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Permutation modules and projective resolutions

James Howie® and Hans RUDOLF SCHNEEBELI

1. Introduction

We adopt the convention of [2] that a group-pair (G, S) consists of a group G
and an indexed family § ={S;}; of subgroups of G (possibly with repetitions). For
the most part no explicit indexing is referred to; we then write § as a shorthand
for {S;};. We let ZG/S denote the left ZG-module @; ZG/S,. Any module of the
form ZG/S is called a permutation module.

We study projective resolutions ? »Z and we deal with special splittings of
the kernels of the boundary map in some dimension n. We focus attention on such
splittings where a ZG-permutation module appears as a direct summand. The
motivation for this set-up stems from our investigation [6], where a group is
termed of finite quasi-projective dimension in case for some ZG-projective
resolution ? »Z and some integer n>1, the kernel of 9, splits into a ZG-
projective and a Z G-permutation module. Some conclusions in [6] only depend
on the existence of a direct permutation module summand. We justify the more
general set-up taken up here by constructing examples of groups of infinite
quasi-projective dimension to which our structure results still apply.

For finite groups, Gruenberg and Roggenkamp [4], [5] investigated non-
projective decompositions of the augmentation ideal or of relation modules.
Under a more special hypothesis on the decomposition, we avoid the restriction to
finite groups and to low dimensions. Dealing with finite groups later on, similarity
with results of [S5] turns up.

We now introduce another piece of notation. Let €:---—
C. 5 C,._, Jut, C,_,— + - - be a chain complex. Then we denote the kernel of
0,_1:C,_1 = C,_, by K, (86).

In Section 2 we assume that for some projective resolution ¢ »Z and some n,
there is a splitting K,,(?) = M@®ZG/S. We show that each group in the family § is
finite. The Tate cohomology of any non-trivial group in § has a divisor of n as its
period. Our key result is a variation of a theorem attributed to Serre in [7].

'Partly supported by a William Gordon Seggie Brown Fellowship.

447



448 J. HOWIE AND H. R. SCHNEEBELI

THEOREM 5. Suppose (G, S) is a group-pair and q, r are positive integers such
that for every Z.G-module M the group H*(G, M) has a direct summand isomor-
phic to [l;c; H'(S;, M). Suppose also that i, j€ I and g€ G are such that S, N gS;g™"
is not torsion-free. Then i =j and ge S,.

This result leads to a chain of corollaries some of which state facts proved
earlier for groups of finite quasi-projective dimension in [6]. In particular, the
hypotheses of Theorem 5 are satisfied for a pair (G, S) if for some ZG-projective
resolution ? — Z and some n >0, the module ZG/S is a direct summand of the
kernel K,(?). The following statement already shows that our investigation
extends beyond the class of groups of finite quasi-projective dimension.

We term a pair of groups (G, S) a Frobenius pair, if G is a Frobenius group
and S a Frobenius complement of G.

COROLLARY 5.4. Suppose G is a finite group and Z G/S is isomorphic to a
direct summand of K,(®) for some ZG-projective resolution ? — Z and some
n>0. Then either S=1, S=G or (G, S) is a Frobenius-pair.

The objective of Section 3 is a discussion of Frobenius groups from the point
of view of homological algebra.

THEOREM 7. Let (G, S) be a Frobenius pair. Then ZG/S is a ZG-direct
summand of ZOZG.

The relationship between splitting of ZGZG and of the augmentation ideal
IG =ker (ZG — Z) is investigated in [4], [5].

THEOREM 9. Let (G, S) be a Frobenius pair and let n denote the period of the
Tate cohomology of S. Then there exists a finitely generated ZG-free resolution
P »7Z such that ZG/S is a ZG-direct summand of K, (P).

In a different direction, we use relative (co)-homology of a Frobenius pair
(G, S) to compute the (co)-homology of G. We obtain results similar to [1, 55.1]
in a rather elementary way from the long exact (co)-homology sequences of the
pair (G, S). We refer to the Appendix for the discussion of some special
properties of the restriction-corestriction maps in relative cohomology.

