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Aspherical four-manifolds and the centres of two-knot groups

Jonathan A. Hillman

§1. Introduction

In [6], Hausmann and Kervaire hâve shown that any finitely generated abelian

group is the centre of the group of an n-knot, for each w^3. This resuit is in
sharp contrast to the classical case (n 1) when the centre is either infinité cyclic
or trivial. In this note we shall consider the remaining case n 2, our principal
resuit being that if the centre of the group of a 2-knot has rank greater than 1

then the closed 4-manifold obtained by surgery on the knot is aspherical, and the
centre is Z2. We use equivariant Poincaré duality to show that the homology of
the universal cover of such a 4-manifold is a stably free module concentrated in
degree 2, followed by an Euler characteristic counting argument to show that this
module has rank 0, and so must be trivial.

In §2 we shall invoke a resuit of Kaplansky to show that nonzero stably free
modules over certain rings hâve well defined, strictly positive rank, thus preparing
the way for our counting argument. This is first used in §3 to verify a conjecture
of Murasugi, for groups with torsion free centre, and to sketch a new proof of a

theorem of Gottlieb. In §4 we dérive our main resuit. Twistspinning the trefoil
knot in several ways gives fibred 2-knots whose groups hâve centre Z, Z©Z/2Z
or Z and we conjecture that no other nontrivial group may be the centre of a

2-knot group. We show also that the centre of the group of a 2-link with more
than one component must be a torsion group, and we détermine the 2-knot
groups which contain an abelian subgroup of finite index. Finally, in §5 we give a

necessary and sufficient condition for a closed 4-manifold to be aspherical, which
is applied to the results of surgery on certain 2-knots.

I would like to thank the référée for his comments on the first version of this

paper. This work was done under a grant from the Science Research Council at
the University of Durham.

§2. Hopfian rings

A ring R is prehopfian if whenever m and n are integers such that 0 < m < n
there is no epimorphism of Rm onto Rn ; it is hopfian if every onto endomorphism
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466 J A HILLMAN

of a finitely gênerated free jR -module is an automorphism. If M is a stably
free module over a prehopfian ring JR, so that M(BRb Ra for some a, b then
R-rank M=a — b is well defined and non-negative; if JR is hopfian and M^O
then R-rank M>0.

LEMMA. Let S be the multiplicative System in a ring R generated by a central
élément s which is not a divisor of zéro. If M is a stably free R-module and n an
integer such that the localization Ms maps onto R$ with nontrivial kernel, then M
maps onto Rn with nontrivial kernel Hence R (pre)hopfian implies that Rs is

(pre)hopfian.

Proof. We shall prove the first assertion by induction on n. It is trivially true if
n 0. Suppose that <f> : Ms -» JRg is an epimorphism with kernel K. On multiplying
<{> by a suitable power of s, we may assume that <£ ife for some map \\t:M-* Rn
and that the map t/r ': M —» JR obtained by composing iff with projection onto the
fcth factor is onto, for some fc^rc. Let N ker i|/ and let 6:N-*Rnl be the
composition of i/r | N with the projection onto the complementary free summand
of Rn. Then M~N(BR, so N is stably free, and 0s is onto with kernel
ker 6S (ker 0)s (ker i/r)s nontrivial. By the hypothesis of induction there is an
epimorphism TriN^R*1'1 with nontrivial kernel. The map 7r©idR:N©jR
(«M)->i?n gives an epimorphism of M onto Rn with nontrivial kernel. The
second assertion follows immediately.

If we restate the définition of "prehopfian" in terms of matrices, we see

immediately that any ring which maps nontrivially to a field is prehopfian, and
hence intégral group rings are prehopfian. Similarly any subring of a (pre)hopfian
ring is (pre)hopfian. As Kaplansky has shown that for any group G the complex
group algebra C[G] is hopfian (for a proof see [10]), intégral group rings are in
fact hopfian. (For the remarks in this paragraph I am indebted to Professor P. M.
Cohn. See also [4]).

§3. Centres and Euler characteristk

On the évidence of his work on 1-relator groups, Murasugi conjectured that
the centre of a finitely présentable group other than Z2 of deficiency ^1 is infinité
cyclic or trivial, and is trivial if the group has deficiency ^2 [11]. In that paper he

showed that this is true for the groups of links in S3, which ail hâve deficiency ^1.
(The knots and links in S3 whose groups hâve nontrivial centre has been

determined by Burde, Zieschang and Murasugi [2, 3]). Hère we shall show that it
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holds for a much larger class of (finitely présentable) groups, including ail those
with torsion free centre.

