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Aspherical four-manifolds and the centres of two-knot groups

JoNnATHAN A. HiLLMAN

§1. Introduction

In [6], Hausmann and Kervaire have shown that any finitely generated abelian
group is the centre of the group of an n-knot, for each n=3. This result is in
sharp contrast to the classical case (n = 1) when the centre is either infinite cyclic
or trivial. In this note we shall consider the remaining case n =2, our principal
result being that if the centre of the group of a 2-knot has rank greater than 1
then the closed 4-manifold obtained by surgery on the knot is aspherical, and the
centre is Z>. We use equivariant Poincaré duality to show that the homology of
the universal cover of such a 4-manifold is a stably free module concentrated in
degree 2, followed by an Euler characteristic counting argument to show that this
module has rank 0, and so must be trivial.

In §2 we shall invoke a result of Kaplansky to show that nonzero stably free
modules over certain rings have well defined, strictly positive rank, thus preparing
the way for our counting argument. This is first used in §3 to verify a conjecture
of Murasugi, for groups with torsion free centre, and to sketch a new proof of a
theorem of Gottlieb. In §4 we derive our main result. Twistspinning the trefoil
knot in several ways gives fibred 2-knots whose groups have centre Z, ZOZ/2Z
or Z and we conjecture that no other nontrivial group may be the centre of a
2-knot group. We show also that the centre of the group of a 2-link with more
than one component must be a torsion group, and we determine the 2-knot
groups which contain an abelian subgroup of finite index. Finally, in §5 we give a
necessary and sufficient condition for a closed 4-manifold to be aspherical, which
is applied to the results of surgery on certain 2-knots.

I would like to thank the referee for his comments on the first version of this
paper. This work was done under a grant from the Science Research Council at
the University of Durham.

§2. Hopfian rings

A ring R is prehopfian if whenever m and n are integers such that 0<m<n
there is no epimorphism of R™ onto R"; it is hopfian if every onto endomorphism
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466 J. A. HILLMAN

of a finitely generated free R-module is an automorphism. If M is a stably
free module over a prehopfian ring R, so that M@ R® = R® for some a, b then
R-rank M =a—b is well defined and non-negative; if R is hopfian and M#0
then R-rank M >0.

LEMMA. Let S be the multiplicative system in a ring R generated by a central
element s which is not a divisor of zero. If M is a stably free R-module and n an
integer such that the localization Mg maps onto RS with nontrivial kernel, then M
maps onto R™ with nontrivial kernel. Hence R (pre)hopfian implies that Rg is
(pre)hopfian.

Proof. We shall prove the first assertion by induction on n. It is trivially true if
n =0. Suppose that ¢ : Mg — R§ is an epimorphism with kernel K. On multiplying
¢ by a suitable power of s, we may assume that ¢ = s for some map ¢ : M — R"
and that the map ¢': M — R obtained by composing ¢ with projection onto the
k™ factor is onto, for some k<n. Let N=ker ¢’ and let 6:N— R""! be the
composition of ¢ | N with the projection onto the complementary free summand
of R". Then M=N®R, so N is stably free, and 65 is onto with kernel
ker 65 = (ker 0)s = (ker )g nontrivial. By the hypothesis of induction there is an
epimorphism 7:N — R"! with nontrivial kernel. The map 7®idg :N®R
(=M)— R" gives an epimorphism of M onto R"™ with nontrivial kernel. The
second assertion follows immediately.

If we restate the definition of “prehopfian” in terms of matrices, we see
immediately that any ring which maps nontrivially to a field is prehopfian, and
hence integral group rings are prehopfian. Similarly any subring of a (pre)hopfian
ring is (pre)hopfian. As Kaplansky has shown that for any group G the complex
group algebra C[G] is hopfian (for a proof see [10]), integral group rings are in
fact hopfian. (For the remarks in this paragraph I am indebted to Professor P. M.
Cohn. See also [4]).

§3. Centres and Euler characteristic

On the evidence of his work on 1-relator groups, Murasugi conjectured that
the centre of a finitely presentable group other than Z? of deficiency =1 is infinite
cyclic or trivial, and is trivial if the group has deficiency =2 [11]. In that paper he
showed that this is true for the groups of links in S*, which all have deficiency =1.
(The knots and links in S® whose groups have nontrivial centre has been
determined by Burde, Zieschang and Murasugi [2, 3]). Here we shall show that it
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holds for a much larger class of (finitely presentable) groups, including all those
with torsion free centre.

The deficiency of a finite presentation P=(x,,... X, | ry,...n) of a group G is
def P=a—b; the deficiency of a finitely presentable group G is def G=
max {def P| P presents G}. Such a finite presentation P determines a 2-
dimensional cell complex Xp with 1 O-cell, a 1-cells and b 2-cells, which has
fundamental group G, and Euler characteristic x(Xp)=1—a+b=1—def P. We
shall let £(G) and I'" denote the centre of the group G and the integral group ring
Z [G] respectively.