COROLLARY 7.2. Let (G, S) be a Frobenius pair and denote by N the kernel
of the projection G —»S. Then there exist natural isomorphisms of functors on
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Z.G-modules for any r>1 as follows:
(i) H(G;-)=H'(S;-)®H'(G, S; ).
(i) H'(G,S; -)=H'(N;-)".
(iii) For all reZ, there are natural isomorphisms

H'(S; (9)N)=H"(S; res§ (-))
of functors on Z.G-modules.

For any finite group H let 7y denote the set of primes dividing |H|. Then the
decomposition (i) is a functorial splitting of H'(G, —) into mg- and my-parts
(r>1).

In Section 4, we present some explicit computations related to examples. We
first deal with Frobenius pairs of the type (G, Z/kZ). In this context, we observe
decompositions of the relation modules occurring in the Lyndon resolution
derived from a finite presentation of G. This is an opportunity to make explicit
some connection with results of Gruenberg and Roggenkamp [5]. The easiest
non-trivial example of this case is the symmetric group S;=
(x,y|x*=y>=(xy)*=1).

In analogy with [6, Theorem 5] we use graph products to construct infinite
groups G for which permutation modules occur as a direct summand of some
K, (). Of special interest is the group S;*S;, where C=Z/2Z, since this group

C

has infinite quasi-projective dimension and it cannot be constructed with the help
of graph products along the lines of [6, Theorem 5]}.

We finally remark that our working hypothesis is based on ZG-projective
resolutions. A natural source for such resolutions is free G-actions on acyclic
spaces. It would be desirable to know the topological circumstances under which
actions produce the phenomena discussed here since they lead from geometric
considerations to structure results in group theory.

2. Projective resolutions

2.1. Preliminaries and general facts

Suppose (G, S) is a group pair, where G is a subgroup of a group H. Then
there is a ZH-isomorphism ZH®s; ZG/S=ZH|S.

Suppose (G, S) is a group pair, and U is a subgroup of G. If we restrict the
ZG-action on ZG/S to a ZU-action, we obtain a permutation module Z U/T,
where the family T can be constructed as follows. Let I be the index set of the
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family § ={S;};. For each i€ I, choose a set {tg; B €J;} of representatives of the
double cosets UgS,, and for each B in J; define T3 = UNgSitg". Then T is the
family {T,z; i€, B eJ;}. This construction also appears in [2,p. 305]. We call
(U, T) the pair induced from (G, S) by U.

We now consider a ZG-projective resolution ? » A of some ZG-module A,
and suppose that ZG/S is isomorphic to a submodule of K, (%) for some positive
integer n. Then, by restricting the Z G-action, we obtain a Z U-projective resolu-
tion ? » A, and a Z U-submodule of K, (%) isomorphic to ZU/T, where (U, T) is
the induced pair.

In particular, if we take U = S; for some i € I, then one subgroup in the family
T is just S;NS; =S, so that the ZS;-projective P,_; contains a ZS;-submodule
isomorphic to ZS,;/S; =Z. This is possible only if S; is a finite group. We have thus
proved the following.

PROPOSITION 1. Suppose ? » A is a Z G -projective resolution, and ZG/S is
a submodule of some K, (®). Then S is a family of finite subgroups.

Note that any projective resolution # can be modified so that K, (®) contains a
free direct summand. Hence only the non-trivial subgroups in § are of interest.

Next we observe that, if ZG/S is isomorphic to a direct summand of K, (%) for
some projective resolution ? » A, then, modulo a slight adjustment, the same is
true for any other projective resolution of A. In particular, ¢ may always be
assumed to be free.

PROPOSITION 2. Suppose A is a ZG-module, ? » A and 2 » A are LG-
projective resolutions, and Z.G/S is isomorphic to a direct summand of K,,(?). Then
one can form a ZG-projective resolution 2' —» A by adding a free ZG-module F to
2 in dimensions n and n—1, such that ZG/S is isomorphic to a direct summand of
K., (2"). Furthermore, if the index set I of the family 8 is finite, then F may be chosen
of finite rank.