The deficiency of a finite présentation P (xu xa | ru rb) of a group G is

def P a-b\ the deficiency of a finitely présentable group G is def G
max {def P | P présents G}. Such a finite présentation P détermines a 2-
dimensional cell complex XP with 1 0-cell, a l-cells and b 2-cells, which has

fundamental group G, and Euler characteristic x(XP) l-a + b 1-def P. We
shall let £(G) and F dénote the centre of the group G and the intégral group ring
Z [G] respectively.

THEOREM 1. Let X be a finite 2-dimensional cell complex with fundamental
group G such that £(G) contains an élément of infinité order. Then *(X) ^ 0, and
x(X) 0 if and only if X is aspherical.

Proof. Let p : X —» X be the universal cover of X. The cell structure of X may
be lifted to a cell structure for X which is invariant under the action of G via
covering transformations, and the cellular chain complex of X may then be

regarded as a finite chain complex of free left F-modules

where c, F-rank Ct is the number of i-cells of X. Since X is simply connected,
H0(Q) Z and H^X*) 0, while H2(Q) H2(X) « tt2(X) is a submodule of C2.

Let z be an élément of £(G) of infinité order, and let S be the central

multiplicative System generated by z -1. Then S contains no divisors of zéro, so F
embeds in the localization Fs, which by the lemma of §2 is hopfian. Since the

augmentation module Z is annihilated by g -1 for ail g in G, localizing the chain

complex Qe leads to an exact séquence

0 —> IÎ2\C%)s —» C2S ~~* Gis ~* Cqs ~* 0,

from which it follows that H2(C*)S is a stably free Fs-module of rank Co-
Ci - x(X), which must therefore be nonnegative. As H2(C%) is a submodule of C2,

which embeds in C2S, it is 0 if and only if H2(C^)S 0.

The theorem follows readily.

Remark. A similar argument gives an easy proof of Gottlieb's theorem that an

aspherical finite cell complex whose fundamental group has a nontrivial centre has

Euler characteristic 0 [5]. For the group must be torsion free [1; page 63] and we

may localize the cellular chain complex of the universal covering space to get an

exact séquence of finitely generated free modules over a hopfian ring.
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COROLLARY. Let G be a finitely présentable group with a central élément of
infinité order. Then def G ^ 1. // def G 1 and G is neither Z nor Z2, then G has

cohomological dimension 2, £(G) Z and the commutator subgroup G' is free.

Proof. The theorem together with the paragraph preceding it imply directly ail
but the last two assertions, which then follow from Theorem 8.8 of [1] which
asserts that if G has finite cohomological dimension, then c.d. £(G)^c.d. G —1,

with equality only if G' is free.

As the groups of links in S3 are ail torsion free and hâve deficiency^ 1, this
corollary implies immediately the above-mentioned results of Murasugi [11].

§4. Centres of two-knot groups

A 2-knot is a locally flat PL embedding of the (oriented) 2-sphere S2 in an
oriented homotopy 4-sphere X4. The exterior of such a knot K : S2 -* X4 is the

compact bounded 4-manifold XK=X4-N, where N is an open regular neigh-
bourhood of the image of K, and the group of K is G tt^X^). The group G is

also the fundamental group of the closed orientable 4-manifold YK

XKUS1xD3 obtained from X4 by surgery on K.

THEOREM 2. Let M be a closed PL 4-manifold mth fundamental group G,
and suppose

(i) £(G) contains an élément z of infinité order;
(ii) HS(G;F) O for s^2.

Then M is aspherical if and only if x(M) 0.

Proof. Let p : M -> M be the universal cover of M, and let C* be the cellular
chain complex of M with respect to a cell structure lifted through p, as in
Theorem 1. Let C* dénote the dual complex Homr(C*, F), a cochain complex of
free right T-modules. Then there are Poincaré duality isomorphisms HP(C*)-+
H4_P(C*) (where Â dénotes the left F-module deduced from a right F-module A
via the anti-involution of the group ring: g - a wx(g)a • g"1 for ail a in A and g
in G) [12; page 23].

Since M is simply connected H0(C^) Z and H1(C*) 0, while since G is

infinité M is an open 4-manifold and so H4(C#) 0. Since Extf (Z, F)
HS(G; F) 0 for s ^2, it follows from the universal coefficient spectral séquence
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that H\C*) 0 and that H2(C*)«Homr(JT^(Q:), F). Poincaré duality then
implies that H H2(C*) is isomorphic to H*, where H* Homr(H, F), and

0. Thus to prove that M is contractible it shall suffice to show that

Let S be the central multiplicative System generated by z —1. Then as in
Theorem 1, F embeds in Fs, while the only nonzero homology of C*s is Hs in
degree 2. If B is any rs-module H3(HomFs(Qs,B)) H1(Qs(8)B) 0 by
Poincaré duality and the Kûnneth theorem. Hence as in [12; page 26] Hs is stably
free and we may split the boundary maps of the complex C%s to obtain an
isomorphism Hs®Cls®C3S~C0S®C2S®C4S, so rs-rank Hs=x(M).

