linear part of the affine action of G. Let X;,..., X, be tangent vectors at e
forming a basis for the flag, and extend them to vector fields on G by left-
multiplication. Being left-invariant, each of these vector fields is integrable for all
t e R. The rest of the proof is analogous to the compact case. QED.

The same proof shows that in the incomplete case, the projection E,F —
E, maps the developing image onto E; by a fibration.
The following application of 6.8 might be true even without nilpotence.

6.9. THEOREM. Let M be a compact affine manifold with nilpotent affine
holonomy group. Suppose the developing map D : M — E is surjective. Then M is
complete.

Proof. Let E = E,;DF be the Fitting splitting of the linear holonomy. If F# 0
then Theorem 3.3 holds that each component N of p(D'E) is incomplete.
Nevertheless N has unipotent holonomy and so, by Theorem 6.8, must be
complete. These facts are only compatible if F=0. It follows that M =N is
complete. QED.

At this point it may be useful to summarize the implications proved thus far
between various properties of affine manifolds:

6.10. SUMMARY. For compact affine manifolds:

(a) Surjective developing map and nilpotent affine holonomy = indecomposa-
ble affine holonomy (6.9).

(b) Complete = irreducible affine holonomy (2.2).

(c) Unipotent linear holonomy => complete (6.8).
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(d) Nilpotent affine holonomy group and parallel volume = unipotent linear
holonomy (6.6).

(e) Nilpotent linear holonomy group and radiant => expansion in linear
holonomy (6.2).
For possibly noncompact affine manifolds:
(f) Indecomposable, nilpotent affine holonomy = unipotent linear holonomy
(4.3).
(g) A left-invariant affine structure on a nilpotent Lie group G is complete if

and only if the corresponding affine representation of G is unipotent.
(6.8, 1.5).

In a subsequent paper we will show that for compact affine manifolds, parallel
volume = irreducible affine holonomy.

The following case is especially neat, as all the conditions coincide:

6.11. THEOREM. Let M be a compact affine manifold with nilpotent affine
holonomy group. Then the following are equivalent:

(@) M is complete

(b) The linear holonomy is unipotent.

(c) M has parallel volume.

(d) The affine holonomy is irreducible.

(e) The affine holonomy is indecomposable.

(f) The developing map is surjective.

Proof. (f)=>(e) by 6.9. (e)=>>(b) by 4.3. (b)=>(a) by 6.8. Clearly (a)=>(f). Also
(b)=>(c), and (c)=>(b) by 6.6. Finally, (a)=>(d) by 2.2, and (d)=>(e). QED.

In the next section we adjoin another equivalent condition: that M be a
complete affine nilmanifold.

In a forthcoming paper [17] it will be shown that (d)=>(a) fails for certain
compact affine 3-manifolds with solvable fundamental group.

7. Complete affine nilmanifolds

The following theorem follows from a more general theorem announced by
Auslander [8]. Unfortunately the proof is wrong, as Auslander shows in [6]. Many
of the ideas in this paper, and in particular the proof of our Theorem 7.1, come
from Auslander’s work. (One can, however, deduce Theorem 7.1 from the correct
results in [8] (see [8], page 811).)



516 D. FRIED, W. GOLDMAN AND M. W. HIRSCH

7.1. THEOREM. Let M be a compact complete affine manifold with nilpotent
fundamental group. Then M is an affine nilmanifold.

Proof. We take the universal covering space of M to be vector space E. The
fundamental group is the group of deck transformation = < Aff (E); thus M =
E/.

To prove the theorem we must find a subgroup G < Aff (E), containing r,
which acts simply transitively on E.

The linear action of w on E is unipotent (Corollary 3.4). Hence for every
g € G there is a unique element log (g) in the Lie algebra Aff (E) of Aff (E) whose
linear part is a nilpotent transformation of E and whose exponential is g.

By a celebrated theorem of Malcev [27] there is a simply connected nilpotent
Lie group H containing 7 as a discrete uniform subgroup. Recall that the Lie
algebra § of H is generated by elements L(g)el, ge = subject only to the
relations

C(L(g1), L(g»))=L(g:18>) (1)

where C :hxh — b satisfies the Baker—-Campbell-Hausdorff formula (Varadara-
jan [43]):

exp C(X,Y)=exp Xexp Y.

Clearly (1) holds with L(g) =1log (g), so there is a homomorphism of Lie algebras
h — Aff (E) and an associated homomorphism of Lie groups H — Aff (E). The
image of H is a connected subgroup G < Aff (E); and since for each ge G the
linear part of log g is a nilpotent transformation, the image of G in GL (E) is
unipotent. It follows that E has a basis putting this image in upper triangular
unipotent form. The group of all affine automorphisms of E with such linear parts
is simply connected. Thus G is simply connected. By construction, 7 < G.