THEOREM 1. Let X be a finite 2-dimensional cell complex with fundamental
group G such that {(G) contains an element of infinite order. Then x(X)=0, and
x(X)=0 if and only if X is aspherical.

Proof. Let p: X — X be the universal cover of X. The cell structure of X may
be lifted to a cell structure for X which is invariant under the action of G via
covering transformations, and the cellular chain complex of X may then be
regarded as a finite chain complex of free left I'-modules

Ci:0C,>C,—>Cy—0

where ¢; = I'-rank C, is the number of i-cells of X. Since X is simply connected,
Hy(Cy) =7 and H,(Xy) =0, while H,(Cy) = H5(X) =~ m,(X) is a submodule of C,.

Let z be an element of {(G) of infinite order, and let S be the central
multiplicative system generated by z — 1. Then S contains no divisors of zero, so I’
embeds in the localization Iy, which by the lemma of §2 is hopfian. Since the
augmentation module Z is annihilated by g —1 for all g in G, localizing the chain
complex Cy leads to an exact sequence

0 — Hy(Cy)s = Cos = Ci1s—> Cos — 0,

from which it follows that H,(Cy)s is a stably free I'q-module of rank co—c;+
¢, = x(X), which must therefore be nonnegative. As H,(Cy) is a submodule of C,,
which embeds in C,g, it is 0 if and only if H,(Cy)s =0.

The theorem follows readily.

Remark. A similar argument gives an easy proof of Gottlieb’s theorem that an
aspherical finite cell complex whose fundamental group has a nontrivial centre has
Euler characteristic 0 [5]. For the group must be torsion free [1; page 63] and we
may localize the cellular chain complex of the universal covering space to get an
exact sequence of finitely generated free modules over a hopfian ring.



468 J. A. HILLMAN

COROLLARY. Let G be a finitely presentable group with a central element of
infinite order. Then def G=<1. If def G =1 and G is neither Z nor Z?, then G has
cohomological dimension 2, {(G)=1Z and the commutator subgroup G' is free.

Proof. The theorem together with the paragraph preceding it imply directly all
but the last two assertions, which then follow from Theorem 8.8 of [1] which
asserts that if G has finite cohomological dimension, then c.d. {(G)<c.d. G -1,
with equality only if G’ is free.

As the groups of links in S* are all torsion free and have deficiency= 1, this
corollary implies immediately the above-mentioned results of Murasugi [11].

§4. Centres of two-knot groups

A 2-knot is a locally flat PL embedding of the (oriented) 2-sphere S* in an
oriented homotopy 4-sphere 3* The exterior of such a knot K:S*>— 3 is the
compact bounded 4-manifold X; =3*—N, where N is an open regular neigh-
bourhood of the image of K, and the group of K is G = 7(Xk). The group G is
also the fundamental group of the closed orientable 4-manifold Yyx =
X US'x D? obtained from 3* by surgery on K.

THEOREM 2. Let M be a closed PL 4-manifold with fundamental group G,
and suppose

(i) ¢(G) contains an element z of infinite order,

(i) H*(G;I')=0 for s<?2.
Then M is aspherical if and only if x(M)=0.

Proof. Let p: M — M be the universal cover of M, and let Cy be the cellular
chain complex of M with respect to a cell structure lifted through p, as in
Theorem 1. Let C* denote the dual complex Homp(Cy, I'), a cochain complex of
free right I'-modules. Then there are Poincaré duality isomorphisms H?(C¥*) —
H, ,(Cy) (where A denotes the left '-module deduced from a right I'-module A
via the anti-involution of the group ring: g-a=w,(g)a- g ' forall a in A and g
in G) [12; page .23].

Since M is simply connected Hy(Cy)=Z and H,(Cyx) =0, while since G is
infinite M is an open 4-manifold and so H,(Cy)=0. Since Ext}(Z,I')=
H*(G; TI')=0 for s <2, it follows from the universal coefficient spectral sequence

Ext}{(H, (Cy), [)=> H?*4(C*)
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that H'(C*)=0 and that H*(C*)=Hom(H,(Cy), I'). Poincaré duality then
implies that H = H,(Cy4) is isomorphic to H*, where H*=Hom(H, I'), and
H4(C4)=0. Thus to prove that M is contractible it shall suffice to show that
H*=0.

Let S be the central multiplicative system generated by z—1. Then as in
Theorem 1, I' embeds in [, while the only nonzero homology of Cyg is Hg in
degree 2. If B is any Ig-module H’(Homp(Cxs, B))=H(Cxs®B)=0 by
Poincaré duality and the Kiinneth theorem. Hence as in [12; page 26] H is stably
free and we may split the boundary maps of the complex Cgg to obtain an
isomorphism Hg C;5D Csg = Cos D Cos D Cyg, s0 I's-rank Hg = x(M).