Proof. By Schanuel’s lemma, there are ZG-projectives P and Q such that
K. (@)®P=K,(2)® Q. The first part of the proposition follows by choosing F
large enough to contain Q as a direct summand, and noting that K, (2')=
K.(2)DF.

Now suppose I is finite. then ZG/S is finitely generated. Hence, for any choice
of basis for F, only finitely many basis elements are involved in the images of
elements of ZG/S in K, (2)®DF. We may therefore replace F in the construction
of ' by a suitable free direct summand of finite rank.



Permutation modules and projective resolutions 451

2.2. Resolutions of Z

From now on we restrict our attention to ZG-projective resolutions # —»7Z.
Our next observation is that an integer n for which ZG/S is a direct summand of
K, () for some 2 is by no means unique. In fact, if there is one such integer,
there are infinitely many.

PROPOSITION 3. Suppose ?»Z is a ZG-projective resolution such that
Z.G/S is isomorphic to a direct summand of K,(®). Then there exists, for each
positive integer r, a Z.G-projective resolution P »Z, such that ZG/S is isomorphic
to a direct summand of K,,,(®").

Proof. We define 2 =2, and #© (r=2) inductively as follows. Suppose
@~V has been defined, and K,_,,(?" ") =ZG/SDA. Let 2-» A be any ZG-
projective resolution, and define # »Z to be

(69 Z2G Qs Q’)GBQ > P{B > > PV SZ 50
iel \ /
(GB ZG®s z)eBA.
iel

Then K, (?7)=(®;,ZG®s K, (?)) DK, (2).

For each iel, K,(?) contains ZG/S,, and so Z, as a ZS;-direct summand.
Hence K., (?) contains B;ZGQ®3Z=ZG/S as a ZG-direct summand, as
claimed.

The next proposition is a straightforward calculation of cohomology, and we
omit the proof.

PROPOSITION 4. Suppose ? »Z is a ZG-projective resolution and K, (P) =
ZG/SD A. Then there are, for each q>0, natural isomorphisms

H"9(G; —) =~ (H HY(S;: —))GBExtgG (A;—)

iel

Hyo(G: )= (@ Hi(S;:-) )@Torz (4; ).

iel

COROLLARY 4.1. Suppose ? »Z is a ZG-projective resolution such that
ZG/S is isomorphic to a direct summand of K, (®). Then either n is even or S
consists entirely of copies of {1}.
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Proof. Suppose n is odd and, for some iel, S;#{1}.

By Proposition 1, S, is finite. Choose a subgroup C of S; of prime order. Then,
regarded as a ZC-module, K, () has a direct summand isomorphic to Z, say
K, (@)=Z® A'. Apply Proposition 4 to C with q=1. Since n is odd, we have

0=H,.,(C;Z)=H,(C; Z)®Tor{ (A"; Z) #0.
This is a contradiction, so the proof is complete.

The importance of Proposition 4 is that it may be used together with our next
result to deduce certain group-theoretic properties of the pair (G, §). This result is
a partial generalisation of a theorem of Serre [7].

THEOREM 5. Suppose (G, S) is a group-pair and q, r are positive integers such
that, for every ZG-module M, the group H(G; M) has a direct summand
isomorphic to [lic; H'(S;; M). Suppose also that i,Jel, g€ G are such that
S; N gS;g™" is not torsion-free. Then i=j and g€ S,

Proof. Choose a cyclic subgroup C# 1 of finite order in S; NgS;g~". Then we
have, for any ZC-module M, an  isomorphism H(C; M)=
H(G; Homgzc (ZG; M)). By hypothesis, therefore, H*(C; M) has a direct sum-
mand isomorphic to

[1H'(S:; Hom,c (ZG; M) =Exty(ZG/S; Homyc (ZG; M)

iel

=Exty - (ZG/S; M).