Since Fs is hopfian, by the lemma of §2, *(M) 0 implies that Hf Hs 0,
and since F embeds in Fs, H* embeds in Hf and so must also be 0. Hence H 0
and M is contractible, so M is aspherical. As the converse is a particular case of
Gottlieb's theorem ([5] - see the Remark in §3) the theorem is proven.

COROLLARY 1. If K is a 2-knot whose group G contains a central subgroup
C isomorphic to Z2 then YK is aspherical and £(G) Z2.

Proof. The quotient G/C is infinité, for otherwise the commutator subgroup
G' would be finite [7; page 102] and so C would map monomorphically to
G/G' Z. A spectral séquence argument (as in [1; page 158]) then shows that
Hs(G;F) 0 for s =^2 and so by the theorem YK is aspherical and G has

cohomological dimension 4. Therefore G is torsion free and c.d. f(G)=^3, by
Theorem 8.8 of [1], The same theorem proves that c.d. £(G) 3 only if G' is free,
which cannot be the case, for otherwise c.d. G^c.d. G' + c.d. G/G'= 2. Since an
abelian group of cohomological dimension =^2 must be either Z2 or a subgroup of
the additive rational numbers [1; pages 101-110], the corollary follows.

The group of the 0-twist spun trefoil knot has centre Z but does not satisfy the
second hypothesis of the theorem, and the resuit of surgery on this knot is not
aspherical. The centres of the groups of the 1-, 3- and 6-twist spun trefoil knots
are Z, Z©Z/2Z and Z2 respectively [14]. We conjecture that no other nontrivial
group can be the centre of a 2-knot group.

We shall now consider briefly the centres of link groups. In the classical case

the centre must be 1, Z or Z2, the latter being realised only by the (2-component)
abelian link [2]. The argument of Hausmann and Kervaire may be readily
modified to show that any finitely generated abelian group is the centre of the

group of some /m-component boundary n-link, for each jut ^ 1 and n ^ 3. If n 2

and fx ^ 2 the centre must hâve rank 0 for otherwise an argument as in Theorem 2

leads to the contradictory conclusion that the localization Hs of the homology of
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the universal cover of the manifold obtained by surgery on the link is a stably free
Fs -module of Fs-rank 2-2jll<0. (To obtain the contradiction we need only
know that Fs is prehopfian, and that Ht(G;T) 0 for t^l).

We shall say that a group G just contains a subgroup A if the index of A in G
finite.

COROLLARY 2. Let M be a closed 4-manifold whose fondamental group U
just contains an abelian subgroup A. Then x(M)5?0, and if x(M) 0 the subgroup
A has rank 1, 2 or 4.

Proof. By passing to a finite covering space we may assume that M is

orientable and that II is a free abelian group. We may clearly assume that
j3 =rank II is greater than 1. Let M be the universal covering space of M. If S is

as in the theorem the localized spectral séquence collapses (even if fi - 1 or 2) and
Poincaré duality then implies that H2(M)S is the only nonzero localised homology
module, and its Z[17]-rank is x(M) which therefore must be nonnegative. If |3 > 2

and x(M) 0 the theorem implies that M is aspherical and hence that |3 4.

The manifolds S1xS3, S1xS1xS2, and S1xS1xS1xSl hâve Euler charac-
teristic 0 and fundamental group Z, Z2 and Z4 respectively. (It may be shown that
they are determined up to homotopy type among orientable 4-manifolds by thèse

properties).

COROLLARY 3. Let K be a 2-knot whose group just contains an abelian
subgroup A. Then either Y is aspherical (rank A 4) or the commutator subgroup
G' is finite (rank A 1).

Proof. It is readily verified that a group with abelianization Z just contains an
infinité cyclic subgroup if and only if its commutator subgroup is finite, while no
such group can just contain a subgroup isomorphic to Z2 (or Z3). The assertions

now follow on applying Corollary 2 to the manifold Y.

Necessary conditions for a group with finite commutator subgroup to be a

2-knot group were given in [8], and thèse conditions were shown to be sufficient

by Yoshikawa [14].
If G is a 2-knot group which just contains Z4, then the commutator subgroup

G' just contains Z3 and is torsion free, by the corollary. Therefore it is the

fundamental group of a flat Riemannian 3-manifold [13; page 103], which must

be orientable [9]. Of the six possible such groups listed on page 117 of [13], only
Z3 and the group G6 admit méridional [8] automorphisms; moreover no such

automorphism of Z3 can hâve finite order. The group G6 is presented by
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{a, 7 | ay2a~1y2 ya1y~1a2 1} and the automorphism <P : G6—> G6 sending a
to «y and 7 to a is méridional and of order 6. Since the group G G6 *4>

presented by {G6, f | fgf"1 <i>(g) for ail g in G6} is torsion free and just contains
Z4, there is a flat 4-manifold M with fundamental group G [13; page 103]. As in
[8] we may then obtain a 2-knot with group G by surgery on M. (In fact we may
assume that M is the mapping torus of a diffeomorphism of a flat 3-manifold with
fundamental group G6, and hence that the knot is fibred.) Which high dimen-
sional knot groups just contain abelian groups?