Define f : G — E by f(g) = g(0). Then f is equivariant respecting the inclusion
G < Aff (E). There is an induced map f:w\G — M. Now #\G and M are
Eilenberg-MacLane spaces of type K(, 1), and f is a homotopy equivalence.
Since they are compact manifolds, they have the same dimension and f must be
surjective. ‘

It follows that f: G — E is surjective; therefore G acts transitively on E.
Since dim G=dim E, f is a covering space projection. Since E is simply con-
nected, f is a homeomorphism. Therefore G acts simply transitively on E. Hence
f : w\G — M is an affine isomorphism, as claimed. QED.
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In a forthcoming paper [13] we shall prove that a compact complete affine
manifold with solvable holonomy has a finite covering which is an affine solv-
manifold.

8. Polynomial tensors on affine manifolds with nilpotent holonomy

A tensor field on an affine manifold M is called polynomial of degree <r if in
affine coordinates its components are polynomial functions of (total) degree <r. It
is of interest to know which fields are of this type, and which real cohomology
classes are represented by polynomial exterior differential forms. (One can ask
similar questions about other classes of tensors. For example: which tensors on M
correspond in affine charts to real analytic tensors defined on all of E?).

The following theorem is the main result of this section:

8.1. THEOREM. Let M be a compact affine manifold with nilpotent
holonomy. If M is a complete affine nilmanifold the inclusion of the complex of
polynomial exterior forms into the de Rham complex induces an isomorphism on
cohomology.

In Theorem 8.4 below a converse result is proved.

The proof of 8.1 relies on the theorem of Nomizu [33] (see also Raghunathan
[47]) which identifies the real cohomology of a compact nilmanifold I'\G with the
cohomology of left-invariant differential forms on G. Therefore it suffices to prove
that when G is a simply connected nilpotent Lie group with left-invariant
complete affine structure, then every left-invariant tensor field on G is polynomial
in affine coordinates. Now such a structure on G is defined by a simply transitive
affine action of G on the vector space E; and left-invariant tensor fields on G
correspond a(G)-invariant tensor fields on E. Therefore it is enough to prove:

8.2. THEOREM. Let G be a nilpotent Lie group and o : G — Afi(E) a
simply transitive affine action. Then every a(G)-invariant tensor field on E is
polynomial.

Let o be as in 8.2; then by Theorem 1.5 a(G) is a unipotent subgroup of
Aff (E)c GL (EXxR). Thus a(G) is a connected unipotent group of matrices. It is
well known that such a group is a unipotent algebraic group, and in a unique way.
On algebraic groups there is a natural notion of an algebraic tensor field.

The algebraic structure on G can be made explicit as follows. The exponential
map exp: ® — G is a diffeomorphism, as is its inverse log: G — &. The Lie
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algebra &, being a vector space, has a natural structure as an algebraic variety.
The maps exp and log are isomorphisms of algebraic varieties.

It is easy to see that every left-invariant tensor field on G is algebraic, that is,
it is polynomial in the coordinates defined by exp. What we have to prove is that it
is also polynomial in the coordinates defined by the developing map

D:G — E, D(g) = a(g)(0)
defined by evaluation at the origin. To this end we prove:

8.3. PROPOSITION. The developing map D : G — E is an isomorphism of
algebraic varieties. In particular the composite maps

& =62 FE

and

= GELE

are polynomial.

Proof. As remarked above, a : G — a(G) is an isomorphism of algebraic
groups. Now D is the composition of a with the map

Aff(E) > E, g—g(0)

which is evidently algebraic. This proves that D : G — E is algebraic.

To prove that D™': E — G is algebraic we induct on dim G =dim E. The
case dim G =0 is trivial.

Let A : G — GL (E) be the linear part of a; clearly A is algebraic.

Since A is unipotent there exists a nonzero linear functional ¢ : E — R which
is A-invariant. Thus if ge G then Yoa(g)(x)—y(x)=¢oD(g) for all xeE. It
follows easily that oD defines a homomorphism G — R. Let G,; denote the
kernel of this homomorphism and let E,=Ker ¢. Clearly a(G,;) acts simply
transitively on E,.

Suppose, inductively, that the inverse map f;: E; — G; to D;=Dl|g, is
algebraic. The homomorphism G — R has a left-inverse so we may write G as a
semidirect product G = G, X{g,},.g Where t—>g, is a one-parameter subgroup of
G which acts on E/E, by translation by t. Thus in a basis of E containing a basis
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of E,, a(g,) is represented by

[ Q(t) §r(t)][p(t)]
0---0 1 t

where Q:R —>GL(E;) and r,p:R — E, are polynomial maps. Define
f:E;®R=E — G by

fix, ) =g - [f1°Q(=t)(x —p(¥))].

Clearly f is a composition of algebraic maps and hence algebraic. Furthermore for
teR and he G,,

foD(gh) = f(a(g)D(h)) = f(Q()D(h) + p(t), t))
=g ' [LQ(=(Q()D(h)+p(1)—p() = & * fL(D(h)) = gh

so that f is inverse to D. Thus D™ is algebraic, and the proof of 8.3 is complete.
QED.