Choose M =Z or M =IC (the augmentation ideal of ZC) according as r is
even or odd. Then H?(C; M) is either cyclic of order |C| or zero, according as
(g—r) is even or odd. In any case HY(C; M), and so also Exty-(ZG/S; M), is
cyclic. But Exty - (ZG/S; M) contains a direct summand isomorphic to Z/|C|Z for
each point of the C-set|J;.; G/S; fixed by C. Hence there is at most one such
point, so the fixed points 1 - S; and g - S; coincide. In other words, i =j and g€ S..

COROLLARY 5.1. Suppose ZG/S is isomorphic to a direct summand of
K,.(®) for some ZG-projective resolution P »Z and some positive integer n.
Suppose also that i, je I, ge G are such that S,NgS;g' # 1. Theni=jand g€ S,
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Proof. Follows from Propositions 1 and 4, and Theorem 5.

COROLLARY 5.2. Suppose Z.G/S is isomorphic to a direct summand of
K, () for some ZG-projective resolution P »Z., and some positive integer n. Then
either S=1 or S is its own normaliser in G.

COROLLARY 5.3. Suppose G is an infinite group with non-trivial centre, and
Z.G/S is isomorphic to a direct summand of K, (®P) for some ZG-projective
resolution ® »Z and some positive integer n. Then S =1.

COROLLARY 5.4. Suppose G is a finite group and Z.G/S is isomorphic to a
direct summand of K,(®) for some ZG-projective resolution P »Z and some
positive integer n. Then either S =1, S =G, or (G, S) is a Frobenius pair.

COROLLARY 5.5. Suppose ? »Z and 2 »Z are ZG-projective resolutions
and m and n are positive integers, such that ZG/S is a direct summand of K,,.(P),
and ZG/T is a direct summand of K, (2). Suppose also that ge G is such that
U=SNgTg ! is non-trivial. Then either U=S or (S, U) is a Frobenius pair.

Proof. Follows from Corollary 5.4 by regarding 2 as a ZS-resolution.

Remarks. Serre’s Theorem states that, under a hypothesis somewhat stronger
than that of Theorem 5, any finite subgroup is contained in precisely one
conjugate of precisely one of the subgroups S;. Under this stronger hypothesis, the
third possibility in Corollary 5.4, that (G, S) is a Frobenius pair, would be ruled
out. Under our weaker hypothesis, however, we cannot rule the possibility out.
Indeed, the permutation modules ZG/S, where (G, S) is a Frobenius pair, all
occur as direct summands of kernels in projective resolutions of Z. We will prove
this, and other facts about Frobenius groups, in the next section.

Of course, it is well known that any Frobenius complement has periodic Tate
cohomology. Our next result states that, if ZG/S is isomorphic to a direct
summand of some K, (2), then S has periodic Tate cohomology.

PROPOSITION 6. Suppose S is a non-trivial subgroup of G, and ZG/S is
isomorphic to a direct summand of K,,(®) for some ZG-projective resolution P »7Z
and some positive integer n. Then S has periodic Tate cohomology, with period
dividing n.

Proof. By Proposition 1, S is finite. Also, regarded as a ZS-module, K, (%) has
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a direct summand isomorphic to Z. Since n# 1 by Corollary 4.1, we may apply
Proposition 2 to find a finitely-generated free ZS-resolution & »Z with F,=7ZS
and K, (¥)=Z®DA for some ZS-module A.

Form a complete ZS-resolution
> Fy 5 ZS B ZS — 5 Ff — - - - (%)

from % in the usual way by means of the dual #* and the norm-map v.
From the exact sequences

0— K, (F)* = Fr1 = K,(F)* > Extz5(Z;25)=0

(see for example [3, p. 90, Theorem 6.1]), we deduce that (*) is exact and
Coker F_ =K (#)*=Z @ A*. We use this to obtain natural isomorphisms.

HY(S; -)BExtis (A*; -)=H"(S;-) (q=1),

where H denotes Tate cohomology.

For any ZS-module M and any q =1, we have, from the above and Proposi-
tion 4, that H4(S; M) and H*"™(S; M) are direct summands of one another. It
follows that HY(S; —) and H* ™"(S; —) agree on finitely generated modules (and
hence on all modules, since H(S; —) commutes with direct limits).