Since I's is hopfian, by the lemma of §2, x(M)=0 implies that Hf = Hg =0,
and since I" embeds in I's, H* embeds in H& and so must also be 0. Hence H=0
and M is contractible, so M is aspherical. As the converse is a particular case of
Gottlieb’s theorem ([5]-see the Remark in §3) the theorem is proven.

COROLLARY 1. If K is a 2-knot whose group G contains a central subgroup
C isomorphic to Z* then Yy is aspherical and {(G)=17>.

Proof. The quotient G/C is infinite, for otherwise the commutator subgroup
G' would be finite [7; page 102] and so C would map monomorphically to
G/G'=7Z. A spectral sequence argument (as in [1; page 158]) then shows that
H*(G;I')=0 for s<2 and so by the theorem Yy is aspherical and G has
cohomological dimension 4. Therefore G is torsion free and c.d. {(G)<3, by
Theorem 8.8 of [1]. The same theorem proves that c.d. {(G) =3 only if G’ is free,
which cannot be the case, for otherwise c.d. G <c.d. G'+c.d. G/G'=2. Since an
abelian group of cohomological dimension=< 2 must be either Z? or a subgroup of
the additive rational numbers [1; pages 101-110], the corollary follows.

The group of the 0-twist spun trefoil knot has centre Z but does not satisfy the
second hypothesis of the theorem, and the result of surgery on this knot is not
aspherical. The centres of the groups of the 1-, 3- and 6-twist spun trefoil knots
are Z, ZAZ/2Z and 27 respectively [14]. We conjecture that no other nontrivial
group can be the centre of a 2-knot group.

We shall now consider briefly the centres of link groups. In the classical case
the centre must be 1, Z or Z?, the latter being realised only by the (2-component)
abelian link [2]. The argument of Hausmann and Kervaire may be readily
modified to show that any finitely generated abelian group is the centre of the
group of some w-component boundary n-link, for each u=1and n=3. If n=2
and w =2 the centre must have rank O for otherwise an argument as in Theorem 2
leads to the contradictory conclusion that the localization Hg of the homology of
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the universal cover of the manifold obtained by surgery on the link is a stably free
I's-module of I's-rank 2—2u <0. (To obtain the contradiction we need only
know that Iy is prehopfian, and that H'(G;I')=0 for t<1).

We shall say that a group G just contains a subgroup A if the index of A in G
finite.

COROLLARY 2. Let M be a closed 4-manifold whose fundamental group I1
just contains an abelian subgroup A. Then x(M)=0, and if x(M) =0 the subgroup
A has rank 1, 2 or 4.

Proof. By passing to a finite covering space we may assume that M is
orientable and that II is a free abelian group. We may clearly assume that
B =rank IT is greater than 1. Let M be the universal covering space of M. If S is
as in the theorem the localized spectral sequence collapses (even if 8 =1 or 2) and
Poincaré duality then implies that H,(M)s is the only nonzero localised homology
module, and its Z[IT]-rank is x(M) which therefore must be nonnegative. If g >2
and x(M)=0 the theorem implies that M is aspherical and hence that g =4.

The manifolds S'x 83, S'xS'x 82 and S'xS!'xS'xS! have Euler charac-
teristic 0 and fundamental group Z, Z* and Z* respectively. (It may be shown that
they are determined up to homotopy type among orientable 4-manifolds by these
properties).

COROLLARY 3. Let K be a 2-knot whose group just contains an abelian
subgroup A. Then either Y is aspherical (rank A =4) or the commutator subgroup
G' is finite (rank A =1).

Proof. 1t is readily verified that a group with abelianization Z just contains an
infinite cyclic subgroup if and only if its commutator subgroup is finite, while no
such group can just contain a subgroup isomorphic to Z* (or Z>). The assertions
now follow on applying Corollary 2 to the manifold Y.

Necessary conditions for a group with finite commutator subgroup to be a
2-knot group were given in [8], and these conditions were shown to be sufficient
by Yoshikawa [14].

If G is a 2-knot group which just contains Z*, then the commutator subgroup
G’ just contains Z> and is torsion free, by the corollary. Therefore it is the
fundamental group of a flat Riemannian 3-manifold [13; page 103], which must
be orientable [9]. Of the six possible such groups listed on page 117 of [13], only
Z? and the group G admit meridional [8] automorphisms; moreover no such
automorphism of Z> can have finite order. The group G¢ is presented by
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{a, v| ay’a"'y*=ya’y 'a®=1} and the automorphism @:G4— G¢ sending a
to ay and y to a is meridional and of order 6. Since the group G = Gg *4
presented by {Gq, t | tgt™' = ®(g) for all g in G} is torsion free and just contains
Z*, there is a flat 4-manifold M with fundamental group G [13; page 103]. As in
[8] we may then obtain a 2-knot with group G by surgery on M. (In fact we may
assume that M is the mapping torus of a diffeomorphism of a flat 3-manifold with
fundamental group Gg, and hence that the knot is fibred.) Which high dimen-
sional knot groups just contain abelian groups?