Now that 8.3 has been established, 8.2 and 8.1 are consequences because of
Nomizu’s theorem, as explained above.

Remark. In general we do not know a sharp bound on the degree of a
left-invariant tensor field. A (probably crude) bound can be obtained by estimat-
ing the degrees of polynomials in the proof of 8.3. In the notation of 8.3 we have
algebraic maps

f:E— G, Q:R - GL(E,), P:R — E,.

We give R and E; their natural vector space structure; thus deg p is well-defined.
From the definition of p it is easy to compute that

deg p=<n=dim E.

We give GL (E;) matrix coordinates coming from linear coordinates on E;. Then
deg Q is well-defined and one sees easily that deg Q=n—1. Now G is a subgroup
of Aff (E). In a natural way Aff (E) = GL (E XR), and we give GL (E XxR) matrix
coordinates. Thus degf is defined; and degf, is defined similarly. From the
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formula

f(x, )y =g - [fi°Q(—t)(x —p(1))],
taken from the proof of 8.3, we find
deg f =(deg f,)(deg Q +deg p)=(deg f;)(2n —1).

By induction on n we get
degf=1-3:5---2n-1)=2n-D!2" ' (n-1).

Now let X be a left-invariant vector field on G, considered as an a(G)-
invariant vector field X : E — E. Let x€ E; set f(x)=ge G. Then

X(x)=X(D-f(x)) = X(D(g)) = X(a(g)(0)) = A(g)X(0).
Thus X(x) = A(f(x))X(0). This expresses X : E — E as the composition
X:ELGALGLE)DE

where h is evaluation at X(0). It is clear that A and h both have degree 1. Thus
deg X =deg f. Similarly the degree of a left-invariant 1-form is bounded by deg f.

It follows that if T is a left-invariant (p, q)-tensor field on G then as a tensor
field on E

degT=(p+q)degf=(p+q)2n—2)!/2" Y (n—1)!

It would be interesting to have a sharper bound. In Fried [4] there is an
example where a 4-dimensional G has a left-invariant vector field of degree 5. If
dim G <4, however, every left-invariant tensor of type (p, q) has degree =2(p +
'q) (see [13]).

We note that for any Lie group with left-invariant affine structure, all
right-invariant vector fields are polynomial of degree =<1 since in affine coordi-
nates they generate 1-parameter subgroups of Aff (E), so they are affine vector
fields on E.

The following theorems complement 6.11 and 7.1 by characterizing compact
complete affine nilmanifolds in terms of differential forms.
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8.4. THEOREM. Let M be a compact affine manifold with nilpotent affine
holonomy group. Then the following conditions are equivalent:
(a) M is a complete affine nilmanifold.
(b) M is orientable and every de Rham cohomology class is represented by a
polynomial differential form.
(¢) M has a polynomial volume form.
(d) M has a parallel volume form.

Proof. Theorem 8.1 shows that (a)=>(b). Clearly (b)=>>(c); and 6.11, 7.1 show
that (d)=> (a).

We must show that (c)=>(d). If the linear holonomy is unipotent (d) is obvious.
We shall prove that if the linear holonomy is not unipotent there is no polynomial
volume form.

Denote the affine holonomy by « : # — Aff (E) and the linear holonomy by
A : 7 — GL (E). Let E = E; ®F be the Fitting splitting of A. We assume A is not
unipotent, i.e., F# 0. Since M has a volume form, M is orientable. By 6.5 there
exists g; € 7w such that A(g,) | F is a contraction. Since A(w) | Ey, is unipotent, and
Det A(g;)>0 because M is orientable, we have

Det A(g,) =38, 0<é<1.

Fix x, € E. It follows from the unipotence of A(g,) on Ey and the contracting
of A(g,) on F that there is a polynomial p in one variable such that for all m =0,
|la(g1)™xo| = p(m).

Suppose that 6 is a polynomial n-form on E invariant under the affine
holonomy «a(7r). Let w be a nonzero parallel n-form on E and write 6(x) = f(x)u
where f:E — R is a polynomial. Then 6(x)=(DetA(g):  0(a(g)x) for all
gem, so f(x)=(DetA(g))f(a(g)x) particular, for all m=0, f(x)=
(Det A(g1))"f(a(g)™x), or

f(x)=8"f(ee(g1)™x).

Since f is a polynomial, |f(a(g;)™x,) is bounded in absolute value by a polynomial
q(m) (which depends on x). Hence

|f(xo)|<8™q(m) for all m=0.

Since 0 <8 <1, it follows that f(x,) is zero. As x, was arbitrary, this completes the
proof of Theorem 8.4.
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It is to be noted that Auslander [4] and Auslander-Markus [10] have
constructed many examples of compact complete affine-nilmanifolds having paral-
lel Lorentz metrics. See also Milnor [31] for additional examples.
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