Thus the Tate cohomology of S is periodic, of period dividing n, as claimed.

3. Frobenius groups

THEOREM 7. Let (G, S) be a Frobenius pair. Then ZG/S is a direct sum-
mand of ZOZLG.

Remark. This result should be compared with [5, Lemma 4.1], which expres-
ses the augmentation ideal of a Frobenius group as a direct sum of factors
corresponding to the Frobenius complement and kernel respectively. As is shown
in [5], there is a close correspondence between direct sum decompositions of
ZPZG and of the augmentation ideal of G.

Proof. By the definition of Frobenius pair, G acts transitively on a set X such
that no element of G\1 fixes more than one element of X, and S is the stabiliser



Permutation modules and projective resolutions 455

of some element x, of X. By Frobenius’ Theorem, G is a semi-direct product
N dS, where N acts freely and transitively on the G-orbit X of x,. Hence X is
the N-orbit of x,, and there is an identification between elements of X and of N
such that the action of S on X corresponds to the S-action by conjugation on N,
and such that x,e X is identified with 1€ N. It follows that S acts freely by

conjugation on N\1. Let £2,, ..., 2, denote the orbits of the S-action on N\1,
and choose orbit representatives g (2, for 1sr=<t.

We define ZG-morphisms ¢ : ZG/S — ZDZG and ¢ : ZHAZG — Z.G/S by

¢:1-5-(1 F ¥ sg)

r=1seS8S

Ylp:1—> ) g+ S

Ylzgg : 1>—1-8.

Then we have

(Wod)(1:S)=2 g-S— Y Y sg+S. (1)

geN r=1seS

Since S acts freely on N\1 we have, for 1=r=<t,

Y sg S=2 (sgs ) S= ) g*S.

seS seS ge ),

Summing over all r and substituting in (1), we deduce that
(Godp)(1-S)=1-8.

Hence yodp = 1,55 and so ZG/S is isomorphic to ZG-direct summand of
ZPZG, as claimed.

COROLLARY 7.1. Let (G, S) be a Frobenius pair and r=2 an integer. Then
there are natural isomorphisms

H'(G;—)=H'(S;-)®H'(G, S; )
H,(G;—-)=H,(S; )®H,(G, S; ).

Proof. We denote by A the complement of ZG/S in ZOZG. The following
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commutative diagram has exact rows and columns

0 0

l

00— A — ZG/S — Z—0

Ll

O——»Z'G-—>ZG€BZ——>Z——>0

v
A A
0 0

For r=1 we read off the natural isomophism
H(G; -)=Extyg (ZGDZ); —)=Exty; (ZG/S; —-)DExtys (A; ).
By Shapiro’s Lemma,
Extys (ZG/S; -)=H'(S; ),
and from the long exact sequence induced by the first column we get, for r=2,
Extz (A; —)=Extzg (4; -)=H'(G, S; -).

This establishes the first of the stated natural isomorphisms. The second is
proved in an analogous way.

COROLLARY 7.2. Let (G, S) be a Frobenius pair and denote by N the kernel
of the projection G —» S. For any finite group H let my denote the set of primes
dividing |H|. Then the following hold:

(i) The decompositions in Corollary 7.1 are functorial splittings of H'(G; —),
resp. H(G;-), into wg- and mwy-parts (r=2).

(it) For all r=2, there are natural isomorphisms of functors on ZG-modules

H'(G, §; -)=H'(N; -)"
(iii) For all r€Z, there are natural isomorphisms of functors on ZG-modules

H'(S, (-)N)=H'(S, res§ (-)).
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Proof. Statement (i) follows from the fact that |S| annihilates H'(S;—) and
IN|=|G : S| annihilates H" (G, S; —) (because (G, S) is Frobenius — see Appendix).
Statements (ii) and (iii) result from (i) when one compares the splitting of
H'(G; A) in Corollary 7.1 with that given by the restriction-inflation sequence for

the normal Hall subgroup N [1, p. 191, 55.1]. For (iii) one uses the periodicity of
S to eliminate the lower bound on the dimension r.