§5. Aspherical four-manifolds

If / : M —» N is an (n — l)-connected degree 1 map between closed orientable
2n-manifolds with fundamental group 17, the only obstruction to its being a

homotopy équivalence is Hn(f) ker (/* : tth(M) —> 7rn(N)), which is a stably free
Z [I7]-module, by lemma 2.3 of [12]. Arguing as in Theorem 2 we may show that
Z[17]-rank Hn(f) — (-l)n(x(M) —x(N)) and so f is a homotopy équivalence if it is

an intégral homology équivalence. In the nonorientable case an (n - l)-connected
map / is a homotopy équivalence if it préserves the orientation character and
induces an intégral homology équivalence on the orientation covers.

In this section we shall adapt the argument outlined above to a case in which it
is not known a priori that the map has degree 1.

THEOREM 3. Let M be a closed 4-manifold with fundamental group F. Then
the classifying map / : M —> K(F, 1) is a homotopy équivalence if and only if F is a
Poincaré duality group of formai dimension 4 and orientation character w wx(M),
and f induces an équivalence on homology with w-twisted rational coefficients.

Proof As thèse conditions are clearly necessary, we need only show that they
are sufficient. By passing to the covering spaces associated with ker w we may
suppose that M and F are orientable. Up to homotopy type we may suppose also

that / is an inclusion and that K(F, 1) is a finite cell complex containing M as a

subcomplex. Let C*, D# and E* be the cellular chain complexes of the universal

covers M, K(F, 1) and (K(F, 1), M) respectively, with respect to their natural
F-invariant cell structures, and let <P Z[F]. Since F is a 4-dimensional duality
group Hs(F;<P) 0 for s<4, and Poincaré duality together with the universal
coefficient spectral séquence then give an isomorphism H2(C*)^
Hom^(H2(Q), <f>) as in Theorem 2, while HS(Q) 0 if s^ 0 or 2. Since <f> maps
monomorphically to Q[F], H2(Q) embeds in Q® H2(C*) H2(M; Q). As
K(F, 1) is contractible, the only possibly nontrivial homology module of
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H2(M;Q), which is a stably free Q[F]-module by
Lemma 2.3 of [12]. Since / induces a rational homology équivalence the Euler
characteristics of M and K(F, 1) are equal. As thèse are also the Euler charac-
teristics of C* and D*, and as the séquence

is exact, the Euler characteristic of E* is 0. Therefore the stably free Q[F]-
module H2(M;Q) Q®H3(E%) has rank 0, and, by Kaplansky's theorem, must
in fact be 0. Thus H2(C%) 0 and / is a homotopy équivalence.

COROLLARY 4. Let M be an orientable 4-manifold such that H irt(M) is

an orientable Poincaré duality group of formai dimension 4 and suppose that the

cohomology ring H*(M; Q) is generated by HX(M; Q). Then M is aspherical.

Proof The classifying map from M to K(H, 1) is clearly a rational (co)homol-
ogy équivalence, and so we may apply the theorem.

COROLLARY 2. Let K be a 2-knot whose group G is an orientable Poincaré

duality group of formai dimension 4 such that G' j= G". Then the closed 4-manifold
YK obtained by surgery on K is aspherical.

Proof. Since G'^G", there is a field E such that E<8>(G'IG")j=0. An argument

as in Theorem 1 of [9] using the Wang séquence and Milnor duality with
coefficients E instead of Z/2Z shows that the classifying map c:YK-+ K(G, 1) has

nonzero degree and hence induces a rational homology équivalence, so the above
theorem applies.

Remark. If (Z/2Z)(g)(G7G")^0 the orientability of G follows from the other
conditions [9]. Is the corollary still true if G' G"? In [9] we used an argument
similar to that of Theorem 1 to show that if a 2-knot group G is a Poincaré

duality group with one end (i.e. other than Z) such that Z[G] embeds nicely in a

division ring then the resuit of surgery on the knot is aspherical. An examination
of that argument shows that the fîrst condition can be weakened to HS(G; F) 0

for s =ss2. Can the second condition be relaxed to G being torsion free, or
dispensed with entirely?
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