§5. Aspherical four-manifolds

If f:M— N is an (n— 1)-connected degree 1 map between closed orientable
2n-manifolds with fundamental group II, the only obstruction to its being a
homotopy equivalence is H, (f) =ker (f4: m, (M) — m,,(N)), which is a stably free
Z [IT]-module, by lemma 2.3 of [12]. Arguing as in Theorem 2 we may show that
Z[II]-rank H,(f) = (—1)"(x(M)— x(N)) and so f is a homotopy equivalence if it is
an integral homology equivalence. In the nonorientable case an (n — 1)-connected
map f is a homotopy equivalence if it preserves the orientation character and
induces an integral homology equivalence on the orientation covers.

In this section we shall adapt the argument outlined above to a case in which it
is not known a priori that the map has degree 1.

THEOREM 3. Let M be a closed 4-manifold with fundamental group F. Then
the classifying map f: M — K(F, 1) is a homotopy equivalence if and only if Fis a
Poincaré duality group of formal dimension 4 and orientation character w = w,(M),
and f induces an equivalence on homology with w-twisted rational coefficients.

Proof. As these conditions are clearly necessary, we need only show that they
are sufficient. By passing to the covering spaces associated with ker w we may
suppose that M and F are orientable. Up to homotopy type we may suppose also
that f is an inclusion and that K(F, 1) is a finite cell complex containing M as a
subcomplex. Let Cy, Dy and E4 be the cellular chain complexes of the universal
covers M, K(F,1) and (K(F, 1), M) respectively, with respect to their natural
F-invariant cell structures, and let @ =Z[F]. Since F is a 4-dimensional duality
group H*(F; ®)=0 for s<4, and Poincaré duality together with the universal
coefficient spectral sequence then give an isomorphism H,(Cy)=
fl?nlp(Hz(C*), ®) as in Theorem 2, while H,(Cy4) =0 if s# 0 or 2. Since @ maps
monomorphically to Q[F], H,(Csx) embeds in Q® H,(Cy)=H,(M;Q). As
K(F, 1) is contractible, the only possibly nontrivial homology module of Q® Ey is
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QR H;(Ex) = Q® H(E4) = H,(M; Q), which is a stably free Q[F]-module by
Lemma 2.3 of [12]. Since f induces a rational homology equivalence the Euler
characteristics of M and K(F, 1) are equal. As these are also the Euler charac-
teristics of C4 and Dy, and as the sequence

0—->C4y—>Dy—Ey—0

is exact, the Euler characteristic of Ey4 is 0. Therefore the stably free Q[F]-
module H,(M; Q)=Q® H5(E4) has rank 0, and, by Kaplansky’s theorem, must
in fact be 0. Thus H,(Cy,)=0 and f is a homotopy equivalence.

COROLLARY 4. Let M be an orientable 4-manifold such that H = w,(M) is
an orientable Poincaré duality group of formal dimension 4 and suppose that the
cohomology ring H*(M; Q) is generated by H'(M; Q). Then M is aspherical.

Proof. The classifying map from M to K(H, 1) is clearly a rational (co)homol-
ogy equivalence, and so we may apply the theorem.

COROLLARY 2. Let K be a 2-knot whose group G is an orientable Poincaré
duality group of formal dimension 4 such that G' # G". Then the closed 4-manifold
Yk obtained by surgery on K is aspherical.

Proof. Since G'# G”, there is a field E such that EQ(G'/G")# 0. An argu-
ment as in Theorem 1 of [9] using the Wang sequence and Milnor duality with
coefficients E instead of Z/2Z shows that the classifying map c¢: Yx — K(G, 1) has
nonzero degree and hence induces a rational homology equivalence, so the above
theorem applies.

Remark. If (Z/2Z)Q(G'/G") # 0 the orientability of G follows from the other
conditions [9]. Is the corollary still true if G'= G"? In [9] we used an argument
similar to that of Theorem 1 to show that if a 2-knot group G is a Poincaré
duality group with one end (i.e. other than Z) such that Z[G] embeds nicely in a
division ring then the result of surgery on the knot is aspherical. An examination
of that argument shows that the first condition can be weakened to H*(G;I')=0
for s=<2. Can the second condition be relaxed to G being torsion free, or
dispensed with entirely?
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