Remark. For the particular coefficient module Z G/S and for r =0, statement
(iii) of Corollary 7.2 takes the form

H°(S:;Z)=HS;ZG/S). (2)

Conversely, if (G, S) is a group-pair with G finite and 1# S# G, such that (2)
holds, then (G, S) is a Frobenius pair. For the module ZG/S considered as a
Z.S-module has the form

ZG/SEZEB(é ZS/Si)

i=1
and hence
H°(S;Z)=H°(S;ZG/S) (by (2))

= F°(S; Z)® (é H(S;: z)).

Thus all the S; are trivial and S acts freely on the set (G/S)\(1 « S). Essentially
the same computation gives the following converse of Theorem 7.

PROPOSITION 8. Let (G, S) be a group pair, with G finite, such that ZG/S is
a Z.S-direct summand of Z® M, where M is a ZS-module satisfying H(S; M)=0.
Then (G, S) is a Frobenius pair.

THEOREM 9. Let (G, S) be a Frobenius pair, and let n denote the period of the
Tate cohomology of S. Then there exists a finitely-generated ZG-free resolution
P >»Z such that ZG/S is a ZG-direct summand of K, (P).

Proof. Since S has cohomological period n, one can construct, using the
methods of [8, section 2], a finitely-generated ZS-free resolution & —»Z such that
K. (F)=Z® Q for some projective ZS-module Q.

By Theorem 7, there exists a ZG-module A such that ZOZG = ADZG/S as
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ZG-modules. Let ' —» A be any finitely-generated ZG-free resolution. Then
P =FDEZGCGRsF) is a finitely-generated Z G-free resolution of ADZG/S =
ZDZG. Furthermore, ZG/S is a ZG-direct summand of K, (#').

We use the epimorphism € : Py »Z@®ZG to produce a splitting Po= Q'®ZG,
where Q' is the full preimage of Z under &. Since Q' contains the kernel of €, we
may define a finitely-generated Z G-free resolution

P+ —> P, —>P; > Q' >Z'— 0
&b &b
72G— 717G

such that K, (?)=(K,,(®') has a ZG-direct summand isomorphic to ZG/S.

4. Examples

4.1. Frobenius pairs

Suppose (G, S) is a Frobenius pair, and S has cohomological period n. Then
Theorem 9 tells us that ZG/S is a direct summand of K,(%) for some ZG-free
resolution & »Z. The proof of Theorem 9 relies on the decomposition ZHZG =
ZG/S@D A to construct a suitable resolution %. It does not help us to decide
whether, for any given resolution # »Z, the module ZG/S appears as a direct
summand of K (%).

We examine this situation more closely in the special case where n =2 (that is,
S is cyclic) and # »Z is the Lyndon resolution arising from a finite presentation
of G. In this case, K,(%) is the relation module of the presentation.

Gruenberg and Roggenkamp [5, Propositions 5(i), 6] have shown that, in this
situation, any relation module decomposes as the direct sum of two non-
projective factors. In fact, following the argument in [5] reveals that one of the
factors is isomorphic to ZG/S.

Explicitly, there is an isomorphism [5, Lemma 4.1]

where N is the kernel of the projection G —» S; the modules IG, IS, IN are the
augmentation ideals in ZG, ZS, ZN respectively, and the N-action on IN is
extended to a G-action by letting S act by conjugation on elements of N.
Given a free presentation ¢ : @ — G of finite rank, one chooses a basis
{x,...,x,} of @ such that g;=¢(x;)eS and g =¢(x;)e N for 2=<i=<n. This



Permutation modules and projective resolutions 459

allows one to decompose the exact sequence

0~ Ky(¥F)— ZG) —— K{(F)=IG —>0

1-g;

as the direct sum of two terms:

0—>ZG/S—ZG ———>ZG QIS —> 0

(1—gy)
and

00— B— (ZG)" ' ——— IN—> 0

EXAMPLE 1. Let G be the symmetric group of degree 3, # »Z the Lyndon
resolution associated to the presentation

(x,y|x*=(xy)’=y>=1),

and S the subgroup of order 2 generated by x.
Then, 9, : (ZG)* = ZG is given by the matrix

(=5)

and K,(%)=Ker 9, has a direct summand isomorphic to ZG/S. This is embedded
in F; =(ZG)? as the cyclic submodule generated by the element (1+x, 0).

4.2. Infinite groups

Using Theorem 5, Corollary 5.4 and Theorem 9, we can completely classify
those group pairs (G, S), with G finite, for which ZG/S occurs as a direct
summand of some K, (). They are pairs (G, {S, 1, 1,...}) such that either

(a) (G, S) is a Frobenius pair;

(b) S =G, a group with periodic cohomology; or

(¢) S =1, in which case ZG/S is free, and no further information about G can
be deduced.
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For group pairs (G, §) with G infinite, the position is less clear, and a complete
classification would appear to be impossible to find. A restricted insight into the
complexity of the class of groups considered may be obtained from looking at
constructions under which the class is closed. In this light, the following proposi-
tion and examples give some idea of how complicated the situation is.

PROPOSITION 10. Suppose I' is a graph of groups whose edge groups G,
satisfy cd G, < n, for some fixed integer n,. Suppose we are given, for each vertex v,
a (possibly empty) family S, of subgroups of the vertex group G,, and a ZG-
projective resolution @, —»Z such that for some n(v)<n, ZG,S, is a direct
summand of K, ,(®,). Let § denote the union |J, S,, regarded as a family of
subgroups of the fundamental group G = w(I"). Then there exists a Z G-projective
resolution P »Z., and an integer r, such that ZG/S is a direct summand of K,(P).

Proposition 10 is a direct generalisation of [6, Theorem 5], and is proved in an
analogous way, using mapping cones. We omit the details.

Proposition 10 allows us to construct a large class of examples, beginning with
those we already know, such as Frobenius groups, and groups of finite quasi-
projective dimension. Our next example does not arise in this way. That is, the
group concerned is infinite, has infinite quasi-projective dimension, and cannot be
properly expressed as the fundamental group of a graph of groups whose edge
groups are torsion-free.

EXAMPLE 2. Define G = A * B, where A and B are isomorphic copies of
S

the symmetric group of degree 3, and S =(x) is a common subgroup of order 2.
If we apply the exact functor ZG ® 4 — to the Z A -resolution in Example 1, we
obtain an exact sequence

0—ZG/S®M, —> (ZG)*—>ZG —ZG/A —> 0

in which ZG/S is identified with the cyclic submodule of (ZG)? generated by the
element (1+x, 0). Hence there is a commutative diagram with exact rows

0 ——— ZGJS o Tl LBy TG s TG ——s [}

I

0 —ZG/SOM, — (ZG)>* ——> ZLG ——> ZG/A—— 0

in which €, is the augmentation map, and A, is the canonical inclusion corres-
ponding to the direct sum decomposition.
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Replacing A by B in the above gives rise to another, similar diagram. From
the two diagrams one can obtain a new commutative diagram

0 > Z.G/S >2G — 2ZG ——> Z.G/S — 0

()\A,—An)l (1,0,—1,0)1 l(l,—l) l(eA,“EB)

0—(ZG/ISOMLDPZG/IS®M) — (ZG)* — (ZG)* — ZG/ADPZG/B—>0

in which the rows are exact and the vertical maps are all injective. It follows that
the induced sequence of cokernels is also exact. This has the form

0—>ZG/ISOM,BPM,) — (ZG)) —2G —Z —> 0.

Hence ZG/S is a direct summand of K,(%) for some ZG-free resolution
F>TL.

Remark. The group G of Example 2 is expressed as an amalgamated free
product with finite amalgamated subgroup, a construction which does not satisfy
the hypotheses of Proposition 10. This suggests that it may be possible to weaken
the restriction on edge groups in Proposition 10. However, it does not seem easy
to find a general condition under which the conclusion of the proposition
continues to hold. That some restriction on edge groups is necessary is shown by
the following example.

EXAMPLE 3. G =SL,(Z)=(Z/4Z) z (Z/6Z)

2Z)

is an infinite group with non-trivial torsion and non-trivial centre. By Corollary
5.3, there is no non-trivial subgroup S such that ZG/S occurs as a direct
summand in any K, (2).

Appendix on relative cohomology

Suppose G is a finite group of order r. Then the ordinary (co)-homology
functors of G with arbitrary ZG-module coefficients are annihilated by r.

Now let G be a cyclic group of order 2n and S the subgroup of order n. Then
G/S =C=2Z/2Z. We shall compute the group H*(G, S;ZC). In the sequel, we
follow the notation of [2].

Consider the exact sequence A > ZG/S »Z, where ZG/S =ZC. Then A =7,
the Z G-module Z with nontrivial G-action. In terms of a generator g for G we
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can write down a free Z G-resolution

1+g T2t (- kg*

Foie >»Z7.G >Z2.G ~>ZG—1—?—>ZG——>Z—90.

Now the complex Homg (%, ZC) is of the form

1+c n(l-c¢)

1+c¢ ~
F s TC—>ZC > Z.C—> Z.C —> Homy, (Z, ZC) —> 0

where ¢ = gS is a generator for C. In view of the definitions in [2], we may use &’
to compute

H*(G, S;ZC)=Exty; (Z;ZC)=Z/nZ.

Thus, in general, H*(G, S; —) is not annihilated by the index of S in G. However,
our investigation will lead to the following result:

COROLLARY 2. Suppose (G, S) is a Frobenius pair and S has index k in G.
Then k annihilates the relative cohomology functors H*(G, S; —) for all q=1.

The proof of this result involves a slight digression.

If U is a subgroup of G, and M is a ZG-module, let ¢ :ZGR M - M
denote the “evaluation” map, £(g®m)=g-+m. Let o denote the natural
isomorphism

Extis (ZGQuM; —) > Extiy, (M; -).

Then we will refer to the natural transformation
res=cgoe* : Bxtis (M; —) — Ext,y (M; —)

as restriction, since in the special case M =7Z, -it is the usual restriction
H*(G; -) - H*(U; -).

Similarly, if U has finite index k in G and {g;, ..., &} is a left transversal, we
can define a map

k
n:M—>ZG®yM by n(m)= ) g®g; 'm.

r=1
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Transfer or corestriction is then defined to be the natural transformation
cor=n%*eoo ' : Ext, (M; —-) — Extis (M; —).
Just as in the usual case M =Z, we now have the following result.

PROPOSITION. Let G be a group and U a subgroup of finite index k in G.
Then for any pair of ZG-modules M, A and any integer q =0, the composite

coreres : Extd s (M; A) — Ext} (M, A) —> Ext3s (M, A)
is just multiplication by the integer k.

Proof. One checks that £om is multiplication by k on M.

Now let (G, S) be a group pair and U a subgroup of G. As in Section 2, we can
define a family T of subgroups of U such that there is a Z U-module isomorphism
Z.G/S=Z U/T. (See also [2, pp. 305-306]). As above, we denote by A the kernel
of the augmentation ZG/S — Z and define H*(G, S; —) =Ext*"! (4, —) following
[2]. Specializing the above to M = A, we obtain natural transformations

res : H¥(G;S;-)— H*(U, T; -)
and, provided U has finite index in G,
cor: H¥(U, T; -) — H*(G, S; -).
The Proposition now yields the following consequence:

COROLLARY 1. Let (G,S) and (U, T) be pairs of groups as above and
suppose U has finite index k in G. Then for any integer q=1, the natural
transformation

coreres : HY(G,S;—-)—> HY(U, T; -)— HYG,S; —)
is just multiplication by k.

If (G, S) is a Frobenius pair, we set U=S in Corollary 1. Then the family T
consists of one copy of S together with (k —1) copies of the trivial group. Since
H4(S,{S,1,...,1}; -)=H%S,S; —)=0 for q=1, Corollary 2 follows because
multiplication by k factors through O.
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